
 

On the Mathematical Formulation of 4D Fock Space 
Paul J. Werbos, April 27, 2019 

 
Abstract 

 
Ordinary Fock space, defined as concatenated combination of three-dimensional 
spaces is the main workhorse of the canonical version of quantum field theory. It is also 
fundamental to the modern version of quantum field theory without observers, as in the 
theory of Everett, Wheeler and Deutsch, which led to the theory of the universal 
quantum computer. It also has many practical uses, from quantum optics to the closure 
of turbulence and the derivation of the emergent behavior of space-time dynamical 
systems. But many of us believe that time and space are interchangeable to some 
degree, and that methods based on 4D Fock space are needed. This letter describes 
two simple mathematical tools to help make that possible. It discusses how computing 
the emergent statistics of such systems is a proper generalization of value function 
estimation in machine learning, which may therefore carry the same complexities with it.  

 

 
 

1. The Challenge: Why We Might Need More Than 3D Fock Space 
 
The canonical forms of quantum field theory (QFT) today are based on the Schrodinger 
equation: 

 

          (1) 
 
where the wave function Ψ(z*) is defined over points z in three-dimensional Fock space 
[1,2]. Three dimensional (3D) Fock Space is not a three dimensional space; it is the 
vector sum of spaces of continuous dimension 3N, for all N from zero to infinity, with 
discrete “spin” dimensions added as well for each group of 3 dimensions. It is 
essentially the modern version of what Von Neumann called “configuration space.”  
 
Intuitively, it is hard to believe that the true, ultimate laws of quantum field theory are 
based on equation (1), because equation (1) treats time as something different from 
space, even though Lorentz invariance is one of the most well-established laws of 
physics. For that reason, mathematicians trying to reformulate quantum field theory 
without ejecting the use of Fock space altogether have tried to reformulate it in terms of 
4D Fock space, involving wave functions Ψ(z) where z refers to a point in 4D Fock 
space [3]. Unfortunately, their efforts did not meet the standards of rigor of mathematics 
any more than traditional canonical QFT did, because they relied heavily on quantities 
such as the square norm of particle world-lines across space time for which the square 



norm would naturally be infinite. In order to construct a mathematically well-defined and 
plausible formulation of quantum realism [2], we need to find a way to fix these details. 
 
Furthermore, Fock space is important today as a mathematical tool for describing the 
emergent behavior implied by models over ordinary Minkowski space, of which there 
are a great variety. High energy physics tends to make strong implicit assumptions 
based on common sense about the equivalence between Feynmann path ideas and 
correlation functions which are actually defined over 4D Fock space [1]; it would be 
good to have a mathematical formulation as needed to prove those assumptions, or to 
fix them to make them more precise.  Likewise, more axiomatic formulations of QFT 
over 3+1 dimensions [4] have statistical implications over space and time better 
represented in terms of 4D Fock space than 3D. 
 
What drove me to submit this note today is another consideration altogether, another 
area where 4D Fock space is important. It concerns “the closure of turbulence,” the 
effort to compute the emergent statistics of dynamical systems governed either by [1] or 
by nonlinear partial differential equations. For [1], it is well-known that the possible 
equilibrium ensembles are given by the quantum grand canonical density matrix [5], the 
QFT version of a Boltzmann distribution, which is effectively a probability distribution for 
possible values of the wave function at any time. But what about correlations across 
time ? How can we represent allowed equilibria of the whole system of “correlations” 
(actually, covariations) across Minkowski space-time? 
 
Furthermore, practical and empirical quantum optics [6-11] depends heavily on the 
“coherence representation” of light (not to be confused with the wave function), which 
uses “distribution functions” to map between classical representations and (simplified) 
3D Fock space. I have generalized the standard “P” distribution function so as to map 
back and forth between classical fields in general and the full 3D Fock space proper 
[12-14], but what is the full 4D version?  
 
When the usual Boltzmann type equilibrium tools are applied to nonlinear PDE, I have 
derived a similar result, or entropy function, for a large class of PDE . Under my 
generalized P mapping, this implies an equilibrium density matrix over the 3D Fock 
space at the end of that mapping [14]. But again, what of the covariations across space-
time?  
 

2. How to Meet the Challenge 
 

2.1. Goals of This letter 
 

This letter will not fully resolve all the complex, connected challenges mentioned in the 
previous section. However, it will suggest a few simple, basic mathematical tools 
needed to make solutions possible. In an ideal world, I would take years to develop 
each of the applications in some detail, and work their way through the journals of 
highest impact factor, but after retirement and after age 70 one cannot be sure of having 
enough time left to do so.  



 
There are two main tools required here, the 4D version of the generalized P mapping 
and an “interest rate” regularization. There are analogies between the interest rate 
regularization and tools necessary to the analysis of the Bellman equation and others 
used in Reinforcement Learning and Approximate Dynamic Programming (RLADP [15]). 
There may also be a more distant analogy to the breakthroughs of Von Neumann in 
quantum mechanics, in working with operators which did not fit earlier notions of finite 
norm and existence of an adjoint. 
 
2.2 The 4D generalized P mapping  
 
In [14], the generalized 3D P mapping is defined as: 
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where αj(x) for j = 1 to m is a set of m functions or field over points x in 3D space,  
where aH

j is the standard creation operator for 3D Fock space [1,12], where |0> is the 
vacuum state of 3D Fock-Hilbert space, where |S> is the corresponding wave function 
considered as a state |S> over 3D Fock-Hilbert space, and where Z is a scalar term 
used to normalize the length of |S> to 1. As in canonical QFT (1), we use p to denote 
Fourier transforms from x. An ensemble of possible classical states is of course mapped 
into the density matrix ρ, the sum of pk|Sk><Sk|. 
 
Conceptually, the 4D generalized mapping is exactly the same in appearance, except 
that we replace p by x, where x is a point in Minkowski space, and the integration is 
over all four dimensions. Classical-quantum equivalence is actually easier to obtain in 
the 4D representation than in the 3D representation, if we consider the S matrix for 
scattering as a mapping from an incoming statistical ensemble to an outgoing 
ensemble. In the 3D case, a function of p appears in the denominator of the definition of 
the field operators, but that is not necessary in the 4D case. This is discussed in a paper 
30 years old in my files, but I have not pursued it more because physics today is better 
prepared for improvements in the 3D formulations.  
 
2.3 Interest Rate Regularization 
 
There are many, many different types of regularization  used in physics, in engineering 
and elsewhere. Regularization is often used in conjunction with mass and charge 
renormalization, in a way which changes the very definition of QFTs. Here, however, it 
can be used in a more passive way, to analyze equilibrium statistics. 
 
The density matrix  ρ4 over 4D Fock space is made up of elements which may be 
written as:  
 



       ρ4(x1, s1, x2, s2, … xn, sn ; x’1, s’1, x’2, s’2, … x’m, s’m ) 

where the x coordinates are vectors in Minkowski space and the discrete s coordinates 
are spin coordinates [1,3]. For convenience, let us define the array v of length n+m as 
the array of the n 4-vectors x concatenated with  the m 4-vectors x’.   Let us define the 
raw (unnormalized) regularized density matrix  ρ*4,0(β) as the corresponding matrix 
made up of elements:    
 

ρ4(x1, s1, x2, s2,…xn, sn ; x’1, s’1, x’2, s’2,…x’m, s’m ) Π{i,j} exp(-βΔ(vi – vj))     (3) 

where Δ is a simple distance function such as the L1 norm (the sum of the absolute 
value of the differences along all four coordinates) or even just the absolute difference 
in the time coordinate.  When the difference in time is used, this is very similar to the 
use of interest rates (aka discount factors) in economics and intelligent systems [15-18].  

The full regularized density matrix is defined as  
 
ρ*4(β) = Z ρ*4,0(β)          (4), 
 
where Z is just the scalar which normalizes the length of the matrix to one. 
 
For many (almost all?) relevant field theories, the matrix ρ*4(β) may be well defined for 
all values of β between zero (not including zero) and some small positive value. The 
limit as β goes to zero may also be well-defined. That limit is what we want to study, 
when we are studying the emergent complex covariations which result from that field 
theory.  
 
2.4 Analogies and Possibilities 
 
Many years ago, mathematicians were startled to learn just how diverse and tricky the 
emergent behavior can be from diverse types of simple one-dimensional systems [19]. 
There are many indications that systems over Minkowski space or Fock space may 
have even more diversity, beyond what we begin to understand as yet. For some 
systems, equation 3 may be necessary and sufficient. For some systems, it may be 
unnecessary to take a limit in order to derive ρ4. But for others, the limit may not be well 
defined. 
 
The calculation of ρ4 has a strong analogy to the calculation of the value function J in 
RLADP [16,17]. In fact, the J estimate is essentially just an estimate of the first 
statistical moment (the mean) of one selected variable (U) in a one-dimensional 
dynamical system. That is a narrow special aspect of the more general calculation we 
are describing here. The more general system may actually have uses in computer 
technology as well as physics, because anticipation of the fate of more than one 
variable is often of interest to system developers.  
 



In RLADP, it is always possible to get finite J estimates when the interest rate is more 
than zero (for normal types of deterministic or stochastic dynamic system), but there are 
cases where the limit as the interest rate (r ) goes to zero does not exist or is difficult to 
compute. Even when the limit exists, it often works best to start from a finite value of r 
and lower it slowly, so as to gradually expand the degree of vision or foresight of a 
system. There are times when greater foresight reveals that a system is in a kind of 
crossroads situation [17], which basically rules out the use of more simplistic decision 
systems and calls for certain modifications [16,17], which are generalizations of earlier 
concepts by Ron Howard from iterative dynamic programming. We do not know yet 
what kinds of PDE or stochastic ODE or QFTs would have that kind of property, and 
what it would imply. 
 
It should also be noted that the Lagrange-Euler equations assumed widely in physics 
are a very special class of PDE. They are essentially the special case over space time 
of the equations of RLADP without stochastic disturbance. This raises an interesting 
question: to what extent do those equations actually predict the complex, tricky kind of 
behavior which one might expect from an intelligent (RLADP) certain?  
 

3. Some concluding thoughts 
 
The use of methods over 3D Fock space may be thought of as drinking from a firehose, 
analyzing a very complex changing matrix of information. Analysis over 4D Fock space 
is more like drinking from an ocean, a vast system over space and time. Both types of 
analysis have their uses. Availability of both types of method, and of more classical 
methods, may provide a richer integrated understanding of many of the dynamical 
systems of importance to us.  
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