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Non-commutativity: Unusual View
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Some ambiguities have recently been found in the definition of the partial derivative (in
the case of presence of both explicit and implicit dependencies of the function subjected
to differentiation). We investigate the possible influence of this subject on quantum
mechanics and the classical/quantum field theory. Surprisingly, some commutators of
operators of space-time 4-coordinates and those of 4-momenta are not equal to zero.
We postulate the non-commutativity of 4-momenta and we derive mass splitting in the
Dirac equation. Moreover, two iterated limits may not commute each other, in general.
Thus, we present an example when the massless limit of the function of E,p,m does
not exist in some calculations within quantum field theory.

1 Introduction

The assumption that the operators of coordinates do not com-
mute [x̂µ, x̂ν]− , 0 has been made by H. Snyder [1]. There-
fore, the Lorentz symmetry may be broken. This idea [2, 3]
received attention in the context of “brane theories”. More-
over, the famous Feynman-Dyson proof of Maxwell equa-
tions [4] contains intrinsically the non-commutativity of ve-
locities [ẋi(t), ẋ j(t)]− , 0 that also may be considered as a
contradiction with the well-accepted theories (while there is
no any contradiction therein).

On the other hand, it was recently discovered that the con-
cept of partial derivative is not well defined in the case of both
explicit and implicit dependence of the corresponding func-
tion, which the derivatives act upon [5]. The well-known ex-
ample of such a situation is the field of an accelerated charge
[6].∗ Škovrlj and Ivezić [7] call this partial derivative as ‘com-
plete partial derivative’; Chubykalo and Vlayev, as ‘total
derivative with respect to a given variable’. The terminology
suggested by Brownstein [5] is ‘the whole-partial derivative’.

2 Example 1

Let us study the case when we deal with explicite and im-
plicite dependencies f (p, E(p)). It is well known that the
energy in relativism is related to the 3-momentum as E =

±
√

p2 + m2; the unit system c = ~ = 1 is used. In other
words, we must choose the 3-dimensional mass hyperboloid
in the Minkowski space, and the energy is not an independent
quantity anymore. Let us calculate the commutator of the
whole-partial derivatives ∂̂/∂̂E and ∂̂/∂̂pi. In order to make
distinction between differentiating the explicit function and
that which contains both explicit and implicit dependencies,
the ‘whole partial derivative’ may be denoted as ∂̂. In the

∗Firstly, Landau and Lifshitz wrote that the functions depended on t′,
and only through t′ + R(t′)/c = t they depended implicitly on x, y, z, t. How-
ever, later (in calculating the formula (63.7)) they used the explicit depen-
dence of R on the space coordinates of the observation point too. Jackson [8]
agrees with [6] that one should find “a contribution to the spatial partial
derivative for fixed time t from explicit spatial coordinate dependence (of
the observation point).”

general case one has

∂̂ f (p, E(p))

∂̂pi
≡
∂ f (p, E(p))

∂pi
+
∂ f (p, E(p))

∂E
∂E
∂pi

. (1)

Applying this rule, we find surprisingly

[
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,
∂̂

∂̂E

]
−
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−

∂

∂E

(
∂ f
∂pi

+
∂ f
∂E

∂E
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)
=
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∂E∂pi

+
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∂E
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−
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∂pi∂E

−
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∂E2

∂E
∂pi
−
∂ f
∂E

∂

∂E

(
∂E
∂pi

)
.

(2)

So, if E = ±
√

m2 + p2 and one uses the generally-accepted
representation form of ∂E/∂pi = pi/E, one has that the ex-
pression (2) appears to be equal to (pi/E2) ∂ f (p,E(p))

∂E . Within
the choice of the normalization the coefficient may be related
to the longitudinal electric field in the helicity basis.† Next,
the commutator is ∂̂

∂̂pi
,
∂̂

∂̂p j


−

f (p, E(p)) =
1
|E|3

∂ f (p, E(p))
∂E

[pi, p j]− . (3)

This should also not be zero according to Feynman and
Dyson [4]. They postulated that the velocity (or, of course,
the 3-momentum) commutator is equal to [pi, p j] ∼ i~εi jkBk,
i.e., to the magnetic field. In fact, if we put in the corespon-
dence to the momenta their quantum-mechanical operators
(of course, with the appropriate clarification ∂ → ∂̂), we ob-
tain again that, in general, the derivatives do not commute[
∂̂

∂̂xµ
, ∂̂

∂̂xν

]
−

, 0.

Furthermore, since the energy derivative corresponds to
the operator of time and the i-component momentum deriva-

†The electric/magnetic fields can be derived from the 4-potentials which
have been presented in [9].
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tive, to x̂i, we put forward the following anzatz in the momen-
tum representation:

[x̂µ, x̂ν]− = ω(p, E(p)) Fµν
||

(p)
∂

∂E
, (4)

with some weight function ω being different for different
choices of the antisymmetric tensor spin basis. The physi-
cal dimension of xµ is [energy]−1 in this unit system; Fµν

||
(p)

has the dimension [energy]0, if we assume the mass shell
condition in the definition of the field operators δ(p2 − m2),
see [10]. Therefore, the weight function should have the di-
mension [energy]−1. The commutator [x̂µ, p̂ν] has the same
form as in the textbook nonrelativistic quantum mechanics
within the presented model.

In the modern literature, the idea of the broken Lorentz
invariance by this method concurs with the idea of the funda-
mental length, first introduced by V. G. Kadyshevsky [11] on
the basis of old papers by M. Markov. Both ideas and corre-
sponding theories are extensively discussed. In my opinion,
the main question is: what is the space scale, when the rela-
tivity theory becomes incorrect.

3 Example 2

In the previous Section (see also the paper [12]) we found
some intrinsic contradictions related to the mathematical
foundations of modern physics. It is well known that the par-
tial derivatives commute in the Minkowski space (as well as
in the 4-dimensional momentum space). However, if we con-
sider that energy is an implicit function of the 3-momenta
and mass (thus, approaching the mass hyperboloid formal-
ism, E2 − p2c2 = m2c4) then we may be interested in the
commutators of the whole-partial derivatives [5] instead. The
whole-partial derivatives do not commute, as you see above.
If they are associated with the corresponding physical oper-
ators, we would have the uncertainty relations in this case.
This is an intrinsic contradiction of the SRT. While we start
from the same postulates, on using two different ways of rea-
soning we arrive at the two different physical conclusions.

In this Section I would like to ask another question.
Sometimes, when calculating dynamical invariants (and other
physical quantities in quantum field theory), and when study-
ing the corresponding massless limits we need to calculate
iterated limits. We may encounter a rare situation when two
iterated limits are not equal each other in physics. See, for
example, Ref. [10]. We were puzzled calculating the iter-
ated limits of the aggregate E2−p2

m2 (or the inverse one, m2

E2−p2 ,
c = ~ = 1):

lim
m→0

lim
E→±
√

p2+m2

(
m2

E2 − p2

)
= 1 , (5)

lim
E→±
√

p2+m2

lim
m→0

(
m2

E2 − p2

)
= 0 . (6)

Similar mathematical examples are presented in [13]. Physics
should have well-defined dynamical invariants. Which iter-
ated limit should be applied in the study of massless limits?
The question of the iterated limits was studied in [14]. How-
ever, the answers leave room for misunderstandings and con-
tradictions with the experiments. One can say: “The two lim-
its are of very different sorts: the limit of E → ±

√
p2 + m2 is

a limit that subsumes the statement under the theory of Spe-
cial Relativity. Such limits should be done first.” However,
cases exist when the limit E → ±

√
p2 + m2 cannot be ap-

plied (or its application leads to the loss of the information).
For example, we have for the causal Green’s function used in
the scalar field theory and in the m → 0 quantum electrody-
namics (QED), Ref. [15]:

Dc(x) =
1

(2π)4

∫
d4 p

e−ip·x

m2 − p2 − iε
(7)

=
1

4π
δ(λ) −

m

8π
√
λ
θ(λ)

[
J1(m

√
λ) − iN1(m

√
λ)

]
+

im

4π2
√
−λ

θ(−λ)K1(m
√
−λ),

λ = (x0)2 − x2; J1,N1,K1 are the Bessel functions of the first
order. The application of E → ±

√
p2 + m2 − iδ results in

non-existence of the integral. Meanwhile, the massless limit
is made in the integrand in the Feynman gauge with no prob-
lems. Please remember that integrals are also the limits of
the Riemann integral sums. The m → 0 limits are made first
sometimes.

Next, the application of the mass shell condition in the
Weinberg-Tucker-Hammer 2(2S + 1)-formalism leads to the
fact that we would not be able to write the dynamical equa-
tion in the covariant form [γµν∂µ∂ν − m2]Ψ(6)(x) = 0. Apart,
the information about the propagation of longitudinal modes
would be lost (cf. formulas (19,20,27,28) of the first pa-
per [10]). Moreover, the Weinberg equation and the mapping
of the Tucker-Hammer equation to the antisymmetric tensor
formalism have different physical contents on the interaction
level [16, 17].∗

Next, if we would always apply the mass shell condition
first then we come to the derivative paradox of the previous
Section. Finally, the condition E2 − p2 = m2 does not always
imply the generally-accepted special relativity only. For in-
stance, see the Kapuscik work, Ref. [18], who showed that
similar expressions for energy and momentum exist for parti-
cles with V > c and m∞ ∈ <e.

Meanwhile, the case m = 0 appears to be equivalent to the
light cone condition r = ct, which can be taken even without

∗I take this opportunity to note that problems (frequently forgotten) may
also exist with the direct application of m → 0 in relativistic quantum equa-
tions. The case is: when the solutions are constructed on using the relativis-
tic boosts in the momentum space the mass may appear in the denominator,
∼ 1/mn, which cancels the mass terms of the equation giving the non-zero
corresponding result.
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the mass shell condition to study the theories extending the
special relativity. Not everybody realizes that it can be used
to deduce the Lorentz transformations between two different
reference frames. Just take squares and use the lineality: r2

1 −

c2t2
1 = 0 = r2

2 − c2t2
2. Hence, in d = 1 + 1 we have x2 =

γ(x1 − vt1) , t2 = α(t1 −
β
c x1) with α = γ = 1/

√
1 − v2

c2 , the
Lorentz factor; β = v/c.

4 Example 3

The problem of explaining mass splitting of leptons (e, µ, τ)
and quarks has a long history. See, for instance, a method
suggested in Refs. [19], and some new insights in [20]. Non-
commutativity [1] also exhibits interesting peculiarities in the
Dirac case. Recently, we analyzed the Sakurai-van der Waer-
den method of deriving the Dirac (and higher-spin) equa-
tion [21]. We can start from

(EI(2) − σ · p)(EI(2) + σ · p)Ψ(2) = m2Ψ(2) , (8)

or

(EI(4) + α · p + mβ)(EI(4) − α · p − mβ)Ψ(4) = 0 . (9)

E and p form the Lorentz 4-momentum. Obviously, the in-
verse operators of the Dirac operators exist in the non- com-
mutative case. As in the original Dirac work, we have β2 =

1, αiβ + βαi = 0, αiα j + α jαi = 2δi j.
We also postulate non-commutativity relations for the

components of 4-momenta:

[E,pi]− = Θ0i = θi , (10)

as usual. Therefore the equation (9) will not lead to the well-
known equation E2 − p2 = m2. Instead, we have{

E2 − E(α · p) + (α · p)E − p2 − m2

−i(σ ⊗ I(2))[p × p]
}
Ψ(4) = 0 .

For the sake of simplicity, we may assume the last term to
be zero. Thus, we arrive at{

E2 − p2 − m2 − (α · θ)
}
Ψ(4) = 0 . (11)

We can apply the unitary transformation. It is known [22,23]
that one can∗ U1(σ · a)U−1

1 = σ3|a| . For α matrices we re-
write as

U1(α · θ)U−1
1 = |θ|


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 = α3|θ| . (12)

∗Some relations for the components a must be assumed. Moreover, in
our case θ must not depend on E and p. Otherwise, we must take the non-
commutativity [E,pi]− into account again.

The explicit form of the U1 matrix is (ar,l = a1 ± ia2):

U1 =
1

√
2a(a + a3)

(
a + a3 al

−ar a + a3

)
= (13)

=
1

√
2a(a + a3)

[a + a3 + iσ2a1 − iσ1a2] ,

U1 =

(
U1 0
0 U1

)
. (14)

We now apply the second unitary transformation:

U2α3U
†

2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

α3


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (15)

The final equation is then[
E2 − p2 − m2 − γ5

chiral|θ|
]
Ψ′(4) = 0 . (16)

In physical terms this implies mass splitting for a Dirac parti-
cle over the non-commutative space, m1,2 = ±

√
m2 ± θ. This

procedure may be attractive as explanation of mass creation
and mass splitting in fermions.

5 Conclusions

We found that the commutator of two derivatives may be not
equal to zero. As a consequence, for instance, the question
arises, if the derivative ∂̂2 f /∂̂pν∂̂pµ is equal to the deriva-
tive ∂̂2 f /∂̂pµ∂̂pν in all cases?† The presented consideration
permits us to provide some bases for non-commutative field
theories and induces us to look for further development of the
classical analysis in order to provide a rigorous mathematical
basis for operations with functions which have both explicit
and implicit dependencies. Several other examples are pre-
sented. Thus, while for physicists everything is obvious in
the solutions of the paradoxes, this is not so for mathemati-
cians.
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†The same question can be put forward when we have differentiation
with respect to the coordinates too, that may have impact on the correct cal-
culations of the problem of accelerated charge in classical electrodynamics.
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