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Abstract

The intent of this work is to present a discussion of the Galilean Principle of Relativity and of its implications
for what concerns the characteristics of light propagation and the nature of simultaneity. It is shown that by
using a clock synchronization procedure that makes use of isotropically propagating signals of generic nature,
the simultaneity of distinct events can be established in a unique way by different observers, also when such
observers are in relative motion between themselves. Such absolute nature of simultaneity is preserved in the
passage from a stationary to a moving reference frame also when a set of isochronous generalized coordinates
is introduced. These transformations of coordinates can be considered as a generalization of the Lorentz
transformations to the case of synchronization signals having characteristic speed different from the speed
of light in vacuum.The specific invariance properties of these coordinate transformations with respect to
the characteristic speed of propagation of the synchronization signals and of the corresponding constitutive
laws of the underlying physical phenomenon are also presented, leading to a different interpretation of their
physical meaning with respect to the commonly accepted interpretation of the Lorentz transformation as a
space-time distortion. On the basis of these results, the emission hypothesis of W. Ritz, that assumes that light
is always emitted with the same relative speed with respect to its source and that is therefore fully consistent
with the Galilean Principle of Relativity, is then applied to justify the outcomes of the Michelson-Morley and
Fizeau interferometric experiments by introducing, for the latter case, an additional hypothesis regarding the
possible influence of turbulence on the refractive index of the fluid. Finally, a test case to verify the validity
of either the Galilean or the Relativistic velocity composition rule is presented. The test is based on the
aberration of the light coming from celestial objects and on the analysis of the results obtained by applying
the two different formulas for the resultant velocity vector to process the data of the observed positions, as
measured by a moving observer, in order to determine the actual un-aberrated location of the source.

I. The Galilean Principle of

Relativity

The Galilean Principle of Relativity has been
originally formulated by Galileo Galilei in the
following way[1]: ”Shut yourself up with some
friend in the main cabin below decks on some large
ship, and have with you there some flies, butterflies,
and other small flying animals. Have a large bowl
of water with some fish in it; hang up a bottle that
empties drop by drop into a wide vessel beneath
it. With the ship standing still, observe carefully
how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in
all directions; the drops fall into the vessel beneath;
and, in throwing something to your friend, you
need throw it no more strongly in one direction

than another, the distances being equal; jumping
with your feet together, you pass equal spaces in
every direction. When you have observed all these
things carefully (though doubtless when the ship is
standing still everything must happen in this way),
have the ship proceed with any speed you like, so
long as the motion is uniform and not fluctuating
this way and that. You will discover not the least
change in all the effects named, nor could you tell
from any of them whether the ship was moving or
standing still. In jumping, you will pass on the floor
the same spaces as before, nor will you make larger
jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite
the fact that during the time that you are in the
air the floor under you will be going in a direction
opposite to your jump. In throwing something to
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your companion, you will need no more force to get
it to him whether he is in the direction of the bow
or the stern, with yourself situated opposite. The
droplets will fall as before into the vessel beneath
without dropping toward the stern, although while
the drops are in the air the ship runs many spans.
The fish in their water will swim toward the front of
their bowl with no more effort than toward the back,
and will go with equal ease to bait placed anywhere
around the edges of the bowl. Finally the butterflies
and flies will continue their flights indifferently
toward every side, nor will it ever happen that they
are concentrated toward the stern, as if tired out
from keeping up with the course of the ship, from
which they will have been separated during long
intervals by keeping themselves in the air. And if
smoke is made by burning some incense, it will be
seen going up in the form of a little cloud, remaining
still and moving no more toward one side than the
other. The cause of all these correspondences of
effects is the fact that the ship’s motion is common
to all the things contained in it, and to the air
also. That is why I said you should be below decks;
for if this took place above in the open air, which
would not follow the course of the ship, more or less
noticeable differences would be seen in some of the
effects noted.”

The principle states the invariance of physi-
cal phenomena with respect to uniform recti-
linear motion, with constant velocity, of the sys-
tem within which the phenomena themselves
occur.

As it can be noted from the above formula-
tion of the relativity principle, the invariance
of the phenomena requires that the entire sys-
tem being analyzed, including the medium in
which the phenomena occur and propagate
and the system’s boundary conditions (the
walls of the ship’s cabin, the bowl where the
fishes swim), all translate with the same uni-
form velocity. The filling medium, the atmo-
sphere of the ship’s cabin or the water con-
tained into the bowl, present into the enclosed
volume of the system being analyzed is trans-
ported by the motion of the frontier of the sys-
tem in such a way that the medium remains
stationary with respect to the other parts of the
system also when the ship is proceeding along

its course with constant velocity.
In the above formulation of the principle

of relativity Galilei remarked that any phe-
nomenon which is characterized by having an
isotropic propagation speed for a given state
of motion of the ship will maintain this prop-
erty also when the entire system (the ship) is
moving with constant uniform velocity with re-
spect to its original condition. This invariance
property is applicable both to wave-like phe-
nomena that require a propagation medium
to occur, like the circular propagation of the
waves on the water surface, and to particle-like
or corpuscular phenomena, involving the mo-
tion of physical objects, like the balls thrown
by hand mentioned in Galilei’s example, or the
motion of particles originating from a given
source, provided that these corpuscular physi-
cal entities are emitted by the source with the
same constant speed in all directions.

Though the original formulation by Galilei
made explicit reference only to some specific
physical phenomena, involving in particular
mechanics and fluidodynamics, the principle
is considered valid also for all other physical
phenomena, including electromagnetism and
optics. This means that the results of any phys-
ical experiment shall not vary when the same
test is repeated in a given laboratory and in
another laboratory which is moving with uni-
form constant velocity with respect to the first
one.

If we now consider an observer that is mov-
ing with constant velocity inside the cabin of
the ship, we can note that for this observer
the above phenomena are no longer character-
ized by a uniform speed in all directions: for
a moving observer the velocity of propagation
of the wavefronts on the water surface of the
bowl will appear different along different di-
rections, and the same happens also for the
velocity of the hand launched balls which will
have a different value along different directions.
For such a moving observer those phenomena
are not characterized by an isotropic propaga-
tion speed, whilst this property is valid for an
observer which is stationary with the ship’s
frame, i.e. for an observer which is stationary
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both with the source of the phenomenon and
with its propagation medium, when the pres-
ence of a propagation medium is necessary for
the specific phenomenon being investigated.

Assuming that the ship is in a state of uni-
form rectilinear motion, a reference frame sta-
tionary with the ship’s deck is an inertial ref-
erence frame. If the observer moving inside
the cabin is also translating with uniform con-
stant speed with respect to the ship’s deck,
then also this frame is an inertial reference
frame. The difference between these two iner-
tial frames lies in their property of conserving,
or not conserving, the isotropy of propagation
of the phenomena. This characteristics there-
fore splits the class of the inertial frames into
two groups, and the distinction is applicable
also to phenomena that do not require a prop-
agation medium, it is thus applicable also in
vacuum. As a consequence of this distinction,
the laws describing the evolution of the phys-
ical phenomena will not be the same for all
inertial reference frames, and for the associ-
ated observers. The laws of the same physical
phenomenon will take a different form in an
inertial frame for which the isotropy of prop-
agation is conserved and into another inertial
frame that is in relative motion with respect
to the first one and for which the isotropy of
propagation is not conserved.

An observer moving inside the ship’s cabin
will also notice variations of the frequency of
periodic phenomena occurring into the system.
The time separation between the peaks and val-
leys of the water waves appears different for an
observer at rest with the propagation medium,
the water inside the bowl, and for an observer
moving on its surface. Similarly, the frequency
of encounter of the water drops falling from the
bottle will increase if the observer is moving
upwards and decrease if the observer is mov-
ing downwards, reaching a null value when
the downward speed of the observer is equal
to the falling speed of the water drops. The
same variation of the observed frequency af-
fects also other phenomena not mentioned by
Galilei: the tone of a sound or the colors of the
spectral lines emitted by an excited substance

appear different for a moving observer with
respect to a stationary one.

Finally, it can be noted that whilst the
Galilean Principle of Relativity has been formu-
lated for systems that are in a state of uniform
rectilinear motion, the specific example used
by Galilei in its original description, i.e. the
ship and the physical entities contained in its
cabin, is not actually representative of such
a case, since the ship, whether at rest in the
harbour or cruising on the sea, is transported
by the Earth’s motion along a non rectilinear
path. Due to the curvature of the Earth and
to its angular rotation, the state of motion of
the ship contains a circular component and
is characterized by a non-null angular veloc-
ity. Even if the amount of the deviation from
uniform rectilinear motion is quite small and
can be neglected, in first approximation, for
many applications, the presence of the Earth’s
rotation can have an influence of the physical
phenomena being observed and it can indeed
be detected by suitable physical experiences,
for example by observing the variation of the
plane of oscillation of a Foucault pendulum.
This same observation is applicable to any ex-
periment performed into a Laboratory on the
Earth, since the entire experimental setup is
rigidly transported by the non-rectilinear mo-
tion of our planet. In general, this accelerated
state of motion could have an influence on the
results of the experiment and on the measure-
ments being conducted. The actual extent and
entity of the influence will depend on the phe-
nomenon being investigated and on the specific
experimental setup, being possibly not negli-
gible for some very accurate measurements or
experiments.

II. Simultaneity and Time

Intervals

In order to describe the governing laws of
physical phenomena by means of mathemati-
cal expressions it is necessary to define a set
of coordinates to associate each event being
analyzed to a location in space and to a time
of occurrence. This requires a method to de-
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termine when two or more events occurring at
different locations in space are simultaneous,
and a definition of a reference clock to measure
the time intervals between non-simultaneous
events.

Let us take a given closed system S where
a reference frame K has been identified. For
convenience K can be a set of three orthogonal
Cartesian axes. Let us consider two simulta-
neous events occurring at two distinct space
locations A and B. Suppose that at the time
of occurrence of each event some kind of syn-
chronization signals are emitted from the two
points of space where the events occur and that
such synchronization signals travel with uni-
form and constant speed in all directions, i.e.
that they propagate isotropically into the refer-
ence frame K. Let vc be the finite characteristic
speed of propagation of such signals, which
is assumed to be equal in all directions into
the reference frame K. The two synchroniza-
tion signals emitted by A and B at the time of
occurrence of the two events will reach simulta-
neously the midpoint M of segment AB, since
both signals will take the same time to cover
the distance that separates M from A and M
from B, being such two distances equal by con-
struction. If we now consider another couple of
signals, emitted from A and B at the same time
of first two, but which are characterized by a
different value of the propagation speed with
respect to the first ones, also these two signals
will reach the midpoint M of AB simultane-
ously. The coincidence of the time of arrival
time of the A and B signals is therefore veri-
fied for any value of the characteristic speed of
propagation vc of the synchronization signals,
the only difference being that the faster signals
will arrive at the midpoint M earlier than the
slower ones.

It is this thus possible to formulate the cri-
terion for the simultaneity of events in the fol-
lowing general way:

Two events are simultaneous if and only if the two
synchronization signals, emitted from the points A
and B at the time of occurrence of the corresponding
events, reach simultaneously the mid-point M of

segment AB 1 for any finite value of the characteris-
tic speed vc of the selected signals.

When this condition is verified we can say
that, into the specified reference frame K being
considered, the time t of the two events is the
same, i.e. we can state tA = tB.

The simultaneity of events is therefore a char-
acteristics that is invariant with respect to the
speed of propagation vc of the synchronization
signals, thus resulting independent from the
specific kind of signal being selected.

According to the above criterion, if an event
A is simultaneous with a second event B and
also with a third event C, than also the two
events B and C are simultaneous. The synchro-
nization signals selected to assess the mutual
simultaneity between the three events can be
different for each couple of events, the outcome
of the process will be the same.

The physical nature of the specific signals
being used for the synchronization is not rele-
vant for the method, they could be particle-like
or wave-like phenomena, nor the value of their
characteristic propagation speed vc, which is
only assumed to be finite and equal in all di-
rections. The only assumption required for
the validity of the method is that the selected
synchronization signals propagate isotropically
with respect to the reference frame K.

For example, in vacuum one could imag-
ine to employ small particles, emitted in every
direction with the same relative speed with re-
spect to the source by a spring-loaded launch-
ing device, or one could consider to perturb an
ideal string tensioned between its endpoints A
and B and use the propagation of the resultant
waveform as synchronization signal. In both
cases we can imagine of being able to tune the
value of the signal speed ideally to whatever
finite value vc, by properly adjusting the char-
acteristics of the governing parameters of the
selected physical phenomenon (string tension,
spring and mass values). In presence of a ho-

1In general, the location of the control point M need
only to be selected in such a way that it is equidistant from
A and B, i.e. it can be located at the center of a sphere
having points A and B on its surface. The midpoint of the
segment AB represents the minimum distance choice.
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mogeneous and isotropic medium, other kind
of signals could also be employed like, for ex-
ample, acoustic waves traveling in the air at
the speed of sound.

A M B

v
1

v
1

A M B

v
2

v
2

Figure 1: Simultaneity assessment by means of particle-
like (top) or wave-like (bottom) isotropic syn-
chronization signals traveling with character-
istic speed vc = v1 and vc = v2, respectively

In order to guarantee the isotropy of propa-
gation of the synchronization signals, accord-
ing to what stated by the Galilean Principle
of Relativity, it is necessary that the frame of
reference K identified to represent the coordi-
nates of the two events A and B is stationary
both with the source of the signals and with
the propagation medium (for those phenom-
ena that require a medium to propagate). In
the above examples this means that the spring-
loaded launcher of the particle-like objects, in
one case, and the entire ideal string, in the
other case, have to be stationary with respect
to the frame K.

The process can be applied to any pair of
geometrical points in the space and to the cor-
responding couple of events. In such a way,
it can be used to synchronize pairs of clocks
placed at distinct space locations. Without los-
ing generality we can assume that the origin
of the reference frame K is coincident with one
of the two points selected as the source of the
synchronization signals. By using this method,
therefore, it is possible to synchronize a "mas-
ter" clock located in the origin of the reference

frame K with a clock placed at any point of
the entire space S, i.e. at any point of the en-
tire space domain. This synchronization of the
clocks guarantees also that the two clocks run
at the same pace, spanning the same time in-
tervals at the two different space location, i.e.
it allows to state that ∆tB = ∆tA.

Repeating the same process for all points of
the entire space domain it is possible to syn-
chronize all the clocks located at the different
geometrical locations of K with the time ref-
erence of the master clock located in the ori-
gin. All clocks will therefore beat in unison,
spanning the same time intervals of the master
clock. In this manner it is thus possible to as-
sociate, in a unique way and consistently with
the Galilean Principle of Relativity, the space
and time coordinates, expressed into the refer-
ence frame K, to any event occurring into the
system S being observed, and the process is
not dependent neither on the type of physical
signal used to perform the synchronization nor
on its characteristics speed vc, the only require-
ment for the validity of the synchronization
method being that such signals are isotropi-
cally propagating with respect to the K frame.

Let us now consider a second reference
frame, K’, that is in a state of uniform recti-
linear motion with respect to the previous one,
with a velocity having magnitude V, as mea-
sured in the reference frame K, and direction
parallel to segment AB, oriented from A to B.
Let A’ and B’ be the position of the two geomet-
rical points expressed in the reference frame
K’ that coincide, respectively, with the position
of A and B at the time of occurrence of the
corresponding events. Let A’B’ be the segment
joining these two points and let M’ be the mid-
point of this segment which is at rest into the
frame K’. In order to assess the simultaneity of
the two events A and B, an observer stationary
with the K’ frame cannot use the same two syn-
chronization signals that have been adopted by
the observer of the K frame. In fact, due to the
finite value of the characteristic signal speed
vc, the two K-based signals will meet together
at M after some time from their emission from
A and B. During this time period the midpoint
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M’ will have traveled a certain amount of dis-
tance from M. Since the two signals cannot
meet both in M and in M’, it follows that the
K’ observer would incorrectly judge the two
events as being non-simultaneous.

In order to avoid this issue and to correctly
evaluate the simultaneity of the two events also
into the reference frame K’, it is necessary to
make use of signals that propagate isotropically
into this moving frame. This requires, accord-
ing to the Galilean Principle of Relativity, that
the sources of the signals and the propagation
medium (for example, the ball launchers or
the tensioned string) are both stationary with
respect to the reference frame of the observer.
A moving observer K’ can therefore assess the
simultaneity of events A and B by using other
two synchronization signals, distinct from the
ones used by the observer of the K frame, emit-
ted from the space locations A’ and B’, that are
coincident with A and B at the time of occur-
rence of the corresponding events, provided
that such signals travel isotropically with re-
spect to his reference frame K’. The nature of
these two ’primed’ signals and the correspond-
ing characteristic speed v′c, could be the same
of the one used for synchronization in frame
K, or it could be different, provided that it is
isotropic in K’. For example, one could image
to use the traveling balls in frame K and the
waveform propagating on the string in frame
K’, or viceversa. In this way the two events A
and B will be declared simultaneous also into
the K’ reference frame, since the two "primed"
signals, propagating with the same speed v′c
from A’ to M’ and from B’ to M’, will reach
simultaneously the midpoint M’ of segment
A’B’ 2. In this way, whenever two events are
declared simultaneous in one reference frame
K, they result simultaneous also in the mov-
ing frame K’, and this conclusion regarding
the coincidence in time of the two events is
independent from the specific nature and the

2As previously noted, since the segment A’B’ is at rest
into frame K’, which is moving with velocity V with respect
to frame K, the location in space of its midpoint M’ at
the time of detection of the primed signals will not be
coincident with M

related characteristic speed vc, or v′c, of the
synchronization signals being used in the two
reference frames.

When the specific physical signal chosen
for the synchronization procedure needs some
form of medium to propagate in the surround-
ing space, the requirement of isotropic propa-
gation can be guaranteed only for a reference
frame that is stationary with the specific propa-
gation medium being considered. For example,
in case of acoustic signals traveling in the at-
mosphere, only the clocks of those reference
frames which are stationary with the air can be
synchronized using such acoustic signals. The
clocks referred to any other reference frame in
relative motion with respect to the previous
ones, and therefore in motion with respect to
the air, cannot be synchronized by means of
acoustic signals, since for such a moving frame
the speed of sound would no longer be same
in all directions, i.e. it would not be isotropic.

The synchronization procedure described
above, and the related considerations, are valid
also when light signals are used to establish
the simultaneity of events, provided that the
light sources being considered and the trans-
parent light propagation medium, if present,
are both stationary with respect to the refer-
ence frame of the observer and with the clocks
that are being synchronized. The emission hy-
phothesis formulated by W. Ritz[3], that as-
sumes that light is emitted in all directions
with the same relative speed, equal to c in vac-
uum, with respect to its source, being fully
consistent with the Galilean Principle of Rel-
ativity and therefore also compliant with the
above requirements of the synchronization pro-
cedure, justifies the usage of light signals to
synchronize the clocks.

The assessment of simultaneity of the events
with respect to the moving reference frame can
also be implemented in the following, more
direct way. At each instant of time a generic
geometrical point P’ belonging to the moving
frame K’ happens to be coincident with one
geometrical point P of the reference frame K.
When the two geometrical points are coinci-
dent, P′≡P, the time indicated in that moment
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by the clock located at P can be readily ex-
tended also to P’ since, being the two points
coincident, there is no delay associated with
the transfer of the information regarding the
time readout between two different space lo-
cations, separated by a non null physical dis-
tance. It is therefore possible to associate to P’
the same time indicated by the clock associated
to P. Since the clocks of the entire space K are
all synchronized between them, they all indi-
cate the same time. This same time stamp can
therefore be assigned also to all geometrical
points of K’ because each point of the K’ space
domain will be coincident with one and only
one location of the K space and will therefore
take from it the corresponding time indication.
In other terms, it is possible to assign to all
geometrical points of the moving frame K’, the
same time indicated by the "stationary" clocks
synchronized into reference frame K. This con-
clusion is valid for any geometrical location
of the reference frame K’, thus allowing to es-
tablish, also for the observers of this "moving"
reference frame, the same time basis of the "sta-
tionary" one, i.e. it is possible to set t′= t, from
which it also follows ∆t′=∆t.

III. Isochronous transformations

of coordinates

In this paragraph it will be shown that the ab-
solute nature of simultaneity can also be consis-
tently assessed by a moving observer through
the use of a class of coordinate transformations
similar to the Lorentz transformations.

Let us consider two events occurring at two
distinct locations A and B of the space and be
K a reference frame stationary with respect to
the points A and B, having its origin located
at the midpoint of segment AB and the x axis
parallel to AB and directed towards B. Let vc
be the characteristic propagation speed of the
isotropic signals that have been selected to syn-
chronize the clocks into this reference frame.
According to the previously described synchro-
nization method, the two events are simulta-
neous if the synchronization signals emitted
from A and B at the time of occurrence of the

corresponding events reach simultaneously the
midpoint of segment AB, which in this case is
the origin of the reference frame K.

We can now introduce, into the reference
frame K, the characteristic interval, sc, that "sep-
arates" the two events A and B and that is
defined by the following relation containing
the value of the signal propagation speed vc as
a parameter:

sc =
√

v2
c ∆t2 − ∆x2 − ∆y2 − ∆z2 (1)

where ∆t = (tB − tA), and ∆x = (xB − xA),
∆y = (yB − yA), ∆z = (zB − zA).

Let us now consider a second reference
frame K’, having its axes parallel to those of K,
and let K’ be translating with constant speed V
along the positive direction of the x axes with
respect to frame K. We will call K the stationary
frame and K’ the moving frame. It is possible
to introduce, into the moving frame K’, a new
set of four generalized space-time coordinates,
that will be indicated with (ε′, η′, ζ ′, τ′), and
that are functions of the (x, y, z, t) coordinates
of the stationary reference frame K:

(ε′, η′, ζ ′, τ′) = f (x, y, z, t) (2)

In the stationary frame K we can calculate,
according to definition (1), the characteristic
interval between the events of emission of the
synchronization signal from either geometri-
cal points A or B and of their detection at the
midpoint of segment AB. For convenience we
can set the origin of time to be coincident with
the time of occurrence of the two simultaneous
events, therefore tA = tB = 0. Indicating then
with tD the time of detection of the synchro-
nization signals at the midpoint of segment AB,
it results tD > 0.

We want to find the specific form of the func-
tions f defining the primed coordinates that
makes invariant the characteristic interval be-
tween these two events in the passage from K
to K’, and viceversa.

Since the y and z axes of the two reference
frames are parallel by construction, the corre-
sponding coordinates of the two frames can be
set equal to each other: η′ = y and ζ ′ = z, and
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since the two events A and B being considered
are located on the x axis of the K frame, it is
y = z = 0, so it results also η′ = ζ ′ = 0. Being
the geometrical locations of the two events A
and B symmetric with respect to the origin, it
is xA = −xB. The differences between each
coordinate that appear in the definition of the
characteristic interval (1) thus result: ∆x2 =
(xA − xM)2 = (xB − xM)2, ∆y2 = ∆z2 = 0 and
∆t2 = (tD − tA)

2 = (tD − tB)
2 = t2

D.
In this way the problem reduces to that of

finding the relations between the (ε′, τ′) and
(x, t) coordinates. We are therefore looking
for the specific form of the transformation of
coordinates that gives:

(vc∆t)2 − (∆x)2 = (vc∆τ′)2 − (∆ε′)2 (3)

The transformation that satisfies this invari-
ance property of the characteristic interval is:

ε′ =
x−Vt√
1− V2

v2
c

; η′ = y; ζ ′ = z;

τ′ =
t− V

v2
c
x√

1− V2

v2
c

; (4)

and the inverse transformation, from the gen-
eralized space-time coordinates of K’ to K, is:

x =
ε′ + Vτ′√

1− V2

v2
c

; y = η′; z = ζ ′;

t =
τ′ + V

v2
c
ε′√

1− V2

v2
c

; (5)

When light signals propagating in vacuum
are chosen as synchronization signals, the char-
acteristic speed is equal to the speed of light
in vacuum, vc = c, and the above transforma-
tion of coordinates coincide with the Lorentz
transformations.

It can be noted that the transformations (4),
and the corresponding inverse (5), are not de-
fined for V = vc, whereas for V > vc the two
generalized coordinates ε′ and τ′ become com-
plex, having a non null imaginary part. Even
in this case, these complex coordinates still

preserve the invariance of the characteristic
interval sc, as it can be verified by direct substi-
tution of (4) into equation (3). The invariance
of the characteristic interval is therefore veri-
fied for all values of V 6= vc and it holds true
for any finite value of the characteristic speed
vc of the selected isotropic signal used to syn-
chronize the clocks into the stationary frame K.
When the speed V of the K’ frame is very small
compared to the characteristic speed vc of the
selected synchronization signals, the speed ra-
tio V/vc tends to zero and the transformation
of coordinates of eq. (4) tends, in the limit
V/vc → 0, to the Galilean one:

ε′ = x−Vt; η′ = y; ζ ′ = z; τ′ = t; (6)

Let us now consider two simultaneous
events A and B into frame K occurring at two
generic points of the space and let (xA, yA, zA)
and (xB, yB, zB) be the coordinates of the geo-
metrical locations of the two events and tA =
tB the corresponding time of occurrence. Ac-
cording to the definition of simultaneity given
before, the synchronization signals emitted by
A and B will reach simultaneously, at time
tM > tA, the midpoint M of segment AB, with
M having coordinates:

(xM, yM, zM) = (
xA + xB

2
,

yA + yB
2

,
zA + zB

2
)

The characteristic intervals, into frame K,
between the two simultaneous events A and B
being considered and the event of detection of
the arrival of their synchronization signals at
the midpoint M are given by:

s2
A = (vc∆tA)

2 − L2
A

s2
B = (vc∆tB)

2 − L2
B (7)

where:

∆tA = (tM − tA); ∆tB = (tM − tB)

L2
A = (xA−xM)2 + (yA−yM)2 + (zA−zM)2

L2
B = (xB−xM)2 + (yB−yM)2 + (zB−zM)2

Since in the stationary frame K the two points
A and B are located symmetrically with respect

8
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to the midpoint of the segment, it is LB = LA =
L/2, where L is the length of segment AB, and
since the time of emission of the signals is the
same, tA = tB, it follows that ∆tA = ∆tB and
therefore it results:

sA = sB (8)

This result shows that, in the stationary frame
K, two distinct events A and B are simultane-
ous when they are separated by the same char-
acteristic interval from the event of detection
of the arrival of their synchronization signals
at the midpoint of segment AB. Expression (8)
can thus be considered as the mathematical for-
mulation of the clock synchronization method
described in the previous section, based on
isotropic signals propagating with characteris-
tic speed vc into frame K.

The above considerations can be repeated
for any other finite value of the parameter vc,
leading always to the same result expressed by
relation (8), thus showing that simultaneity is
invariant with respect to the propagation speed
vc of the selected synchronization signals.

Since the characteristic interval sc is invariant
under the generalized coordinate transforma-
tion defined above, it follows that two events
that are simultaneous in the stationary frame K
are simultaneous also in the moving frame K’,
according to the same criterion of equality of
the emission-detection characteristic intervals.
This invariance of simultaneity holds true for
any value of the relative speed V between the
two moving frames and for any kind of physi-
cal signals selected to synchronize the clocks,
so it holds true for any finite value of their
characteristic speed vc and is thus consistent
with the definition of simultaneity given in the
previous section. It appears therefore that si-
multaneity is an absolute characteristic of the
events, that can be defined and assessed univo-
cally by different observers that are in a state of
uniform relative motion one with respect to the
other, by applying the same general criterion
of equality of the emission-detection character-
istic intervals.

Let us now calculate, in frame K’, the gener-
alized coordinate τ′ of the two simultaneous

events A and B. According to (4), we have:

τ′A =
tA − V

v2
c
xA√

1− V2

v2
c

; (9)

and

τ′B =
tB − V

v2
c
xB√

1− V2

v2
c

; (10)

Taking into account that tB = tA it is possible
to rewrite τ′B as follows:

τ′B =
tA − V

v2
c
xA − V

v2
c
(xB − xA)√

1− V2

v2
c

=

= τ′A −
V
v2

c

(xB − xA)√
1− V2

v2
c

; (11)

Therefore it appears that the coordinate τ′ of
two simultaneous events A and B, evaluated in
the moving frame K’, has not the same value
for the two events, being, in general:

τ′B 6= τ′A (12)

In other words, the generalized coordinate τ′

cannot be used to assess the simultaneity of
events in the moving frame K’, since two si-
multaneous events A and B turn out as be-
ing characterized by a different value of the
corresponding generalized coordinate τ′. The
only particular case for which τ′B = τ′A occurs
when xB = xA, i.e. when the two simultaneous
events A and B are located in a plane orthogo-
nal to the direction of the velocity vector V of
frame K’, and therefore in a plane orthogonal
to the x axis of the K frame, being it parallel to
V by construction.

We can now consider the governing laws
that describe the isotropic propagation of the
signals selected to synchronize the clocks. In
particular let us consider the case of the ten-
sioned ideal string. It is known that for small
amplitudes, the transverse displacement u of
the points of the string is determined by the
solution of the d’Alembert equation:

v2
s

∂2u
∂x2 −

∂2u
∂t2 = 0 with u = u(x, t) (13)

9
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where vs =
√

N/λ gives the speed of propa-
gation of the perturbations along the string as
a function of the applied axial tension N and
linear mass density λ of the string.

As discussed in the first paragraph related
to the phenomenological description of the
Galilean Principle of Relativity, any experimen-
tal determination of the string properties and
of its response will give identical results when
the same characterization tests are repeated
into two different laboratories that are uni-
formly translating one with respect to the other.
Therefore, the string behaviour will be repre-
sented by the same governing laws in both
cases, i.e. the same equation (13) will be deter-
mined both by the observer of the stationary
laboratory and by the observer of the moving
one, and the propagation of the perturbations
along the string will remain isotropic and will
have the same characteristic speed vs in both
reference frames.

The situation is different if we consider, into
a given laboratory, a moving observer with its
associated moving reference frame. Let K be a
reference frame stationary with the laboratory,
that is therefore stationary also with respect to
the string, and let K’ be another reference frame
translating with velocity V parallel to the string
axis. For this frame, which is in relative motion
with respect to the string, the perturbations on
the string will be no more propagating isotrop-
ically, their speed being greater than vs along
one direction and lower than vs in the opposite
direction. Correspondingly, also the governing
laws of the string will change when expressed
into the moving frame K’. In this case therefore
the governing law of the string, expressed by
equation (13), should not be invariant in the
transformation from the stationary frame K to
the moving frame K’.

Let us now see how the wave equation
(13) transforms in the moving frame K’ when
the generalized coordinates with characteris-
tic speed vc, as defined by (4), are used. The
d’Alembert equation (13) can be reformulated
as: (

vs
∂

∂x
+

∂

∂t

)(
vs

∂

∂x
− ∂

∂t

)
u = 0 (14)

and the two generalized coordinates (ε′, τ′) can
be written in a more compact form as:

ε′ = γc(x−Vt), τ′ = γc(t−Vx/v2
c ) (15)

where γc = 1/
√

1−V2/v2
c . This change of

variables can be applied to the d’Alembert
equation by taking into account that:

∂

∂x
=

∂ε′

∂x
∂

∂ε′
+

∂τ′

∂x
∂

∂τ′
= γc

( ∂

∂ε′
− V

v2
c

∂

∂τ′

)
∂

∂t
=

∂ε′

∂t
∂

∂ε′
+

∂τ′

∂t
∂

∂τ′
= γc

( ∂

∂τ′
−V

∂

∂ε′

)
In this way, the wave equation (14) takes the

form:

γ2
c

(
A

∂2u
∂τ′2

+ B
∂u
∂ε′

∂u
∂τ′
− C

∂2u
∂ε′2

)
= 0 (16)

where the three terms A, B and C are given by:

A =
(

1− V2v2
s

v4
c

)
B = 2V

(v2
s

v2
c
− 1
)

C = (v2
s −V2)

From these expressions it can be noted that
when vs = vc it results B = 0 and A =
1/γ2

c ; C= v2
c −V2. Substituting these terms

into (16), gives:

v2
c

∂2u
∂ε′2
− ∂2u

∂τ′2
= 0 with u = u(ε′, τ′) (17)

Therefore, when the parameter vc contained
into the generalized coordinate transformation
(4) is equal to the speed of propagation vs of
the phenomenon being described, the corre-
sponding equation governing the evolution of
the perturbations along the string is invariant
in the passage from the stationary frame K
to the moving frame K’. This invariance prop-
erty, however, is no longer verified when the
characteristic speed vc used in the coordinate
transformation is different from vs. In this case,
in fact, the term B is not null, and the equation
resulting from the change of coordinates has
no longer the same form of the original wave
equation.

10
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This peculiar invariance property of the gen-
eralized coordinates is valid not only for the
monodimensional case of the string equation
that has been considered here, but also for the
tridimensional case of the wave equation that
has the same form of (13). Also in this more
general case, the invariance of the governing
equations is satisfied only when the param-
eter vc that appears in the definition of the
coordinate transformation has the same value
of the characteristic speed of the isotropically
propagating phenomenon being represented. If
some of the physical properties characterizing
the phenomenon changes, thereby changing
the corresponding physical speed of propaga-
tion, then the wave equation will take a dif-
ferent form in the passage from the stationary
to the moving observer and to the correspond-
ing frame of reference and its solutions will be
different along different directions.

The situation is similar when we consider
light signals as the means to synchronize the
clocks. In this case the governing laws associ-
ated to the underlying physical phenomenon
are the set of Maxwell equations. In vacuum
these equations represent the isotropic prop-
agation into space of the influence generated
by the electrical charges and currents, which
are the sources of the electromagnetic fields.
The speed of propagation of the solutions of
the Maxwell equations is equal to the speed of
light, which in vacuum is given by c =

√
εν.

When this value is used as characteristic speed
parameter, vc = c, the generalized coordinate
transformations (4) reduce to the Lorentz trans-
formations, and the set of Maxwell equations
result invariant in the passage from a stationary
frame K to a moving frame K’ under such trans-
formation of coordinates. However, if we con-
sider the same electromagnetic phenomenon in
the presence of a homogeneous and isotropic
transparent medium different from vacuum, it
is known that in this case the speed of light
takes a lower value with respect to the vacuum
case, it being vc = co =

√
εoνo = c/n < c,

where n ≥ 1 is the index of refraction of the
medium. In presence of such a medium the
propagation of light is still represented by the

Maxwell set of equations, now containing the
values of the dielectric εo and magnetic per-
meability νo of the specific medium being con-
sidered. For this situation, similarly to the
case of the wave equation for the string, the
Maxwell set of equations in a medium different
from vacuum will be no longer invariant with
respect to the Lorentz coordinate transform,
given the difference between the value of the
characteristic speed, the speed of light c, that
appears in the Lorentz coordinate transforma-
tion with respect to the value of the propaga-
tion speed that appears in the set of Maxwell
equations, which for a medium different from
vacuum is co = c/n 6= c.

Let us now evaluate the relationship between
the generalized velocity w′, expressed into
frame K’ on the basis of the coordinate trans-
formation defined by (4), and the expression of
the velocity into frame K. This can be done by
evaluating, from eqs. (5), the differentials:

dx =
dε′ + Vdτ′√

1− V2

v2
c

; dy = dη′; dz = dζ ′;

dt =
dτ′ + V

v2
c
dε′√

1− V2

v2
c

; (18)

Through the definition of the velocity in the
stationary frame:

v = (
dx
dt

,
dy
dt

,
dz
dt

)

and, by analogy, of the generalized velocity in
the moving frame:

w′ = (
dε′

dτ′
,

dη′

dτ′
,

dζ ′

dτ′
)

it follows that

vx =
w′x + V

1 + Vw′x
v2

c

;

vy =
w′y
√

1− (V2/v2
c )

1 + Vw′x
v2

c

;

vz =
w′z
√

1− (V2/v2
c )

1 + Vw′x
v2

c

; (19)

11
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The expression of the generalized velocity w′

into frame K’ is found by inverting the above
relations, giving:

w′x =
vx −V
1− Vvx

v2
c

;

w′y =
vy
√

1− (V2/v2
c )

1− Vvx
v2

c

;

w′z =
vz
√

1− (V2/v2
c )

1− Vvx
v2

c

; (20)

From these expressions it turns out that
when the magnitude of the velocity in frame K
is equal to the characteristic speed, i.e. when
|v| = vc, it follows that also the magnitude of
the generalized velocity in the moving frame
K’ has the same value: |w′| = vc. In fact, con-
sidering the case v2 = v2

x + v2
y + v2

z = v2
c and

evaluating the magnitude of w′ from equations
(20), it results:

|w′|2 = (w′x)
2 + (w′y)

2 + (w′z)
2 =

=
(v2

x + v2
y + v2

z)− 2vxV + V2 − V2

v2
c
(v2

y + v2
z)

(1− vxV/v2
c )

2 =

=
[v2

c − 2vxV + V2v2
x

v2
c
]

(1− vxV/v2
c )

2 =

= v2
c

[1− 2 vxV
v2

c
+ v2

xV2

v4
c
]

(1− vxV/v2
c )

2 = v2
c

The generalized coordinates defined by equa-
tion (4) can therefore be considered as an
isochronous characteristic speed transforma-
tion. Considering the case of particle-like sig-
nals used to synchronize the clocks (for exam-
ple the spring-loaded launcher device consid-
ered in the previous section), and applying
the characteristic coordinate transformation (4)
to calculate the generalized speed of the par-
ticles into the moving frame K’, it turns out
that also these particle-like signals, that prop-
agate isotropically with speed vc in the sta-
tionary frame K, will be propagating isotropi-
cally, with the same value vc of the generalized
speed w′, also in the moving frame K’. This

invariance of the characteristic speed is valid
for any finite value of the speed of the specific
synchronization signal being considered and
when the value of characteristic speed is equal
to the speed of light in vacuum, vc = c, the
above result corresponds to the invariance of
the speed of light under the Lorentz coordinate
transformations.

It can be noted that this kind of coordinate
transformations do not preserve the invariance
of the relative velocity between two physical
objects in the passage from a given reference
frame, K, another one, K’, that is in a state of
uniform rectilinear motion with respect to the
first one. For this reason, the Lorentz transfor-
mations, that are a particular case of eqs. (4) for
which the characteristic speed of the synchro-
nization signals is equal to the speed of light in
vacuum, i.e. for which vc = c, appear incom-
patible with the Galilean Principle of Relativity,
since any physical phenomenon that depends
from the relative velocities of the involved en-
tities will turn out as being different for two
different observers, in contrast with the invari-
ance postulated by Galilei in his formulation
of the principle.

Let us now consider the case of a signal,
particle-like or wave-like, traveling along the
x axis of the stationary frame K with constant
speed v, that is: vx = v and vy = vz = 0. Let K’
be a moving reference which is also traveling
along the direction of the x axis of K with
the same uniform speed v of the signal, that
is: V = v. According to the Galilean rule of
speed composition, the velocity of the signal
with respect to such moving frame K’ is null,
since it is given by v′ = v − V = v − v = 0
for any value of the common speed v of both
the signal and the reference frame. We want
now to evaluate the generalized velocity of the
signal into the moving frame K’ according to
the formulas (20) previously established. By
putting vx = V = v and vy = vz = 0 it results:

w′y = w′z = 0

and

w′x =
vx −V
1− Vvx

v2
c

=
v− v

1− v2

v2
c

= vc
β− β

1− β2

12
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where β = v/vc. Therefore it results w′x = 0
∀ v 6= vc whilst in the case v = vc, for which
β = 1, the previous expression gives an unde-
termined form of the type 0/0 that can how-
ever be evaluated by applying the l’Hopital’s
rule. Putting f (β) = β− β and g(β) = 1− β2

it gives:

lim
β→1

w′x = lim
β→1

vc
f
g
= lim

β→1
vc

f ′

g′
= vc

0
−2

= 0

Thus, also for the case v = vc the generalized
speed of the signal traveling with speed v, as
evaluated by an observer comoving with it at
the same speed, V = v, is zero. When applied
to the case of a light signal, or a photon, travel-
ing in vacuum with velocity v = c, this result
shows that the generalized speed of a light sig-
nal evaluated by a luminal observer, i.e. the
speed of light evaluated by a reference frame
moving at the same speed of light in vacuum,
is null. This result appears therefore in contrast
with the postulate of invariance of the speed of
light which is at the base of the Special Theory
of Relativity[2], since it shows that there is at
least one observer, the luminal observer, for
which the speed of light, calculated according
to the rules determined by the theory itself, is
zero instead of being equal to c as required by
the postulate.

In summary, the generalized coordinate
transformation defined by (4) is characterized
by the following peculiar properties in the pas-
sage from a reference frame K to another frame
K’ that is translating with constant velocity V:

1. it makes invariant the characteristic inter-
val sc defined by equation (1);

2. it leaves invariant the constitutive laws rep-
resenting isotropic propagation of a phe-
nomenon having characteristic speed vc in
the stationary frame K;

3. it maintains, for the generalized speed of
propagation in frame K’, the same value of
the characteristic speed vc that such phe-
nomenon has in frame K.

The above properties are verified for any fi-
nite value of the characteristic speed vc and

correspond, for the case vc = c, to the same
properties of the Lorentz transformations that
are valid for the propagation of light in vac-
uum and for the corresponding governing laws
as described by the Maxwell equations of elec-
tromagnetism. Being valid for any value of the
selected characteristic propagation speed vc,
these invariance properties of the generalized
coordinate transformation (4) can be consid-
ered as a peculiar mathematical characteris-
tics of this type of coordinate transformations,
rather than a manifestation of space-time dis-
tortion or rather than a specific property associ-
ated to a single type of physical phenomenon,
i.e. as a specific property of light.

It has been shown above by relation (12) that,
in the general case, two simultaneous events
do not have the same value of the generalized
coordinate τ′ which therefore cannot be used
as a time identification of the events. This coor-
dinate, instead, can be interpreted in a different
way as follows. Let us consider, in frame K,
a generic event P occurring at a given point
(x, y, z) of the space, and at a given time t and
let us consider a second reference frame K’
moving with uniform velocity V along the x
axis, and having its origin O′ coincident with
the origin O of frame K at time t = 0. The
amount of time needed by the synchronization
signal emitted from P in order to reach the
x = 0 plane of frame K is ∆t = x/vc. In this
same amount of time, the origin of frame K’
will have traveled a distance, along the x axis
of frame K, equal to ∆x = V ∆t = Vx/vc, and
a synchronization signal, traveling with char-
acteristic speed vc in frame K, would take a
time interval equal to ∆tc = ∆x/vc = Vx/v2

c
in order to cover such distance. It is therefore
possible to write the expression of the general-
ized coordinate τ′ in the following way:

τ′ = γc (t− ∆tc) (21)

where ∆tc = Vx/v2
c and γc =

√
1−V2/v2

c .
Equation (21) shows that τ′ represents a re-
tarded (or advanced, depending on the sign of
the characteristic time delay ∆tc) and scaled
time coordinate which is a function of the posi-
tion x of the event along the direction of motion
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of the moving frame K’, of its velocity V, and
of the characteristic speed vc of the specific syn-
chronization signal that has been considered.
Looking now to the definition of the gener-
alized coordinate ε′ associated to the moving
frame K’, it turns out that it can be interpreted
as a scaled version of the position x′ = (x−Vt)
of the event P along the x axis of frame K’, that
uses the same value of the non-dimensional
scaling factor γc that enters into the definition
of the generalized coordinate τ′, that is:

ε′ = γc x′ (22)

For low values of the speed ratio V/vc the
characteristic delay ∆tc tends to zero and the
characteristic scaling factor γc tends to one,
thus the generalized coordinate transformation
reduces to the Galilean one in the limit of low
values of the speed V of the moving frame K’
with respect to the characteristic speed vc.

IV. Physical experiences on the

speed of propagation of light

In this section two interferometric experi-
ments on light propagation will be examined,
comparing the experimental measurement re-
sults with the expected outcomes deriving
from the Ritz emission theory that is, as al-
ready mentioned, fully in agreement with the
Galilean Principle of Relativity and with the
associated rule of vector sum for the velocities
with respect to moving frames. The validity of
the Galilean velocity composition can be veri-
fied by means of these optical tests since they
allow measuring the difference of the speed of
light through the analysis of the interference
patterns that are generated in the presence of
phase differences between independent light
beams travelling along different optical paths.

The first, well-known, experience being con-
sidered is the Michelson-Morley interferometer
that typically has two orthogonal arms. This
experiment has been designed to identify the
potential dependency of the speed of light from
the velocity of the observer. At the time of its
first realization it was mainly devoted to in-
vestigate the possible effects of the motion of

the Earth along its orbit on the so-called lu-
miniferous aether, or simply aether, that was
thought as being the propagation medium of
light. In this experiment all the optical com-
ponents of the setup - the beam splitter, the
mirrors, the target plane where the fringes can
be observed - and the propagation medium
of the light, when present, are rigidly trans-
ported by the motion of the Earth along its
trajectory. Because of its geometrical layout,
shown schematically in Figure 2, the area of
the optical path is null, therefore the angular
motion of the Earth does not produce any shift
of the fringes due to the Sagnac effect which
is proportional to the product ΩA, where Ω is
the component of the angular speed orthogo-
nal to the plane of the optical path and A the
corresponding area.

Light Source

Target screen

B
S

M

M

Figure 2: Schematic layout of the Michelson-Morley in-
terferometer. M indicate the mirrors and BS
the beam-splitter

The results of the experiment, performed
under a variety of conditions and in different
geographical locations and times of the year,
have always revealed no effect on the interfer-
ence pattern deriving from either the speed or
the orientation of the interferometer. The same
null results have been obtained both in vacuum
and in presence of a transparent medium hav-
ing an index of refraction greater than one, for
which the speed of light is less than c. These
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null outcomes of the test are fully consistent
with the Galilean Principle of Relativity and
can be immediately explained just on its ba-
sis. In fact, if we imagine to perform a base-
line test in a given reference frame obtaining
a given baseline fringe pattern, on the basis of
the Galilean Principle of Relativity the same
exact fringe pattern should be found also when
the test is repeated in a laboratory that is mov-
ing with constant velocity with respect to the
baseline one. Any discrepancy between the test
results obtained in the two cases would consti-
tute either a violation of the Galilean Principle
of Relativity or an evidence of the existence
of a propagation medium for light, the aether,
that is not following the same state of motion
of the optical components. The experimental
evidence gained so far leads to exclude both
cases.

The null results of the experiment can be
explained immediately by assuming, as in the
emission hypothesis of W. Ritz, that light is
always emitted and propagated with the same
relative speed, equal to c/n, with respect to
the optical components of the test setup, along
both arms of the interferometer. This conclu-
sion is valid both in vacuum and in presence
of a transparent medium, the only difference
between the two cases being the actual value of
the relative speed of light. For an observer that
is at rest with respect to the test apparatus, the
light propagation will remain isotropic, having
the same speed along the two orthogonal arms
of the interferometer also when the test setup
is moving with a non-null constant velocity
V. On the contrary, an observer that is in a
state of uniform relative motion with respect to
the test apparatus would notice a non-isotropic
propagation of light, with different values of
the speed along different directions, in agree-
ment with the Galilean vector sum of the ve-
locity vectors. However, since also the optical
components of the test setup would have dif-
ferent velocities with respect to this observer,
determined by the same vector sum rule, the
calculation of the time taken by the light to go
through the optical path along the two arms
of the interferometer will give the same results

obtained by the observer at rest, and therefore
no alteration of the fringe patterns has to be
expected from such calculation, in agreement
with the experience.

In the Fizeau experience[4], the propaga-
tion of light into a stream of water flowing
within pipes has been investigated by analyz-
ing the fringe patterns generated at the recom-
bination of two light beams that are counter-
propagating in the fluid stream. The analysis
of the test results obtained by Fizeau with its
original apparatus, shown schematically in Fig-
ure 3, led to the following expression for the
relative velocity WF of the light with respect to
the stationary system of the laboratory:

WF = w + v(1− 1
n2 ); (23)

where v is the velocity of the fluid flowing
into the pipes having circular cross-section, and
w = c/n is the speed of light into the fluid
being utilized for the test, characterized by an
index of refraction equal to n when such fluid
is stationary.

Figure 3: Original layout of Fizeau’s experiment

We want now to investigate if the experi-
mental result of Fizeau (23) can be obtained
by applying the Ritz emission hypothesis and
the associated Galilean vector sum of the ve-
locities of light into the propagation medium
and the velocity of the fluid. This requires the
determination of the actual value of the speed
v of the fluid flow to be used in the vector sum
formula, since in this kind of experiment the
propagation medium used, typically water, is
not characterized by a common and uniform
state of motion of all its particles inside the
volume occupied. The motion of the fluid in
fact cannot be represented as a pure rigid body
translation with constant speed, therefore there
is not just a single value of the velocity for the
entire fluid, but rather a velocity field with
a distribution that varies from point to point
inside the volume of the pipes.
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In addition, the specific geometrical layout
of the Fizeau test setup introduces several fac-
tors that can affect the characteristics of the
interference fringes formed at the recombina-
tion of the two counter propagating beams, in
particular:

1. the area of the optical path is not null,
therefore interference fringes can arise also
in absence of fluid motion (and actually
also without any fluid) due to the Sagnac
effect associated to the Earth’s rotation;

2. the radial shape of the velocity profile of
the fluid motion at the various sections of
the pipes;

3. the axial flow speed of the fluid which
varies along the pipe length and therefore
along the optical path;

4. the non-axial components of the fluid ve-
locity associated to a turbulent regime of
the flow.

The Sagnac effect can be considered as a con-
stant bias, since both the angular velocity of the
laboratory where the experiment is performed
and the area of the optical path, determined by
the geometrical layout of the test setup are not
varied during the execution of the measures,
therefore the product ΩA remains constant.

The radial shape of the axial velocity profile
of the fluid flow can cause a distortion of the
shape of the incident wavefront of the light
beam. For the beam propagating in the same
direction of the fluid stream an incident planar
wavefront could be deformed in a way similar
to that of a plane-concave lens, since the equiv-
alent optical length of the light rays closer to
the centerline of the pipes will be shortened by
the dragging effect due to the fluid flow more
than that of the rays travelling farther from
the pipe centerline. Conversely, the wavefront
deformation associated to the light beam trav-
eling against the fluid stream should be similar
to the one generated by a plane-convex lens.
On the recombining plane, the interference pat-
tern generated by the two counter-propagating
beams would be affected by the actual shape

of the two distorted wavefront and in particu-
lar this effect could generate a variation of the
fringe spacing if the shape of the radial veloc-
ity profile changes as a result of changes of the
overall flow rate. This effect should be more
pronounced comparing the distortion associ-
ated with a laminar flow regime, characterized
by a parabolic velocity profile, with respect
to that of a turbulent flow regime, where the
velocity profile in the central portion of the
pipes is more flat. The two different shapes of
the velocity profiles for laminar and turbulent
regimes are shown qualitatively in Figure 4

Fluid

Flow

Laminar Speed Profile

Turbulent Speed Profile

Average speed

Figure 4: Laminar vs turbulent velocity profiles inside
circular pipes

The axial velocity of the flow is also not con-
stant along the length of the pipes, and there-
fore along the optical path traveled by the light
beams into the moving fluid. The total amount
of dragging effect to be added, or subtrated, to
the speed of propagation of the light would be
dependent from the integral, across the entire
length of the optical path, of all the local val-
ues of the axial fluid velocity on every section
of the pipes. This calculation is not straight-
forward, being the actual velocity field quite
complex, especially in the transition regions
close to the end of the tubes. Using longer
tubes could help in reducing the sensitivity
of the results to the local effects concentrated
at the ends of the tubes, but even along the
central straight portion of the pipes the flow
regime would reach a stable, fully developed
configuration with a constant radial velocity
profile distribution, only after some distance
along the pipe. Overall, this variation of the
speed profile along the length of the pipes will
have the effect of reducing the average axial
speed seen by the light beam at the center of
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the pipes, with respect to the value determined
at a specific section, typically located towards
the exit end of the pipes, where the actual ve-
locity profile measurement is performed and
the value of the velocity at the center of the
flow is determined.

In the case of turbulent flow regime, which
is the actual flow regime used for the measures
in the original Fizeau experiment, the veloc-
ity field of the fluid flow is characterized by
having also radial components of the fluid ve-
locities in addition to the axial ones. These
radial components are associated to the pres-
ence of fluid vortices, typical of the turbulent
flow regime, having different scales, and which
can be randomic and non-stationary. In this
regime, the motion of the fluid particles with
respect to the stationary frame of the laboratory
does not corresponds to a pure axial motion
along the axis of the pipes, but contains also
circular components, due to the vorticity of the
flow, with the associated accelerations. Under
these conditions the invariance of the physical
phenomena asserted by the Galilean Principle
of Relativity is no longer applicable, therefore
it may be possible that the physical properties
of the entities involved in the test are somehow
affected by the accelerated state of motion of
the particles that constitute the system being
observed, thereby changing to some extent the
values of their physical characteristics with re-
spect to the corresponding values determined
under stationary conditions. In particular, in
the case of the Fizeau’s experiment, the spe-
cific state of motion associated to turbulence
could have an impact on the light propagation
inside the transparent medium flowing into
the pipes. On average it could introduce an
additional ’dragging’ term, generated by the
circular motion of the fluid into the turbulent
vortices, that creates an additional delay of the
axial propagation of the light beam. In other
terms, the turbulent motion of the fluid, with
the associated vortices, can have the effect of
reducing the average equivalent propagation
speed of the light beam inside the fluid which
therefore would have a greater index of refrac-
tion in turbulent conditions with respect to the

stationary case.
In order to separate this term from the ones

associated to the variation of the axial com-
ponents of the fluid velocity, it can be taken
into account by including into the equation an
’equivalent’ index of refraction n∗, which would
be dependent on the level of turbulence of the
fluid, and would take values greater than the
one corresponding to the stationary fluid, i.e.
n∗ ≥ n. Being associated to the presence of a
turbulent flow regime, such equivalent index
of refraction can be expressed as a function
of the Reynolds number Re that is used to
characterize the level of turbulence of the flow:
n∗ = n∗(Re). For low values of the Reynolds
number, within the laminar range, n∗ would be
equal to the index of refraction of the station-
ary fluid, whereas for Reynolds number values
greater than the threshold corresponding to the
onset of turbulent flow, an increase of n∗ with
the Reynolds number could be expected. Tak-
ing into account of these effects, the expression
of the relative speed of light W with respect to
the stationary observer, calculated on the basis
of the classical Galilean rule of vector sum, can
be written in the following form:

W = w∗ + v̄ =
c

n∗
+

1
L

∫ L

0
v(x) dx; (24)

where the first term accounts for the effect of
variation of the refraction index, and the inte-
gral of the second term is extended to the entire
length L of the optical path of each light beam.
It appears therefore, in particular on the basis
of items 3) and 4) above, that the actual value
of the speed of light measured with respect
to a stationary observer should be lower than
the value predicted by the Galilean formula of
speed composition, when that formula is eval-
uated using the peak value of the fluid speed
inside the pipes and the nominal value of the
refraction index of the stationary fluid, and
this result is consistent with the outcome of the
experiment. The actual amount of deviation
would depend on the specific characteristics
of the experimental setup being considered,
in particular for what concerns its hydraulic
characteristics and parameters.
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Recent repetitions of the Fizeau experiment
have highlighted that the effects due to tur-
bulence could be the major contributor to the
fringe shift observed as a result of the variation
of the fluid flow rate and average velocity. In
particular Lahaye et al. [5] explicitly mention
that for low value of the fluid speed, v̄ < 1 m/s,
it has not been possible to acquire any valid
test point because of the difficulties in getting
stable pictures on the digital sensor used to
detect the fringes and their variation. Also in
a similar work from Maers et al.[6] the experi-
mental data of fringe shift versus flow velocity-
difference have been measured only for wa-
ter velocities in the range 0.5 < v̄ < 3.6 m/s
for which the flow is fully in the turbulent
regime, having Reynolds number in the range
12.700 < Re < 91.400.

The expression of the Reynolds number for
the flow into circular pipes is:

Re =
ρD
µ

v =
ν

D
v̄ (25)

where ρ is the density of the fluid, µ and ν
its dynamic and kinematic viscosity, D is the
pipe diameter and v̄ the macroscopic velocity
of the fluid flow. According to the previously
described assumption we could write the de-
pendency of the equivalent refraction index
from the Reynolds number as follows:

n∗=
{

n i f Re<ReL
n+α(Re−ReT) i f Re>ReT

(26)

where α is a constant to be determined,
and ReL and ReT represent, respectively, the
Reynolds numbers corresponding to the end
of the laminar flow regime and to the onset of
the turbulent one. Considering velocities of the
fluid flow in the turbulent range, v̄ > vT , it is
therefore possible to put the expression of the
equivalent index of refraction of the turbulent
fluid in the form:

n∗ = n(1 + δ)

where δ = δ(Re) = α(Re−ReT)
n � 1.

The evaluation of the resultant speed of light
into the moving turbulent flow using expres-
sion (24) would require calculating the integral

of all the local axial velocities of the fluid along
the optical path, but this in turn would require
the precise knowledge of the flow field in each
point into the pipes, which is not available.
Due to this ignorance of the detailed flow field,
it will be assumed, as stated also in[6], that
the velocities of the fluid are constant in the
straight sections of the tubes through which
the light beams travels, and have a radial pro-
file typical of a turbulent regime. In this way
the expression of the resultant speed of light
becomes:

W =
c

n(1 + δ)
+ v̄; (27)

Taking into account that δ � 1, it is possible
to expand the first term of (27) into powers
of δ. Making then use of the definition of δ
and truncating the expansion to first order it
results:

W=
c
n
(1−δ+δ2...)+v̄ ' c

n
(1−α

∆Re
n

)+v̄ =

=
c
n
− α

c
n2 ∆Re + v̄

where ∆Re = (Re− ReT) = ν
D (v̄− vT). Sub-

stituting this into the previous equation gives:

W =
c
n
+ v̄− α

c
n2

ν

D
(v̄− vT) (28)

Putting now

α =
D
νc

(29)

the expression of the light speed with respect
to the stationary observer finally becomes:

W =
c
n
+ v̄
(
1− 1

n2

)
+

1
n2 vT (30)

that corresponds to the expression obtained
by Fizeau taking into account that the term
vT/n2 can be neglected, being much smaller,
by several orders of magnitude, than the other
constant term c/n.

The above derivation shows that it is possi-
ble to provide an interpretation based on the
Galilean vector sum of velocities of the exper-
imental results obtained by Fizeau, without
the need to invoke any space-time distortion.
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The proposed approach is based on the hy-
pothesis that the index of refraction of the fluid
is altered by the turbulent flow regime. This
hypothesis could be verified by further experi-
mental investigations of the optical properties
of fluids under turbulent flow regimes, or by a
theoretical analysis that would however require
to have a very detailed model representing the
complex velocity field of the fluid under such
flow regime.

V. A test case for the velocity

composition rule

In this section a test case is proposed to in-
vestigate the validity of the Galilean velocity
vector addition rule versus the relativistic one
that derives from the Lorentz transformations.
The test is based on the analysis of the phe-
nomenon of stellar aberration, i.e. on the ob-
served variation of the position of the celestial
objects as a function of the motion of the ob-
server and of its velocity, motion that coincide
with that of the Earth along its orbit in the
case of a terrestrial telescope. Being the two
formulas for the composition of the velocity
of the light with the velocity of the observer
different, the expected variation of the position
of the star evaluated by means of the relativis-
tic rule is different from that obtained with
the classical one, and the amount of the dif-
ference depends on the value of the ratio of
the speed of the observer with respect to the
speed of light. Since the orbital velocity of the
Earth is about 104 times smaller than c, such
differences are very small and their analysis
therefore requires very accurate measurements
of the observed position of the celestial objects
in order to resolve the differences between the
two cases.

Let us consider the light coming from a very
far celestial source, such that the corresponding
wavefront can be considered planar over the en-
tire area of the Earth’s orbit. For an observer at
rest into the center of mass of the Solar system
the position of this source is fully characterized
by two angles which can be expressed as the
in-plane azimuth angle and out-of-plane ele-

vation angle with respect to the plane of the
Earth’s orbit (ecliptical plane).

Let V be the velocity vector describing the
motion of an observer that is moving into the
ecliptical plane. Let c be the vector defining
the velocity of propagation of the light with
respect to the stationary frame, and let us con-
sider a moving reference frame having its x
axis aligned with the direction of the veloc-
ity vector V of the observer and the y axis
lying into the plane formed by the direction
of the incoming light and V. The resultant
vector c′ that defines the apparent position of
the light source for the moving observer, will
also lie into the xy plane according both to
the Galilean vector-sum rule and to the rela-
tivistic velocity-composition rule. However, the
observed variation of the angle of incidence,
i.e. the amount of aberration, is different in the
two cases. It can be calculated by applying the
two velocity composition rules and focusing
the analysis on the x and y components of the
vectors.

Let us define, in the reference frame of the
Sun, the direction of the light source by the an-
gle θ that the incoming light vector makes with
the direction of the velocity of the observer.
Let v by the speed of the observer, which is
assumed to be directed along the positive di-
rection of the x axis of the observer’s reference
frame, and β = v/c be the ratio of the observer
speed with respect to the speed of light. Let us
indicate with θ′ the aberrated direction of the
source as seen by the moving observer. The re-
lationship between the angles θ and θ′, derived
respectively from the classical vector sum and
from the relativistic velocity composition rule,
is given by the following two exact trigonomet-
ric expressions:

sin(θ − θ′G) = β
sin(θ)√

1+β2+2βcos(θ)
(31)

and

sin(θ − θ′R) = β
sin(θ)

1+βcos(θ)

+ β2 sin(2θ)

2
(
1+βcos(θ)

)
(1+

√
1− β2)

(32)
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For very small values of the observer speed,
compared to the speed of light, the difference
between the two angles θ and θ′ is also very
small, therefore it is possible to determine the
solution of the above expressions by approx-
imating the sine function with its argument,
sin(θ−θ′)' (θ−θ′), thus giving:

θ′G = θ − β
sin(θ)√

1+β2+2βcos(θ)
(33)

and

θ′R = θ − β
sin(θ)

1+βcos(θ)

− β2 sin(2θ)

2
(
1+βcos(θ)

)
(1+

√
1− β2)

(34)

The two expressions (33) and (34) allow to
calculate the expected apparent position θ′ of
the light source for the moving observer when
the corresponding position θ of the celestial
object into the stationary frame is known.

Conversely, in order to perform the calcula-
tion of the un-aberrated position of the source
starting from the one observed into the moving
frme, it is necessary to use the inverse relation-
ships between θ and θ′ that are given by:

θG = θ′ + βsin(θ′) (35)

and

θR = θ′+
βsin(θ′)

1−βcos(θ′)
+

sin(2θ′)

2

√
1−β2 − 1

(1− βcos(θ′))

When β � 1 this last expression can be
rewritten as a power series of β truncated to
the term of second order, giving:

θR ' θ′ + βsin(θ′) +
1
4

β2sin(2θ′) (36)

The comparison of equations (35) and (36)
shows that the reconstructed position of the
light source calculated using the relativistic for-
mula differs from the the one obtained from
the Galilean vector sum by a term which is
quadratic into β. For a given value of v, the
amplitude of this term depends on the angle
between the incident light and the direction

of the velocity vector of the observer, being
maximum when |sin(2θ′)|=1, therefore when
θ′ = π/4+kπ, and being null when the ob-
server velocity forms a right angle with respect
to the direction of the incident light.

CD

A

B

Incident light

V
R

Figure 5: Orbiting observer with complanar light source

Let us now consider the case of an observer
moving around the Sun with constant angular
velocity Ω on a circular orbit having radius R,
and of a distant light source located into the
same plane of this orbit and stationary with
respect to the Sun, as shown in Figure 5. The
vector of the observer velocity always lies into
the plane of the orbit, therefore in this case
the aberration of the incoming light produces,
for such moving observer, an apparent motion
of the source which is also always lying into
the same plane of the orbit. For this orbiting
observer the stationary light source thus shows
an apparent oscillation of its position along an
horizontal line parallel to the plane of the orbit
and characterized by the same time period of
the orbit.

It is possible to identify four notable loca-
tions along the orbit which are significant be-
cause of their peculiar properties with respect
to the aberration of the source. In the two po-
sitions labeled A and B the velocity of the ob-
server is parallel to the incident light, therefore
when the moving observer is in these points of
the orbit there is no aberration of the incoming
light and the observed position of the star coin-
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cides with the one observed into the stationary
frame of the Sun. The position of the celestial
object observed in these two points can there-
fore be taken as a reference position, since it
requires no calculation in order to remove the
aberration term.

Conversely, when the moving observer is in
the two locations labeled C and D, its velocity
is orthogonal to the direction of the incident
light. In these two locations there is the max-
imum aberration of the apparent position of
the star. However, the value of the aberration
term is the same for both the classical and the
relativistic rule. Therefore, the calculation of
the un-aberrated position of the light source,
by means of equations (35) or (36) leads to
the same result for both the classical and the
relativistic rule. In the particular case of a sta-
tionary source considered here, the position of
the source calculated by the moving observer
located in these two points results coincident
with the position observed at locations A, B.

For any other point of the orbit, the un-
aberrated position of the source calculated by
means of the classical rule will be different
from that obtained from the relativistic for-
mula, and the maximum difference between
the two results will occur when the moving
observer is at the midpoints between A,B and
C,D, i.e. at an azimuth angle along the orbit of
ψ=π/4+kπ/2. Assuming a stationary source,
since the angle between the light direction and
the velocity of the observer is θ = Ωt, one of
the two computed results will produce an har-
monic oscillation of the horizontal position of
the celestial object, having amplitude equal to
β2/4, and with period equal to one half the
period of the observer’s orbit. Such peculiar
behaviour, characterized by a twice per rev-
olution oscillation that constitutes its specific
signature, represents an artifact of the resulting
calculated source position, artifact which is due
to the inconsistency of the analytical formula
used with respect to the actual rule followed
by the physical phenomenon.

Let us now consider the case of a terrestrial
observer and let’s approximate the Earth’s orbit
with a circle of radius R = 150x106 km, and

period T equal to one year. In this case the
orbital speed is constant and its value is v'
30 km/s, which gives β'10−4.
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Figure 6: Comparison of the un-aberrated position of
the light source calculated by means of the
two different velocity composition rules for an
Earth based observer

With these values of the orbital parameters
the two resulting curves of the calculated hori-
zontal position of the source, deriving from the
application of equations (35) or (36), are shown
in Figure 6. In this figure, also the resulting
artifacted solution calculated taking into ac-
count the elliptical shape of the Earth’s orbit
is presented. Due to the low eccentricity of
the actual orbit, the deviations of these results
from the reference case of a circular trajectory
are very small, as shown in the graph that has
been calculated considering a celestial object
aligned to the major axis of the ecliptic.

The values of the un-aberrated position of
the source corresponding to the four notable
orbital locations A,B and C,D are indicated
in the figure with the same markers used in
the previous figure. Both the correct and the
artifacted curves pass through points A and B,
since for these locations there is no aberration
at all and the value of the horizontal position
of the celestial object is given directly by the
observed position. Both curves also give the
same results for locations C and D where the
velocity of the observer is orthogonal to the
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incoming light direction. 3

The above described artifact, characterized
by its twice per revolution frequency content,
must be present in either the classical or the
relativistic computed results, and has the same
specific signature characteristics for any ob-
served stationary source lying into the orbital
plane, with almost the same amplitude of os-
cillation and with the same frequency content,
independently from the specific celestial object
or the specific region of the electromagnetic
spectrum being observed.

When the celestial object being analyzed
does not lie into the orbital plane there will
be also an aberration contribution to the out-
of-plane position of the source. Considera-
tions similar to those discussed for an in-plane
source apply also to this more general case: the
vertical component of the calculated position of
the source will contain a twice per revolution
spurious term in either the classical or the rela-
tivistic results. The amplitude of the artifacted
vertical component is null when the celestial
object is located in the orbital plane, it then
increases with the out-of-plane elevation of the
source, reaching a maximum for an elevation
angle of π/4, for which the term β2sin(2θ′) is
maximum. For elevations greater than π/4 the
amplitude of the vertical spurious term will
then decrease again and will become zero for
circumpolar objects, for which also the in-plane
component vanishes.

The presence of a twice per revolution fre-
quency term into the computed results of the
un-aberrated position of stationary celestial ob-
jects is therefore a general characteristics, a
specific signature, that allows to identify the
incorrect velocity composition rule between the
two that have been analyzed.

VI. Conclusions

In the previous sections it has been shown
that simultaneity of events can be assessed in a

3In the general case of a non stationary source, the
corresponding computed value of the horizontal position
of the object evaluated at C and D could differ from the
one corresponding to the reference locations A and B.

unique and consistent way by using a general
method of clock synchronization that does not
necessarily require the use of light signals. By
using this method two events that are simul-
taneous for one observer result simultaneous
also for another observer that is moving with
respect to the first one. This shows that the
concept of simultaneity is independent from
the state of motion of the observer and from
the specific clock synchronization signal that
has been selected, and such absolute nature of
simultaneity allows to introduce a definition of
time which is common for all observers.

The above considerations have led to an al-
ternative physical interpretation of the Lorentz
transformation of coordinates and suggest
that some interferometric experiments on light
propagation can be explained without invok-
ing the space-time deformation assumed by the
Theory of Relativity, and by applying, instead,
the Ritz emission theory[3] which assumes that
light is always emitted with the same relative
speed c with respect to its source.

Finally, a test case to discriminate between
the Galilean and the Relativistic velocity com-
position rules has been proposed. The test is
based on the analysis of the aberration of the
light coming from stationary celestial objects
as perceived by an orbiting observer, and on
the different results obtained by using the two
different velocity composition formulas to re-
move the aberration term from the observed
position of the various light sources of the sky.
In order to be applied to measured data, the
comparison requires that the observed position
of the sources is determined with high accu-
racy, since the differences that have to be inves-
tigated are of the order of milli-arcseconds, a
level of accuracy that should be achievable by
the most advanced large ground telescopes or
space based astrometric instruments like, for
example, the Gaia scientific satellite.

Should the outcome of the test be in favour
of the classical Galilean velocity vector sum,
this could constitute a supporting element to
reconsider the validity of Ritz emission the-
ory in place of the Special Theory of Rela-
tivity. Despite having radical differences in
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their fundamental assumptions, the two theo-
ries share some important aspects that marked
a sharp distinction from the approach previ-
ously adopted for the analysis of electromag-
netic phenomena and for classical mechanics.
Regarding the propagation of light both theo-
ries negate the existence of the aether, whilst
for what concerns mechanics and the dynamics
of motion of bodies, in both theories the inter-
actions between non-coincident physical enti-
ties are not instantaneous as it was assumed
in the Newtonian approach. Because of the
assumption of instantaneous action at distance,
the equations of motion of classical Newtonian
mechanics contain, as stated by L. Landau[7],
"a certain degree of imprecision". The removal
of the hypothesis of instantaneous action at dis-
tance, which is inherent into the action-reaction
principle when applied to physical entities hav-
ing a non-null geometrical separation between
them, allows both theories to provide the cor-
rect predictions of the precession of the motion
of the perihelion of Mercury. It may be possible,
therefore, that also other experimental obser-
vations that have been considered as being in
agreement with the outcomes of the Theory
of Relativity could find an alternative interpre-
tation not based on the concept of space-time
deformation.
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