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Vortex Gradient Formula 

 

 

We expound the gradient of Vorticity tensor formula in general coordinates as treated in relativistic 
mechanics . 

                                            

The formula of the gradient of  the Vorticity tensor is derived in general coordinates as treated in 

classical and relativistic continuum mechanics and as groundwork of Tailherer’s theory [2]. 
The basic equations are those of vortex kinematics encountered in lagrangian description of 

continua [1] relating the angular velocity tensor to the deformation velocity K = ½g  (as 

remarked in [2] identified with the second fundamental tensor relative to V4): let us start by 

considering all the points-event of the space spanned by the particles of a continuum as 

parameterized with their co-ordinates representing the position vector OP with respect to an 

arbitrary origin O , and a local frame referred to a local basis of vectors e  =OP/xwhose the 

metric tensor g= e  e   and the countervariant frame  g


 associated with, such that        

gg
 

= 
  

. We consider the lagrangian metric  g (x


/) as function of the trajectory line’s 

variables  x  
and time  , and  so  e  . Since our reasoning might be done in the 4-dimensional 

cronotope too ( so  is referred to as the proper time), it follows that if the relations hold in each 
tern subspace, as we shall see they do, they will keep holding in the whole 4-dimensional space 

for the same equation that we shall get. So, let us choose without loss of generality the tern 

referring to the space indexes h=1,2,3. Let us consider now the gradient of the space components 
of the velocity which will be of the type: 

                      
k

h hk
q v e          ( / , 1,2,3)h

h x h k                                    (A.1) 

 
The matrix  qhk   can always be split up in a symmetrical part and a skew-symmetric one  

 

  qhk =h v e k  = Khk +  hk                                                                                                  (A.2) 

 

with symmetrical part                                                                                        

 

                                        Khk =1/2( h v  e k + k v e h ) = Kkh                                                              (A.3) 
 

and skew-symmetric 

 

hk =1/2(h v  e k  - k v  e h ) = - kh                                                                      (A.4) 
 

Since 

   e h =

2 2

h h

OP OP
=

x x 

 

   
=h v                                         (A.5) 

equ.(A.3) will be written as: 

 

  Khk = 1/2(  e he k +   e k  e h ) =1/2( e h  e k ) = 1/2ghk                     (A.6) 
 

which can be referred to the second fundamental tensor as already outlined in [2] where it was 

denoted as deformation velocity of the metric.  For what concerns  hk  by taking (A.5) into 
account let us introduce the vector 

 

 = ½ e 
h
  e h = ½ e 

h
 h v      with      exterior product                          (A.7)        

 

Then from the (A.2) and (A.3) we have successively: 

 

       = ½ e 
h
 (K hk + hk ) e 

k 
= ½ (K hk  e 

h
 e 

k 
)+ ½ (hk  e 

h
 e 

k 
)                          (A.8) 
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which in account of the symmetry of Khk  and the skew-symmetry of  e 
h 
 e 

k  
becomes: 

 

                              = ½ (hk  e 
h 
 e 

k 
)                                                                      (A.9)


  will be named angular velocity and characterised by the coefficients  hk . 
Moreover, if  we multiply  (A.7)  by  e h   through the exterior product, taking into account that      

e 
h 
 e k = 

h
k , we get: 

  e h  = ½ ( lk  e 
l e 

k 
)  e h =  ½  lk (e 

l
  e h e 

k
 – e 

k
 e h   e 

l
) = ½  lk ( 

l
h e 

k 
-  

k
h e 

l 
)  and 

therefore the relation: 

 

                             e h =hk  e 
k  

               ( h,k=1,2,3 )                                (A.10) 
 

Let us now make some recalls. By differentiating the vectors eh (x


/) of the local base with 

respect to the proper time we get the gradient of the space components of 4-velocity as from 

(A.5). In deriving them with respect to x   
we get for definition the Christoffel symbols as well-

known in differential geometry: 

 

j e h = 
k
j h e k   j  e 

h
 = -  

h
j k e 

k 
                              (A.11) 

 

Let us recall the links between the Christoffel symbols of the first and second kind: 
 

 
k
j h  = g

kr 
 j h , r           j h , r = grk  

k
j h                                                (A.12)             

 

From (A.11) it turns out that  

 

j v =j (v h e 
h
) = ( j vh -  

k
j h vk ) e 

h
 = (j vh) e 

h                                                      
(A.13) 

 

 
leading via (A.4) to the expression: 

 

     hk =1/2 (h vk -k vh)= 1/2 ( h vk - k vh )                                  (A.14)     
 
and by taking advantage of the symmetry of Christoffel symbols with respect to inferior indexes. 
Analogously we get for (A.3): 

 

     Khk =1/2 (h vk +k vh)                                                (A.15)        
 

as usual for the deformation tensor. 
The gradient of the velocity expressed in terms of deformation and angular velocity follows as 

from (A.1), (A.2) and (A.10): 

 

  h v = K h +   e h                                                 (A.16)                                                                   
with   K h    following as from (A.6): 
 

                     K h = K hk  e 
k 
= ½ Khk  e 

k                                                                   
(A.17) 

 

From (A.16) we can infer   to depend on K , that is to say, on the deformation velocity as will be 
seen better next. To see that let us derive both the members of (A.9) with respect to x 

j  
. We get: 


j  = ½ j e 

h 
 e h + ½ e 

h 
 (j e h )                           (A.18) 

 
as well as on using (A.11): 

j   = - ½  
h

j k e 
k 
 e h + ½ e

h 
 

k
j h   e k + ½   ( 

k
j h) e 

h 
   e k                                           (A.19) 
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Since the first two terms vanish as it is understood by changing the indexes h and k, it turns out: 
 

   j = ½   ( 
k
j h) e 

h 
 e k                                                                      (A.20) 

 

On the other hand, since      j h , r = ½ (j ghr +  h grj - r gjh)      and taking into account (A.6) we 

have: 
 

  j h , r =j K h r + h K r j -  r K j h =j K h r+ h K r j  - r K j h + 2 
k
j h K k r                                                     

 
where we used the definition of covariant derivative: 

 

            j K hr = j K hr  -  
k
j h K kr  -  

k
j r K h k                                                            (A.21) 

 

Making use of the triple tensor   q j h , r =j K hr + h K rj - r K jh        we obtain the following 
expression of the time derivative of Christoffel symbols of first kind: 

 

  j h , r = q j h , r +  
k
j h  gk r                                                      (A.22) 

 

Moreover, by differentiating (A.12)2 with respect to proper time we get for the precedent relation: 

 

                              gr k  
k
j h + gr k   

k
j h= q j h , r + 

k
j h  g k r            i.e.                                      

                                                             
k
j h = g

k r
 q j h , r  = q 

k
j h                                                                  (A.23) 

 
which is plainly a tensor. Hence equ.(A.20)  becomes: 

 

                                                   j =½ q jh  , k  e 
h 
  e 

k                                                                         
(A.24) 

  
or because of  (A.21)  and the skew-symmetry of the exterior  product: 

 

   j  =h Kk j  e 
h 
  e 

k                                                                    
(A.25) 

 
Then, by differentiating (A.9) we obtain: 

 

j  = ½ jhk ( e 
h 
 e 

k 
) + ½ hk j ( e 

h 
 e 

k 
)   and taking (A.11)2  into account and the 

definition of covariant derivative for hk we finally arrive to the differential expressions: 
 

        j  hk =h Kk j -k Kh j                                   ( j,h,k =1,2,3 )                     (A.26)     
 

Extending (A.26) to the 4-dimensional cronotope (also making K and    dimensionally as a 

[length]
-1

 by re-defining them dividing by the light speed c) and entering the Tailherer's ansatz:    

C= S ,  C = R
 

, with 
 any constant skew-symmetric tensor, we have a second 

gravitational equation: 

 
 C = S ( K - K   )                ( ,,  =1,2,3,4 ) 

 

with S = (2.5±1.2)E-19 m
-1

 [3] . By choosing 

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 
 

 
 
 

 

  Lorentz invariance is 

yet preserved, however general one is broken as discussed in [4], just regarding the gravitational 
wave phenomenon as symmetry breaking of general relativity .  
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