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The Mössbauer experiment in a rotating system and
the extraenergy shift between emission and
absorption lines using Bimetric theory of
gravitational -inertial field in Riemannian
approximation explained

I.The Mössbauer experiment in a rotating system and
the extraenergy shift between emission and
absorption lines .

� In a series of papers published during the past decade with respect to
Mössbauer experiments in a rotating system [71]-[75],it has been
experimentally shown that the relative energy shift �E/E between the source
of resonant radiation (situated at the center of the rotating system) and the
resonant absorber (located on the rotor rim) is described by the relationship

�E/E � �ku2/c2, �1. 1�

where u is the tangential velocity of the absorber, c the velocity of light in vacuum, and
k some coefficient, which – contrary to what had been classically predicted equal 1/2
(see for example [35]) – turns out to be substantially larger than 1/2.

It cannot be stressed enough that the equality k � 1/2 had been predicted by general
theory of relativity (GTR) on account of the special relativistic time dilation effect
delineated by the tangential displacement of the rotating absorber, where the “clock
hypothesis” by Einstein (i.e., the non-reliance of the time rate of any clock on its
acceleration [35]) was straightly adopted. Hence, the revealed inequality k � 1/2
indicates the presence of some additional energy shift (next to the usual time dilation
effect arising from tangential displacement alone) between the emitted and absorbed
resonant radiation.



Fig.1.General scheme of Mössbauer experiment sinrotating

systems.A source of resonant radiation is located on the

rotational axis;an absorber is located on the rotor rim,

while a detector of gamma-quanta is placed outside the

rotor system,and it counts gamma-quanta at the time moment,

when source,absorber and detector are aligned in a straight line.

Adapted from [75].

.

II.The inertional field equation in Riemannian
approximation

We write the inertial field equations in Riemannian approximation of the form

R i
ac k �

�ac

c4 Ti
ac k � 1

2
Tac , �2. 1�

where �ac is dimensional constant with absolute value equal to 1.
We intoduce now 4-potential U�,� � 0, 1, 2, 3 in 4-D Minkovski space-time

U� � �U0, U1, U2, U3� �2. 2�

We define a tensor of the accelerations by T��
ac � ��U�,�,� � 0, 1, 2, 3
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In 3-D we obtain T��
ac � ��U�,�,� � 0, 1, 2
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In polar coordinates we obtain

T��
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�2. 5�

We assume now that U0 � 0, U1 � U1�r�, U2 � U2���.From Eq.(2.5) we obtain

T��
ac �

0 0 0

0 �U1

�r
0

0 0 �U2

��

�2. 6�

We assume now that U2��� � const,thus

T��
ac �

0 0 0

0 �U1

�r
0

0 0 0

�2. 7�

Motion of a particle in inartial field with a flat background
metric g ik

b

Remind that the motion of a free material particle is determined in the special theory
of relativity from the principle of least action,

�S � �mc� � ds � 0, �2. 8�

according to which the particle moves so that its world line is an extremal between a
given pair of world points, in our case a straight line (in ordinary three-dimensional space
this corresponds to uniform rectilinear motion).

The motion of a particle in inartial field is determined by the principle of least
action in this same form (2.8), since the inartial field is nothing but a change in the flat

background metric gik
b of space-time, manifesting itself only in a change in the

expression for ds in terms of the dx i, i � 0, 1, 2, 3. Thus, in inartial field the particle moves
so that its world point moves along an extremal or, as it is called, a geodesic line in the
four-space x0, x1, x2, x3; however, since in the presence of the inartial field space-time is
not galilean, this line is not a "straight line", and the real spatial motion of the particle is
neither uniform nor rectilinear.

Remark 2 .1.Note that the full metric tensor ğ � gik
full reads



ğ � gik
full � gik

ac � gik
b , �2. 9�

where (i) the non flat metric gik
ac determining the inartial field and where (ii) gik

b is the flat
background metric related to the given coordinate transform.

Example 2 .1.Let us consider a transformation from an inertial frame, in which the
space-time is Minkowskian, to a rotating frame of reference. Using cylindrical
coordinates, the line element in the starting inertial frame is

ds2 � c2dt2 � dr2 � r2d�2 � dz2. �2. 10�

The transformation to a frame of reference �t �, r�,��z�� rotating at the uniform angular
rate � with respect to the starting inertial frame is given by

t � t �, r � r�, � � �� � �t �, z � z� �2. 11�

Thus, Eq.(2.10) becomes the following canonical line element (Langevin metric) of the
rotating frame

ds2 � 1 � r�2�2

c2 c2dt �2 � 2�r�2d��dt � � dr�2 � r�2d��2 � dz�2. �2. 12�

Remark 2 .2.As we consider light propagating in the radial direction (d�� � dz� � 0), by
using a flat metric (2.12) the line element reads

ds2 � 1 � r�2�2

c2 c2dt �2 � dr�2. �2. 13�

Setting the origin of the rotating frame in the source of the emitting radiation, we get a
first canonical contribution in relative energy shift �E/E between emission and absorption
lines, which arises from the inartial blueshift, that can be directly computed using Eq.
(8.2.13) and which reads

�E
E

�
Ereceived � Eemitted

Eemitted
� |g00�r��|

1
2 � 1 � � 1

2
u2/c2, �2. 14�

where u � �r�.

Instead of starting once again directly from the principle of least action, it is simpler to
obtain the equations of motion of a particle in the inartial field by an appropriate
generalization of the differential equations for the free motion of a particle in the special
theory of relativity, i.e. in a galilean four-dimensional coordinate system. These
equations are dui/ds � 0, i � 0, 1, 2, 3. or dui � 0, i � 0, 1, 2, 3. , where ui � dx i/ds is the four
velocity. Clearly, in curvilinear coordinates this equation is generalized to the equation of
the form

D� ui � 0, �2. 15�

where the D� is a covariant derivative corresponding to the full metric tensor ğ � gik
full.

From the expression for the covariant differential of a vector, we have

dui � �� kl
i ukdx l � 0, �2. 16�

where the �� kl
i is a Christoffel symbols corresponding to the full metric tensor ğ � gik

full.
Dividing the equation (2.16) by ds, we obtain

d2x i

ds2 � �� kl
i dxk

ds
dx l

ds
� 0. �2. 17�

This is the required equation of motion. We see that the motion of a particle in inartial
field is determined by the Christoffel symbols �� kl

i and the 2-derivative



d2x i

ds2 �2. 18�

is the four-acceleration of the particle. Thus we may call the quantity

�m�� kl
i ukul �2. 19�

the four-force,acting on the particle in the inartial field. Here, the full metric tensor gik
full

plays the role of the potential of the inartial field and its derivatives determine the field
intensity �� kl

i .
Remark 2 .3.Remind that by a suitable choice of the coordinate system one can

always make all the �� kl
i zero at an arbitrary point of space-time.

As before, we define the four-momentum of a particle in inartial field as

pi � mcui. �2. 20�

Its square reads

pipi � m2c2. �2. 21�

We write now
�S
�x i �2. 22�

for pi we find the Hamilton-Jacobi equation for a particle in inartial field:

ğik �S
�x i

�S
�xk

� 0, �2. 23�

where ğik � gik
full �1

.

Remark 2 .4.The equation of a geodesic in the form (2.17) is not valid to the
propagation of a light signal, since along the world line of the propagation of a light ray
the interval ds, as we know, is zero, so that all the terms in equation (2.17) become
infinite. To get the equations of motion in the form needed for this case, we use the fact
that the direction of propagation of a light ray in geometrical optics is determined by the
wave vector tangent to the ray.

We can therefore write the four-dimensional wave vector in the form

k i � dx i/d�, �2. 24�

where � is some parameter varying along the ray. In the special theory of relativity, in
the propagation of light in vacuum the wave vector does not vary along the path, that is,
dk i � 0. In inartial field this equation clearly goes over into D� k i � 0 or

dk i

d�
� �� kl

i kkk l. �2. 25�

The absolute square of the wave four-vector is zero, that is, k ik i � 0.Substituting
�	/�x i in place of k i, where 	 is the eikonal, we find the eikonal equation in inartial

field

ğik �	
�x i

�	
�xk

� 0. �2. 26�

In the limiting case of small velocities, the relativistic equations of motion of a particle
in inartial field must go over into the corresponding non-relativistic equations. In this we
must keep in mind that the assumption of small velocity implies the requirement that the
inartial field itself be weak; if this were not so a particle located in it would acquire a high
velocity.



Let us examine how, in this limiting case, the full metric tensor gik
full � gik

ac � gik
b ,

where (i) the metric tensor gik
ac determining the inartial field is related to the nonrelativistic

potential �ac of the inartial field and where (ii) gik
b is the flat background metric related to

the given nonrelativistic potential �b.
In nonrelativistic limit the motion of a particle in inartial field is determined by the

Lagrangian

� � mv2

2
� m�b � m�ac. �2. 27�

We now rewrite Eq.(2.27) it in the following form

� � �mc2 � mv2

2
� m�b � m�ac. �2. 29�

adding the constant �mc2.This must be done so that the nonrelativistic Lagrangian in

the absence of the field, � � �mc2 � mv2

2
,must be the same exactly as that to which the

corresponding relativistic function � � �mc2 1 � v2/c2 reduces in the limit
v2/c2 � 0.Therefore the nonrelativistic action function S for a particle in inartial field has
the form

S � �mc � dt c � v2

2c
� �b

c � �ac

c . �2. 30�

Comparing the Eq.(2.30) with the expression S � �mc �ds in the limit v2/c2 � 0 we

obtain

ds � c � v2

2c
� �b

c � �ac

c dt. �8. 2. 31�

Squaring the Eq.(2.31) and dropping terms which vanish for c � �, we obtain

ds2 � 1 � 2�b

c2 � 2�ac

c2 c2dt2 � dr2, �2. 32�

where dr � vdt.
Thus in the limiting case the component g00

full of the full metric tensor is

g00
full � 1 � 2�b

c2 � 2�ac

c2 . �2. 33�

We choose now the background metric gik
b of the form is given by Eq.(8.2.12)

Remark 2 .5.Note that

g00
b � 1 � �2r2. �2. 34�

III.The Mössbauer experiment in a rotating system
explained

In the inertional field equations (8.2.1) we now carry out the transition to the limit of
nonrelativistic mechanics.This is, for instance, the case in the nonrelativistic rotating
system considered above in subsection VIII.1.Thus the acceleration of a particle of zero
velocity lies in the direction of increasing r and is equal to

a � �2r. �3. 1�



Fig.2.

U1 � �2r2/2. �8. 3. 2�

This formula (3.2) is in accordance with the usual expression for the centrifugal force.
We remind that the expression for the component g00

ac of the metric tensor (the only one
which we need) was found, for the limiting case which we are considering, in section II

g00
full�r� � g00

b �r� � g00
ac�r� � 1 �

2�b�r�
c2 �

2�ac�r�
c2 . �3. 3�

Further, we can use for the components of the inertian tensor the expression (2.7),

where U1 � �2r2/2.Of all the components Ti
ac k, there thus remains only

T1
ac 1 � �U1/�r � �2r. �3. 4�

The scalar Tac � Ti
ac i will be equal to the value T1

ac 1 � �U1/�r � �2r.
We write the field equations in the form (2.1). For i � k � 0 we get

R0
ac 0 � � 1

c4 �
2r �3. 5�

and i � k � 1 we get

R1
ac 1 � 1

c4 �
2r. �3. 6�

Remark 3 .1.Note that in the approximation we are considering all the other equations
vanish identically.

Remark 3 .2.For the calculation of R0
ac 0 from the canonical general formula, we note

that terms containing derivatives of the quantities �ki
i are in every case quantities of the

second order. Terms containing derivatives with respect to x0 � ct are small (compared
with terms with derivatives with respect to the coordinates x
,
 � 1, 2, 3) since they
contain extra powers of 1/c. As a result, there remains

R00
ac � R0

ac 0 � ��00

 /�x
, �8. 3. 7�

where

�00

 � � 1

2
gac 
� �g00

ac

�x� . �8. 3. 8�

Substituting (3.8) into (3.7) we get

R0
ac 0 � 1

c2 ��
ac�r� � � 1

c4 �
2r. �8. 3. 9�

Finally we obtain radial Poisson equation



rd2�ac�r�
dr2 �

d�ac�r�
dr

� d
dr

rd�ac�r�
dr

� � 1
c2 �

2r. �3. 10�

By integration one obtains

�ac�r� � � 1
4c2 �

2r2. �3. 11�

Substituting (3.11) into (3.3) we get

g00
full�r� � g00

b �r� � g00
ac�r� � 1 �

2�b�r�
c2 �

2�ac�r�
c2 �

1 � 1
c2 �

2r2 � 1
2c2 �

2r2 � 1 � 3
2c2 �

2r2
�8. 3. 12�

Suppose that light flashes are emitted from a point r � r1 at an interval �t. The field
being static, the flashes will reach the observer at r � r2 after the same interval �t. The
ratio of the proper time intervals at these two points is

��1
��2

�
g00

b �r1� � g00
ac�r1�

g00
b �r2� � g00

ac�r2�
. �3. 13�

Hence, the ratio of frequences is

�1
�2

� ��2
��1

�
g00

b �r2� � g00
ac�r2�

g00
b �r1� � g00

ac�r1�
�

1 � 3
2c2 �

2r2
2

1 � 3
2c2 �

2r1
2

. �8. 3. 14�

Substituting r1 � 0 into (3.14) we get

�1
�2

� ��2
��1

�
g00

full�r2�

g00
full�0�

� 1 � 3
2c2 �

2r2
2 � 1 � 3

4c2 �
2r2

2 � 1 � 3u2

4c2 . �3. 15�

Therefore

�E/E � � 3u2

4c2 .� �0. 75 u2

c2 . �3. 16�
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