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This letter proposes a new approach to the unmet challenge of plausibly modeling the 
electron and other elementary particles as “solitons,” as stable vortices of force fields. 
This is the only alternative in Minkowski space to the usual model of charged 
elementary particles as perfect point particles, with an infinite Coulomb energy of self 
repulsion [1], requiring that elaborate systems of renormalization must be added to the 
fundamental definition of any quantum field theory.  In 1926, Richard Feynmann wrote: 
“The shell game that we play is technically called 'renormalization'. But no matter how 
clever the word, it is still what I would call a dippy process! Having to resort to such 
hocus-pocus has prevented us from proving that the theory of quantum electrodynamics 
is mathematically self-consistent. It's surprising that the theory still hasn't been proved 
self-consistent one way or the other by now; I suspect that renormalization is not 
mathematically legitimate”.[2] This letter first summarizes previous approaches using 
topological solitons, and then motivates and outlines the new approach.  
 

1. Context: Long-Term Goals and Previous Approaches 
 
 
This paper proposes a step towards meeting a larger unmet challenge: how can we 
create a plausible “soliton” model of the electron and other particles – a model which 
represents the electron as a set of states of continuous force fields defined over 
Minkowski space, with positive definite energy, and no singularity and no need for the 
renormalization assumptions embedded in present versions of quantum 
electrodynamics (QED) and the standard model of physics (EWT+QCD)? 
 
The vast bulk of research into “solitons” in physics have studied two possible types of 
model: (1) “skyrrnion” models, which assume strict topological constraints on some of 
the fields in the model (such as use of a field required to be a unitary matrix, such that 
its allowed values fall on a sphere); and (2) Higgs field models, like the classic BPS 
monopole, which throw out the assumption that the values of fields go to zero at a 
distance of infinity from the center of the soliton, and use a Higgs term in the energy 
(Hamiltonian) to force a topological constraint. [3,4]. Many of my most recent efforts 
towards a soliton model of the electron have used the Higgs field mechanism, but 
certain recurring difficulties have kept coming up. First, the most natural models of that 
type do not naturally generate the striking simple symmetries of mass and lifetimes 
observed in modern empirical studies of particle types and masses [5]. They explain the 
hard quantization of electric charge, but not of intrinsic angular momentum (spin) [10]. 
And finally, if we had two electrons a millimeter apart in free space, would we really 
expect them to be surrounded by a field with topological winding number of two, as 
convoluted as that geometry is?  
 



Since 2017, I have reverted to reconsidering the class of nontopological solitons which I 
had been studying until 1998 [4]. In 1998, the nontopological approach appeared very 
difficult. Now, however, it looks easier than I had thought. It also has the advantage of 
allowing fields without topological constraints, and allowing the usual boundary 
condition that fields go to zero at infinity. 
 
In my private notes, I have mathematical and numerical ideas for a class of 
nontopological soliton models which I call “Ouroboros” models, including for example 
models based on two vector fields, Aμ  and Jμ , each of which serves as a source in a 
way of the other. (I called them “Ouroboros” in part because it is like a snake swallowing 
its own tail, a strange duality, but also because of the geometry, and because the image 
came to me as I was looking south to Nordkapp from a ship in the Arctic Ocean.) The 
key numerical idea was to start from initial or asymptotic solutions centered on a thin 
torus (“doughnut” or “bagel” or “stellarator”), allowing the use of one-dimensional 
functions in r, the distance from a larger circle of radius R in space. The idea was to 
pursue a “ladder” of designs of that type, outlined in my notes, initially just proving that 
this type of stable “soliton” is possible, and building up to something which uses or 
reproduces the usual B and W fields of electroweak theory [6]. A google search on the 
term “toroidal electron” yields many serious qualitative ideas which may be useful in this 
approach. 
 
This paper outlines a different approach to constructing nontopological solitons on a 
path leading to eventually modeling the electron and other elementary particles. In the 
end, it might even overlap with the Ouroboros approach! There is no fundamental 
contradiction that I know of.  
 
In 2016, for a talk on Self-Organization at the mathematics department of the University 
of Memphis (a major site for the Erdos community), I looked at scholar.google.com for 
citations to “skyrmion” and to “BPS monopole.” I found 3000 of each. But as I type now, 
I find 15,000 citations to skyrmion, a vast explosion. It appears to me that this vast 
explosion was due to new research in electrical engineering, stimulated in part by a new 
research activity I led at NSF [7] until my retirement in 2015. But these “skyrmions” are 
mainly not true skyrmions; rather, they are like the “magnetic skyrmions” described in a 
seminal paper by Rossler et al [8], cited directly and indirectly in recent empirical work 
ranging from papers in Nature to technology in China. Bogdanov’s magnetic skyrmion 
model does create a kind of local topology, but, because it allows traditional boundary 
conditions and is consistent with the general approach in [4], I classify these as 
nontopological solitons. 
 
Because the issues here are so important, and the approach so different from what now 
appears in the literature on solitons over Minkowski space, I feel it is important to make 
it available even before I do the kinds of analysis which I previously applied to other 
approaches [4,10], because at the age of 71 I cannot be sure that I will have time to do 
so. The family of chiral solitons (much larger than just equation 2 below) is certainly 
large and rich.  
 



2. The Core New Idea 
 
Bogdanov’s energy model (equation 1 of [8]) is not a model over Minkowski space. 
However, it is easy enough to adopt his key idea to Minkowski space in the framework 
of [4].  
(By the way, there is a supplement to [8], also at arxiv, which mentions gauge theory in 
words but does not give mathematical specifics.) In principle, we only need to expand 
the general framework given in section 3 of [4] by adding a sixth relativistic invariant to 
the list of allowed invariants given in 57: 
 

𝒇𝟓 ≡ 𝝐𝜶𝜷𝜸
𝝁

(𝑨𝜶𝑨𝜷𝝏𝝁𝑨𝜸)       (1) 

 
where eta is the usual completely skew-symmetric tensor of Minkowski space, the Levi-
Civita tensor for Minkowski space [9]. The analogy to Bogdanov’s model would have 
been closer if eta were only a three-tensor, as it is for three-dimensional space, but for a 
relativistic free space model, the Lagrangian must obey the rules for invariants over 
Minkowski space. There is no choice, for a theory based on one vector field, which is a 
sensible place to begin in exploring this class of dynamical system. Still, it is interesting 
that the Lagrangian for the W meson in electroweak theory also includes a field-field-
derivative-field term [6].  
 
By analogy to Bogdanov [8], we should begin by analyzing the family of systems 
defined by: 
 

L = L0 - af5 - g(f0)  ,        (2) 

 

where L0 is the usual Lagrangian for the covariant vector field Aμ in Maxwell’s Laws, 
where f5 is as defined in equation 1, where f0 is the scalar invariant  AμAμ as previously 
defined in equations 57 of [4], 
and where the choice of real parameter a and function g specifies a particular dynamical 
system within this family. Following Bogdanov, we refer to the middle term as the “chiral 
term.” The first step in soliton analysis is to translate this into a Hamiltonian, equal to the 
well-known usual Hamiltonian of Maxwell’s Laws under the Lorenz gauge plus the new 
terms, and then look for stable static or oscillatory [11] equilibrium states or conditions. 
Bogdanov asserts that the equilibria he derives for his similar model pass the basic 
tests of stability developed by Hobart and Derrick [24, and there is reasonable hope that 
this will be true here as well, for some set of choices for a and g.  
 
The stability analysis depends on the energy density, the Hamiltonian, which in this 
case is simply: 
 

H= 1
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where A is the three dimensional vector (A1, A2, A3), where E is the gradient of A0 , and 
H is the curl of A, as in ordinary treatments of Maxwell’s laws. It is important to consider 
the possibility of stable oscillations [11] as well as static equilibrium states.  
 
In principle, we cannot yet rule out the possibility that this by itself will yield a plausible 
model of the electron good enough to replicate (and enhance what is needed in 
quantum electrodynamics, or more.  
However, it will be exciting enough if it yields any stable soliton over Minkowski space; 
this has never been achieved yet for any model which does not use the Skyrme or 
Higgs tricks, without higher order derivatives in the Lagrangian. That would be a big 
step forward. The tight relations between spin, charge and mass observed in nature do 
suggest something relatively simple and unifying underneath. 
 
As in earlier explorations ([10] and Ouroboros), there is a natural “ladder” of possible 
dynamical systems within this general family, as we consider adding a second vector 
field and/or a two-tensor field or even spinor fields, or nonlinear functions of f5. The key 
idea is to make use of the chiral term to achieve stability of the kind observed by 
Bogdanov. The parity violation of this class of model might even yield the curious 
right/left asymmetry of electroweak theory as an emergent accurate approximation to 
something far more elegant.  
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