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1 Introduction15

The transport of material in the atmosphere is a problem with important im-16

plications for agriculture [1–4], aviation [5, 6], and human health [7, 8]. Given17

the turbulent nature of the atmosphere it can be difficult to predict where18

a particle, such as a plant pathogen, will wind up. Tools from dynamical19

systems theory, such as LCSs, can help us to understand how particles in a20

flow will evolve. The study of transport in the atmosphere from a dynamical21

systems perspective has long focused on the study of large scale phenom-22

ena [1–5, 9–12]. This has been largely due to the larger scale grid spacing23

of readily available atmospheric model data and the lack of high resolution24

atmospheric measurements on a scale large enough to calculate Lagrangian25

data. Furthermore, few works have attempted to find ways to detect LCSs26
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in the field. In [6, 13] the authors used wind velocity measurements from a27

dopler LiDAR to detect LCS which had passed through Hong Kong Inter-28

national Airport. The authors in [1] took a different, rather than measure29

the wind velocity to try and detect LCSs, the authors looked at sudden30

changes in pathogen concentrations in the atmosphere and were able to link31

those changes to the passage of LCSs using atmospheric forecasts from the32

North American Mesoscale (NAM) model. Yet to date, we are unaware of33

any attempts to develop a means of directly sense LCSs in which could be34

readily implemented by operators in the field. Recent advances in dynamical35

systems theory, such as new Eulerian diagnostics, as well as, atmospheric36

sensing technology, such as unmanned aircraft systems (UAS), have brought37

the detection of localized LCSs within reach.38

The first of these developments are new Eulerian techniques for measuring39

the attraction and repulsion of regions in a fluid flow [14, 15]. In traditional40

Lagrangian analyses a velocity field is needed which is defined over a large41

enough spatiotemporal scale for the advection of virtual particles. These new42

Eulerian methods do not rely on the advection of virtual particles, instead43

they utilize the gradients of the velocity field. Since they rely on gradients,44

these techniques we only require enough points to enact a finite-differencing45

scheme. Furthermore, these methods are Eulerian and thus can be made46

using temporally coarse or even temporally pointwise data sets.47

The second of these developments is the use of inexpensive UAS to sam-48

ple the atmospheric velocity instead of piloted aircraft or other traditional49

assets. Ground-based wind sensors such as LiDAR (light detection and rang-50

ing), SoDAR (sonic detection and ranging), or tower-mounted anemometers51

can be prohibitively expensive and difficult to relocate to regions of interest,52

such as a hazardous zone. Airborne wind measurement from aircraft has a53

long history [16, 17] and well-developed existing programs [18]. The prolif-54

eration of unmanned aircraft systems (UAS) has enabled wind measurement55

missions which may be lower cost, longer duration, or in more dangerous56

environments. Elston et. al. [19] provide a review of many UAS atmospheric57

measurement efforts, and recent works continue to advance both theoretical58

and practical UAS capabilities [20–25].59

In this paper we will take advantage of these developments to advance a60

methodology, based on numerical simulations, which will enable UAS oper-61

ators in the field to utilize their wind measurements to detect LCSs.62
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2 Methods63

2.1 Lagrangian-Eulerian Analysis64

We will be analyzing the dynamical system65

d

dt
x(t) = v(x(t), t), (1)

x0 = x(t0). (2)

In this system x(t) is the position vector of a fluid parcel at time t and66

v(x, t) is the horizontal wind velocity vector at position x(t), time t. We67

define the components of the horizontal position vector, x = (x, y), where x68

is the eastward position and y is the northward position and the horizontal69

velocity vector, v = (u, v), where u is the eastward velocity and v is the70

northward velocity.71

We will be analyzing this system using both Langrangian and Eulerian72

tools. For the Lagrangian analysis we will be using the Finite-Time Lyapunov73

Exponent (FTLE), σ, and Lagrangian coherent structures (LCSs). We de-74

fine LCSs as C-ridges of the FTLE field following [26]. The FTLE field is a75

measure of the stretching of a fluid parcels within a flow, the forward-time76

FTLE measures repulsion and the backward-time FTLE measures attrac-77

tion. LCSs on the other hand are the most attracting and repelling material78

surfaces within a fluid flow; they provide a means of visualizing how particles79

within the flow will evolve.80

For the Eulerian analyses we use the attraction rate, s1, and the trajectory81

divergence rate, ρ̇, both of which are derived from the Eulerian rate-of-strain82

tensor, S, described in equation 6. The attraction rate is the minimum eigen-83

value of S and was shown in ref [14] to provide a measure of instantaneous84

hyperbolic attraction, with isolated minima of s1 providing the cores of at-85

tracting objective Eulerian coherent structures (OECS). Recent work has86

shown that in 2D, s1 is the limit of the backward-time FTLE as integration87

time goes to 0 [27]. The trajectory divergence rate is a measure of how the88

how much repulsion is changing along streamlines of the velocity field.89

To calculate Lagrangian metrics we must first calculate the flow map for90

the time period of interest,91

Ft
t0

(x0) = x0 +

∫ t

t0

v(x(t), t) dt. (3)
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Taking the gradient of the flow map we can then calculate the right Cauchy-92

Green strain tensor,93

Ct
t0

(x0) = ∇Ft
t0

(x0)
T · ∇Ft

t0
(x0), (4)

From the largest eigenvalue of the right Cauchy-Green strain tensor, λn,94

we can then calculate the FTLE field,95

σtt0(x0) =
1

2|t− t0|
log (λn(x0)) (5)

For the Eulerian metrics, the Eulerian rate-of-strain tensor is defined as96

S(x0) =
1

2

(
∇v(x0) +∇v(x0)

T
)
. (6)

The attraction rate, s1, is the minimum eigenvalue of S. The trajectory97

divergence rate is defined as98

ρ̇(x0) = n̂(x0)
T ·S(x0) · n̂(x0) =

1

||v(x0)||2
(v(x0)

T ·JT ·S(x0) ·J ·v(x0)), (7)

where n̂(x0) is the unit vector normal to the trajectory and J is the symplectic99

matrix [15]. A visual interpretation of the trajectory divergence rate can be100

found in figure 1.101

Figure 1: Schematic of the trajectory divergence rate, taken from [15]. Where
ρ̇ < 0, trajectories are converging, where ρ̇ > 0 trajectories are diverging.
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2.2 Gradient Approximation from UAS Flight Data102

In order to calculate the Eulerian rate-of-strain tensor from our UAS data103

sets we have developed an algorithm to calculate the gradient of a scalar field104

based on measurements along a circular arc. An assumption that goes into105

this algorithm is that the scalar field is not significantly changing in time106

during the period of one full orbit, but is changing in space. We believe this107

assumption is appropriate to apply to atmospheric velocity fields, as mid to108

larger scale atmospheric flows tend to change on the order of hours, while109

UAS orbits are on the order of minutes. This assumption of course ignores110

small scale turbulent motion which would fall below the scale at which we111

are sampling, m vs km. This algorithm also assumes that the important112

features will be in the horizontal plane. This assumption was previously113

applied to atmospheric model data in [9, 10, 28] based on the fact that the114

vertical component of the wind velocity tends to be two orders of magnitude115

less than the horizontal components.116

This algorithm takes the radius of the circle, r, which is assumed to be117

constant, as a scalar input, the angle θ as an n×1 array input, and a scalar u118

as an n×1 array input. Note, this algorithm is currently written for a clock-119

wise trajectory, however, it would work equally well for a counterclockwise120

trajectory with the appropriate modifications. We start with an initial point121

along the circular flight path (r, θ0) an u at that point, then provided the122

path continues for at least another 3
4

of a circle, interpolate u to 3 additional123

points along the path at (r, θ0− 1
2
π), (r, θ0−π), and (r, θ0− 4

3
π). With u at124

4 individual points along the flight path use a central difference scheme to125

approximate the gradient of u at the center point of the circular path. Since126

these 4 points are along an arc, the gradient of each set of 4 points will be127

in a different frame of reference from our initial set. To correct for this we128

apply a counterclockwise rotation to the gradient vector of u to obtain the129

gradient in our reference frame. Continue this method for each additional130

point along the circular path until there is less then an additional 3
4

of a circle131

left. A pseudo-code version of this algorithm can be found in Algorithm 1,132

and a schematic can be found in figure 2.133

2.3 Model Data134

For a velocity field we used data from the 3km North American Mesoscale135

(NAM) model. We looked at a section of the model over Southwestern Vir-136
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Figure 2: Schematic showing positions where velocity measurements were
made and the position of the circle gradient frame to the reference frame.

ginia centered at the Virginia tech experimental farm during a 215hr period137

beginning Sept 4th, 2017 at 00:00 UTC. We divided the NAM data was into138

2 parts. The first part was a strictly 2D data set that looked at the 850mb139

isosurface, the second was a 3D data set. Both data sets were interpolated in140

time from 1hr resolution to 10min resolution using cubic splines. The 3D data141

was then interpolated from pressure based vertical levels to height based ver-142

tical levels using linear interpolation from MATLAB’s scatteredInterpolant143

routine. Both data sets were also interpolated from a 3km horizontal resolu-144

tion to a 300m horizontal resolution using cubic Lagrange polynomials. The145

3D data set was then fed to a flight simulator which attempted the follow146

the 850mb isosurface. A subscale model of a transport-style aircraft, named147

the T-2, was used as the simulated unmanned aircraft. To get a sense of its148

scale, some of its common physical properties are149

mass m = 22.5 kg wingspan b = 2.09 m chord c̄ = 0.28 m
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Algorithm 1 Circle Gradient

1: input θ, u(θ), r
2: for i in length(θ) do
3: if θ(i)− 4

3
π ≥ θ(end) then

4: interpolate u(θ) to u
(
θ(i)− 1

2
π
)
, u (θ(i)− π) , u

(
θ(i)− 4

3
π
)

5: du
dx′

= u(θ(i))−u(θ(i)−π)
2·r

6: du
dy′

=
u(θ(i)− 1

2
π)−u(θ(i)− 4

3
π)

2·r

7: ∇u(i) =

[
cos(θ(i)) sin(θ(i))
−sin(θ(i)) cos(θ(i))

] [
du
dx′
du
dy′

]
return ∇u

The T-2 cruising airspeed is approximately 40 m/s. The details of the flight150

dynamic model are included in Appendix A. The simulated wind “measure-151

ments” taken by the aircraft are wind field components along the aircraft’s152

center-of-mass trajectory v(x(t), t).153

3 Results and Discussion154

3.1 Approximating local Eulerian Metrics from UAS155

flights156

In this section we examine how well the attraction rate, s1, and the trajec-157

tory divergence rate, ρ̇, can be approximated from a UAS flight. Figure 3158

shows the results for the trajectory divergence rate. Using the 850mb isosur-159

face velocity field we calculated the trajectory divergence rate at the center160

point of our circle/flight radius, shown in red. We then used velocity data161

from a perfectly circular path with a radius varying from 2km to 15km re-162

stricted to the 850mb isosurface to approximate the trajectory divergence163

rate, shown in black. Finally, we used velocity data from a 3D simulated164

UAS flight path with a radius varying from 2km to 15km attempting to165

follow the 850mb isosurface to approximate the trajectory divergence rate,166

shown in blue. Pearson correlation coefficients for these measurements can167

be found in table 3.1.168

We can see from the results in figure 3 that the simulated UAS flight in a169

3D space provides a very similar result to the circular path restricted to the170

850mb isosurface. For all the radii we looked at the trajectory divergence171

7



− 1

0

1

h
r−

1

2km 5km

50 100 150 200

Hour s

− 1

0

1

h
r−

1

10km

50 100 150 200

Hour s

15km

ρ̇ circ le flight

Figure 3: Comparison of the trajectory divergence rate measurements be-
tween center point (red), circular arc (black), and simulated drone flight
(blue). Radius for the measurements is shown in lower right hand corner.

rate from the flight simulation is nearly identical to that from the 2D circular172

path. Most of the error between the center point trajectory divergence rate173

and the estimate from our 3D flights appears to be due to the distance from174

the point of estimation, rather than inconsistencies in the flights path due to175

buffeting. This can also be seen in table 3.1, where the correlation coefficients176

between the simulated flight and the 2D circle are all > 0.95, while we see177

a steady drop in the correlation coefficients with the center point trajectory178

divergence rate as the radius increases.179

Figure 4 shows the results for the attraction rate. Using data from the180

850mb isosurface we calculated the attraction rate at the center point of our181
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2km circle 5km circle 10km circle 15km circle 2km flight 5km flight 10km flight 15km flight
center point 0.955 0.854 0.790 0.730 0.931 0.827 0.781 0.730
2km circle -- 0.946 0.815 0.751 0.981 0.923 0.811 0.765
5km circle -- 0.866 0.768 0.935 0.981 0.865 0.784
10km circle -- 0.928 0.804 0.836 0.974 0.902
15km circle -- 0.745 0.738 0.904 0.955
2km flight -- 0.944 0.824 0.783
5km flight -- 0.870 0.793
10km flight -- 0.937

Table 1: Pearson correlation coefficients for ρ̇ measurements. Coefficients
range from 0.730 to 0.965.

2km circle 5km circle 10km circle 15km circle 2km flight 5km flight 10km flight 15km flight
center point 0.939 0.838 0.677 0.590 0.910 0.821 0.675 0.577
2km circle -- 0.932 0.742 0.644 0.980 0.917 0.739 0.627
5km circle -- 0.898 0.789 0.916 0.980 0.887 0.760
10km circle -- 0.908 0.729 0.881 0.978 0.864
15km circle -- 0.637 0.788 0.907 0.965
2km flight -- 0.936 0.746 0.644
5km flight -- 0.900 0.791
10km flight -- 0.909

Table 2: Pearson correlation coefficients for attraction rate measurements.
Coefficients range from 0.577 to 0.939.

circle/flight radius, shown in red. We then used velocity data from a perfectly182

circular path with a radius varying from 2km to 15km restricted to the 850mb183

isosurface to approximate the attraction rate, shown in black. Finally, we184

used velocity data from a 3D simulated UAS flight path with a radius varying185

from 2km to 15km attempting to follow the 850mb isosurface to approximate186

the attraction rate, shown in blue. Pearson correlation coefficients for these187

measurements can be found in table 3.1.188

We can see from the results in figure 4 that the simulated UAS flight189

in a 3D space provides a very similar attraction rate measurements to the190

circular path restricted to the 850mb isosurface. For all the radii paths we191

looked at the attraction rate from the flight simulation is nearly identical to192

that from the 2D circular path. Most of the error between the center point193

attraction rate and the estimate from our 3D flights is due to the distance194

from the point of estimation, rather than inconsistencies in the flights path195

due to buffeting. This can also be seen in table 3.1, where the correlation196

coefficients between the simulated flight and the 2D circle are all > 0.96,197

while we see a steep drop in the correlation coefficients with the center point198

attraction rate as the radius increases.199
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Figure 4: Comparison of the attraction rate measurements between center
point (red), circular arc (black), and simulated drone flight (blue). Radius
for the measurements is shown in lower right hand corner.

Both the attraction rate and the trajectory divergence rate at a point can200

be approximated to a high degree of accuracy by UAS flights. Simulated 3D201

UAS flights provided measurements which were nearly identical to those of202

perfect circular 2D paths. The main cause of error in the approximations203

appears to be the distance of the path from the center point. Furthermore,204

the trajectory divergence rate appears to be a more robust metric than the205

attraction rate; meaning that the trajectory divergence rate can be better206

approximated at larger radii than the attraction rate can. This can be seen207

very clearly seen in tables 1 and 2, where the correlation coefficient for the208

attraction rate drops off much quicker than for the trajectory divergence rate.209
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3.2 Using Eulerian Metrics to infer Lagrangian Dy-210

namics211

In this section we examine how well the attraction rate, s1, and the trajectory212

divergence rate, ρ̇, do at predicting Lagrangian dynamics, such as the passage213

of LCSs. Figure 5 shows the time series for the trajectory divergence rate214

and backward-time FTLE for integration times of 0.5, 1, and 2 hrs. The215

FTLE values have been multiplied by -1 for improved visualization. In this216

figure we can see that the trajectory divergence rate does not always follow217

the trend of the negative backward-time FTLE, which is to be expected. The218

trajectory divergence rate gives information on both instantaneous attraction219

and repulsion, while the negative backward-time FTLE gives a measure of220

attraction. The trajectory divergence rate does, however, agree with the221

negative backward-time FTLE when we have significant periods of attraction.222

This behavior is of particular interest for the detection of LCSs. When223

calculating LCSs, there is often a multitude of weaker, less important LCSs.224

In order to filter out these less important structures and focus on important225

structures, one often needs to set a threshold value for the FTLE field. These226

dips in the the trajectory divergence rate, coinciding with the strongest dips227

in the negative backward-time FTLE, would therefore seem to be a likely228

indicator of LCS of interest.229

Figure 6 shows the time series for the attraction rate and backward-230

time FTLE for integration times of 0.5, 1, and 2 hrs. The FTLE values231

have been multiplied by -1 for improved visualization. In this figure we232

can see that the attraction rate follows the general trend of the negative233

backward-time FTLE. This makes sense as both the attraction rate and the234

negative backward-time FTLE give measures of attraction. The attraction235

rate therefore, should give a good approximation to the negative backward-236

time FTLE, and thus should be able to give indications of LCSs.237

We can further explore the effectiveness of the attraction rate and the238

trajectory divergence rate for detecting LCSs by looking at receiver operating239

characteristic (ROC) curves. For this we looked at when LCSs passed within240

a threshold radius which ranged from 400m to 10km of our center point,241

figure 7. We further applied a threshold of 90% for the LCSs, so only LCSs242

whose FTLE value was within the 90th percentile were considered. We looked243

at the attraction rate’s and the trajectory divergence rate’s ability to detect244

LCSs for integration times of 1
2
, 1, and 2 hrs in backward-time.245

Figure 8 show ROC curves for the the trajectory divergence rate. The246
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Figure 5: Comparison of the trajectory divergence rate with the 0.5, 1, and
2 hr backward-time FTLE from t=4 to t=215hrs. FTLE fields have been
multiplied by -1 to offer better comparison of attraction.

trajectory divergence rate gives measures of both attraction and repulsion,247

so to filter out repulsive indicators we first masked trajectory divergence rate248

values > 0. After this, we threshold the from 0%, upper right hand side, to249

100%, lower left hand corner. Every 20th percentile is marked with a dot.250

Each subplot represents a different threshold radius, with radii ranging from251

400m to 10km. Each color represents a different integration time for the252

LCSs, 0.5hr green, 1hr red, 2hr blue. These ROC curves indicate that the253

trajectory divergence rate can indeed be used to detect LCSs passing through254

an area.255

Figure 9 shows ROC curves for the attraction rate. We threshold the256

attraction rate from 0%, upper right hand corner, to 100%, lower left hand257

corner. Every 20th percentile is marked with a dot. Each subplot represents258

a different threshold radius, with radii ranging from 400m to 10km. Each259

color represents a different integration time for the LCSs, 0.5hr green, 1hr260

red, 2hr blue. These ROC curves indicate that not only can the attraction261
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Figure 6: Comparison of the attraction rate with the 0.5, 1, and 2 hr
backward-time FTLE from t=4 to t=215hrs. FTLE fields have been multi-
plied by -1 to offer better comparison of attraction.

rate be used to detect LCSs passing through an area, but it does a better262

job detecting attracting LCSs than the trajectory divergence rate does.263

It should be noted that both the attraction and trajectory divergence264

rates seem to perform best at an area threshold of around 800-2000m and265

converge to random chance as the radius increases. We suspect that this266

is due to the spatial and temporal scales of the input data, 3km x 1hr grid267

spacing. We speculate that with a velocity field continuously defined in space268

and time, we would see continued improvement in the ROC curves as the269

threshold radius decreases. Unfortunately the analytic models currently used270

in the study of LCSs, such as the double gyre [29] and the Bickley jet [30], do271

not have the requisite spatial in-homogeneity necessary to reveal meaningful272

Eulerian structures.273
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7.5 km threshold radius

2.0 km UAS flight

0.8 km threshold radius

Center point

Attracting LCS

Figure 7: schematic of LCS detection. Two examples of threshold radii shown
as dashed lines, with an attracting LCS falling withing one of threshold radius
yet outside the other.

3.3 Inferring Lagrangian Dynamics from UAS mea-274

surements275

In this section we examine how well the attraction rate, s1, and the trajec-276

tory divergence rate, ρ̇ as approximated from a UAS flight do at predicting277

Lagrangian dynamics, such as the passage of LCSs. Figure 10 shows ROC278

curves for the the trajectory divergence rate as calculated from a simulated279

2km UAS flight. Once again we first masked trajectory divergence rate val-280

ues > 0 to filter out repulsive indicators. After this, we threshold the from281
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Figure 8: ROC curves for the trajectory divergence rate as measured at the
center point ability to detect 90% percentile LCSs with integration times of
0.5 (green), 1 (red), and 2 (blue) hrs. Threshold radii are displayed in the
lower left hand corner.

0%, upper right hand ride, to 100%, lower left hand corner. Every 20th per-282

centile is marked with a dot. Each subplot represents a different threshold283

radius, with radii ranging from 400m to 10km. Each color represents a dif-284

ferent integration time for the LCSs, 0.5hr green, 1hr red, 2hr blue. These285

ROC curves show a striking resemblance to the ROC curves in figure 8. This286
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Figure 9: ROC curves for the attraction rate as measured at the center point
ability to detect 90% percentile LCSs with integration times of 0.5 (green), 1
(red), and 2 (blue) hrs. Threshold radii are displayed in the lower left hand
corner.

would indicate that the trajectory divergence rate as approximated from a287

UAS flight can indeed be used to detect LCSs passing through an area.288

Figure 11 shows ROC curves for the attraction rate as calculated from289

a simulated 2km UAS flight. We threshold the attraction rate field from290

0%, upper right hand corner, to 100%, lower left hand corner. Every 20th291
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Figure 10: ROC curves for the trajectory divergence rate as measured from
a 2km radius UAS simulation ability to detect 90% percentile LCSs with
integration times of 0.5 (green), 1 (red), and 2 (blue) hrs. Threshold radii
are displayed in the lower left hand corner.

percentile is marked with a dot. Each subplot represents a different thresh-292

old radius, with radii ranging from 400m to 10km. Each color represents a293

different integration time for the LCSs, 0.5hr green, 1hr red, 2hr blue. As294

before, these ROC curves closely resemble the ROC curves in figure 9. This295

would indicate that the attraction rate as approximated from a UAS flight296

17



can also be used to detect LCSs passing through an area.297
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Figure 11: ROC curves for the attraction rate as measured from a 2km radius
UAS simulation ability to detect 90% percentile LCSs with integration times
of 0.5 (green), 1 (red), and 2 (blue) hrs. Threshold radii are displayed in the
lower left hand corner.

The ROC curves in figures 10 and 11 indicate that both the trajectory298

divergence rate and the attraction rate as approximated from a UAS flight299

can be used to infer local Lagrangian dynamics. Furthermore, the attraction300

rate appears to be a much better indicator of passing attractive LCSs than301
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the trajectory divergence rate. Interestingly, at around a 70-90% threshold302

the attraction rate as approximated by the UAS flight, figure 11, seems to303

outperforms the attraction rate at the center point, figure 9. We suspect304

that this is due to the fact that the UAS measurements are taking in infor-305

mation from a larger area and with these higher thresholds is filtering out306

the additional noise.307

4 Conclusion308

We have put forward a novel algorithm to approximate the gradient of a309

scalar field using measurements from a circular arc around a point. Using310

realistic atmospheric velocity data from the NAM 3km model, we applied311

this algorithm to circular trajectories restricted a 2D isosurface and simu-312

lated UAS flights in 3D, with radii ranging from 2km to 15km. From these313

results we approximated the trajectory divergence rate and the attraction314

rate for the center point of these paths. Comparing these approximations315

with the trajectory divergence rate and attraction rate at the center point,316

we found that both the flight and the circle gave nearly identical approxi-317

mations. Furthermore, the approximations were very good for the smaller318

radii we looked, but even the larger radii approximations were able to pick319

up the trend of the trajectory divergence rate and attraction rate, though320

they underestimated the magnitude.321

We have also examined the ability of Eulerian diagnostics, in particular322

the trajectory divergence and attraction rates, to infer Lagrangian dynamics.323

Using ROC curves, we first looked at the ability of the trajectory divergence324

rate and attraction rate, as measured at a point to detect the passage of325

LCSs within a threshold radius. We found that the attraction rate can be326

used as an effective tool to sense short term LCS passing by. We also found327

that the trajectory divergence rate, while performing better than chance,328

under performed the attraction rate. We then extended this to look at the329

trajectory divergence rate and attraction rate as approximated by a UAS330

flight. Once again we found that these Eulerian diagnostics, as approximated331

by a UAS flight, can be an effective tool for detecting LCSs passing through332

a sampling area.333

This paper serves as a first step in real-time detection of LCSs in the334

atmosphere. It demonstrates that a fixed wing UAS can, in principle, be335

used to measure Eulerian diagnostics of a local atmospheric flow. These336
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Eulerian diagnostics can then be used to infer the Lagrangian dynamics of337

the local flow. Future work will apply this to real world data to detect actual338

atmospheric LCSs, evaluate the effects of sensor uncertainty on the accuracy339

of LCS detection, and extend this to the detection of pollutant specific LCSs,340

such as those found along atmospheric rivers [12].341

A Flight Dynamic Model342

The aircraft flight dynamic model comes from combining standard aircraft343

rigid-body equations [31] with Grauer and Morelli’s Generic Global Aero-344

dynamic model [32], modified for non-uniform wind. The important flight345

dynamic modeling assumptions are:346

1. Earth is a flat, inertial reference.347

2. The aircraft is a rigid body, symmetric about its longitudinal plane,348

with constant mass m.349

3. For wind-aircraft interaction, the aircraft is a point “located” at it’s350

center-of-mass.351

4. The wind is described by a C1-smooth kinematic vector field.352

5. Aircraft thrust T is an instantaneously-controllable force acting nose-353

forward from the center-of-mass.354

6. All parameters are invariant with altitude. (e.g. no altitudinal variation355

of density ρ, gravity g, ground-effect, etc.)356

The resulting dynamic equations of motion are357

RBM(α)

CD(. . .)
CY (. . .)
CL(. . .)

 1

2
ρ‖Vr‖2S+

T%(Tmax

100%
)

0
0

+RBE(Θ)

 0
0
mg

 = m

(
V̇ +(ω×V )

)
,

(8)

b 0 0
0 c̄ 0
0 0 b

Cl(. . .)
Cm(. . .)
Cn(. . .)

 1

2
ρ‖Vr‖2S =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 ω̇+
(
ω×

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

ω
)
.

(9)
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where the elipses on the aerodynamic coefficients remind the reader that358

these are functions of state variables, as given below in Equations 12 – 17.359

The symbol V is used for inertially-referenced velocity, and Vr is used for air-360

relative velocity. These dynamics are combined with standard translational361

and rotational kinematic equations362

Ẋ = REB(φ, θ, ψ)

uv
w

 = REB(Θ)V , (10)

363

Θ̇ =

φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pq
r

 = L−1(φ, θ)ω. (11)

The aerodynamic coefficient expressions are from Equation 20 of Grauer and364

Morelli [32]365

CD = θ1 + θ2α + θ3αq̃r + θ4αδe + θ5α
2 + θ6α

2q̃r + θ7α
2δe + θ8α

3 + θ9α
3q̃r + θ10α

4,
(12)

CY = θ11β + θ12p̃r + θ13r̃r + θ14δa + θ14δr, (13)

CL = θ16 + θ17α + θ18q̃r + θ19δe + θ20αq̃r + θ21α
2 + θ22α

3 + θ23α
4, (14)

Cl = θ24β + θ25p̃r + θ26r̃r + θ27δa + θ28δr, (15)

Cm = θ29 + θ30α + θ31q̃r + θ32δe + θ33αq̃r + θ34α
2q̃r + θ35α

2δe + θ36α
3q̃r + θ37α

3δe + θ38α
4,

(16)

Cn = θ39β + θ40p̃r + θ41r̃r + θ42δa + θ43δr + θ44β
2 + θ45β

3. (17)

In these equations (θ1, θ2, . . . θ45) are the aircraft parameters, (α, β) are the366

standard aerodynamic angles, (p̃r, q̃r, r̃r) are wind-relative non-dimensionalized367

angular rates, and (δa, δe, δr) are aileron, elevator, and rudder deflections.368
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