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ABSTRACT. In this paper it is shown that the system of four equations formed 

by three-dimensional Navier-Stokes equations system for incompressible fluid 

and equation of continuity, is not closed, equation of continuity is excessive. This 

is because the three-dimensional Navier-Stokes equations system cannot have a 

bounded at infinity solutions to the Cauchy problem with a non-zero velocity field 

divergence. 

 

 

 

The interest of the Navier-Stokes equations is so great that information about 

this question periodically appears in the newspaper news. The fact is that proven 

methods for analyzing partial differential equations in the case of the Navier-

Stokes equations for the incompressible fluid do not work for an unknown reason. 

Equations remain elusively incomprehensible. 

In year 2000, seven problems named as major mathematical problems of the 

third millennium were published on the website http://claymath.org/, one of those 

problems – Navier-Stokes equations. This problem is formulated by C. L. 

Fefferman by a range of questions regarding the solution of these equations, 

because until now it’s not possible to understand what properties do they have. 

The question about how good the set of Navier-Stokes equations describes 

behavior of real viscous fluids also remains open. 

In the paper written by O.A. Ladyzhenskaya [1] and published in 2003 the 

problem of Navier-Stokes equations was formulated in the following way: «Do 

Navier-Stokes equations together with initial and boundary conditions give 

determining description of incompressible fluid dynamics or not?» 

As of 2014, the situation with the problem of the Navier-Stokes equations 

became almost mystical. It is described in the paper by one of the leading 

researchers of this problem, Terence Tao [2]. In his paper, he actually comes to 

the conclusion that the existing methods of analysis cannot solve the problem. To 

date, no important results have been achieved in solving the problem of the 

Navier-Stokes equations. 

Really mystical situation: the Navier-Stokes equations must describe real 

fluids, which behavior has a certain set of properties. These properties should be 

visible during the analysis of the equations, but this does not happen. More 

http://claymath.org/
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precisely, it happens only for the plane case of fluid motion, but not for the three-

dimensional one. Suspicion occurs that the Navier-Stokes equations have 

something that goes unnoticed, some unique feature … 

Let’s consider the system of four equations formed by the three Navier-

Stokes equations system 
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and the equation of continuity (the incompressibility condition of fluid) 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦
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𝜕𝑉𝑧
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Four equations include four unknown functions, and, apparently, the given 

equations system is closed, however, this impression is deceptive. Here it will be 

very useful to recall systems of linear algebraic equations. As is well known, in 

this case the equality of the number of equations to the number of unknowns does 

not mean at all that the equations system is closed and uniquely solvable. 

Let the three arbitrarily chosen functions 𝑉𝑥 = 𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝑉𝑦 =

𝑉𝑦(𝑥, 𝑦, 𝑧, 𝑡), 𝑉𝑧 = 𝑉𝑧(𝑥, 𝑦, 𝑧, 𝑡) describe the velocity field. Further, it is assumed 

that the functions 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 are continuous together with their partial derivatives 

in coordinates to the third order inclusive. The second partial derivatives of these 

functions with respect to time and one of the coordinates are also continuous. 

Substituting these functions into the first equation (or any other equation, as the 

first equation is chosen for definiteness) of the system (1), it is possible by 

appropriate choice of the pressure function 𝑃 = 𝑃(𝑥, 𝑦, 𝑧, 𝑡) to achieve the 

fulfillment of this equation. Thus, it can be said that one of the equations of the 

system (1) will always be satisfied for an arbitrarily specified velocity field 𝑉𝑥, 

𝑉𝑦, 𝑉𝑧. Let’s rotate the velocity field 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 and the pressure field 𝑃 around an 

arbitrarily selected  𝑍′ axis, orthogonal to the 𝑋𝑌 coordinate plane at an arbitrary 

angle 𝛼 (hereinafter, speaking of the rotation of the velocity field, it is always 

assumed that this also causes the rotation of the pressure field 𝑃, the rotation of 

the velocity field is considered for a fixed point in time). In this case, for an 

arbitrarily chosen velocity field, the first equation of the system (1) will no longer 
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be satisfied. What conditions must the velocity field satisfy so that when it is 

rotated the first equation continues to be satisfied? The answer is very simple: in 

the initial state, the velocity field must satisfy the system of two equations, 

namely, the first and second equations of system (1). In this case, the two 

equations mentioned will be fulfilled after the rotation of the velocity field relative 

to the axis  𝑍′ by an arbitrary angle 𝛼. This is possible to prove by mathematical 

analysis of the field turning process (it is not complicated, but very lengthy for 

this paper). Turning the field at a small angle 𝑑𝛼, using the field continuity 

property and requiring the realization of the first equation of the system (1), we 

obtain the condition: in the initial state, the velocity field must satisfy the first and 

second equations of system (1). Physically, this result is absolutely clear. The 

equations system (1) is the record of the impulse conservation law for the three 

components of impulse. If the velocity field satisfies only the first equation of the 

system (1), this means that in this field the impulse conservation law is realized 

only for 𝑋 component of impulse. When the velocity field rotates around the 𝑍′ 

axis, the contribution of the 𝑌 component of impulse will be made in the 𝑋 

component. Hence it is clear that the conservation law of the 𝑋 component of the 

impulse can be fulfilled after the field is rotated only if the conservation law of 

the 𝑋 and 𝑌 components of impulse were fulfilled before the field was rotated. 

Similarly, if the first equation of the system (1) is satisfied when the field is 

rotated around the 𝑌′ axis, orthogonal to the 𝑋𝑍 coordinate plane, then this field 

will satisfy the first and third equations of system (1). And finally, if the first 

equation of the system (1) is satisfied when the field is rotated around to any 

arbitrary directional axis, then such a field will satisfy all three equations of 

system (1). 

So far nothing has been said about the velocity field divergence. Consider 

velocity field with nonzero divergence, i.e. 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= Div 𝑽 ≠ 0 

 

Non-zero divergence of the velocity field in the incompressible fluid means that 

the sources (sinks) of the fluid are continuously distributed throughout the fluid 

volume (this will violate the mass conservation law), which from a physical point 

of view looks absolutely ridiculous. However, abstracting from the physical sense, 

mathematically, in the most general form it can be written as 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= 𝐷(𝑥, 𝑦, 𝑧, 𝑡)                                    (3) 

where 𝐷(𝑥, 𝑦, 𝑧, 𝑡)- is a continuos function of coordinates and time. 

Let’s suppose that there is a velocity field that satisfies the three equations 

of the system (1) and equation (3). This means that the first (or any other) equation 
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of the system (1) and equation (3) will both be fulfilled when the field is rotated 

relative to an arbitrarily located and arbitrarily directed axis. Obviously, the 

equations of the system (1) will be satisfied (because of the assumptions made), 

but equation (3) in this case can only be satisfied if 

 

𝐷(𝑥, 𝑦, 𝑧, 𝑡) = 𝑐𝑜𝑛𝑠𝑡 

 

(this constant may be a function only of time, but in this case, it doesn’t matter). 

All mentioned above doesn’t mean that there are solutions for the system (1), for 

which Div 𝑽 = 𝑐𝑜𝑛𝑠𝑡. All mentioned above means that they might exist, as the 

method of analysis used here doesn’t allow these solutions to be cut off. However, 

there is another way to do that. As mentioned above, the constant divergence in 

the incompressible fluid is a continuous distribution of the sources (sinks) of the 

fluid itself by volume of the fluid. Moreover, the distribution density of sources 

is constant throughout the volume of the fluid. Applying the Cauchy problem, the 

presence of a velocity field with a constant divergence will lead to an unlimited 

increase in velocities (or any one velocity) with increasing distance from the 

origin. This means that all solutions of the system (1) that are bounded at infinity 

will have zero velocity field divergence. Thus, the solutions of the three-

dimensional Cauchy problem for an incompressible fluid will be all solutions of 

system (1) bounded at infinity. All such solutions will automatically satisfy 

continuity equation (2), i.e. the continuity equation turns out to be unnecessary. 

An interesting result can be obtained when trying to solve some simplest 

boundary problem for the Navier-Stokes equations using a velocity field with 

constant divergence. So, for example, one-dimensional problem of fluid motion 

between flat walls in the case of a divergence-free velocity field becomes two-

dimensional in case of constant divergence. In the set of equations obtained in this 

case, internal contradictions arise, with the result that the solution of this problem 

simply does not exist. A similar result is obtained in other problems. It can be 

assumed that the system of equations (1) has no solutions at all with a constant 

velocity field divergence. It would mean that all solutions of equations system (1) 

satisfy the equation (2). We may probably prove this in the course of further 

research in the light of newly discovered circumstances. 

The system of equations (1) consists of three equations, containing four 

unknown functions, hence it is not closed. Solution for this equations system can 

be performed according to the following scheme, for example. You can arbitrarily 

choose one of the velocities, for example, 𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡), choosing a function that 

tends to zero at infinity and fades with the time and has integrals that are bounded  

for any points of time t 

 

∭ |𝑉𝑥|𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞
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∭ 𝑉𝑥
2𝑑𝑥𝑑𝑦𝑑𝑧

+∞

−∞

 

 

The limitation of the first integral means the limitation and localization of the fluid 

impulse associated with the velocity 𝑉𝑥. The limitation of the second integral 

means the limitation of the kinetic energy. The value of the integral 

 

∭ 𝑉𝑥𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞

 

 

doesn’t have to depend from time, this is a requirement of the impulse 

conservation law. 

Substituting 𝑉𝑥 to equations system (1), we will get a closed system of three 

equations for three unknown functions 𝑉𝑦,  𝑉𝑧 and 𝑃. Since 𝑉𝑥 was chosen 

arbitrarily, it is clear that there are infinitely many solutions. Basically, it cannot 

be argued that absolutely all solutions obtained in this way will be limited at 

infinity. But it is also obvious that there will be solutions, and there will be 

infinitely many of them. A physically adequate system of equations (1) describing 

a dissipative process cannot respond to a localized and energetically limited effect 

by an unlimited increase in velocities at infinity. All said does not exclude a local 

unlimited growth of velocities (blowup), but with a limitation on the impulse and 

kinetic energy of the entire mass of the fluid. 

So, if the equations system (1) has infinitely many solutions, is there the 

only solution for three-dimensional Cauchy problem for a given initial velocity 

field? Probably not, loss of determinism is possible. This question remains open 

in this paper, it requires additional research. 

All mentioned above about non-closedness of equations system is relative 

also for two-dimensional case of fluid flow. Two-dimensional system of equations 

is non-closed as well, equation of continuity is excessive. However there is no 

such arbitrariness as in three-dimensional case. Let’s look at the two-dimensional 

system of equations: 

 

𝜕𝑉𝑥
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+ 𝑉𝑥
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1

𝜌
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𝜕2𝑉𝑥
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                                                                                                                           (4)  
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+ 𝑉𝑦
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𝜕2𝑦
) 

 

This system of equations contain three unknown functions and it seems that it’s 

possible to choose one of velocities while second velocity and pressure can be 
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found from system of equations (4). In this case, this can not be done, the obstacle 

is the equation of continuity 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
= 0                                                       (5) 

 

All solutions of equations system (4) bounded in infinity satisfy the equation of 

continuity (5), but not all solutions of continuity equation (5) will satisfy the 

equations system (4). If randomly choose one of velocities we can find second 

velocity from equation of continuity (with accuracy of function of only one 

coordinate and time). Then we obtain the solution of the continuity equation (5), 

i.e. we find the velocity field. And it is not necessary that this velocity field will 

satisfy the system of equations (4). This equations system, for given initial 

conditions, has only one solution, as shown in [3]. 
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