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Abstract 

 
The simplest non-trivial configuration of spacetime in which gravity plays a role is for 
the region surrounding a static mass point, for which we can assume that the metric has 
perfect spherical symmetry and is independent of time. Historically this was first found 
by Karl Schwarzschild in 1916 as a solution of Einstein’s field equations , and all the 
original empirical tests of general relativity can be inferred from this solution. However, 
even without knowing the field equations of general relativity, it is possible to give a 
very plausible (if not entirely rigorous) derivation of the Schwarzschild metric purely 
from knowledge of the inverse square characteristic of gravity, Kepler’s third law for 
circular orbits, and the null intervals of light paths. 

 
 

Mathematical Work:  

 
Let r denote the radial spatial coordinate, so that every point on a surface of constant r 
has the same intrinsic geometry and the same relation to the mass point, which we fix at 
r = 0. Also, let t denote our temporal coordinate. Any surface of constant r and t must 
possess the two-dimensional intrinsic geometry of a 2-sphere, and we can scale the 
radial parameter r such that the area of this surface is 4𝜋 r2. (Notice that since the space 
may not be Euclidean, we don’t claim that r is “the radial distance” from the mass point. 
Rather, at this stage r is simply an arbitrary radial coordinate scaled to give the familiar 
Euclidean surface area.) With this scaling, we can parameterize the two-dimensional 
surface at any given r (and t) by means of the ordinary “longitude and latitude” 
spherical metric 

𝑑𝑠2 = 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃 𝑑𝜙2  

 
 
 

where ds is the incremental distance on the surface of an ordinary sphere of radius r 
corresponding to the incremental coordinate displacements dθ and dϕ. The coordinate 
θ represents “latitude”, with θ = 0 at the north pole and θ = 𝜋/2 at the equator. The 
coordinate ϕ represents the longitude relative to some arbitrary meridian. 



 
 

It follows that the complete spacetime metric near a spherically symmetrical mass m 
can be written in the diagonal form 

𝑑𝜏2 = 𝑔𝑡𝑡  𝑑𝑡2  + 𝑔𝑟𝑟𝑑𝑟2 + 𝑔𝜃𝜃  𝑑𝜃2 + 𝑔𝜙𝜙 𝑑𝜙2 

 
 

where gθθ = -r2, gϕϕ = -r2 sin(θ)2, and gtt and grr are (as yet) unknown functions of r 
and the central mass m. Of course, with m = 0 the functions gtt and -grr must both equal 
1 in order to give the flat Minkowski metric (in polar form), and we also expect that as r 
increases to infinity these functions both approach 1, regardless of m, since we expect 
the metric to approach flatness sufficiently far from the gravitating mass. 

 

This metric is diagonal, so the non-zero components of the contravariant metric tensor 
are gαα = 1/gαα. In addition, the diagonality of the metric allows us to simplify the 
definition of the Christoffel symbols to 
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Now, the only non-zero partial derivatives of the metric coefficients are 

 



with 𝜕𝑔tt/dr and 𝜕grr/dr, which are yet to be 
determined. Inserting these values into the 
preceding equation,  

we find that the only non-zero Christoffel symbols 
are 



 



these are the coefficients of the four geodesic equations near a spherically symmetrical 
mass, i.e., the equations of paths for which the integrated path length is unchanged by 
incremental variations of the path. Writing them out in full, we have 

 
 
 
 

 

 
 
 

In the absence of non-gravitational forces, we postulate that any test particle follows a 
geodesic path, so these equations characterize inertial/gravitational motions of test 
particles in a spherically symmetrical field. All that remains is to determine the metric 
coefficients gtt and grr. 

  

We expect that one possible solution should be circular Keplerian orbits, i.e., if we 
regard r as corresponding (at least approximately) to the Newtonian radial distance 
from the center of the mass, then there should be a circular geodesic path at constant r 
that revolves around the central mass m with an angular velocity of ω, and these 
quantities must be related (at least approximately) in accord with Kepler’s third law 

 
𝑚 = 𝑟3𝜔2 

 
(The original deductions of an inverse-square law of gravitation by Hooke, Wren, 
Newton, and others were all based on this same empirical law). If we consider purely 
circular motion on the equatorial plane (θ = π/2) at constant r, the metric reduces to 

 
 



 

and since dr/dτ = 0 the geodesic equations for these circular paths reduce to 

 
 

 

Multiplying through by (dτ/dt)2 and identifying the angular speed ω with the derivative 
of ϕ with respect to the coordinate time t, the right hand equation becomes 

 
 



 

For consistency with Kepler’s Third Law we must have ω2 equal (or very nearly equal) 
to m/r3, so we make this substitution to give 

 
 

 

Integrating this equation, we find that the metric coefficient gtt must be of the form k -
(2m/r) where k is a constant of integration. Since gtt must equal 1 when m = 0 and/or 
as r approaches infinity, it’s clear that k = 1, so we have 

 
 



 

Also, for a photon moving away from the gravitating mass in the purely radial direction, 
we have dτ = 0, and so our basic metric for a purely radial ray of light gives 

 
 

 

Next we consider a stationary test particle at a radial coordinate r. The metric equation 
gives the line element for the worldline of this test particle 

 
 



 

and we also have the radial geodesic equation for this particle 

 
 

 

 
 

The left hand side is the acceleration of gravity d2r/dτ2 in geometrical units, which is 
taken to be the inverse square expression –m/r2. Inserting this expression and 
substituting from above equations, we get 

  



 

This implies grr = -1/gtt (corresponding to the “perpendicular” factorization gtt = dr/dt 
and grr = -dt/dr in equation (3)), so we have the complete Schwarzschild metric 

 
 

 

In matrix form the Schwarzschild metric is written as 

 
 



 

Note : In this short derivation I derived Schwarschild Metric By using Kepler’s Law 
without any assumption of General Relativity (Filled with Complexity) . I know these 
things can be done easily but this is my own derivation so don’t bother . 
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