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Abstract

In the following black hole model, electrons and positrons form a neutral
gas which is confined by gravitation. The smaller masses are supported
against gravity by electron degeneracy pressure. Larger masses are supported
by ideal gas and radiation pressure. In each case, the gas is a polytrope
which satisfies the Lane-Emden equation. Solutions are found that yield the
physical properties of black holes, for the range 1000 to 100 billion solar
masses.
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1. Introduction

The discovery of very large black holes in the early Universe is physical
evidence that these black holes formed during the Big Bang. The electron-
positron model requires vast numbers of positrons, and these were available
only during the lepton epoch of the Big Bang [1]. Gravitational collapse and
fragmentation must have occured at that time and later, as the expansion of
the Universe continued.

It will be shown in the following that the smaller black holes achieve
equilibrium as a degenerate quantum gas. The gas is in its ground state and
does not radiate. The radius of such objects decreases with increasing mass,
but it cannot be smaller than the Schwarzschild radius, Rs = 2GM/c2. The
gas remains nonrelativistic until that point. Larger masses reach equilibrium
as a mixture of ideal gas and radiation. Their radius is equal to Rs, so that
the radiation is confined. The average density decreases as 1/M2, and as a
result, the gas remains nonrelativistic throughout.

2. Intermediate-mass black holes

The Fermi energy for a completely degenerate (T = 0) gas of N/2 electrons
is given by [2,3]

εF =

(
3π2

2

)2/3
h̄2

2m5/3
ρ2/3 (1)

where ρ is the mass density of the neutral lepton gas. The pressure of the
degenerate gas is

P =

(
3π2

2

)2/3
h̄2

5m8/3
ρ5/3 = Kρ1+

1
n (2)

Therefore, the gas is a polytrope [4,5] with n = 1.5 and

K =

(
3π2

2

)2/3
h̄2

5m8/3
= 1.71 x 1018 (cgs units) (3)

A spherically symmetric mass, in hydrostatic equilibrium, satisfies the
gravitational field equation

2



1

r2
d

dr

(
r2
dψ
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)
= 4πGρ (4)

as well as

dP

dr
= −ρ dψ

dr
(5)

Together, they yield the pressure formula

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (6)

If the mass is a polytropic gas, then

(n+ 1)K
1

r2
d

dr

(
r2
dρ1/n

dr

)
= −4πGρ (7)

Define ρ = ρ0θ
n and substitute to find(n+ 1)K

4πGρ
1− 1

n
0

 1

r2
d

dr

(
r2
dθ

dr

)
= −θn (8)

Finally, define r = αξ where the constant

α =

(n+ 1)K

4πGρ
1− 1

n
0

1/2 (9)

in order to obtain the Lane-Emden equation [4,5]

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn (10)

The function θ(ξ) and the variable ξ are dimensionless. The initial conditions
at the center (ξ = 0) are

θ(0) = 1 and
dθ

dξ

∣∣∣∣
0

= 0 (11)

so that ρ0 represents the density at the center.
The Lane-Emden equation has been solved numerically for many values

of the polytropic index n. The following is a summary for the case n = 1.5.
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The solution θ(ξ) decreases monotonically from θ(0) = 1 to θ(ξ1) = 0, where
ξ1 = 3.654 (from the tables). This corresponds to zero density and pressure
at the surface, R = αξ1. This would yield the radius, once the value of α
is known. However, a more direct approach is provided by the mass-radius
relation [4]

K = NnGM
(n−1)/nR(3−n)/n

= N1.5GM
1/3R (12)

The tabulated coefficient N1.5 = 0.424, so that

R =
K

.424G
M−1/3 = 6.05 x 1025M−1/3 (cm) (13)

This shows that the radius decreases with increasing mass. It will continue
to do so until the Schwarzschild radius, Rs = 2GM/c2, is reached at M =
8 x 106 M�. This defines the largest intermediate-mass black hole.

The average density ρ̄ = 3M/4πR3 and the central density ρ0 = 5.99ρ̄
(tables) are found by substituting (13)

ρ0 = 6.5 x 10−78M2 (g cm−3) (14)

while the central pressure is

P0 = Kρ
5/3
0 = 3.9 x 10−112M10/3 (dyn cm−2) (15)

Finally, the Fermi energy at the center is (1)

εF0 = 1.35 x 10−60M4/3 (erg) (16)

These physical properties are tabulated below:

Table 1: Intermediate-mass
M R > Rs ρ0 P0 εF0

(M�) (cm) (g cm−3) (Pa) (eV)

103 4.8(1013) 2.6(10−5) 3.9(109) 2.1
104 2.25(1013) 2.6(10−3) 8.4(1012) 4.5(10)
105 1.05(1013) 2.6(10−1) 1.8(1016) 9.6(102)
106 4.8(1012) 2.6(10) 3.9(1019) 2.1(104)

8(106) 2.4(1012) 1.7(103) 3.9(1022) 3.3(105)
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The central density, pressure, and kinetic energy all increase rapidly with
mass. In the final line, R = Rs.

3. Supermassive black holes

Black holes of mass greater than M = 8 x 106 M� are supported against
gravity by ideal gas and radiation pressure. In all cases, R = Rs so that the
lepton gas and radiation are confined. The pressure is given by

P = Pgas + Prad =
ρ

m
kT +

a

3
(kT )4 (17)

where a = π2/15(h̄c)3. The mixture may be treated analytically by adopting
the following device from the standard stellar model [4]. Define β = Pgas/P ,
so that

βP =
ρ

m
kT and (1 − β)P =

a

3
(kT )4 (18)

Eliminate kT from these equations to find

P =

[
3

a

(1 − β)

m4β4

]1/3
ρ4/3 = Kρ4/3 (19)

If β is assumed to be a constant, then the mixture is a polytrope of index
n = 3, which satisfies the Lane-Emden equation (10). The solution for n = 3
yields the mass-radius relation (12)

K = .364GM2/3 = 2.43 x 10−8M2/3 (cgs units) (20)

Therefore, the value of β is determined by the mass alone

(1 − β)

β4
=
a

3
K3m4 = 6.9 x 10−83M2 (21)

The average density of the supermassive black hole ρ̄ = 3M/4πR3
s yields

the central density (tables)

ρ0 = 6.93ρ̄ = 5.1 x 1083M−2 (g cm−3) (22)

The central pressure is

P0 = Kρ
4/3
0 = 1.0 x 10104M−2 (dyn cm−2) (23)
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Finally, the thermal energy is found from (18) kT = βmKρ1/3. At the center,

kT0 = 1.8 x 10−7β (erg) (24)

Physical properties are tabulated below:

Table 2: Supermassive
M R = Rs ρ0 P0 kT0 β

(M�) (cm) (g cm−3) (Pa) (eV)

8(106) 2.4(1012) 2(103) 3.9(1022) 1.1(105) 0.99
107 3(1012) 1.3(103) 2.5(1022) 1.1(105) 0.98
108 3(1013) 1.3(10) 2.5(1020) 6.2(104) 0.62
109 3(1014) 1.3(10−1) 2.5(1018) 2.3(104) 0.23
1010 3(1015) 1.3(10−3) 2.5(1016) 8(103) 0.08
1011 3(1016) 1.3(10−5) 2.5(1014) 2(103) 0.02

The central density, pressure, and kinetic energy all decrease with increasing
mass. The values of β show that radiation pressure dominates in the larger
masses.

4. Remarks

The model presented here is a great improvement over the previous work
[1]. The Lane-Emden solutions yield functions for the density, pressure, and
kinetic energy. They decrease from their maximum value at the center to
zero at the surface of the black hole. The polytropic solution is simply more
realistic than the incompressible model.

It is evident from Tables 1 and 2 that the largest and smallest black holes
are similar, in that their density is very low. Moreover, the force of gravity at
the surface is weak. It is roughly equal to the force here on Earth. Leptons
near the surface would be vulnerable to ambient radiation, and it is an open
question whether such black holes could achieve equilibrium in the first place.
Such considerations provide loose upper and lower limits for the black hole
mass. To date, the largest and smallest observed masses are 2 x 1010 M� and
5 x 104 M�, respectively.

Supermassive black holes must be stable, in order to endure for more
than 10 billion years. The lepton model is stable, in part, because there are
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no thermonuclear reactions. For this to remain the case, it is important that
the black hole stays free of contamination by baryons. In particular, there
can be no flow of gas into the black hole. A recent observation of the Milky
Way’s black hole shows that this is, indeed, the case [6]. It was found that
cool inflowing gas becomes hot and then expands outwardly, before it reaches
the black hole. Moreover, the opposing flows are equal in magnitude. These
experiments show that the function of a black hole is to heat hydrogen gas.
The black hole steadily loses energy in this process. The most spectacular
are the quasars, which can radiate one solar mass per year. In a related
development, star formation has been detected in the hot gas outflow from
an active galaxy [7].

References

[1] K. Dalton, “The Galactic Black Hole”, Hadronic J. 37(2), 241-245 (2014).
Also http://vixra.org/abs/1404.0067
[2] L. Landau and E. Lifschitz, Statistical Physics Part 1
(Pergamon, 3rd ed., 1980) sect. 57.
[3] R. Pathria and P. Beale, Statistical Mechanics (Elsevier, 3rd ed., 2011)
chap. 8.
[4] S. Chandrasekhar, An Introduction to the Study of Stellar Structure
(Dover, 1958) chap. IV.
[5] G. Horedt, Polytropes (Kluwer, 2004) sect. 2.1.
[6] Q. Wang et al., “Dissecting X-ray-emitting Gas Around the
Center of our Galaxy”, Science 341, 981-983 (2013).
[7] R. Maiolino et al., “Star Formation in a Galactic Outflow”, Nature 544,
204-206 (2017).

7


