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Abstract

A fully relativistic numerical program is used to calculate the ad-
vance of the peri-helium of Mercury or the deflection of light by the
Sun is here used also to discuss the case of S2, a star orbiting a very
heavy central mass of the order of 4.3 106 solar masses.

1 Equations of motion

Given an space-time metric:

ds2 = gαβdx
αdxβ (1)

it is usual to refer to the equations of motion of free bodies as the the geodesic
equations:

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0 (2)

but it is important to keep in mind that this is only the case if the space-time
trajectories of free particles are parameterized by the proper space-time s or
any other affine parameter s′ = k1s + k2. This is not always the best choice
to make.

I shall use here a different parametrization that was introduced by Eisen-
hart ([1]) when dealing with general linear connections, but can be used
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also when dealing with Riemannian ones. This consists in using instead the
equations of motion:

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= a

dxα

ds
(3)

where a depends on the parameter that is used to describe the solutions.
The purpose of this paper is to look for models of test objects orbiting a

central mass using the Schwarzschild solution in isotropic coordinates as an
example.

ds2 = −

(
1− m

2r

)2
(
1 + m

2r

)2 c2dt2 +
(

1 +
m

2r

)4

(dr2 + r2(dθ2 + sin2 θdϕ2) (4)

Considering that the space trajectory of the object lies on the plane θ =
π/2 the only Christoffel symbols to consider are the following:

Γ1
33 =

r(−2r +m)

2r +m
, Γ3

13 = − −2r +m

r(2r +m)
, (5)

Γ1
44 = −64r4(−2r +m)c2m

(2r +m)7
, Γ4

14 =
4m

(2r +m)(−2r +m)
,Γ1

11 = − 2m

r2r +m
,

(6)
My second choice is to choose the coordinate ϕ as the parameter and

therefore describe the motion of the object with the functions r(φ) and t(φ).
In which case we have:

a = −2(−2r +m)vr

r(2r +m)
(7)

where here and later:

vr =
dr

dϕ
, vt =

dt

dϕ
, (8)

The equations to solve are then the following

dvr

dϕ
+ Γ1

33 + Γ1
44vt

2 + Γ1
11vr

2 = a vr (9)

dvt

dϕ
+ 2Γ4

14vr vt = a vt (10)

or more explicitly:
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dvr

dϕ
=

2vr2m

r(2r +m)
+

64vt2r4(−2r +m))mc2

2r +m)7
− 2(−2r +m)vr2

r2
r(2r +m)− (−2r +m)r

2r +m
(11)

dvt

dϕ
=

8vrmvt

(2r +m)(−2r +m)
− 2(−2r +m)vr vt

r(2r +m)
(12)

An important feature of this system of differential equations is its scale
invariance. This meaning that the substitutions:

r, t, m→ kr, kt, km (13)

leaves the system invariant.
And also the fact that elliptic-like orbits where the eccentricity is by

definition:

ε =
ra− rp
ra+ rp

(14)

can have either positive or negative values concomitantly with the value of:

µ =
vp− va
va+ vp

(15)

where va is the linear velocity at ra and vp is the linear velocity at rp, the
extreme values of the distance of a point of the trajectory to the location of
the central mass.

The quasi newtonian limit of the preceding system of differential equa-
tions can be defined as the result of a formal expansion with respect to m to
order 2, followed with an asymptotic expansion with respect to r to order 2.
The result is:

Fr =
2vr2

r
+ r

(
vr2 − vt2c2

r2
− 2

)
m (16)

Ft =
2vrvt

r

(
1− 2m

r

)
(17)

Noteworthy is the fact that the third law of Kepler, namely dA/dφ = 0 with
A = 1/2r2dφ/dt is strictly speaking not satisfied since:

dA

dϕ
=

2vrm

vt
(18)

3



2 The planet Mercury

In this case we know the mass m of the Sun, the length of the perihelion rp
and the maximal orbital velocity vmax:

m = 1484.851528, rp = 46 109, vmax = 58.98 103 (19)

With these data the numerical integration proceeds smoothly, wherefrom
we can obtain known Mercury’s data including its sidereal orbit period: 86.64
days (NASA’s value is 87.969). The polar plot of the trajectory and the plot
of the linear velocity around it are:

blue 1.PDF blue 2.PDF

The maximum discrepancy with the third law of Kepler, is:

DA(0)−DA(π)

DA(0) +DA(π)
≈ 10−8, with DA =

dA

dϕ
(20)

The relativistic advance of the peri-helium per century comes out as 43.46
arcseconds per century derived from the first value of φ = 2π+ δφ such that
vr = 0. A very simple interpolation program is useful.

Let us consider a planet that differs from Mercury in the sense that his
perihelion is 0.7 times the perihelion of Mercury. This would suffice to lead
to an orbit with negative eccentricity whose polar plot trajectory and linear
velocity around it would be:

This should lead us to ask: Is it by chance that all our planets have
orbits with positive eccentricity, or should we restrict with a new principle
the generality of the system of differential equations we started with?

3 The Star S2

S2 is a star circling Sagittarius A∗ with a mass estimated to 4.3 106, solar
masses, along an ellipse with eccentricity 0.87 and a period of 15.2 years.
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red 1.PDF red 2.PDF

Also known is its peri-center length of 120 au.
Mass and peri-center length are not sufficient initial conditions to derive a

unique model integrating the system of differential equations (11)-(12). The
value of vt0 or equivalently the value of the linear velocity rp/vt0 must be
also known.

A trial and error method leads easily to the value vt0 = rp(38.6/c) and to
the observed value of the period: 15.2 years. This result has been celebrated
([3]) as a confirmation of General relativity. This is incorrect because the
same result holds if instead of integrating the system of equations (11)-(12),
we integrate its firs its quasi Newtonian approximation.

The precession of the peri-center of S2 can now be calculated easily by
solving the equation r(π + δ) = rp or vr(π + δ) = 0. The result is δϕ =
0.3393 arcseconds per revolution

The polar plot of the trajectory and the plot of the linear velocity around
it are:

green 1.PDF green 2.PDF
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4 The deflection of light by the Sun or by

Sagittarius A∗

In this case the system of differential equations has to be integrated with the
inial conditions:

r(0) = 6.95 108, vr(0) = 0, vt(0) =
1

4

(2r0 +m)3

r0(2r0−m)c
(21)

(vt(0) follows from vr(0) = 0 and ds2 = 0) and the integration has to proceed
until the tangent to the trajectory:

δϕ∞ ≡
dy

dx
=
r sinϕ− vr cosϕ

r cosϕ+ vr sinϕ
(22)

reaches a stationary value. Twice this value:

δϕ∞ = 1.76 arcseconds (23)

is the value of of the angular deviation of a light ray skimming the surface
of the Sun. and:

δϕ∞ = 705 arcseconds (24)

is the corresponding deviation for a light-ray approaching Sagittarius A∗ to
a distance of 50 au.

5 Appendix: Radial motion

Of course the coordinate ϕ can not be used to describe the dynamics of a
particle moving in a radial direction ϕ = const. . In this case is appropriate
to use the coordinate t as parameter. Starting again with equations (27) we
get:

a =
2mvr

r(r + 2m)
,with vr =

dr

dt
(25)

and:

dvr

dt
=

2mvr2

r(2r +m)
+

64r4(−2r +m)c2m

(2r +m)7
+

8mvr2

(2r +m)(−2r +m)
(26)

And solving the partial differential equation:
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∂f(r, vr)

∂r
vr +

∂f(r, vr)

∂vr

dvr

dt
= 0 (27)

we get the Energy function:

E =
1

32

(2r +m)8m2vr2

(−2r +m)4r4
− 4mr

(−2r +m)2
(28)

where an appropriate arbitrary multiplicative constant has been chosen to
obtain the correct non relativistic limit.
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