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Abstract 
 

We present an empirical analysis of redshift of 580 supernovae type 1a using special 
relativistic Doppler to derive velocity of recession.  A theory of cosmological scale is 
developed in which scale history is parabolic in relation to observed distance and time.  
The parabolic relationship suggests that the present lies on the accelerated contraction 
side of the scale history.  The first-order coefficient of the scale equation matches very 
precisely the post-Planck value of the Hubble parameter, H0.  The second-order 
coefficient of the parabolic scale history is taken as an acceleration parameter, I0.  H0 is 
thus merely the slope of the parabola at the present time, and it can be eliminated by 
shifting the abscissa so that t = 0 aligns with the vertex.  In this way, the scale history is 
entirely dependent on the acceleration parameter, I0.  A methodology is used to infer 
physical radial distance from scale.  The resulting acceleration rate precisely matches 
modified Newtonian dynamics (MOND) universal acceleration a0 and thus appears to 
provide a general cosmological link to that phenomenon, implying a universe under 
accelerated contraction. 
 

Résumé 
 
Nous présentons une analyse empirique du décalage vers le rouge de la supernovae 580 type 1a 
en utilisant un Doppler relativiste spécial pour déterminer la vitesse de récession. Une théorie de 
l'échelle cosmologique est développée, selon laquelle l'histoire de l'échelle est parabolique par 
rapport à la distance et au temps observés. La relation parabolique suggère que le temps présent 
se situe du côté de la contraction accélérée de l'histoire de l'échelle. Le coefficient du premier 
ordre de l'équation de l'échelle correspond très précisément à la valeur post-Planck du paramètre 
Hubble, H0. Le coefficient du second ordre de l'historique de l'échelle parabolique est pris comme 
paramètre d'accélération, I0. H0 est donc simplement la pente de la parabole à l'heure actuelle, et 
peut être éliminée en décalant l'abscisse de sorte que t = 0 s'aligne avec le sommet. De cette 
façon, l'historique de l’échelle dépend entièrement du paramètre d'accélération I0. Une 
méthodologie est utilisée pour déduire la distance radiale physique par rapport à l'échelle. Le taux 
d'accélération qui en résulte correspond exactement à l'accélération universelle a0 de la 
dynamique newtonienne modifiée (MOND) et fournit donc de toute évidence un lien 
cosmologique générale à ce phénomène, impliquant un univers sous contraction accélérée. 
 
Index terms: Hubble parameter, MOND acceleration, supernova type 1a, contracting 
universe, Doppler redshift 
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1.0 Introduction 
 
There is certain to be a prejudice against any study of cosmology today that embraces 
special relativity as adequate to the task.  General relativity is used universally in 
published work in cosmology, despite the fact that on a cosmological scale, space is flat 
(Euclidean).  For instance, we encountered on the web site of a well-known astrophysicist 
the statement that “special relativity probably does not apply” in cosmology.  The word 
“probably” stuck with us.   
 
We were curious to investigate the application of special relativistic Doppler to 
supernovae 1a redshift data.  Some might consider such an effort to be primitive and 
fruitless, whereas it may in fact be more conservative, following Occam, compared to the 
standard models of today, with their requirement for exotic dark energy and dark matter, 
neither of which has been observed.  Bunn and Hogg explore and defend the validity of 
SR Doppler in cosmology [1]. 
 
The predominant model for cosmology today is the Λ Cold Dark Matter or ΛCDM big 
bang theory.  That theory is stressed in at least four major ways.  The 13.8 billion year 
age of the universe is scarcely long enough to accommodate the estimated age of the 
oldest galaxies.  Perhaps more important, the theory requires that 95% of the contents of 
the universe consists of a combination of the elusive dark energy to explain the inferred 
accelerated expansion, and the equally elusive dark matter to explain many observations 
of galactic phenomena that seem to behave in ways that defy ordinary gravitational force 
based on observed luminous mass.  Lastly, there are serious questions about another key 
ingredient of today’s standard models, and that is inflation.  Steinhardt, a key contributor 
to the original theory of inflation, is in recent years highly skeptical of it, and has been 
arguing that it is extremely unlikely to have occurred [2]. 
 
We investigated the basic Hubble relationship in the context of today’s far better data, 
and focused our empirical analysis entirely on redshift data for 580 supernovae type 1a, 
provided by the Supernova Cosmology Project (SCP).  What follows, then, is not a 
critique of big bang theory but rather a completely new paradigm for cosmology.   
This paradigm depends on special relativistic Doppler without reference to general 
relativity.  Gravitational force in the so-called Hubble flow is “weak” in that there is, on 
cosmological scales, no major concentration of mass to disturb the flat field.  The SN1a 
data in the SCP database are taken to represent objects in the Hubble flow.  The distances 
between all massive objects in the Hubble flow change in a radial manner and such that 
the distances between them remain in constant proportion; i.e., distances change with 
scale.  The latter is consistent with big bang theory.  However, in our theory, it is not 
“space itself” which expands (or contracts), but the distances between massive objects in 
space that behave consistently with a changing scale.  Thus, light is not carried along 
with a changing scale, but remains constant, independent of scale.  We found only one 
other study that approaches cosmology by applying special relativistic Doppler to SN1a 
redshift, in that case using the union1 redshift data from SCP (the latest available at that 
time) [3].  In that paper, Farley derives a relationship between observed luminosity of 
SN1a and redshift in the context of SR Doppler, concluding that recession velocities are 
constant over time. 
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This analysis hinges on a revision of the original Hubble relationship, which was 
estimated based on what are now considered relatively nearby stars.  The original form of 
the equation for the basic Hubble parameter, v = H0D, historically provided an estimate 
of H0.  Of course, it has been known for many years that this relationship is only accurate 
for a very limited range of distance.  The dependent variable for that equation is here 
modified to v/(c-v) and a second-order distance term is added:  v/(c-v) =  H0D + I0D2.   
The resulting parabolic relationship is the core of this analysis, which leads us to a 
postulate regarding universal scale as a function of time.  Further, the Hubble parameter 
may be eliminated by reconstructing the parabola with time zero at its axis of symmetry, 
so that the current value of the Hubble parameter is simply the first derivative of scale at 
the present time.  
 
Our estimate of H0 matches the 2016 Planck Collaboration results.  We also demonstrate 
that our I0 parameter is, when appropriately scaled, consistent with the contractive 
acceleration parameter a0 in the phenomenological theory of modified Newtonian 
dynamics.  Thus, the empirically derived MOND acceleration may serve as evidence for 
our theory of accelerated cosmological contraction, and in turn, our theory provides the 
cosmological basis for the universality of a0.   
 
1.1 The Data and Statistical Analysis 
 
Distance modulus (DM) from the Supernova Cosmology Project (SCP) data was 
converted to billions of light years (Gly): 
 
D = 10-9(3.26*10((0.2*DM)+1)). 
 
This distance is taken to be the distance that light has traveled at the rate c from the 
observed object to the observer.  In doing so, we are making an initial assumption that the 
speed of light, even over cosmic distances over long intervals of time, is unaffected by 
the expansion or contraction of the universe.  Let us see where this takes us. 
 
The standard special relativity Doppler formula for velocity from z-shift was used to 
obtain velocity of recession expressed as a scalar: 
 
v/c = [(z+1)2 -1] / [(z+1)2 +1].  
 
This analysis began about six years ago with the Union1 SCP data [4].  During our work 
with Union1 data, Union2 data was released, and eventually Union2.1 [5][6].  During the 
Union1 analysis, we came upon an interesting relationship between v/(c-v) and two 
independent variables, distance and distance squared: 
 
v/(c-v) = H0D + I0D2. 
 
The expression for the dependent variable was empirical in origin.  When the Union1 
data was current, we looked at the inverse relationship of the traditional v/c = H0D, and 
we obtained 



 

 

4 

 

 
c/v = 1.13 + 13.84(1/D). 
   
The R2 was over 99%.  While that result was interesting, the constant term was puzzling.   
The constant term was highly significant with respect to zero, but it was not significantly 
different from one.  As an experiment, it was set equal to one: 
 
c/v -1 = b0(1/D),  
 
or equivalently, 
 
(c-v)/v = b0(1/D). 
 
Then both sides were inverted to obtain a revised form for the Hubble equation, where b0 
is a coefficient to be estimated: 
 
v/(c-v) = b0D. 
 
The coefficient b0 was estimated using simple linear regression, testing it initially with a 
constant term.  The constant term was barely significant at the 95% level, so the 
regression was rerun without it to obtain: 
 
v/(c-v) = 0.0663D  (R2 = 96.6%). 
 
But that regression result had a systematic bias.  That bias was removed by adding a 
second-order distance term to the regression so it has the parabolic form: 
 
v/(c-v) = H0D + I0D2. 
 
The parameters H0 and I0 were estimated.  Note that v/(c-v) approaches v/c for very small 
v.  Small v corresponds to small D, so the equation reduces to v/c = H0D for nearby 
objects.  Note that this expression is very similar to the traditional Hubble equation, v = 
H0D, except velocity of recession is here expressed as the scalar v/c and H0 has units of 
inverse distance rather than inverse time (maintaining dimensional consistency).  Our 
expression could be rewritten v = cH0D, where c = 1, and thus the value of cH0 = H0, but 
the units of cH0 become inverse time, as in the traditional Hubble equation.  It follows 
that our estimate of the value of H0 in units of inverse distance is directly comparable to 
traditional estimates in units of inverse time. 
 
The interpretation of v/(c-v) will be discussed in the next section.  
 
The analysis was eventually repeated with Union2 and Union2.1 data.  Table I shows the 
results for these datasets, plus the result for a binned analysis of Union2.1. 
 
In the binned analysis of Union2.1, the 580 observations of SN1a events were sorted by 
distance and bins of 10 observations each were created.  This was done to reduce the 
impact of the large distance errors reported in the SCP data, in particular the observations 
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at large distances.  Figure 1 shows the unbinned observation errors and regression 
equation based on that data.  The mean distance (Gly) and mean v/(c-v) values for each 
bin were calculated.  The bin size of 10 was chosen to avoid going too small and losing 
the benefit of binning, yet to assure that it would not be too large to capture 
characteristics of the relatively few more distant SN1a.  No other bin size or binning 
technique was tested.  This created a dataset of 58 observations.  

 
Table I   

Regression analyses for v/(c-v) = H0D + I0D2 
 
 

 

Total 
number of 

SN1a 
observations 

Number 
of SN1a 

with 
D>30 
Gly 

Most 
distant 
SN1a 
(Gly) 

H0 (1/Gly) 
(sigma) 

t-stat 

H0 
(km/s 

per 
Mpc) 

(sigma) 

I0 (1/Gly2) 
(sigma) 

t-stat 

R2 
(through 

the 
origin) 

Union1 
(2008) 307 5 37.98 

0.069321 
(0.001875) 
t = 39.96 

67.78 
(1.70) 

-0.00020036 
(0.00009002) 

t = -2.23 
96.54% 

Union2 
(2010) 557 8 34.44 

0.069366 
(0.001366) 
t = 50.78 

67.83 
(1.34) 

-0.00019288 
(0.00006761) 

t = -2.85 
96.37% 

Union2.1 
(2011) 580 11 39.39 

0.069755 
(0.001091) 
t = 63.96 

68.21 
(1.07) 

-0.00019965 
(0.00004905) 

t = -4.07 
97.51% 

Union 2.1 
(binned) 58 bins 1 bin 

(mean) 

33.46 
(bin 

mean) 

0.069789 
(0.001305) 
t = 53.48 

68.24 
(1.27) 

-0.00020310 
(0.00005922) 

t = -3.43 
99.66% 

Observed 
(Planck) 

 
(Riess) 

 
 

 
 

 
 

 
  0.069340 
(0.001023) 

 
0.074904 

(0.001780) 
 
 

  67.80 
(1.0) 

 
73.24 
(1.74) 

 

-- -- 

 
The regression for binned Union2.1 had an R2 of 99.66%, depicted in Figure 2.  A closer 
look at the residuals in the lower range of distance is presented in Figure 3.  The 
regression through the origin appears correct.  For visualization of the contribution of the 
2nd order distance term, the simple H0D result is also included in Figure 2 (using the same 
H0 so that the curves match perfectly near the origin).  Note in Figure 2 that the data for 
the most distant bin was closely aligned with the estimated relationship, and there was no 
sign of any systematic bias. The resulting equation is:  
 
v/(c-v) = 0.069789D - 0.00020310D2.                                                                        [Eq 1] 
 
Note in Table I that our estimates of H0 are in all cases well within the error term for 
observed (Planck+WP+highL+BAO) H0, which is 67.80 km/s per Mpc [7]. The more 
direct astrophysical result reported by Riess et al is much higher at 73.24 km/s [8]. 
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Taking those results, which frame our estimate, in combination with the excellent fit 
using the binned Union2.1 data, we put aside the possibility that the relationship of 
Equation 1 is a meaningless pragmatic correlation, and entertain a physical interpretation. 
 
2.0  What is the meaning of v/(c-v)? 
 
Our proposition is that there is physical significance to the relationship v/(c-v) = H0D + 
I0D2.  We take it that observed D = cLB, where LB is lookback time.  Since forward-
looking time is positive and lookback time is negative, then D = -ct.  The equation may 
be rewritten as v/(c-v) = -H0ct + I0c2t2.  With c equal to unity, we can drop the c terms on 
the right hand side, and the units for H0 and I0, which were Gly-1 and Gly-2, become Gyr-1 
and Gyr-2, respectively, in Equation 2:    
 
v/(c-v) = -H0t + I0t2.                                                                                                     [Eq 2] 
 

Fig 1  The dependent variable for the regression equation v/(c-v) = 0.069755D – 0.00019965D2 is 
based on computed SR velocities using all 580 SN1a in the Union2.1 data (error bars reflect 
conversions to Gly after adding in Union2.1 reported distance modulus error terms).   
 
Note that the H0 dimension in Equation 2 is the same as in the conventional case for H0, 
which is t-1, and I0, which is negative, has units of t-2. 
 
Using the values for the equation as statistically derived above (Equation 1), Equation 2 
peaks at t = -171.812 Gyr.   (The uncertainty in this estimate is considered in section 2.4.) 
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Consider that this maximum may represent the peak between expansion and contraction 
phases, with the parabolic curve suggesting a system with constant acceleration.  The 
peak would then represent a stagnation epoch corresponding to v/(c-v) = 5.995.  From the 
latter we have v = 0.857c, the velocity of recession of the observer with respect to the 
stagnation point at the peak of the parabola.  
 
We propose that v/(c-v) represents the change in scale of the universe between the present 
observer and the observed past event.   
 
Now, if we add one to each side of Equation 2, we obtain v/(c-v) +1 = 1 - H0t + I0t2 
which simplifies to c/(c-v) = 1 - H0t + I0t2, or  
 
1/(1-v/c) = 1 - H0t + I0t2.                                                                                             [Eq 3] 

 
Fig 2  The solid line represents the regression equation:  v/(c-v) = 0.069789D – 0.00020310D2, 
with R2 = 99.66%, using SR velocities computed from binned SN1a data.  Note the close match 
of the furthest bin to the estimated value, and that the furthest six bins (representing 60 stars) all 
lie below the linear Hubble curve (dashed line) and near the quadratic curve.  
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We postulate that 1/(1-v/c) represents the scale (Se) of the universe for the epoch of 
emission of an SN1a event, in relation to the present, S0 = 1.  That is,  
 
Se = 1/(1-v/c).                                                                                                           [Eq 4] 
 
 

 
Fig 3  Close-up view of the error terms for observations near the origin, per Fig 2.     
 
Figure 4 provides a graphic illustration of Equation 4. The scale on the ordinate is defined 
relative to the present, with S0 = 1.  Each SN1a event occurred during a unique epoch at 
scale Se.  The universe continued to contract so that later SN1a events occurred at smaller 
values of Se.  Our current observations of all these events take place during the present 
epoch, with S0 = 1. The v/c values for each event comes from Equation 4, which can also 
be expressed as v/c = (Se – 1)/Se. This allows construction of a series of right triangles 
whose heights equal one and whose bases equal 1-v/c.  This provides the slopes of the 
diagonals, which intersect the ordinate at the various Se values. 
 
Now, combining Equations 3 and 4, we obtain 
 
Se = I0t2 - H0t + 1.                                                                                                     [Eq 5] 
 
Note that in all our analysis, we assume that the speed of light is constant and 
independent of scale.  
 
2.1  The elimination of H0 from the scale equation 
 
As is well known, the first order term of a parabolic equation can be eliminated by simply 
shifting the origin or zero point of the abscissa so that it is coincident with the axis of 
symmetry of the parabola.  We did this, and re-estimated the regression using the shifted 
time scale, T = t + 171.812, and obtained: 
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Se = 6.996 -0.0002031T2.                                                                                            [Eq 6] 
 
The R2 is 99.33%.  Note that 6.996 matches the maximum scale (6.995) from before, and 
that -0.0002031 matches I0 from before.  The Hubble parameter is nothing special, just 
the slope of the scale curve, so H(T) = dS/dT, or 2I0T.  At T = 171.812 Gyr, which is the 
time now with respect to the apex of the parabola, the result is H(T) = H0.  The point here 
is simply to illustrate how H0 is a time-dependent parameter.  It is not proposed to 
substitute Equation 6 for Equation 5, because the constant term in T = t + 171.812 is itself 
determined from Equation 5, and subject to uncertainties.   

Fig 4  Illustration of Se = 1/(1-v/c) 
 
 
2.2  v/c and scale at emission for SN1a 
 
Figure 5 presents a view of the binned SN1a data in relation to the present scale (S0=1), 
so we have v/c = (Se – 1)/Se.  The vertical dotted line at Se/S0 ≈ 7 represents Smax, which 
occurs at the apex of the derived scale parabola (Equation 5).  If an object that distant 
were observable, we would have (v/c)max = (7-1)/7 = 0.857.  Note that this velocity 
corresponds to SR redshift.  Both Figure 4 and Figure 5 depict that result. 
 
In relation to the scale as defined in the present, the observer’s scale will drop below its 
present value of unity as the universe contracts, and Smax/S0 will increase.  The horizontal 
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dashed line in Figure 4 will move downward; the vertical dotted line in Figure 5 will 
move to the right, and (v/c)max will increase.  In the limiting case, when S0 approaches 
zero, maximum recessional velocity taken in relation to Smax at the stagnation epoch will 
approach (v/c)max = (Smax - S0)/Smax = 1, so recessional velocity is limited by c.  
 
2.3  Redshift and scale at emission for SN1a 
 
Another view of the SN1a binned data and scale is presented in Figure 6.  From SR 
Doppler, we have v/c = ((1+z)2 – 1) / ((1+z)2 + 1).  From our work above, we have v/c = 
(Se – 1)/Se.  Using the equality between the right-hand-sides of these two equations, we 
obtain redshift as a function of scale: 
 
z + 1 = (2Se – 1)0.5.                                                                                                       [Eq 7] 
 
2.4  Hubble parameter and scale 
 
In Equation 5, t equals zero at the present epoch, and time past is treated as negative. For 
the epoch t, when an SN1a event occurred, the scale of the universe is given by Equation 
5.  The value of H(t) over time is simply the time derivative of scale, dS(t)/dt = - H0 + 
2I0t.  At present t = 0, this gives us H(t) = dS(t)/dt = -H0.  H(t) becomes steeper as t 
approaches 13.777.  When S(t) approaches zero, this results in a value of H(t) = -0.0754 
Gyr-1 (this corresponds to 73.73 km/s per Mpc compared to our estimate of today’s value 
of H0 = 68.24 km/s per Mpc from Table I).  
 
The Hubble parameter in the context of big bang models is defined differently:  H0 = 
(dS/dt)/S(t).  That result will match ours only in the case of the present scale where S(t) = 
1.  However, we are interested in how the rate of change of scale is changing relative to 
the present scale, at S(t) = 1.  Our interpretation of the Hubble parameter is therefore 
simply the slope of the scale curve which is defined such that S(t) = 1 at the present.  This 
definition will accommodate the analysis in section 3.0. 
 
The maximum scale occurred at the apex, where dS/dt = -H0 + 2I0t = 0.  Solving that for t 
provides us with Smax = 6.995 at t = -171.812 Gyr (Figure 7).  The 1-sigma ranges of 
uncertainty were calculated using the error terms for H0 and I0 from the regression and 
are (5.817, 9.149) for projected Smax and (-135.513, -237.998) for the times corresponding 
to those peaks. Also shown is the SN1a binned data in the context of the scale parabola, 
where scale is calculated using Equation 5.  The line representing a constant Hubble 
parameter that matches the present value (same H0) is included for reference.  
 
Since scale is ubiquitous, it follows that the observer was at the same scale as the 
observed object at the time the light was emitted; thus the parabola also represents the 
scale history of the observer.   
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The full period of the parabola can be calculated from Equation 5 using the quadratic      
formula, and gives solutions for S(t) = 0 at t = 13.777 and -357.400, for a full period of 
371.177 Gyr. The corresponding 1-sigma uncertainty ranges are (13.403, 14.180) Gyr  
 

Fig 5 Illustration of v/c = (Se – 1)/Se, with S0 = 1.  
 
until a potential future crunch, and (-284.430, -490.156) Gyr back to the beginning of the 
projected history of the current parabolic cycle, which would have a full period of 
between 297.833 and 504.335 Gyr. 
 
If we assume symmetry, the universe was expanding during the first half of the full 
period, and during the current second half it is contracting.  (Obviously, there is no data 
on the other side of the apex.)  The expansion and contraction eras have periods equal to 
185.588 Gyr.  From the present epoch, the maximum scale occurred 171.812 Gyr in the 
past, and the contraction era will continue for another 13.777 Gyr at which time the scale 
will approach zero.  Given our interpretation of this parabolic model of expansion and 
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contraction, the universe must have been stagnant at the moment of maximum scale, and 
the stagnation epoch can be considered as an absolute rest frame, with H(t) equal to 
zero. 
 
 
 

Fig 6  The relationship between redshift and scale at emission is z + 1 = (2Se – 1)0.5, with the 
observer in the present at S0 = 1. 
 
The current recession represents an accelerating contraction with respect to the epochs of 
the emitting objects.  By assuming that special relativistic Doppler shift is valid at cosmic 
scales, we abandon the notion that wavelength and observed z+1 are directly 
proportional to scale.  Instead, observed wavelength is dependent on vrel, the special 
relativistic velocity of the observer now relative to the emitting object then, at the time of 
emission.  Bunn and Hogg discuss the validity of using vrel in the context of the redshift 
of distant galaxies [1]. 
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Fig 7   The relationship between scale and time with the present at t = 0.    Negative time is 
lookback.  Positive times are in the future, and the “crunch” occurs at t = 13.777 Gyr.  The most 
distant six bins represent 60 SN1a observations, and all six lie below the linear projection (black 
dashed line) of H0, which is the curve’s slope at t = 0. 
 
In our paradigm, the observer is interpreted to be in a frame that is contracting at a greater 
rate than that of the observed event due to the accelerated contraction of scale.  One may 
not assume that the observer is in a passive or neutral frame.  Instead, by virtue of this 
accelerated contraction of scale, today’s observer, who is accelerating inward as if from a 
non-zero radius, must see a redshift when viewing distant (past) events that, though 
under the same inward acceleration, were at a lower velocity in the past.  The observer is 
in free fall, and at the present time is falling at relativistic velocity equal to 0.857c in 
relation to the rest frame at the epoch of stagnation. 
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3.0  Physical Scale 
 
Let us now assume that there exists a physical radial distance that corresponds to the  
units of scale.  From the previous analysis, we know the period from the stagnation point 
to the collapse (or bounce).  Let us call that time span ΔT.  We propose that there exists 
a physical radius Rmax = cΔT = 185.588 Gly.  Reflecting on our initial assumption that D 
= cLB = -ct, this hypothesis maintains a certain consistency between distance and  
time.  It purports to represent a causal or kinematic limit that is explicitly based on the 
speed of light, c.  (The actual size of the universe may be far greater.)  In this case, light 
emitted when the radius was at maximum observable scale would just reach an observer 
at the epoch of minimum scale when R(t) = 0.   
 
Now we define a proportionality constant rs = Rmax/Smax = 185.588/6.995 = 26.530 Gly 
per unit of scale.  From that it follows that R(t) = rsS(t).  At t = 0, when S(t) = 1, R0 =  
rsS(t)  = 26.530 Gly.  Of course, it follows that dR(t)/dS(t) = rs. 
 
Following on Equation 5, we have R(t) = rsS(t) = rs(I0t2 –H0t +1).  Entering the value for 
rs from the previous paragraph and the values for H0 and I0 from Table I, we have: 
 
R(t) = 26.5305 - 1.851536t - 0.00538827t2.                                                                [Eq 8] 
 
Figure 8 depicts R(t) from Equation 8.  For the SN1a data, R(t) = rsS(t), where S(t) for 
each SN1a bin is calculated from 1/(1-v/c), with v/c coming from the bin’s mean z using 
SR. 
 
The 1st derivative of R(t) is 
 
dR(t)/dt = -1.85154 - 0.0107765t.                                                                              [Eq 9] 
 
The 2nd derivative of R(t) represents the accelerated contraction of the radius: 
 
A = d2R/dt2 = - 0.0107765 Gly/Gyr2.                                                                      [Eq 10] 
 
That is, the radius is contracting at the fixed rate of acceleration, A.  This rate is 
independent of scale.   
 
From that, we see that the present value (t = 0) of dR/dt = -1.85154 Gly/Gyr, so the 
present radius, now at R0 = 26.530 Gly, is contracting – away from the stagnation rest 
frame which was at R(t) = 185.588 Gly – at well over the speed of light.   
 
It is worth noting the difference between v/c and dR/dt.  The ratio v/c, as discussed above, 
is derived from z based on SR, but - per our postulate - reflects changes in scale over 
discrete intervals of time (Figure 5).  In contrast, dR/dt is the rate the radial length is 
changing at a moment in time. 
 
Keeping time in relation to the present (t = 0), then as t approaches 13.777 Gyr, R(t) 
approaches zero, and dR/dt, per Equation 9, will approach -2.0c with respect to the 
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stagnation epoch.  This contrasts with the observed recessional velocity from Section 2.2, 
which is limited by c. 
 
3.1  Distance Then and Distance Now 
 
For an observed distance D0 from an SN1a event, calculation of the distance then (DTHEN) 
between the hypothetical observer and the SN1a at the time of the event, as well as the 
 

Fig 8  R(t) = 26.5305 - 1.851536t - 0.00538827t2 
 
distance now (DNOW) between any relics of the event and the observer now, are obtained 
by solving two simultaneous equations: 
 
(1)  DTHEN/DNOW = Se 
(2)  DTHEN – DNOW = D0 
 
Note that D0 = -ct, the distance the light has traveled from the event to the observer 
during the time between DTHEN and DNOW. 
 
From these, it follows that  
(2b)  DTHEN = D0 + DNOW and then 
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(1b)  (D0 + DNOW)/DNOW = Se or 
` 
(1c)  DNOW = D0/(Se – 1) 
 
For example, let D0 = 40 Gly, so that t = -40 Gyr.  Using Eq 5 for scale, we obtain Se = 
3.4666, so from (1c ) DNOW = 16.217 Gly, and from (2b) DTHEN = 56.217 Gly.  This 
example is illustrated in Fig 9. 
 

 
Fig 9  This is an illustration of the relationships between D0, DTHEN, and DNOW for the case of 
observed distance equal to 40 Gly.  This meets the two criteria:  (1) DTHEN/DNOW = Se = 3.4667 
(scale at the time of the SN1a event); and (2) DTHEN – DNOW = 40 Gly.  At the time of the event, 
the SN1a was at a distance of 56.217 Gly from the observer’s concurrent location.  During the 
time it took for that distance to contract to 16.217 Gly, the light will have traveled 40 Gly. 
 
3.2  The Observable Universe 
 
We suggest that the limit of the observable cosmos is where the parabola for R(t) 
intersects a line of slope = -1, back in time from the present (Figure 10).  Thus, R(t) – R0 
= ΔR and ΔR = cΔt = D0 at that point of intersection.  D0 must be less than or equal to ΔR 
in order to be potentially visible.  Beyond that distance the light from an event would not 
yet have reached the observer.  When the observer would theoretically arrive at the point 
where R(t) approaches zero, the epoch of stagnation at the apex of R(t) would just then 
become visible.   
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Also, there would have been an epoch in the past where that 45-degree line would be 
tangent to R(t), namely where dR/dt = -1.  Using the derivative of R(t) (Eq. 3), it is easy 
to calculate that at that point t = (1 – R0H0)/2R0I0 =  -79.016 Gyr.  For a hypothetical  
observer at that lookback time or earlier, there would exist no observable history; the 
cosmos would appear as devoid of distant stars or galaxies.   
 
At present, we could potentially see back to the epoch at 13.777 Gyr after the stagnation 
point when t = -158.035 Gyr, or where observed distance D0 equals 158.035 Gly and R(t) 
equals 184.566 Gly.   
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Fig 10  The limits of potential observation for the present scale and for the future at R(t) = 0 at t = 
13.777 Gyr.  
 
 
Applying the method of the previous section for calculating DNOW for that D0, one 
obtains 26.530 Gly, which is also equal to the radius now.  The result for DTHEN is 
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184.566 Gly, which also matches the radius then.  These matches occur only for the limit 
of visibility.  Thus, the most distant causally connected objects, by virtue of their being 
observable (the so-called particle horizon), are now at a distance of 26.530 Gly. 
 
Whether the observed CMB may somehow correspond to our proposed limit of visibility 
is beyond our scope.  Certainly, our visibility distance does not match the distance 
reported by the big bang theory, where the CMB is calculated to be about 46 Gly distant.   
An interesting paper by Bonnet-Bidaud explores the uncertainties in the conventional 
interpretation of the CMB and presents several alternative interpretations [9].   
 
The equality between the 13.777 Gyr time interval between the stagnation point and the 
limit of visibility on the one hand, and the 13.777 Gyr time interval from the present to 
the future collapse on the other hand (discussed in Section 2.4), can be algebraically 
demonstrated, and this equality is characteristic of parabolas. What is most interesting is 
the coincidence between our 13.777 Gyr results (again, the1-sigma range is 13.403 to 
14.180) and the conventional big bang age of the universe, which is currently estimated 
to be 13.799 Gyr (sigma = 0.021).  The precision of this match is intriguing, despite the 
fundamental conflicts between the two theories. 
 
3.3 MOND Acceleration 
 
MOND refers to modified Newtonian dynamics.  This phenomenology originates with 
Mordehai Milgrom in 1983, and it remains a field of very active research.  The theory is 
that there exists an inward acceleration, beyond Newtonian gravitational acceleration 
based on ordinary matter, that causes the size evolution of rotating galaxies to stick 
together more than would be expected based on the observable masses and rotational 
rates of those bodies.  Many detailed analyses have studied the MOND acceleration, for 
example [10]. It portends an alternative to hypothesized dark matter.  But MOND 
acceleration has not been derived in the context of any general physical or cosmological 
structure, so it is referred to as phenomenological. An overview and discussion of MOND 
is provided by McGaugh [11].  Additional background is provided by Sanders [12][13].  
 
It is extremely interesting that our SN1a derived values for A (Equation 9 and Table II) 
match the values independently estimated for MOND acceleration, a0, based on galactic 
observations.  Milgrom estimates a0 at 1.2(±0.2)E-10 m/s2 while McGaugh et al estimate 
it is 1.2±0.02 (random) and ±0.24 (systematic) E-10 m/s2 [14][15].  Zhou estimates it at 
1.02±0.02(random) E-10 m/s2 [16].  Both McGaugh and Zhou use a dataset consisting of 
2693 data points (stars) within 147 galaxies included in the Spitzer Photometry and 
Accurate Rotation Curves (SPARC) dataset.  Astoundingly, the Zhou estimate based on 
these galaxies precisely matches our cosmologically determined value (Table II).  Please 
note that our value was estimated long before we were even aware of MOND. 
 
While the dimensions of a galaxy are about three orders of magnitude smaller than the 
closest SN1a in the SCP union2.1 dataset, the resulting universal acceleration rates are an 
accurate match.  Thus, we offer a broad cosmological basis for a0 based on SN1a 
observations as distant as 40 Gly (proper distance).  Conversely, MOND’s estimated 
universal a0 serves as empirical support for our theory of universal contraction.   
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4.0  Summary 
 
Our paradigm assumes that light travels though the cosmos at the rate c, independent of 
scale. Thus, observed distance, D, equals cLB = -ct. 

 
Table II 

Results of derivations of A (acceleration) 
 

SCP  
data 

(release 
date) 

Present 
Radius 
(Gly) 

Present 
Radius 

(m) 

A 
(Gly/Gyr2) 

A 
(m/s2) 

Union1 
(2008) 26.858 2.5409 

e+26 0.0107623 1.0238 
e-10 

Union2 
(2010) 26.766 2.5323 

e+26 0.0103789 9.8733 
e-11 

Union2.1 
(2011) 26.717 2.5276 

e+26 0.0106682 1.0149 
e-10 

Union2.1 
Binned 26.530 2.5100 

e+26 0.0107765 1.0252 
e-10 

Observed 
refs[14][15] 

ref [16] 

-- -- -- (MOND) 
1.2e-10 

1.02e-10 

 
 
Once the scale to redshift proportionality is abandoned, the door is open for alternative 
interpretations of redshift.  With special relativity, the redshift is dependent on the 
relative velocity of recession of the observer with respect to the observed past events, not 
the objects as they are now.  We hold that the special relativistic Doppler velocity from z 
is valid on a cosmic scale. 
  
The observer is at a nonzero radius, under constant free fall acceleration.  Recession, in 
itself, has no a priori direction in scale, and requires only that the observer is moving 
away from the location of the observed event, even though the object or its artifacts may 
be moving closer to the observer.  (This is a beauty of SN1a, that they offer a snapshot in 
cosmic time rather than a continuous process.)   
 
Our postulated scale relationship is consistent with a contracting universe.  The 
expansion and contraction follows the familiar pattern of the parabola, which reflects an 
initial motion (velocity) under the influence of our empirically based constant 
acceleration (or deceleration), like a projectile in a realm of constant G.  But instead of an 
object being elevated, we have a radial expansion peaking at an apex followed by an 
accelerated contraction.  The period of the posited cycle of the universe’s expansion and 
contraction is about 371 Gyr.  The current phase of accelerated contraction will continue 
for a remaining period of 13.777 Gyr.  The parabolic pattern suggests a bounce paradigm. 
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MOND acceleration a0 matches our derived acceleration A, where both are treated as 
universal constants.  We propose that our A is the cosmological key to MOND 
phenomenology.  
 
The highest possible observed cosmological redshift with reference to the present would 
have a z+1 value of about 3.59 based on our present recessional velocity of 0.856c with 
respect to the limit of visibility. The upper bound at 1-sigma is 4.16, and at 2-sigma is 
5.29.  On that basis, we can make one prediction with 95% confidence: 
 
PREDICTION:  No SN1a will ever be observed with a z+1 greater than 5.3.   
 
For comparison, the highest redshift of any SN1a in the SCP union2.1 release has z+1 = 
2.41.   
 
We consider SN1a to be the gold standard for redshift.  On that basis, we suggest that z+1 
values reported in the literature that are higher than 5.3 for distant galaxies should be re-
examined in terms of galactic morphological explanations in the context of our much 
relaxed time constraints.   
 
Further Research 
 
It seems natural to think there must be a relationship between our universal acceleration 
rate and Newton’s G.  It’s not only Newton’s G, but Einstein’s, as Einstein had the basic 
insight defining the equivalence principal, that gravitational acceleration cannot be 
distinguished from acceleration against inertia.  We did, in fact, derive G from our A, the 
accelerated contraction of the universe [17].  The derived value for G was about 12% 
below the accepted value of G.  While that was fairly accurate given the uncertainties of 
the input values, including the baryonic density, our equation for G seemed to imply that 
G would be decreasing over time at a rate that was inconsistent with the constraints put 
on (dG/dt)/G produced by the laser lunar ranging project [18].  
 
Despite that outcome, if there is in fact such a universal contractive acceleration, it seems 
there must be a connection with G.  So that is an area for further research. 
 
Another area for further research involves MOND theory.  It may be productive to 
explore the potential for our theory of universal accelerating contraction to contribute to 
the development of MOND theory. 
 
Final Comments 
 
The work presented here is the product of research conducted independently by one 
individual.  As Thomas Kuhn has observed in his seminal work, The Structure of 
Scientific Revolutions, new paradigms are usually discovered by either young 
professionals in the field, or by outsiders [19].  I am not among the former group.  
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In conclusion, my derivations of H0 and A are supported by empirical data.  The precise 
match between MOND’s universal acceleration and my cosmic acceleration lends 
support to my theory of accelerated contraction of the cosmos.  
 
I hope that there will be, among both MOND theorists and others in the broad community 
of cosmologists, those who are willing to seriously consider whether this paradigm may 
offer a plausible alternative to that of the prevailing big bang theory, which I believe an 
objective observer should consider to be very vulnerable.  Despite its successes, 95% of 
the universe is a persistent mystery according to that theory.  The phantom dark matter 
has been with us for half a century, and dark energy has never been detected.  Galactic 
behavior cannot be adequately accounted for, and the time requirements estimated for the 
evolution of galaxies presses against the BB’s estimated age of the universe.  Moreover, 
the required inflation theory is no longer supported by one of its prominent originators. 
As Kuhn has said, “paradigm-testing occurs only after persistent failure to solve a 
noteworthy puzzle has given rise to crisis.”  Yet the scientific community seems very far 
indeed from perceiving a crisis. 
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