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Abstract

The Λ Cold Dark Matter cosmological model assumes general relativity is correct. However, the
Einstein equation does not contain a symmetric tensor which describes the energy-momentum of the
gravitational field itself. Recently, a modified equation of general relativity was developed which contains
the missing tensor and completes the Einstein equation. An exact static solution was obtained from the
modified Einstein equation in a spheroidal metric describing the gravitational field outside of its source,
which does not contain dark matter. The flat rotation curves for a class of galaxies were calculated and
the baryonic Tully-Fisher relation followed directly from the gravitational energy-momentum tensor.
The Newtonian rotation curves for galaxies with no flat orbital curves, and those with rising rotation
curves for large radii were described as examples of the flexibility of the orbital rotation curve equation.
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1. Introduction

The ΛCDM model describes the formation of galaxies after the Big Bang from cooled baryonic
matter gravitationally attracted into a dark matter skeleton. Dark matter in the ΛCDM model also
provides the additional mass required to describe the flat rotation curves observed in many galaxies.
However, no dark matter particles have been detected and there have been several attempts to explain the
flat rotational curves without dark matter.

The leading candidate is a phenomenological model of Modified Newtonian dynamics (MOND)
introduced by Milgrom [1]. The Newtonian force F is modified according to

F = mµ(
a

a0
)a (1)

where a0 is a fundamental acceleration ≈ 1.2× 10−10m/s2. µ is a function of the ratio of the acceleration
relative to a0 which tends to one for a � a0 and tends to a

a0
for a � a0. MOND successfully explains

many, but not all, mass discrepancies observed in galactic data. However, it has no covariant roots in
Einstein’s equation or cosmological theory. MOND and ΛCDM were thoroughly discussed by McGaugh
in [2].

Other alternatives to dark matter were reviewed by Mannheim in [3] with references therein. In
particular, Moffat [4] used a nonsymmetric gravitational theory without dark matter to obtain the flat
rotation curves of some galaxies. The bimetric theory of Milgrom [5] involved two metrics as independent
degrees of freedom to obtain a relativistic formulation of MOND.

Different approaches to the missing matter problem include dipolar dark matter, which was
introduced by Bernard, Blanchet and Heisenberg in [6] to solve the problems of cold dark matter at
galactic scales and reproduce the phenomenology of MOND. The theory involves two different species of
dark matter particles which are separately coupled to the two metrics of bigravity and are linked together
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by an internal vector field. In [7], a theory of emergent gravity (EG) which claims a possible breakdown in
general relativity, was introduced by Verlinde that provided an explanation for Milgrom’s phenomenological
fitting formula in reproducing the flattening of rotation curves. Campigotto, Diaferio and Fatibenec [8]
showed conformal gravity cannot describe galactic rotation curves without the aid of dark matter. On the
other hand, a logical analysis based on observational data was presented by Kroupa in [9] to support the
conjecture that dark matter does not exist.

The existence of dark matter is based on the validity of general relativity. However, Einstein’s
equation does not contain a symmetric tensor that describes the energy-momentum of the gravitational
field itself. It was recently shown for the first time by Nash in [10], that the symmetric tensor Φαβ describes
the energy-momentum of the gravitational field, and completes Einstein’s equation of general relativity. Φ,
the trace of Φαβ with respect to the metric, dynamically replaces the cosmological constant. The positive
values of Φ describe dark energy; Φ < 0 represents the energy of the gravitational field interacting with
itself. It was shown how the dark energy density could explain the expansion and acceleration of the
early universe and establish the cosmological vacuum energy density. This led to an explanation of why
the vacuum energy density is so small and yet important in the present epoch. It is therefore natural to
investigate if the complete Einstein equation can explain dark matter. As a first step in that direction,
this article explores if Φαβ can explain the rotation curves of different types of galaxies without the need
for dark matter or a new theory of gravity.

2. The modified Einstein equation in a spheroidal spacetime

In curved spacetime on a 4-dimensional time oriented Lorentzian manifold with metric, (M, gαβ),
the modified Einstein equation

−8πG

c4
T̃αβ +Gαβ + Φαβ = 0 (2)

was developed in [10]. T̃αβ is the total matter energy-momentum tensor which represents all types of
matter, including dark matter. In this article, it is assumed dark matter does not exist and that baryonic
matter and other possible sources of matter such as neutrinos, produce the gravitational field. The
symmetric tensor Φαβ defined by

Φαβ =
1

2
(∇αXβ +∇βXα) + uλ(uα∇βXλ + uβ∇αXλ) (3)

represents the energy-momentum of the gravitational field itself. u is a unit vector collinear with the
regular vector X, which is one of (X,−X) in the non-vanishing line element field. Its trace with respect
to the metric, Φ, satisfies the global constraint∫

gαβΦ
αβ√−gd4x =

∫
Φ
√
−gd4x = 0 (4)

where Φ = ∇αXβ(gαβ + 2uαuβ). The positive values of Φ describe dark energy and negative values of Φ
represent the energy of the gravitational field interacting with itself; Φ = 0 is the condition for free fall.

In a region of spacetime where there is no matter, T̃αβ = 0 and the field equations must satisfy

Gαβ + Φαβ = 0. (5)

Spheroidal solutions to these nonlinear equations are now investigated. The spheroidal behaviour of the
metric is to be determined from a particular solution to (5) in a spacetime described by a metric of the
form

ds2 = −eνc2dt2 + eλdr2 + r2(dθ2 + sin2θdϕ2) (6)
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where ν and λ are functions of t, r and θ. The non-zero connection coefficients (Christoffel symbols) are:

Γ0
00 =

1

2
∂0ν, Γ0

01 =
1

2
∂1ν, Γ0

02 =
1

2
∂2ν, Γ0

11 =
1

2
∂0λe

λ−ν ,

Γ1
00 =

1

2
∂1νe

ν−λ, Γ1
01 =

1

2
∂0λ, Γ1

11 =
1

2
∂1λ, Γ1

12 =
1

2
∂2λ, Γ1

22 = −re−λ, Γ1
33 = −r sin2 θe−λ,

Γ2
00 =

1

2r2
∂2νe

ν , Γ2
11 =

1

2r2
∂2λe

λ, Γ2
12 =

1

r
, Γ2

33 = − sin θ cos θ,

Γ3
13 =

1

r
, Γ3

23 = cot θ.

(7)

The unit vectors uβ are orthogonal and satisfy

uαuα = −1 (8)

with uαuβ = 0 for α 6= β. As a first step to understand this highly nonlinear set of equations given by (5)
with the constraint (8) in this metric, u3 is chosen to vanish. This requires

X3 = 0 (9)

because uα is collinear with Xα. All other components of Xα are non-zero.
Static solutions to (5) are sought which require the components of the line element field to satisfy

∂0Xα = 0, (10)

and from the metric,
∂0λ = 0, ∂0ν = 0. (11)

The components of Φαβ are then:

Φ00 = (1 + 2u0u
0)(−1

2
eν−λν ′X1 −

1

2r2
eν∂2νX2), (12)

Φ11 = (1 + 2u1u
1)(X1

′ − 1

2
λ′X1 −

1

2r2
eν∂2λX2), (13)

Φ22 = (1 + 2u2u
2)(∂2X2 + re−λX1), (14)

Φ33 = r sin2 θe−λX1 + sin θ cos θX2, (15)

the Ricci scalar, which from (5) equals Φ, is

R = e−λ(−ν ′′ − 1

2
ν ′

2
+

1

2
λ′ν ′ − 2

r
ν ′ +

2

r
λ′ − 2

r2
) +

1

r2
(−1

2
∂2ν

2 − ∂2∂2ν − ∂2ν cot θ + 2), (16)

and the components of the Einstein tensor are:

G00 =
1

r2
eν−λ(rλ′ − 1 + eλ) +

eν

4r2
∂2ν∂2λ, (17)

G11 =
1

r2
(1 + rν ′ − eλ) +

eλ

2r2
[∂2∂2λ+ ∂2∂2ν +

1

2
∂2λ

2 +
1

2
∂2ν

2 +
1

2
∂2λ∂2ν + cot θ(∂2λ) + ∂2ν], (18)

G22 =
r2e−λ

2
[ν ′′ + (

1

2
ν ′ +

1

r
)(ν ′ − λ′)]− 1

2
∂2∂2λ−

1

2
∂2λ

2 +
1

2
cot θ∂2ν, (19)

G33 = sin θ2[
r2e−λ

2
(−λ

′

r
+
ν ′

r
+ ν ′′ +

1

2
ν ′

2 − 1

2
λ′ν ′) +

1

4
∂2ν

2 +
1

2
∂2∂2ν −

1

2
cot θ∂2λ] (20)

where the prime denotes ∂1.
These equations are greatly simplified by setting

ν = −λ. (21)
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Thus, a class of static spheroidal solutions to (5) are sought with the restrictions (9),(10),(11) and (21).
Since eλ−ν(Φ00 +G00) + Φ11 +G11 = 0 from (5),

(
λ′

2
X1 +

1

2r2
eλ∂2λX2)(1 + 2u0u

0) + (X ′1 −
λ′

2
X1 −

1

2r2
eλ∂2λX2)(1 + 2u1u

1) = 0. (22)

If we choose λ′

2 X1 = X ′1 − λ′

2 X1,

X1 = a1e
λ (23)

where a1 is an arbitrary but non-zero constant with the dimensions of L−1. Then (22) becomes

(
X ′1
2

+
1

2r2
eλ∂2λX2)(1 + 2u0u

0) + (
X ′1
2
− 1

2r2
eλ∂2λX2)(1 + 2u1u

1) = 0 (24)

from which

∂2λ = a1λ
′r2

u2u
2

(u0u0 − u1u1)X2
(25)

using 1 + u0u
0 + u1u

1 = −u2u2.
From (5) and (23) in the interval 0 < θ < π, G22 + Φ22 = 0 gives

(−λ′′ + λ′2 − 2

r
λ′) +

eλ

r2
(−1

2
∂2λ

2 − ∂2∂2λ− ∂2λ cot θ) +
2eλ

r2
(∂2X2 + a1r)(1 + 2u2u

2) = 0 (26)

and G33 + Φ33 = 0 yields

−λ′′ + λ′2 − 2

r
λ′ +

eλ

r2
(
1

2
∂2λ

2 − ∂2∂2λ− ∂2λ cot θ) +
2eλ

r2
(a1r +X2 cot θ) = 0. (27)

Subtracting (26) from (27) requires

cot θX2 − ∂2X2 +
1

2
∂2λ

2 − 2u2u
2(∂2X2 + a1r) = 0. (28)

Choosing cot θX2 = ∂2X2 gives
X2 = a2 sin θ (29)

where a2 6= 0 is an otherwise arbitrary dimensionless constant, and demands

∂2λ
2 = 4u2u

2(a2 cos θ + a1r). (30)

Equation (27) can now be expressed as

−λ′′ + λ′2 − 2

r
λ′ +

eλ

r2
(
1

2
∂2λ

2 − ∂2∂2λ− ∂2λ cot θ) +
2eλ

r2
(a1r + a2 cos θ) = 0. (31)

From (25) and (30), the derivative terms in ∂2λ can be neglected if u2u
2 is restricted to be very small but

non-zero. Assuming ∂2∂2λ can also be neglected, equation (31) is then approximated by

−λ′′ + λ′2 − 2

r
λ′ +

2eλ

r2
(a1r + a2 cos θ) = 0, 0 < θ < π (32)

which, for a fixed value of cos θ, has the exact solution

λ = − ln(
c1
r

+ c2 − a1r − 2a2 cos θ ln r), 0 < θ < π, 0 < r <∞ (33)

where c1 and c2 are arbitrary constants.
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3. The radial force and galactic rotation curves

The radial force on an object of mass m can now be calculated from (33). Using the conventional
relationship of the Newtonian potential φ to g00,

φ =
c2

2
(eν − 1), (34)

the radial force Fr is

Fr = −m∂1φ

=
mc2

2
(
c1
r2

+
2a2 cos θ

r
+ a1).

(35)

Choosing

c1 = −2GM

c2
, (36)

where M represents the total mass of the galaxy composed of mainly baryonic matter and no dark matter,
we arrive at the modified Newtonian force

Fr = −GMm

r2
+
mc2a2 cos θ

r
+
mc2a1

2
. (37)

The correction terms to the Newtonian force come from the non-zero components of the line element field
in the energy-momentum tensor Φαβ. The components of the line element field can change their sign, which
means aj can change to −aj with j=1,2 in this restricted metric. Thus the middle term is gravitationally
attractive and represents the ”dark matter” correction if a2 cos θ < 0 in the interval 0 < θ < π. It is the
term that gives rise to the flat rotation curves. The third constant term is positive and repulsive if a1 > 0.
This describes the repulsive dark energy force in the present epoch. However, during a part of the previous
decelerating epoch observed by Riess et al. [11], a1 < 0. They used the Hubble telescope to provide the
first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.

Assuming a circular orbit about a point mass, it follows that the orbital velocity of a star rotating
in the galaxy satisfies

v2 = v2N − a2c2 cos θ − a1c
2

2
r (38)

where v2N is the Newtonian term

v2N =
GM

r
. (39)

Equation (38) demands an upper limit to r describing a large but finite galaxy.
Because a1 6= 0, it is possible for the Newtonian force to balance the dark energy force,

v2N −
a1c

2

2
r = 0 (40)

in (38). Then,
v2 = −a2c2 cos θ, a2 cos θ < 0 (41)

describes a specific class of galaxies with a flat orbital rotation curve. From (39) and (40), we obtain the
Tully-Fisher relation

v4N =
GMc2a1

2
, a1 > 0. (42)

This result holds for any finite r in contrast to EG which holds only for large r as determined by Lelli,
McGaugh and Schombert [12]. With c2a1

2 := a0, the Tully-Fisher relation in MOND is evident.
The importance of the radial acceleration relative to the rotation curves of galaxies was discussed

by Lelli, McGaugh, Schombert, and Pawlowski in [13] where it was determined that late time galaxies
(spirals and irregulars), early time galaxies (ellipticals and lenticulars), and the most luminous dwarf
spheroidals follow the same baryonic Tully-Fisher relation. The observed acceleration correlates well with
that expected from the distribution of baryons.
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Equation (37), which does not include dark matter in this analysis, is general enough to describe
the rotation curves of many types of galaxies. For example, galaxy NGC4261 has a relatively flat rotation
curve but starts to rise at larger radii, reaching velocities of 700 km s−1 at 100 kpc [11]. That requires
a1 in (38) to be negative which was interpreted above. As another example, both c2a1r and c2a2 could
be small enough relative to GM

r so that the Newtonian term is dominant. Galaxies with no flat rotation
curves have recently been observed by van Dokkum et.al [14]. It should also be remembered that equation
(38) came from an approximation to equation (31) which could be used to model galaxies in greater detail.
Furthermore, equation (31) is a restricted version of the general equation (5) which provides additional
variables that may explain even more aspects of cosmology now attributed to dark matter.

However, it is still possible that dark matter particles may exist. As a part of (2) in the total
matter energy-momentum tensor T̃αβ, they would contribute to the gravitational field outside of its source
along with baryonic matter in equation (5) and therefore in (37). But any dark matter contribution to
the gravitational field would play a much lesser role because of the existence of Φαβ.

4. Conclusion

The modified Einstein equation contains a symmetric tensor that was missing in the theory of
general relativiy. Φαβ completes the Einstein equation which requires Gαβ + Φαβ = 0 in a region of
spacetime outside of the source of the gravitational field. This is in contrast to general relativity where
Gαβ = 0 because of the missing tensor for the energy-momentum of the gravitational field. Φαβ introduces
correction terms to the Newtonian force and the equation for the orbital rotation curves of galaxies.

An exact static solution was obtained from the modified Einstein equation in a restricted spheroidal
metric describing the gravitational field outside of its source, which does not contain dark matter. The
flat rotation curves for a class of galaxies were calculated and the baryonic Tully-Fisher relation followed
directly from the energy-momentum tensor of the gravitational field. The Newtonian rotation curves for
galaxies with no flat orbital curves, and those with rising rotation curves for large radii were described as
examples of the flexibility of the orbital rotation curve equation.

The results obtained from the complete Einstein equation thus far are able to substantially de-
scribe the missing mass problem attributed to dark matter. Further mathematical and detailed numerical
analyses to explore the ability of the energy-momentum tensor of the gravitational field to replace dark
matter in cosmology, are fully warranted. This rigourous analysis with comparison to astronomical data
may still point to the existence of dark matter to some extent. But even if that is the case, the gravita-
tional role of dark matter is substantially reduced by the impact of the energy-momentum tensor of the
gravitational field.
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