An HCE8S Flow Diagram Incorporating the Latest Ideas

George R. Briggs

Abstract: A forward-time, reverse-time energy cycle of the $8^{\text {th }}$ cycle of an HCE8S universe for a full loop of the cycle is shown incorporating my latest Ideas

Using findings taken from several previous notes ${ }^{1,2}$, I will show the latest time-energy flow chart for the $8^{\text {th }}$ cycle of an HCE8S universe:
TR time reverse QU quantum of the universe TF time forward Unbroken E8 symmetry Broken, Holographic E8 symmetry Entropy decreasing

Entropy increasing
LElife energy BEbinding energy DMdark matter DEdark energy HCE8S Universe:
$\mathrm{ttH}+\mathrm{ttZ}+\mathrm{tH}+\mathrm{tZ}$ fermibosons
$-4 \mathrm{H},-4 \mathrm{Z}$, +12 top quarks +4 antifermibosons 12top quark annihilation gamma radiation $=1330.88 \mathrm{GeV} /$ galaxy-sec $\quad \mathrm{TF} /$ galaxy-sec $=4(\mathrm{H}-\mathrm{Z})=4 \mathrm{QU}$ || 1332.29-1330. $88=1.41 \mathrm{GeV}$ (see text)
*TF energy in>\{1332.29 GeV/ sec-galaxy \}>TF energy out ${ }^{\wedge}=1332.29 \mathrm{GeV}$

DM-4H DM-4Z DE 12t |
${ }^{\wedge}(1.022--)^{2}=1.0449382 \times 1275 \mathrm{GeV}$ | super$\wedge=\mathrm{X}(13.8 / 13.5)^{2}=\mathrm{TR}>\mathrm{TF}$ (see text) | massive ${ }^{\wedge}$ TR c quark 1275 MeV
^ $\mathrm{c} / \mathrm{s}(1275 / 95)=13.42$ billion yrs +80 mllion yrs $=$ collapse age of $8^{\text {th }}$ cyclic universe which did not happen (=13.50 billion years)
$4(\mathrm{H}-\mathrm{Z})=4 \mathrm{QU}<1<1<*$
^ TR s quark $=95 \mathrm{MeV}=94+\mathrm{e}$, anti-e (see text) $\quad \mathrm{DM}=-8 \mathrm{Z}$
^ TR u quark $=2.3 \mathrm{MeV} \quad$ >>
${ }^{\wedge} \mathrm{u} / \mathrm{d}=0.4791$ million years $=$
^ re-ionization at universe age (see text) X100 x 2 u ${ }^{\wedge}$ TR d quark $=4.8 \mathrm{MeV}>\mathrm{X} 100 \times 1 \mathrm{~d}=$ proton $(940 \mathrm{MeV}) @$

The bottom quark now being 4 digits in length means that its value is unchanging and correct and is TR in type. The dimensionless ratio $\mathrm{t} / \mathrm{b}=41.076555$. This is \sim the radius of the universe (in units of $10^{\wedge} 26 \mathrm{M}$) at universe age 13.5 billion years $=c /$ alpha $=137.035999139 \times 2.99792458=41.082355$. The two numbers now agree to within 1.000141. This more accurate match requires a slightly lower mass top quark of 171.7 GeV however, instead of the present 172.51 . Because this value is not yet officially unchanging to more than 2 digits the muon neutrino mass is only listed (by whom!) as 2 digits in length $(0.17 \mathrm{MeV})$ at present instead of a full 4 digits.

I will next discuss the multiplier factor I have found best to use in going from the TF state to the TR state. This factor is $1 /(13.8 / 13.5)^{1 / 2}=1 /(1.0222222)^{1 / 2}=1 / 1.01105$. In going from the TR state to the TF state on the other hand the factor is $(1.0222222)^{2}=1.0449382$. These two different factors have their origins in holographic theory and the time ratio required to reach back to the end of the 8th last cyclic universe (13.8 billion yrs/ 13.5 billion yrs).

I will first use the TR $>$ TF factor of 1.0449382 to compute the TF energy available (1332.29 GeV /active galaxy-sec in our epoch) to disintegrate the 4 fermibosonic and 4 antifermibosonic entities of the E8 super-symmetry. This energy exceeds the mc^2 energy of the components by 1.41 $\mathrm{GeV} /$ active galaxy-sec. This must be sufficient since we know that the disintegration occurred!

I will next discuss the TR Strange quark of 95 MeV . This $\mathrm{mc}^{\wedge} 2$ is apparently 10 X the $\mathrm{mc}^{\wedge} 2$ of ($2 \mathrm{u}+1 \mathrm{~d}+1$ electron) measured (by whom!) at the universe age of 13.5 billion years.

The tau neutrino is of TR type and therefore grows in mass by 100X, or 1550 MeV . This seed mass then converts to TF type (with mass increase to 1619.6542 MeV): next, an addition of $\mathrm{mc}^{\wedge} 2$ LE energy of at least $157.1858 \mathrm{MeV}=1776.84 \mathrm{MeV}$ total goes on to disintegrate tau leptons ($\mathrm{mc}^{\wedge} 2$ energy 1776.84 MeV) and create proton, antiproton and neutron, antineutron pairs in our TF universe and eventually form protons and neutrons: these form atoms and finally stars. The stars emit electron neutrinos; these become more massive muon neutrinos and finally yet still more massive tau neutrinos (typical TR action but somehow occurring in our TF universe epoch). The cycle then repeats. The known $\mathrm{mc}^{\wedge} 2$ energy of the tau lepton tells us the LE and BE energies which are important pieces of knowledge to have.

The energy available per active galaxy-sec to disrupt the initial unbroken E8 symmetry of the 8 supersymmetric fermibosonic entities is shown on the flow diagram (1.41 GeV). Presumably this is sufficient to make enough free top quarks, Higgs particles and Z particles available for the universe to function as Nature has intended it to.

The total energy/active galaxy-sec needed to supply the LE $+\mathrm{BE}+$ electron/antielectron $\mathrm{mc}^{\wedge} 2$ needs in our present epoch is $(157.18+103.16+10)=270.34 \mathrm{MeV}(+0.11=270.45)$. It is noticed that QU x $8=270.48 \mathrm{GeV}$. The numerical ratio is only 1.0001109 , but the magnitude is 1000 times larger. Stay tuned!

1. George R. Briggs, "A simpler yet more revealing HCE8S flow diagram ", ViXra 1804.0488, (2018)
2. George R. Briggs, "Improvement of the accuracy of HCE8S theory can be accomplished simply yet strangely", ViXra 1805.0305, (2018).
