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Abstract. In this paper, we give a gradient estimate of positive solution to

the equation

∆u = −λ2u, λ ≥ 0

on a complete non-compact Finsler manifold. Then we obtain the correspond-
ing Liouville-type theorem and Harnack inequality for the solution. Moreover,

on a complete non-compact Finsler manifold we also prove a Liouville-type

theorem for a C2-nonegative function f satisfying

∆f ≥ cfd, c > 0, d > 1,

which improves a result obtained by Yin and He.

1. Introduction

A Finsler space (M,F, dµ) is a differential manifold equipped with a Finsler met-
ric F and a volume form dµ. The class of Finsler spaces is one of the most important
metric measure spaces. Up to now, Finsler geometry has developed rapidly in its
global and analytic aspects. In [7][9][11][14][16][17], the study was well implement-
ed on Laplacian comparison theorem, Bishop-Gromov volume comparison theorem
and Liouville-type theorem, and so on.

In [13], Yau derived a gradient estimate for harmonic functions on complete,
noncompact Riemannian manifolds with the Ricci curvature bounded below by
negative constant and proved that complete Riemannian manifolds with nonnega-
tive Ricci curvature must have Liouville property. Recently, the result was extended
by Xia ([12]) to the Finsler manifolds under the condition that the weighted Ricci
curvature has a lower bound, and by Zhang-Zhu ([18]) to the Alexandrov spaces.

Let

∆u = −λ2u, λ ≥ 0 (1.1)

be an equation on the Finsler manifold (M,F, dµ). Using the gradient estimate
obtained in [12], we can give a gradient estimate of the positive solution to (1.1).
This is inspired by the work by Ma ([3]) on similar result in Riemannian geometry.
Specifically, we prove

Theorem 1.1. Let (M,F, dµ) be a complete noncompact Finsler n−manifold,
equipped with a uniformly smooth and uniformly convex Finsler structure F. Assume
that RicN ≥ −K for some real numbers N ∈ [n,+∞) and K ≥ 0. Let u be a positive
solution to (1.1) in a forward geodesic ball B+

2R(p) ⊂ M . Then there exists some
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constant C = C(N,Λ1,Λ2), depending on N, the uniform constants Λ1 and Λ2,
such that, in B+

R(p)

max{F (x,∇ log u(x)), F (x,∇(− log u(x)))} ≤ C

(
1 +R

√
K

R

)
. (1.2)

Using (1.2) we obtain the corresponding Liouville-type theorem and a Harnack
inequality for the solution in Section 3 below. We remark that if λ = 0 in (1.1),
Theorem 1.1 becomes the main result in [12].

On the other hand, Nishikawa ([4]) proved that if a C2-nonnegative function
f satisfies ∆f ≥ 2f2 on a complete Riemannian manifold with Ricci curvature
bounded from below, then f vanishes identically. The result was extended by Choi,
Kwon and Suh ([2]) to the general case ∆f ≥ cfd for c > 0, d > 1. Recently,
Zhang ([15]) generalized it to Finsler manifolds if the weighted Ricci curvature
RicN ≥ −c̃(c̃ > 0). Jointed with He, the first author further generalized it under
the condition that the weighted Ricci curvature is bounded from below by some
function, and F is reversible (see Corollary 4.7 in [14]). Now we show that the last
condition is redundant.

Theorem 1.2. Let (M,F, dµ) be a complete noncompact Finsler n-manifold, and
r(x) = dF (p, x) be the distance function from a fixed point p ∈M . Assume that the
weighted Ricci curvature satisfies RicN (x, y) ≥ −G2(r(x)),∀y ∈ TxM,N ∈ [n,∞),
where G is a smooth function satisfying

G ≥ 1, G′ ≥ 0,

∫ ∞
0

ds

G(s)
=∞.

If a nonnegative function f ∈ C2(M) satisfies

∆f ≥ cfd, c > 0, d > 1, (1.3)

then f vanishes identically.

Some definitions such as Finsler manifold, the weighted Ricci curvature, gradient
and Finsler Laplacian will be given in Section 2 below. We remark that the Finsler
gradient and Laplacian are nonlinear operators, which are much different from those
on Riemannian manifolds. Besides, the results obtained do not coincide with those
on weighted Riemannian manifolds, since the two kinds of weighted Ricci curvature
RicN (x, y) and Ric∇uN are not the same.

To prove the theorems, we borrow some methods from the related literatures

(see[2][3][10]) and give them some adjustments. Precisely, let M̃ = M × R be a

Finsler (n+1)-manifold equipped with the product metric F̃ =
√
F 2 + t2, Then its

weighted Ricci curvature are also not less than −K. By setting f(x, t) = eλtu(x)

we find a harmonic function f(x, t) on M̃ , and the gradient estimate is obtained
from [12]. Then (1.2) follows, as required. As to the proof of Theorem 1.2, we make
full use of the relationship between the gradient and the reverse gradient, as well
as the Finsler-Laplacian and the reverse Finsler-Laplacian of a function. Then the
arguments can be followed step by step as in [2] (see also in [14]).

2. Preliminaries

To meet the requirements in the next section, here, some fundamentals of Finsler
geometry are briefly presented.
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Let M be an n-dimensional smooth manifold and π : TM → M be the natural
projection from the tangent bundle TM . A Finsler metric on M is a function
F : TM → [0,+∞) satisfying the following properties:

(i) Regularity: F is smooth in TM \ 0;
(ii) Positive homogeneity: F (x, λy) = λF (x, y) for all (x, y) ∈ TM and all λ > 0;
(iii) Strong convexity: for every (x, y) ∈ TM \ 0, the matrix

gij(x, y) :=
∂2

∂yi∂yj
(
1

2
F 2)(x, y)

is positively definite.
Such a pair (M,F ) is called a Finsler manifold. We say that F is uniformly

smooth and uniformly convex if there exist two uniform constants 0 < Λ1 ≤ Λ2 <∞
such that for x ∈M,y ∈ TxM\{0} and W ∈ TxM ,

Λ1F
2(x,W ) ≤

n∑
i,j=1

gy(W,W ) ≤ Λ2F
2(x,W ).

It is proved that a large class of Finsler manifolds satisfies the above property
(see [6]).

Define the distance function on (M,F ) by

dF (p, q) := inf
γ

∫ 1

0

F (γ, γ̇)dt,

where the infimum is taken over all differentiable curves γ : [0, 1]→M with γ(0) = p
and γ(1) = q.

The reversibility η of (M,F ) is defined by [8]

η = max
X∈TM\0

F (X)

F (−X)
.

(M,F ) is called reversible if η = 1. It is clear that the distance function dF of F
satisfies

dF (p, q) ≤ ηdF (q, p), ∀p, q ∈M.

For every non-vanishing vector V on an open set U ⊂ M , gij(x, V ) induces a
Riemannian structure gV on U via

gV (X,Y ) =

n∑
i,j=1

gij(x, V )XiY j , ∀X,Y ∈ TxU.

In particular, gV (V, V ) = F 2(x, V ).
There exists a unique linear connection, which is called the Chern connection, on

Finsler manifolds. The Chern connection is determined by the following structure
equations, which characterize torsion freeness:

DV
XY −DV

Y X = [X,Y ]

and almost g-compatibility

Z(gV (X,Y )) = gV (DV
ZX,Y ) + gV (X,DV

Z Y ) + 2CV (DV
Z V,X, Y )

for V ∈ TU \ 0, X, Y, Z ∈ TU . Here CV is the Carton tensor given by

CV (X,Y, Z) := Cijk(V )XiY jZk =
1

4

∂3F 2

∂V i∂V j∂V k
(·, V )XiY jZk.
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Given two linearly independent vectors V,W ∈ TxM\0, the flag curvature is
defined by

K(V,W ) :=
gV (RV (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
,

where RV is the Chern curvature:

RV (X,Y )Z = DV
XD

V
Y Z −DV

Y D
V
XZ −DV

[X,Y ]Z.

Then the Ricci curvature for (M,F ) is given by

Ric(V ) =

n−1∑
α=1

K(V, eα),

where e1, · · · , en−1, V
F (V ) form an orthonormal basis of TxM with respect to gV .

Given a Finsler manifold (M,F ), the dual Finsler metric F ∗ on M is defined by

F ∗(ξx) = sup
Y ∈TxM\0

ξ(Y )

F (Y )
, ∀ξ ∈ T ∗M,

and the corresponding fundamental tensor is defined by

g∗kl(ξ) =
1

2

∂F ∗2(ξ)

∂ξk∂ξl
.

The Legendre transformation L : TM → T ∗M is defined by

L(Y ) =

{
gY (Y, ·), Y 6= 0,
0, Y = 0.

It is well-known that for any x ∈ M , the Legendre transformation is a smooth
diffeomorphism from TxM \ 0 onto T ∗xM \ 0, and it is norm-preserving, namely,
F (Y ) = F ∗(L(Y )), ∀Y ∈ TM . Consequently, gij(Y ) = g∗ij(L(Y )).

For a smooth function u on M , the gradient vector of u at x is defined by
∇u(x) := L−1(du). Locally we can write in coordinates

∇u =

n∑
i,j=1

gij(x,∇u)
∂u

∂xi
∂

∂xj
in Mu,

where Mu := {x ∈M | du(x) 6= 0}.
A volume form dµ on (M,F ) is noting but a global nondegenerate n-form on M .

In local coordinates we can express dµ as dµ = σ(x)dx1 ∧ · · · ∧dxn. Let V = V i ∂
∂xi

be a smooth vector field on M . Then the divergence of V with respect to dµ and
the Finsler-Laplacian of u are defined by

divV :=

n∑
i=1

(
∂V i

∂xi
+ V i

∂ log σ

∂xi

)
, ∆u := div(∇u).

The Finsler-Laplacian is better to be viewed in a weak sense due to the lack of
regularity, that is, for u ∈W 1,2(M),∫

M

φ∆udµ = −
∫
M

dφ(∇u)dµ for φ ∈ C∞0 (M).

Let (M,F, dµ) be a Finsler n-manifold. For V ∈ TxM \ 0, define

τ(x, V ) := log

√
det(gij(x, V ))

σ(x)
.
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τ is called the distortion of (M,F, dµ). To measure the rate of distortion along
geodesics, we define

S(x, V ) :=
d

dt
[τ(γ̇(t))]t=0,

where γ : (−ε, ε) → M is a geodesic with γ(0) = x, γ̇(0) = V . S is called the
S-curvature (see [9]). Define

Ṡ(V ) := F−2(V )
d

dt
[S(γ(t), γ̇(t))]t=0,

Then the weighted Ricci curvature of (M,F, dµ) is defined by (see [5])
Ricn(V ) :=

{
Ric(V ) + Ṡ(V ), for S(V ) = 0,
−∞, otherwise,

RicN (V ) := Ric(V ) + Ṡ(V )− S(V )2

(N−n)F (V )2 , ∀ N ∈ (n,∞),

Ric∞(V ) := Ric(V ) + Ṡ(V ).

3. Proof of Theorem 1.1

Let (R, | · |,m) be the 1-dimensional Euclidean space with Lebesgue measure.

Then M̃ = M × R have the product metric F̃ =
√
F 2 + t2 and the volume form

dµ̃ = dµdt = σ(x)dxdt. It is easy to check that F̃ is a Finsler metric on M̃ .
Moreover, we have

(g̃αβ) =

(
gij 0
0 1

)
, 1 ≤ α, β ≤ n+ 1; 1 ≤ i, j ≤ n.

Denote by ∇̃, ∆̃ the gradient and the Laplacian on M̃ . Let f(x, t) be a smooth

function defined on M̃ . Then

∇̃f =g̃αβ
∂f

∂xβ
∂

∂xα
= gij

∂f

∂xj
∂

∂xi
+
∂f

∂t

∂

∂t
= ∇f + f ′(t)

∂

∂t
, (3.1)

∆̃f =
1

σ

∂

∂xα

(
σg̃αβ

∂f

∂xβ

)
=

1

σ

∂

∂xi

(
σgij

∂f

∂xj

)
+

1

σ

∂

∂t

(
σ
∂f

∂t

)
=∆f + f ′′(t). (3.2)

Recall that the Christoffel symbol with respect to the Chern connection on

(M̃, F̃ ) (see [1])

Γ̃αβγ =
1

2
g̃αη

(
δg̃ηβ
δxγ

+
δg̃ηγ
δxβ

− δg̃βγ
δxη

)
,

where
δ

δxα
=

∂

∂xα
− Ñβ

α

∂

∂yβ
, Ñβ

α = Γ̃βαγy
γ .

Therefore, one obtains

Γ̃αβγ =

{
Γijk, 1 ≤ i, j, k ≤ n,
0, otherwise.

By a direct computation, we further have

R̃(X,Y )Z = R(X,Y )Z, R̃(
∂

∂t
, Y )Z = R̃(X,Y )

∂

∂t
= 0, ∀X,Y, Z ∈ TM.
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Besides, the S-curvature of M̃

S̃ =
∂G̃α

∂yα
− yα ∂

∂xα
(log σ(x)) =

∂Gi

∂yi
− yi ∂

∂xi
(log σ(x)) = S,

and
˙̃
S = Ṡ, where G̃α = 1

2 Γ̃αβγy
βyγ . Thus we still have the lower bound for the

weighted Ricci curvature of M̃ . That is R̃icN ≥ −K. Set

f(x, t) = eλtu(x).

Then, from (3.2), f(x, t) is a positive harmonic function on M̃ . Namely, ∆̃f = 0.
By using the gradient estimate in [12], we have

max{F (x,∇ log u(x)), F (x,∇(− log u(x)))}

≤max{F̃ (x, ∇̃ log f(x, t)), F̃ (x, ∇̃(− log f(x, t)))}

≤C

(
1 +R

√
K

R

)
.

�
As applications of Theorem 1.1, we give a Liouville property and a Harnack

inequality in the following.

Corollary 3.1. Let (M,F, dµ) be as in Theorem 1.1 with K = 0. If u is a non-
negative solution of (1.1) on M, then u vanishes identically provided λ > 0.

Proof. Assume that u > 0. Letting K = 0 and R→ +∞ in (1.2), we have

F (x,∇ log u(x)) = F (x,∇(− log u(x))) = 0,

which implies that u is constant. Then from Equation (1.1) we get u ≡ 0 on M .
This contradicts the assumption. �

Corollary 3.2. Let (M,F, dµ) be as in Theorem 1.1 and u be a positive solution
of (1.1) in forward geodesic ball B+

2R(p) ⊂ M . Then there exists some constant
C = C(N,Λ1,Λ2), depending on N, the uniform constants Λ1 and Λ2, such that

sup
B+
R(p)

u ≤ eC(1+
√
KR) inf

B+
R(p)

u.

Proof. Choose two point x1, x2 ∈ B+
R(p) such that u(x1) = supB+

R(p) u and u(x2) =

infB+
R(p) u. Draw a minimal geodesic γ from x1 to x2. Then by triangle inequality,

γ ⊂ B+
(η/2+1)R(p), where η is the reversibility of F . Since F is uniformly smooth

and uniformly convex, η < +∞ and depends on Λ1 and Λ2. Therefore,

log
u(x1)

u(x2)
=

∣∣∣∣∫
γ

d log u

ds

∣∣∣∣ ≤ max
B+

(η/2+1)R

F (x,∇ log u(x))

∫
γ

ds

≤C(1 +
√
KR).

�
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4. Proof of Theorem 1.2

Set
G = (f + a)

1−q
2 , a > 0, q > 1.

Then 0 < G ≤ a
1−q
2 . Taking the differential in both sides, we have

dG = −q − 1

2
(f + a)−

q+1
2 df.

For a positive number λ and any smooth function u, we have

L−1(λdu) = λL−1(du) = λ∇u, L−1(−du) = −
←−
∇u.

Thus, by a straight calculation we obtain

←−
∇G =− q − 1

2
(f + a)−

q+1
2 ∇f = −q − 1

2
G
q+1
q−1∇f. (4.1)

←−
∆G =− q − 1

2
G
q+1
q−1 ∆f − q + 1

2
G

2
q−1 dG(∇f) on MG = Mf . (4.2)

Here the notations
←−
∇ ,
←−
∆ denote the gradient and the Finsler Laplacian with respect

to the reverse Finsler metric
←−
F (x, y) =: F (x,−y). It is easy to check that

←−
∇u =

−∇(−u),
←−
∆u = −∆(−u) for a smooth function u. From (4.1) and (4.2), we deduce

that
1− q

2
G

2q
q−1 ∆f = G

←−
∆G− q + 1

q − 1

←−
F (
←−
∇G)2,

which can be rewritten as

∆f

(f + a)q
= − 2

q − 1
G
←−
∆G+

2(q + 1)

(q − 1)2
←−
F (
←−
∇G)2. (4.3)

Observe that −G is bounded from above, we can apply the Omori-Yau maximum
principle (Theorem 0.3 in [14]) on −G. That is, there exists a point sequence
{pk} ⊂MG such that

lim
k→∞

F (∇(−G))(pk) = 0, lim
k→∞

∆(−G)(pk) ≤ 0, lim
k→∞

(−G)(pk) = sup
M

(−G).

The first two formulas imply

lim
k→∞

←−
F (
←−
∇G)(pk) = 0, lim

k→∞

←−
∆G(pk) ≥ 0.

Using (4.3),

lim
k→∞

∆f(pk)

(f(pk) + a)q
≤ 0.

From the definition of G, we have f(pk) → supM f when −G(pk) → supM (−G).
Since ∆f ≥ cfd, we obtain

c(supM f)d

(supM f + a)q
≤ 0

for d > 1 and any q > 1. We claim that supM f < +∞. If not, then we choose
q < d, the left side of the above inequality is +∞, which is a contradiction. Thus
supM f < +∞. Using the inequality above again, we find supM f = 0. This means
f ≡ 0.

�
If f has an upper bound, the restriction on d > 1 in (1.3) can be improved to

d > 0.
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Proposition 4.1. Let (M,F, dµ) be a Finsler n-manifold, and r(x) = dF (p, x) be
the distance function from a fixed point p ∈ M . Assume that the weighted Ricci
curvature satisfies RicN (x, y) ≥ −G2(r(x)),∀y ∈ TxM,N ∈ [n,∞), where G is a
smooth function satisfying

G ≥ 1, G′ ≥ 0,

∫ ∞
0

ds

G(s)
=∞.

If a nonnegative function f ∈ C2(M) bounded above satisfies

∆f ≥ cfd, c > 0, d > 0,

then f vanishes identically.

Proof. Applying the Omori-Yau maximum principle (Theorem 0.3 in [14]), there
exists a point sequence {pk} ⊂Mf such that

lim
k→∞

f = sup
M

f, lim
k→∞

∆f(pk) ≤ 0.

Thus,
0 ≥ lim

k→∞
∆f(pk) ≥ c lim

k→∞
fd = c sup

M
fd ≥ 0.

Since f ≥ 0, we have f ≡ 0 on M . �
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