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ABSTRACT: 
Mathematical models can give us invaluable insights into natural phenomena, and as such play an 

important role in science. The intent of this paper is to give a high-level overview of a simple continuous 

dynamical model that offers an insight into a qualitative behavior seldom reported or discussed.  This 

model has no equilibrium or singular points, yet its phase space unveils four distinct topological 

features: a limit cycle, a torus, a sphere and a wormhole. Each of these features results from model 

solutions that can be periodic, quasi-periodic and chaotic, which collectively form a space-time structure 

referred to as the globotoroid. The model generalizes the energy behavior of many processes of 

interest, and consequently is reshaping contemporary systems theory to fit more completely with 

different natural phenomena. Specifically, the globotoroid is the simplest 3-dimensional dynamic model 

that exposes the concept of the wormhole, which embodies an important energy behavior throughout 

our universe. The fields of science that may benefit from this modeling approach are many, including 

physics, cosmology, biology, chemistry, engineering, cognitive sciences, economics, politics, and 

business and finance. This is demonstrated by reviewing some well-known phenomena in natural and 

social sciences. 

  

 

 

INTRODUCTION: 
Over the last century, systems theory has steadily been emerging as the interdisciplinary theory of the 

abstract organization of scientific phenomena. The origin of the theory dates as far back as the early 

1900s with Bogdanov’s Tektology thesis (1,2), which later was refined by the biologist von Bertalanffy 

(3).  Since then, the literature on the subject has exploded with the center stage of this theory being the 

analysis of continuous and discrete dynamical systems. In this paper, the focus will be on continuous 

dynamical systems only.  

By definition, the system is continuous and dynamic if it can be expressed by a set of differential 

equations, also referred to as ordinary differential equations (ODE). This is a set of mathematical 

expressions that relate functions in one or more variables with their derivatives, usually the time 

derivative. The ODE system is symbolically written as 
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    eq. (1) 

where xi , i=1,..,N are variables,  dxi/dt  is the derivative of variable xi w.r.t. time t, f1,..,fN are the defining 

functions, and the integer N is the dimension of space, usually Euclidean space. An ODE system is a 

mathematical equation which defines a point in space that travels with time according to some 

prescribed rule, often determined by reasoning from first principles.  

Throughout the 1960s and 1970s, research in dynamical systems theory was mainly focused on system 

stability, and that is where the concept of equilibrium points becomes useful. The equilibrium points are 

all the points of dimension N≥1 that are solutions to the equations 
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These points are also referred to as singular or steady-state points and their significance is that they are 

associated with topological surfaces known as manifolds that manipulate the system’s stability. 

Depending on these manifolds an equilibrium point may be globally or locally stable or unstable. For 

N≥2, this further implies that the stable and unstable manifolds may reach a balance which can promote 

different types of periodic behaviors surrounding the singularities. With the introduction of the chaos 

theory in the 1980s, this balancing was further fractalized due to the appearance of the strange 

attractors, and chaos emerged as an alternative qualitative behavior. Chaos behavior in continuous 

dynamical systems was first observed as early as 1963 in the Lorenz system (4), but it was not until the 

1980s that the concept was accepted by mainstream science. Since then, chaotic behavior has been 

reported in different dynamical systems with dimension N≥3 (5-9).       

It is not the purpose of this article to go into the details of stability theory, especially since there is a 

great deal of literature on the subject already available, for example (10-13). At this point, however, it 

suffices to remember that the minimal dimension for equilibrium points is N=1; for periodic solutions it 

is N=2; and for chaos N=3.  Clearly, from the dimensionality point of view, the behavior of equilibrium or 

singular points is the most fundamental, implying that the way in which classical systems theory 

organizes energy is governed by these points. For systems where these points are globally (locally) 

stable, the energy dissipates globally (locally) and the points are simply referred to as sinks. In contrast, 

if the points are unstable, then energy expands globally (locally) and the points are referred to as 

sources.  

Furthermore, for periodic or chaotic systems, the two energy behaviors are in balance, and they form 

predictable or unpredictable orbits surrounding singularities. Thus, since contemporary stability theory 
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is based on the existence of equilibrium points, the energy behavior is either locked by these points, or 

by the periodic or chaotic orbits surrounding them. In either case, energy is trapped and has no ability to 

change, which is contrary to its behavior in nature. This energy scenario is being replicated in almost all 

present-day modeling methods of any dimension N≥1. What is missing is the ability for energy to 

“refresh” itself. 

To address this modeling deficiency, we begin by introducing the globotoroid model and its solutions. It 

is shown that the globotoroid is the 3-dimensional Euclidian space object that results from a dynamic 

blend of the globe, or sphere, topology, and the torus topology.  This blend is accomplished through the 

assistance of the slow manifold, which has the natural appearance and characteristics of a wormhole. 

We demonstrate that this system has no singular points, and that the wormhole can liberate energy 

behavior.  

In the second part of the presentation, examples exhibiting globotoroidal behavior in different areas of 

science are presented and discussed. The paper concludes by summarizing the results, and by offering a 

perspective on the future of this novel modeling method.  

RESULTS - 

A) The Globotoroid Model and Its Solutions: 

The globotoroid model is defined by a simple 3-dimensional ODE 
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 ,    eq. (3) 

where x,y and z are variables, t is the time defined, ω=2πfo with fo>0 being the frequency of orbits, 

To=1/fo the orbit  period, and A and B are the stimulus coefficients > 0. The variables are functions of t, 

and they will be referred to as z(t) the growth variable, and x(t) and y(t) the action or orbital variables, 

with the understanding that x(t) is also the host variable.  There exist different forms of eq. (3), and they 

may require renaming of the variables; for our purposes, however, this is the simplest version to 

consider.  

Next, we apply the systems theory approach to evaluate singular solutions. From eq. (2) it follows that 

these solutions must satisfy the expressions  
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which is only possible if x=0, B=A, and y=-zA/ω. The last condition further implies that within the 3-

dimensional Euclidean space there is not only a singular point at x=0, but there is the line L which goes 

through it, and is defined by y=-zA/ω. This line is mathematically referred to as the singular manifold, 

and in reference (14) the complete analysis of this manifold is presented. It is shown that for B=A, the 

line L contains singular solutions which support the nest of concentric spheres. The analysis also shows 

that for B<A, all singularities along the line disappear, and L forms the slow manifold, or the wormhole, 

that deflates the spheroid nest. In this case the wormhole is passive and takes off along the line L to 

infinity. However, for B>A all singularities disappear again, but now L forms the stimulated wormhole 

that drills through the antipodal points of the spheroid nest and forms the globotoroid. This process of 

drilling was recently treated by using topological surgery (15, 16, 17). It is also useful to note that as 

B/A>1 increases, the wormhole opening enlarges, and when B/A->1, the wormhole “shrink wraps” the 

line L. 

The idea of the globotoroidal nest was first introduced in 1992 (18), where it was shown that the 

attracting bead, now the globotoroidal shell, reminiscent of a sphere or globe, is a strange attractor. It 

was further demonstrated that the solutions generating this attractor were “choked” while passing 

through the slow manifold, now the wormhole. The report also reveals that the interior of the strange 

attractor is a nest compactly packed with the concentrically folded spherical and toroidal shells, hence 

the name globotoroid, and that the nest contains a limit cycle core. These results are now illustrated 

more colorfully by solving eq. (3) for the following model parameters: A=0.144, B=0.145 and ω=1. The 

solutions of eq. (3) are obtained by using the Euler method for solving ODE with the integration step 

Δt=0.1, and the initial conditions x0=0.1, y0=-0.17 and z0=0.704. They are periodic and are color-coded in 

Fig. 1A to distinguish between different time segments. The periodic solutions grow with time t and are 

used to create the globotoroid in the 3-dimensional phase space illustrated in Fig. 1B.  In Fig. 2, the 

anatomy of the globotoroid nest is presented according to the color scheme given in Fig. 1A; the 

components of the anatomy collectively constitute the globotoroidal universe. Deep inside the 

globotoroid is a core that contains the unstable limit cycle, Fig. 2A, which with time inflates into the ring 

torus 1, Fig. 2B. We can already identify the presence of the wormhole in the ring torus 2 in Fig. 2C, and 

as the wormhole tightens, the ring opening continues to shrink. The ring torus gradually becomes a horn 

torus, which eventually morphs into a sphere that emerges as a strange attractor Fig. 2F.  
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A) x(t), y(t) and z(t) solutions      B)  Phase space portrait 

Fig.1: The globotoroid solutions. 

The periodic solutions evolving on the strange attractor are next depicted in Fig. 3. They define the 

attractor period Tg, as well as the type of solutions covering the fractal globe. From Fig. 3B it is now 

apparent why z(t) is the growth variable, and why x(t) and y(t) are action, orbital, variables. The last two 

are analogous to wavelet-type solutions that for the present case are activated on the sphere by the 

orbital frequency fo=1/(2π)≈0.16Hz.  Similarly, for the growth variable we let Tg to be the growth period, 

and with it the corresponding frequency of growth fg=1/Tg. Note, in contrast to fo, fg is not constant 

because it changes with time as the globotoroid passes through different stages of its anatomy.  

The presence of fg and fo now explains why the globotoroid contains the phase portraits given in Fig.2. 

The two frequencies can be viewed as frequencies of two harmonic oscillators having circular phase 

portraits Cg and Co, which is precisely what topology requires for the Cartesian product CgXCo, or a torus. 

By inspecting the solutions in Figs. 1 through 3, it is evident that fo>fg, or To<Tg. This further implies that 

we can now calculate the number of orbits solutions exercise while travelling around the geometries in 

Fig. 2. The calculated result is the toroid winding number n=fo/fg=Tg/To, and for the anatomies in Fig. 2 

the following representative values are evaluated: n(white)≈0, n(purple)≈84, n(blue)≈91, n(brown)120, n(green)≈218 

and n(yellow)≈335. The values are representative because n continuously changes with fg. In the case of 

n(yellow), Tg also exhibits indeterminism induced by the fractal nature of the strange attractor. 

These observations are further summarized by providing a more detailed view of the globotoroid 

interior. Fig. 4 illustrates the interior organization of the unstable limit cycle core. The dense green 

region piercing through the core is where the wormhole activity is most intense, and it contains the 

highly energetic yellow solutions. The Poincaré section in Fig. 4c also shows how expanding scrolls 

emerge from the unstable interior core, and how they surround the wormhole. It needs to be noted 
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A) Unstable Limit Cycle                         B)  Ring Torus 1                                   C) Ring Torus 2 

   
          D)   Horn Torus                           E)  Pierced   Spheroids                          F)  Strange Attractor 

Fig. 2:  Typical topologies found in the globotoroidal universe. 

that for different model parameters A, B and ω, the globotoroid can have solutions that are contracting 

with time (18). In this case the interior limit cycle is stable, and the Poincaré section will exhibit 

contracting scrolls. 

 
       A) The strange attractor solutions and period Tg.               B)   Solutions over the attracting globe.  

Fig. 3:  The strange attractor solutions. 
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A) Core Bundle           B) Unstable Limit Cycle             C) Poincaré Section  

Fig. 4:   Organization of the globotoroid core. 

The question now is what happens to solutions initiated in the exterior of the globotoroidal universe? 

These solutions, like the fractal globe solutions, will ultimately have to pass through the wormhole 

where they will be choked, and subsequently will end on the globe attractor. This choking process is a 

very effective way of attracting all the points from the globe exterior.  

It is also important to note that because of the wormhole, the globotoroid solutions are hypersensitive 

to the integration step used in computations. The tighter the wormhole region, the greater the 

sensitivity to the integration step implemented. Inevitably, this sensitivity will choke the solutions, and 

the strange attractor may appear even when the solutions are attracted by the stable limit cycle core 

(18). Moreover, the wormhole presence makes the globotoridal universe an irreversible system. This is 

because when dynamics through the wormhole are reversed, the wormhole characteristic changes. 

Generally, these observations do not apply to the equilibrium-type system, which brings us to the next 

section. 

B) The Wormhole: 
Contrary to the popular opinion that wormholes are some hypothetical openings in space which provide 

passages to other dimensions, the real purpose of a wormhole is to manage the system’s energy. How is 

this achieved? Before we look into this, let’s take a look at the history of the wormhole.  

The origin of this concept dates back to 1935, and it was named after its founders as the Einstein-Rosen 

bridge. This bridge, derived from general relativity, was presented as a tubular connection between 

widely separated exteriors of curved space. In 1957, the bridge was renamed by Misner and Wheeler as 

the wormhole (18). While coining the phrase, the authors observed that a wormhole is a space-time 

structure free of singularity, which together with the curved space hypothesis fits with the globotoroid 

description.  

Fig. 5 illustrates how the yellow periodic solutions in Fig. 1A create the wormhole outlined in green. This 

wormhole is tube-like and connects the widest curved separation on the strange attractor, or the 
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antipodal points on the sphere. In this case, the tubular region is narrow and is represented by a line, 

meaning that the tube opening shrinks around the 1-dimensional manifold L as solutions approach the 

strange attractor. From a practical point of view, this implies that the entire 3-dimensional curved space 

is collapsing and cramming through an almost 1-dimensional geometry, which makes the dynamics of 

solutions hypersensitive and prone to turbulence.  

In nature, these dynamical conditions can generate tremendous energies that may be sustainable by 

some physical systems, but not by biological systems. Luckily for us, not all wormholes behave in this 

manner. In Fig. 6, the strong wormhole effect is relaxed by the torus, which supports much milder 

dynamics that are likely to be more sustainable in biological systems.  

Theoretically, if the system’s resolution were infinite, the radius of the attracting globe would be infinite 

as well, while the wormhole would become the 1-dimensional manifold L. This under any natural 

circumstances is not possible, and the radius of the attracting globe in nature must remain finite, 

implying that the wormhole must be tube-like. 

 

 

 

Fig. 5:   The strange attractor with wormhole displayed in green. 

 

With the 1-dimensional manifold L establishing the wormhole path, the question now is where does the 

wormhole begin and where does it end? It was already mentioned that the stimulus coefficients A and B 

regulate the singular manifold behavior responsible for creating the wormhole. For the case B<A, the 
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wormhole is passive and it has no finite ending. However, for B>A, the wormhole stimulates a 

globotoroid by creating the entry and the exit points, which are color coded respectively in Fig. 6 in black  

 

Fig. 6:   The wormhole resolutions indicating the locations of the black and white holes. 

and white. The color scheme was selected deliberately to suggest the locations of the black and white 

holes. These two holes play an important energy role and are also depicted in the time domain in Fig. 

3B. The black hole acts like an attracting singularity, or a sink, that draws in all of the system’s energy. 

However, since the black hole is not a singularity, but rather an entry point into the wormhole, this 

energy is redirected to the white hole. While passing through the wormhole, the energy is squeezed out 

of the globotoroid, with the degree of squeezing determined by the winding number n.  This energy 

does not dissipate like in the equilibrium processes; instead it aggregates at the white hole exit, which 

now serves as a source that injects energy back into the fatigued system. Through this cycling, the 

system re-energizes and continues to function. In reference (19), the energy cycling was referred to as 

the explosive route to chaos; however, at that time relevance of wormholes was not fully understood.  

It is also interesting to comment about the relationship between the growth phase and the wormhole 

phase. From Fig. 3B it follows that growth is initiated with the inception of the white hole and ends with 

the entry into the black hole. Once the black hole is entered, the long transition through the wormhole 

begins, see Fig. 3A. For this particular system, the ratio of the travelling time through the wormhole to 

the growth time is approximately 22. In other words, aggregating energy to revitalize the globotoroid 

appears to be a longer process than using up the energy for growth. This ratio is significantly reduced 

when the system resolves itself at the level of torus like in Fig. 6, but at the same time the solutions are 

not as energetic. For more on wormholes take a look at  https://youtu.be/5zIfn5zgHqE. 

 

 

https://youtu.be/5zIfn5zgHqE
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EXPLORING THE GLOBOTOROIDAL UNIVERSE IN SCIENCE: 
More can be said about the theory of globotoroids, but for the purpose of this white paper we have 

covered enough ground to explore the present results in phenomena occurring in nature. Examples of 

qualitative behaviors encountered by the globotoroidal signatures can cover a broad range of natural 

and social processes; the model is suitable for processes with long and short time durations.  As biology 

seems to be the science hub for systems theory, we begin here. 

In biology there is an overabundance of examples of wormholes. The primary reason for this is that 

biological processes are continuously reviving without exhibiting any evidences of singular solutions. In 

fact, all living things resent the state of equilibrium, and speaking thermodynamically, they prefer far-

from-equilibrium dynamics. Let’s take a look at some examples.  

The population behavior between two biological species in competition is commonly modeled by the 

Lotka-Volterra model (21).  For instance, the model can capture prey-predator relations between foxes 

and rabbits. In the 2-dimensional phase space, this model typically depicts a singularity surrounded by 

periodic solutions that describe the population growth of the two species.  

To study the population behavior among three or more species, the same Lotka-Volterra model 

interactions are replicated in higher dimensions. The resulting model solutions remain very similar to 

the 2-dimensional case, but now the added possibility of chaotic solutions also exists (22). Such pattern 

of solutions will not change until the order of interactions among species increases and wipes out 

singularities in the interaction phase space. This was demonstrated in (19), where a stimulated 

wormhole was introduced into the Lotka-Volterra model for three species in competition.  

Globotoroids can model different types of biological growth processes, including the life cycles that 

include a dormant phase. In the latter case, a dormant state corresponds to the passive wormhole, 

which when stimulated will activate a globotoroid. For instance, the notion that DNA is a wormhole is 

not entirely new (23), and when appropriately stimulated will pack energy by growing a protein clamp in 

the shape of a torus. Take a look at https://youtu.be/y4aAtUNwPMU. 

As a follow up to biology, let’s look at some examples in neuroscience. Most brain functions exhibit 

wormhole-type behavior; how we learn, memorize and recall information is often accomplished through 

a wormhole-type activity. Also, the state of sleep, which repeatedly reenergizes us, may also be 

considered as a passage through a wormhole.  

Also, globotoroids support two types of duality relations. The wormhole conflict of the black and white 

holes is the Type 1 duality, whereas the Type 2 duality is responsible for intensifying and relaxing this 

conflict. The Type 2 duality reflects dynamics of anatomy in Fig. 2, and for this reason is also referred to 

as the inflation-deflation conflict. Here the limit-cycle orbit corresponds to the deflated state, while the 

strange attractor is the inflation limit. Clearly both duality relations coexist; the tighter the Type 1 

conflict is, the more inflated the Type 2 conflict becomes, and vice versa. The two duality relations 

appear frequently in philosophy. The Type 1 duality represents a wormhole that connects a pair of 

https://youtu.be/y4aAtUNwPMU
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philosophical opposites, while the Type 2 intensifies or relaxes the pair’s relation. This is quite evident in 

teachings of Taoism (24-26), which are very much influenced by the concept of Yin and Yang. 

The subject of wormholes originates from cosmology and physics, where it is still a topic of great 

interest. Many processes, on all scales of the universe, seem to exhibit globotoroid-type behavior. Some 

of these phenomena are presently hypothesized in the literature, and some are not. We will cover both.  

Let’s begin with possibly the largest wormhole known to us.   

Until recently, cosmology treated the black holes in our universe as if they were massive singularities 

that devour stars and galaxies. Recently, however, a theory is proposed which suggests that black holes 

may turn into white holes that explosively pour all the material the black holes swallowed back into 

space (26). If this is the case, then there is a connection between white and black holes: the wormhole. 

This wormhole would be the giant that reenergizes our universe.   

Another interesting observation about celestial objects is that most of them exhibit some form of 

globotoroidal signature. Galaxies are spirals, and stars have spherical appearances. Even a quasar and a 

gamma-ray burst exhibit globotoroidal characteristics illustrated in Fig. 4. In both cases a huge amount 

of energy is packaged and released through a wormhole-type structure referred to as a ray. 

The phenomenon closer to home, and very important to us, is the geomagnetic field. This is the 

globotoroid that shields us from the solar wind and cosmic rays. The Earth’s magnetic field is generated 

by the currents in Earth’s core that form a wormhole which energizes the protective globotoroid-type 

shield. This behavior also occurs on a smaller scale when a current loop becomes energized. In this case, 

the magnetic field creates a structure similar to that depicted in Fig. 3. Here, the limit cycle core is 

generated by the current loop, and the magnetic wormhole runs by convention from the North to the 

South pole. These poles correspond to the black and white holes shown in Fig. 6, and they define the 

dualistic nature of electromagnetism, with both Type 1 and 2 dualities being clearly evident.    

When we get to Earth, there are two types of weather events that exhibit the globotoroidal behavior: 

tornadoes and hurricanes, or cyclones. Both are generally caused by the atmospheric instability that 

occurs when the cold air in the upper atmosphere meets the moist and warm air in the lower 

atmosphere. The fuel for tornadoes is usually found over the land; however, tornadoes can also be 

spotted over a body of water in which case they are called waterspouts. In either case, the atmospheric 

conditions pack a significant amount of energy in the form of a funnel cloud, which is a wormhole that 

becomes destructive when it touches the ground or the water surface. In contrast, hurricanes are fueled 

by an ocean, and they are characterized by the eye and the eyewall at the center of the storm. The eye, 

which is a low barometric pressure wormhole with light winds and clear skies, packs a large amount of 

energy into the eyewall where the greatest wind speeds occur in hurricanes. In both of these events, the 

Type 1 duality is visibly present, while the Type 2 is harder to detect. 

A similar behavior occurs on a much smaller scale in the physical phenomenon known as the Rayleigh–

Bénard convection, which exists when a fluid is heated from below (28). The wormhole packs heat from 

below and blends it with a colder fluid at the top. This is especially visible in a low Prandtl number 
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Rayleigh–Bénard convection, where a thin layer of fluid exposes scrolls called the spiral defect chaos. 

These scrolls are very similar to the scrolls observed in the Poincaré sections derived from globotoroids. 

Moreover, the 3-dimensional simulations of the Rayleigh–Bénard cell further expose the presence of the 

globotorid-type structure (29). Similar scroll structures are also visible in a nonlinear chemical oscillator 

known as the Belousov-Zhabotinsky reaction (30, 31), and for globotoroids this has been previously 

reported (18, 20).  

In fluid dynamics, instances of globotoroidal behavior are also plentiful. An example given by the 

swirling flows with vortex breakdown (32) clearly shows evidence of the globotoroidal signatures. Also, 

the flow known as Taylor–Couette (33) deserves attention. This flow occurs when a viscous fluid is 

confined in the gap between two rotating cylinders; usually the outer cylinder is stationary while the 

inner cylinder rotates. When observed through the outside cylinder wall, this flow at low frequency of 

rotation is stable and exhibits a uniform fluid column, or the laminar Couette flow. This implies that the 

energy delivered by the rotating inner cylinder is uniformly distributed along the column.  Now as the 

frequency of rotation increases, the flow along the column forms stacked toroid-type vortices, or the 

Taylor vortices. This is an indication that energy is no longer uniformly distributed, and the Taylor 

vortices form distinct packets of energy along the liquid column. In the space of the globotoroidal 

anatomy, these observations correspond to the deflated core when the flow is laminar, while the Taylor 

vortices correspond to the inflated anatomy states. In the latter case, each excursion around any 

member of the inflated anatomies corresponds to one Taylor vortex in the column, or one energy 

packet. These concepts were clearly exposed by Mullin and Price (34), who used empirical data to create 

a globotoroid-type attractor that shows the Type 1 duality, or the wormhole. Thus, by regulating the 

frequency of cylinder rotation, the inflation-deflation duality is invoked within the flow, while the 

wormhole is responsible for packing energy into the Taylor vortices.   

Moreover, there is probably not a simpler model that captures the essential features of quantum 

mechanics than the globotoroid model given in eq. (3). We explore these observations by connecting 

some basic quantum mechanics concepts with the globotoroid properties.  

As mentioned, the model offers two duality features that also happen to be the backbone of quantum 

mechanics. To begin, recall that Louis de Broglie postulated in his 1924 doctorate thesis that matter has 

a wave nature (35). From this premise, the wave particle duality concept emerged, which here is 

analogous to the inflation-deflation duality idea. To see this, let λo be the wave wavelength and λg be the 

wavelength that defines the periodicity of energy packets. Next, define the winding number as n= λg/ λo 

and use the wave frequency relation f=c/ λ, where c is the speed of light, to set the globotoroid winding 

number in terms of frequencies. Then by keeping λo constant and n small, the energy states reside inside 

the globotoroid core, where the limit cycle represents the pure wave state. However, as λg increases so 

does n, and the energy squeezed out of the wave inflates the anatomy of the globotoroid, or particles, 

for example photons. Now, as λg is the changing wavelength, while both the wave and the particle states 

remain defined by the same wavelength λo, or the orbital frequency fo, then the de Broglie hypothesis is 

satisfied.  Finally, it is up to the wormhole, or the Type 1 duality, to determine if the energy packed 

deflates or inflates the particles.  
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It is also interesting to observe that the energy packets resulting from solutions of the globotoroid 

equation are, in quantum mechanics, analogous to the wave packets obtained from solutions to the 

Schrodinger wave equation. This further implies that both the inflation-deflation and the wormhole 

dualities are present within the domain of Schrodinger’s wave functions. The evidence of this is clearly 

visible in the 3-dimensional visualizations of the hydrogen atom wave functions (35). The similar 

observations also apply to the theory of particles that include gravity, or the string theory, from where 

the concept of the wormhole originates (19), and which today is slowly emerging as the theory of 

everything (37-39). The interesting takeaway from all this is that a simple ODE is capable of modeling 

phenomena that are otherwise modeled by complex partial differential equations. In some instances the 

present model may be more useful, because it allows us to be intimate with the dynamics of these 

phenomena. 

The final topic covered is that of social sciences. Ordinarily when we think of dynamical modeling 

applications in social sciences, we do not find many success stories. Sciences like economics, politics, 

business and finance seem to be isolated from the world of dynamical modeling and are surrendered to 

the world of statistics, algebra and geometry (40). The primary reasons for this are that social science 

processes, like biological processes, are not equilibrium-type systems and, in addition, they almost 

always exhibit a lack of understanding of the process time scales, as well as a lack of meaningful 

observations or data. Thus, it is not surprising that the dynamic models which made inroads in social 

sciences came from biology. For instance, the Loka-Volterra model was applied in economics by Richard 

Goodwin in the 1960s (41, 42), and ever since, the prey-predator paradigm has been used in social 

sciences with moderate successes. As stated earlier, one of the limitations of this model is that it does 

not include higher-order interactions. This was recently also observed by Jakimowicz (43), who 

commented that dynamic models utilizing the wormhole concept are likely to be beneficial in 

economics. The observation seems to be further supported by the idea of the economic black hole, 

which has been slowly emerging in business literature for the past two decades (44). These remarks and 

trends can now be explored further by using the globotoroid model. 

Additionally, when social sciences data is available, the proposed model can also be applied as a tool for 

data analysis. This is because the collected data in social sciences frequently exhibits growth patterns, 

which is particularly true of business and financial data. Such data can be introduced into the model by 

assigning them to the growth variable z(t), and the rest is up to a modeler, or analyst, to figure the 

coefficients in eq. (3). For example, if we consider the market data provided by the S&P 500 Index as a 

growth curve, then one can obtain the globotoroid-like representation illustrated in Fig. 7. The raw 

market data in Fig. 7A is color-coded for clarity of date stamps imbedded in Fig. 7B. As we see, the data 

corresponding to the orange, blue and red date stamps are wrapped around a growth sphere, while the 

yellow and green data are forming a wormhole. In the model, the coefficient ω is selected so that one 

orbit corresponds to one year of market activity, while A regulates the wormhole opening. In Fig. 7C, the 

model was slightly modified to produce orbits that correspond to one month of market activity, and 

with it expose details of the wormhole structure with more clarity.  Now it is up to business or financial 

analysts to interpret the meaning of the solutions. Take a look at https://youtu.be/gbPaG9AHZfg. 

 

https://youtu.be/gbPaG9AHZfg
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    A)   Raw Market Data           B)   Yearly Orbits               C) Monthly Orbits 

Fig. 7:     The globotoroid model for S&P 500 Index data with  
             model parameters ω=25, A=2.25 and Δt=0.001.   

  

 

CONCLUSIONS: 
A simple 3-dimensional ODE model is used to create a blend between the toroid and the globe 

topologies, here referred to as the globotoroid. It is revealed how this 3-dimensional periodic structure 

is free from equilibrium points and, instead, supports a qualitative behavior known as the wormhole. 

This qualitative behavior keeps the blended topologies together by continuously re-energizing the 

compactly packed globotoroid nest. In the past, these types of dynamic models were unknown. These 

models generally exhibit behaviors that are more natural and useful than the behaviors found in the 

equilibrium type models, even in the instances when the dynamics considered are far-from-equilibrium.   

With the introduction of wormholes into systems theory, scientists can now explore dynamics within the 

framework of a complete energy cycling process, which happens to be one of the most fundamental 

properties of our universe.  

Although the globotoroid solutions are governed by a simple ODE, their interpretations are far reaching. 

This was demonstrated by providing and discussing examples from different scientific disciplines. Being 

in its infancy, the globotoroid model offers a variety of challenges that should be of interest to both 

theorists and practitioners.  
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SUPLEMENTARY MATERIALS: 

Additional information with 3-dimensional animations of globotoroids are presented on the 

website;  http://www.globotoroid.com 
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