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Abstract

I sketch roughly how an Alcubierre drive could work, by examining exotic geometries
consisting of soliton solutions to the dynamics of space filling curves. I also briefly
consider how remote sensing might work for obstacle avoidance concerning a craft

travelling through space via a ’wormhole wave’. Finally I look into how one might adopt
remote sensing ideas to build intrasolar wormhole networks, as well as extrasolar jump

gates.

1 Forward

1.1 Summary

Heuristically, the general idea of the argument is as follows: consider the classical
notion of a wormhole connecting two timelike volumes of a Lorentzian manifold, A
and B. This can be viewed naively as a tube diffeomorphic to the interval product
a compact subset of our manifold M, ie I x M, joining A to B surgered at both ends
of the tube. In other words, we can sort of ’fold over’ M so that we have a tube
connecting A and B, which may be at some considerable distance from each other.
This is the classical view of a wormhole.
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Now, consider letting A approach B, so that the distance becomes smaller and
smaller. Suppose further that the distance becomes so small that A intersect B is
non zero. Suppose even further that the distance between A and B is so small that
A and B are the same almost everywhere except on a set of measure zero, but are
still joined by a tube diffeomorphic to I x M. Then let the length of the tube become
shorter and shorter, so that it has length 2δ, and take the limit δ → 0, so that these
sets are essentially connected by a wormhole bridge of infinitesimal length.
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This may seem like a silly idea, but if say we have an object that sits in between
A and B and external to real space, by causing it to sit within the infinitesimal
tube connecting A and B, we can then ask the question as to whether it would
be possible for this lift out of real space to be able to be propagated at the ends
surgered onto real space at A and B, through the solution of some sensible analogue
of a soliton solution to an integrable equation, and whether the speed limit of this
solution would not be subject to the same cap as the solutions to propagation of the
same object were it in ordinary space.
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In order to construct the machinery in order to consider this in a mathematical
sense, we need a few objects.

Suppose (M,σ) is a standard Lorentzian manifold. There are actions on M by
Aut(M), the space of diffeomorphisms M →M that act locally on M as ’automor-
phisms’. There are local coordinates for Aut(M) realised as fij in function space,
and these can be characterised by an 8-tensor λ, which can be built out of three
exotic extensions of M by the operators ∧, ?, and ◦ that act on statistical distribu-
tions corresponding to pre-geometric analogues of Lorentzian manifolds per [Go1],
[Go2].

There is a further lift of Aut(M), where Aut(2)(M) acts on Aut(M) on the left
and the right. Similarly, there are operators ∧(2),∧, ?, ◦, ◦(2) that act on 3-tuples of
statistical distributions, which form a natural 2256 dimensional tensor corresponding
to the first jet bundle for M .

This is, however, a bit of a simplification, due to cybernetic considerations. We
also need to consider 3-tensors as well.

For intuition, the action of AutAut(M) on the left of Aut(M) describes a gluing
of M to the infinitesimal tube diffeomorphic to Aut(M) on one end, and the action
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of AutAut(M) on the right of Aut(M) describes a gluing of Aut(M) to M on the
other. These actions are natural constructs relating to matrix multiplication by the
first jet bundle in local coordinates either on the left or on the right.

Soliton solutions are realised by solving an integrable PDE created by aug-
menting this construction with the 3-tensor associated to the first order cybernetic
extension of this exotic geometry.

2 Solitons in exotic geometries

2.1 Some Background

We consider for cybernetics a 3-tensor σ defined over a manifold M , such that for
vectors u, v, w, σ(u, v, w) = 〈u, v, w〉p is smooth over p ∈M , and trilinear in u, v, w.

Define Γαijk := 〈∂αEi, Ej, Ek〉, where {Ei} form a basis for the tangent bundle of
M .

Define Inv(σ) := σijkσlmnΓilabΓjmbcΓknca as the information invariant associated
to σ, where

I :=
∫
M
f |∂lnf |3σdp :=

∫
M
Inv(σ(p))dp

is the information. Note that Inv(σ) = 0 when I is critical, which is a third
order PDE.

For the dynamics of space filling curves, we consider the following construction:

Per [Go2], we are interested in 3-tuples of signal functions, f, g, and h, and
operators on same ?, ∧, ◦. We are also interested in the multiplicative tetration
(∧(2)) and compositional tetration (◦(2)) operators.

Here for instance we define say ?∧(f ; g;h) := f gh, where prototypically f, g, and
h could be Dirac delta functions of the form f = δ(σ(m)− a), g = δ(τ(m)− b), h =
δ(γ(m)− c) for different metrics σ, τ , and γ over a manifold M .

Here also by tetration I mean the operator ∧(2) such that

∧(2)(f ; g) := f ∧ · · · ∧ f

where g copies of the exponentiation operator ∧ are taken. Note that we are
primarily interested in the case where g ∈ [0, 1], ie, where g is decidedly not a natural
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number, so evidently the appropriate generalisation of the above is understood to
be being used (in an analogous manner to the relationship between the Gamma
function Γ(n+ 1) and the factorial n!).

Similarly, by compositional tetration, I mean the operator ◦(2) such that

◦(2)(f ; g) := f ◦ · · · ◦ f

where again g copies of the composition operator ◦ are taken.

Consider now if a base geometry, ie a Dirac Delta, takes an eight tensor Λ as
input; then there are 20 possible ways to build structures involving 3 signal functions
using the 5 duple operators, and 3 additional ways to build structures involving 2
signal functions (a signal function is a distribution of the form f = δ(Λ(m) − a)),
using the first order duple operators ◦, ? and ∧, and one geometry for the base (a
singleton signal function).

This leads to dimension 24×8, or 192. 192 can be lifted to 256 dimensions if we
realise that we have natural operators TM →α TM such that the natural degrees
of freedom are the ∧, ? and ◦ operators, so that there are an additional 43 or 64
dimensions, making 256 in total.

But note that we did not take into account double composition in Aut(JM),
where JM is the first Jet bundle, ie JM →φ JM →ψ JM . Then we can act either
on the ”left” or the ”right” of AutAut(JM). But this is more of a consideration for
the theory concerning soliton solutions of space filling curves.

Therefore we are interested in finding a tensor invariant for the dynamics of
space filling curves of order 28.

We would like to write this in double index notation in which Christoffel symbols
(structural coefficients) can be described, and from this basis an information built.

Note that for a 256-tensor (44 tensor) we can adopt the notation ΛBijkl
where

i, j, k, l can take values from 1 to 4, and we consider all permutations of the Bijkl to
characterise Λ, so ie. B1111B1112B1113 · · ·B1121B1122 · · ·B4444. Then in this conven-
tion, each Bijkl is an indice of Λ, so we are doubly indexing.

Note equivalently we can adopt the notation ΛKijLkl
(m,n) where K,L are ma-

trices, and define this as a tensor over the topological product of M with another
space N .

For Christoffel symbols, we consider just as Λ = ΛAB, then

Γ
K

IJ(m,n) := 〈∇KXI , XJ〉Λ(m,n)
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where the {XI(m,n)} are a basis for a local chart of the Jet Bundle associated
to M ×N , (J(M ×N)), and so therefore are 4 by 4 matrices and ∇WV is defined
as:

∇WV := Πi∇wi
V

Note due to dimension criticality (see [Go1]) this will be generically dimension
4.

Then we have a natural geometric invariant

R(Λ)(m,n) = −ΛIJΓCIBΓBJC

If we consider the Cramer-Rao inequality for the information associated to the
first order dynamics of space-filling curves:

I(Λ) :=
∫
M,N

∫
A
f(m,n, a)|∂lnf(m,n, a)|2dmda

where f(m, a) = δ(Λ(m,n)− a), then I claim this is equivalent to

I(Λ) =
∫
M,N

RΛ(m,n)dmdn

For the information to be critical then, RΛ = 0, and this is an 8th order PDE
over M ×N .

So we have described information theories of space filling curves, and information
theories for cybernetics. To put these together, observe that there are four choices
of gluing of N to M , so we have 4 different information theories for space filling
curves. These can roughly be constructed by choice of the dual metric in M and
or N , creating four permutations, which will influence the associated geometric
invariants to said theory.

In Riemannian geometry, the metric dual is constructed via

σ⊥ij st 〈∇iXj, Xk〉σ = 〈Xj,∇iXk〉σ⊥
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Similarly, we have four different ways the connection can operate:

ΓABC = 〈∇AB,C〉Λ
= 〈B,∇AC〉Λ⊥,Id

= 〈∇ATB,C〉ΛId,⊥

= 〈B,∇ATC〉Λ⊥,⊥

These four permutations give rise to four different information theories for space
filling curves, corresponding to the action of Z2×Z2 on Λ. The information invariants
associated to these theories can be represented as coordinates:

(RΛ(0,0) , RΛ(0,1) , RΛ(1,0) , RΛ(1,1))

and give arise generically to a Lorentzian geometry M defined over the space of
these theories.

Applying the cybernetic considerations at the start of this section, we can build
a meta-functional over this space, or a theory of theories - an information of infor-
mation; hence my original coining of the phrase cybernetics.

Then we naturally have a geometric invariant

Inv(RΛ)

where by abuse of notation I am now referring to RΛ as

RΛ := (RΛ(0,0) , RΛ(0,1) , RΛ(1,0) , RΛ(1,1))

Then soliton solutions of space filling curves that concern us take the form
Inv(RΛ(m,n)) = 0, which is an 11th order PDE. Further justification for this con-
clusion will be given in a later section, on the connection between solitons and
cybernetics.
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2.2 Ultradrive and higher order considerations

These considerations can of course be generalised to the case where we consider
second order cybernetics, or the information of information of information. In this
case, we are not just considering theories as points in space, but theories of theories
as coordinates.

An example of a higher order gluing:

A second example of a higher order gluing:
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With such considerations, we are interested in roughly Λ = ΛBIJKL
, where

I, J,K, L are 2 by 2 matrices which themselves are indexed, with

B11111111111111111111B11111111111111121111B11111111111111131111 · · ·
B11211112111121111211B11211112111121121211B11211112111121131211 · · ·
B11111111112111111111B11111111112111121111 · · ·B44444444444444444444

a representation of the indices of Λ.

Then there are roughly 4× 4× 4× 4× 4× 4× 4× 4 degrees of freedom here, or
216.

Equivalently, we can represent Λ = Λαβ where α = αAB, β = βCD, as a triply
indexed tensor.

Furthermore, there are an additional 8 degrees of freedom (another eight indices)
which encode the information relating to a ’jump’ from the deepest level of the tree
to the top level, i.e. there is a group action of Z2 × Z2 × Z2 × Z2 on this structure,
which establishes an information connection ’on’ or ’off’ for the xi, i = 0, 1, 2, 3 in
ultraspace P , and ordinary space M . The intuition here is that this comes down to
a choice of the gluing above, whether it is direct or indirect.

Consequently, if we define this set of group actions as G, then Λ = Λ
(G)
αβ , which

is a 219 tensor.

And, proceeding by analogy:

Γ
γ,(G)
αβ (m,n, p) := 〈∇γXα, Xβ〉Λ(G)(m,n,p)

where Xα is an element of the second jet bundle over M ×N × P , ie J (2)(M ×
N × P ). The order of these symbols should be an eighth order derivative.

Then continuing to push the analogy, we have a natural geometric invariant

R(Λ(G))(m,n) = −Λ
(G)
αβ ΓδαγΓ

γ
βδ

These invariants form an 8-vector over G.

Note however that a more natural geometric invariant comes via resolution over
all elements of G. This leads us to the formulation of a cybernetic invariant over G:

R̂(Λ) = Inv(1) ◦R(Λ(G))
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where Inv(1) is the natural cybernetic invariant from before, but defined over
N × P , representing how to glue ultraspace to hyperspace.

If the above is 0, with information criticality, then we must needs solve a 19th or-
der PDE, as we have 16 from the information invariants, and 3 from the composition
with 1st order cybernetics.

But to build a full theory of ultradrive requires that we consider theories of
theories, or 2nd order cybernetics, as there are multiple choices of gluings of M to
N , N to P , and P to M .

Ultimately we must needs find an invariant Inv(2) such that over the four cy-
bernetic theories Inv(1) ◦R(Λ(G)(H)), where H = Z2 × Z2 represents the choices as
to how to glue N to M (hyperspace to ordinary space). By transitivity this implies
by implication we are also considering how to glue ultraspace to ordinary space if
need be.

Note that we need to consider too the 1-categorical lift of the first meta-cybernetic
theory, so instead now of Inv(1) being 3rd order it is 10th. This is associated with
a shift of concern for said cybernetic construction away from ordinary space M to
the function space of M ×N , and from a 3-tensor to a 35 tensor.

More prosaically, if we adopt the notation that for function space for 2-tensor
constructions, if Eij forms a basis for the function space, then generically we have
four tuples of these being considered in tandom, and therefore need a tensor with
23 indices, we have

Λi1i2i3i4j1j2j3j4Ei1j1Ei2j2Ei3j3Ei4j4

and so we can represent Λ as ΛIJ , where I, J are 2 by 2 matrices.

Similarly, for αijkEiEjEk for 0-categoric 3-tensors, we can instead consider

ΩIABJCDKEF

for natural tensor constructions over function space associated to cybernetics,
where A,B,C,D,E, F are 3 by 3 matrices, and I, J,K are likewise 3 by 3 matrices
indexed by the prior 3 by 3 matrices (where of course we are adopting the convention
that we are ’multiplying’ these indices together in said object). Then we have a
tensor construction of order 35, associated to the relevant constructions concerning
cybernetic tensors defined on function space.

Here now Inv(1) for Ω is constructed in the following way:
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Γ
KPQLRS

IABJCDKEF
:= 〈∇KI,∇LJ,K〉Ω

There is a natural invariant

Inv(1)(Ω) :=
ΩI1I2I3ΩJ1J2J3ΩK1K2K3ΩL1L2L3ΩM1M2M3ΓI1I2I3A1A2ΓJ1J2J3A3A4ΓK1K2K3A5A1ΓL1L2L3A2A3ΓM1M2M3A4A5

which is 10th order, as alluded to above.

Then we have a 4-vector of meta-information theories, which naturally allows
us to compute by abuse of notation

R̂(Λ) = Inv(2) ◦ Inv(1) ◦R(Λ(G,H))

as a meta-cybernetic invariant defining the dynamics of ultradrive, where

Inv
(2)
τ (m) :=

τi1i2i3i4i5τj1j2j3j4j5τk1k2k3k4k5Γi1j1k1abcdΓi2j2k2efghΓi3j3k3ijabΓi4j4k5cegiΓi5j5k5dfhj

is a 5th order invariant for a 5-tensor τ .

Consequently in general we are interested in solving a 31st order PDE over a 219

tensor coupled with a 35-tensor for cybernetics, and a 5-tensor for meta-cybernetics.

3 Remote sensing

Much of this theory of course is moot if one is driving blind. It is interesting to
ask how one would be able to develop remote sensing capability in order to detect
matter at significant distance from the soliton. In this section we ponder the answer
to this question.

Note that, just as it should be theoretically possible to intuit what is nearby on
an indented cloth by measuring the curvature of the cloth, it should be possible to
measure what is nearby in space by measuring the curvature of space at a particular
location. This gives us an indirect view of data at significant remove to us, and
potentially much faster. Note though that we are interested in moving objects.
A moving object will alter the geometry and emit a signal, or gravitational wave,
indicating how the curvature has changed.
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The speed at which signals propagate through a Lorentzian manifold of course
is limited, but with more exotic geometric models of space, such as described in [N],
a signal will move faster.

Consequently a signal of such type will be measurable via a 3-tensor model
of space, whereby the intuition is that one is interested in two points (p, q), and
the curvature at p exerted by q, wherein one is considering the first feedback of
the force at q by p, hence interacting again with p from q. But rather than being
a perturbative correction, as in Feynmann’s QED or perturbation theory (see eg
[Ab]), we are considering rather a higher order resonance. This is characterised by
a 3-tensor.

Then we consider said 3-tensor σ to be defined over M × N × P , such that
σ(m,n, p) indicates the tensor interaction between m and n at p, and where

Γαijk := 〈∂αEi, Ej, Ek〉

where {Ei} form a basis for the tangent bundle of M ×N × P .

Just as before, we can define Inv(σ) := σijkσlmnΓilabΓjmbcΓknca as the informa-
tion invariant associated to σ, where

I :=
∫
M
f |∂lnf |3σdp :=

∫
M
Inv(σ(p))dp

is the information. Again as before, note that Inv(σ) = 0 when I is critical,
which is a third order PDE.

So this is good for remote sensing in ordinary space. However, we are interested
in solitons, so it is natural to consider solitons moving relative to one another.

Then we are interested in a 5-tensor τ defined over (M1×N1)× (M2×N2)×P ,
such that τ(m1, n1,m2, n2, p) is the signal at p of the coordinates (mi, ni) of two
solitons moving relative to one another.

We can then build Christoffel symbols, information invariants, and determine
dynamics in a fairly logical and obvious way. This time the invariant will take the
form

Inv(τ) := τi1i2i3i4i5τj1j2j3j4j5τk1k2k3k4k5Γi1j1k1abcdΓi2j2k2efghΓi3j3k3ijabΓi4j4k5cegiΓi5j5k5dfhj

and it will form a 10th order PDE as a geometric invariant arising from a natural
information functional.

Christoffel symbols Γ can take the form
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Γpqijklm = 〈∇CpqAij, wk, Blm〉τ

Note however that there are different theories one can construct, where the
connection is applied to different components of the inner product.

In particular, we might consider

Γpqijklm = 〈∇CA,w,B〉τ
= 〈A,∇Cw,B〉τac
= 〈A,w,∇CB〉τc2
= 〈∇CTA,w,B〉τb
= 〈A,∇CTw,B〉τabc
= 〈A,w,∇CTB〉τc2b

(1)

where S3 = {a, b, c|a2 = b2 = c3 = 1} is the symmetric group of order 3, and
∇Cw, the action of a component of an element in the jet bundle on an object in a
tangent bundle, is computed in a natural way.

Here we follow the convention that a is called whenever a tangent bundle rather
than the first jet bundle is used, c is called according to the position in the tuple
that the connection is applied, and b is called whenever a jet bundle rather than the
first jet bundle is used.

Then τS3 form six different geometries that can be used for remote sensing, with
six different types of dynamics.

Interestingly, this setup is totally equivalent to what is required to consider
building an intrasolar wormhole network, or alternatively understand the dynamics
of an elementary ’jump’ drive. To consider such, we build an aperture at a particular
point and attach an infinitesimal wormhole onto it. Then we create an umbilical
on that, and sense a region generically at some distance perhaps at maximal stable
distance ∼

√
cln(c) away, say, where c is a light year, so of the order of 16 million

kilometres (say). We attach the free end of this umbilical to a target aperture. Then
for travel from destination to target, one injects through the initial aperture, and
ejects at the target aperture, rather like in the following diagram:
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Note that the above considerations only apply to vehicles travelling in a first
order warp. For a second order warp, one must needs consider more complex dy-
namics. I will not discuss such here in detail, but will indicate briefly what this
would entail.

Briefly, we are interested in some form of 7-tensor τ defined over (M1×N1×P1)×
(M2×N2×P2)×(M3×N3×P3)×(M4×N4×P4)×(M5×N5)×(M6×N6)×M7, such
that τ(m1,m2, · · · ,m7, n1, n2, · · · , n6, p1, p2, p3, p4) is the signal at m7 of two solitons
(m5, n5) and (m6, n6) moving relative to each other, each in turn influenced relative
to the coordinates (m1, n1, p1), (m2, n2, p2) and (m3, n3, p3), (m4, n4, p4) respectively
of two meta-solitons moving relative to one another.

Christoffel symbols Γ take the form

ΓIJijklmTRSUQV PW 〈∇γIJαTR, εQV , Aij, wk, Blm, δPW , βSU〉τ
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where A,B ∈ J (1)(M ×N), α, β, γ, δ, ε ∈ J (2)(M ×N × P ), w ∈ TM .

Note that as before there are different theories one can construct. These are
generated by S7 acting on the above construct in an analogous way to before. These
give arise to different geometries that can be used for remote sensing.

For analogous aperture distance limitations / calculations, one might anticipate
being able to extend an aperture across distances of order cln(c) (an additional
factor of

√
cln(c)), which might render such practical to span interstellar distances

in a nearby neighbourhood (maybe up to 30 to 40 light years). Such might well
necessitate constructing ’jump gates’ at particular exit points in a solar system, for
craft to use to bootstrap the jump, as the energies required could be quite large.

For reference I have provided a couple of illustrations qualitatively illustrat-
ing roughly how the 7-tensor (3-cybernetic / ’meta-meta-cybernetic theory’) above
roughly corresponds to jump gate linkages. In such way, the following might go
some way further to providing a more heuristic understanding of what is required
to manipulate jump gate physics.
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In order of complexity, we expect engineering challenge to ramp up in the fol-
lowing sequence:

• First order soliton / ’warp’ drive

• Intrasolar wormhole networks

• Second order soliton / ’warp’ drive

• Interstellar wormhole networks

For the first two, one would likely need at least quantum computers for control
circuitry. For the latter two, one would likely need tetra-computers [Go4]. Should
such not be sufficient, one might need tetra-computers for the first two, and penta-
computers for the latter pair 1.

1Here a penta-computer is a device with three levels of stratification of its quantum states,
wherein computational capacity grows as the pentation of 2 with respect to the number of atomic
components or gates.
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4 Endnotes

4.1 Digression on number sequences

If p : N → N is the prime number sequence, then

p(1) = 2

p(2) = ◦(p; 2)(1) = ◦(p; ◦(p; 1)) = ◦(2)(p; 2) = 3

p(3) = ◦(p; 3)(1) = ◦(p; ◦(p; ◦(p; 1))) = ◦(2)(p; 3) = 5

p(5) = ◦(p; 5)(1) = ◦(2)(p; [◦(p; 1)]2) = ◦(◦(p;1))(p;∧(◦(p; 1), ◦(p; 1))) = 31

Next logical prime after 31? Expect ◦(2), ∧(2) to be used.

4.2 Back of the envelope calculations

We consider say the travel time to Trappist-1 (∼40 light years from Earth) given a
few scenarios:

• Travelling at 10000km/h (as is feasible with a relatively standard rocket en-
gine)

• Travelling at 0.1c (as is feasible with a fusion drive)

and either

• Travelling in a first order warped spacefilling curve soliton

• Travelling in a second order warped spacefilling curve soliton

Next we consider the travel time to Mars and to Pluto given the scenario of
travelling at 10000km/h in a first order warped spacefilling curve soliton.

A key motivator for this paper was to examine the overall feasibility and com-
plexity of what would be required to travel interstellar distances at speed. In this
section we adopt the convention / conjecture that effective speed in a warp of stage
n is a factor of cn faster, where c is the speed of light.

Then we can quickly make a couple of quick corollaries of such a statement:
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• At 0.1c, we could reach Trappist-1 in 500 days in a first order warp.

• At the same speed, travelling in a second order warp, we could travel the same
distance in 1.3 seconds.

At a more reasonable speed in relative space (10000km/h) - note that 0.1c is
approximately 108 km/h, as c is 30,000,000m/s, or 100 million km/h. Therefore to
decrease speed to 104 km/h requires a 10000-fold increase in travel time, so:

• At 10000km/h, we could reach Trappist-1 in 5 ∗ 106 days, or about 13 700
years in a first order warp.

• At 10000km/h, we could reach Trappist-1 in 3.6 hours in a second order warp,
which seems reasonable.

For travelling to Mars - generically say 100 million kilometres, would require, at
10000km/h:

• 1.15 years if travelling in ordinary space.

• 1.1 seconds if travelling in a first order warp, which makes 10000km/h seem a
bit fast.

• 3.62 minutes if travelling in a first order warp at 50km/h, which is still fast
but a little more reasonable.

• 36 minutes if travelling in a first order warp at 5km/h, which seems reasonable.

For travelling to Pluto - generically say 10 billion kilometres away, would require:

• 115 years if travelling at 10000km/h in ordinary space.

• 100 seconds if travelling in a first order warp at 10000km/h

• 5.6 hours if travelling in a first order warp at 50km/h
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