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Abstract

The metric tensor of Minkowski space-time, the electromagnetic field ten-
sor, etc., are usually represented by 4×4 matrices in many textbooks, but
in this paper we will demonstrate that this form of matrix-representation
is unreasonable. We will introduce more reasonable rules of matrix-form
for representing any (p,q)-type tensor.

The metric tensor of Minkowski space-time, gµν or gµν , is usually represented
by a 4 × 4 matrix in many textbooks[1], as below, but it can be demonstrated
that this form of representation is unreasonable.

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Similarly, it is unreasonable to represent the electromagnetic field tensor

Fµν by a 4 × 4 square matrix, e.g. as in many textbooks, because it can not
give the clear and reasonable intuitive image of database for tensor, especially
while operating the multiplications of tensors, it can not correspond with the
rules of matrix-multiplications. Certainly, we may not represent tensors with
matrix-form, as in the Dirac’s book General Theory of Relativity[2], but if we
do, we ought to do it better. In order to avoid confusion, we introduce a more
reasonable method for representing any (p, q)-type tensor with matrix.

1. Rules of Matrix-Forms

The basic rule : every superscript must be corresponding to a column,
and every subscript must be corresponding to a row. Thus:

the matrix form of a contravariant vector Aµ is a column matrix:
A0

A1

A2

A3


where the elements of the matrix is numbers.

The matrix representation of a covariant vector Aν is a row matrix:(
A0 A1 A2 A3

)
1



The matrix representation of tensor Aµν is (when more than two superscrips,
the left one represents the ordinal-number of the larger column) :

Aµν =


A0ν

A1ν

A2ν

A3ν

 =




A00

A01

A02

A03


A10

A11

A12

A13


A20

A21

A22

A23


A30

A31

A32

A33





The matrix representation of Aµν is (when more than two subscrips, the left
one represents the ordinal-number of the larger row):

[(A00, A01, A02, A03), (A10, A11, A12, A13), (A20, A21, A22, A23), (A30, A31, A32, A33)]

The matrix representation of Aνµ is :

Aνµ =


A0
µ

A1
µ

A2
µ

A3
µ

 = [Aν0 , A
ν
1 , A

ν
2 , A

ν
3 ]

=


(A0

0, A
0
1, A

0
2, A

0
3)

(A1
0, A

1
1, A

1
2, A

1
3)

(A2
0, A

2
1, A

2
2, A

3
3)

(A3
0, A

3
1, A

3
2, A

3
3)

 =



A0

0

A1
0

A2
0

A3
0



A0

1

A1
1

A2
1

A3
1



A0

2

A1
2

A2
2

A3
2



A0

3

A1
3

A2
3

A3
3




=


A0

0 A0
1 A0

2 A0
3

A1
0 A1

1 A1
2 A1

3

A2
0 A2

1 A2
2 A2

3

A3
0 A3

1 A3
2 A3

3


Columns or rows matrices as above can be operated additions and two types

of multiplications: contraction-product (including scalar-product) and direct
product (or called tensor product) , as following:

1) Contraction-Product: Whenever one subscript attached to a capital
letter which represents a matrix is equal to one superscript attached to another,
it must be operated once by the usual matrix-multiplication.
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AµB
µ =

(
A0 A1 A2 A3

)
B0

B1

B2

B3

 = A0B
0 +A1B

1 +A2B
2 +A3B

3

,

2) Direct product:

AµB
ν = BνAµ =


B0

B1

B2

B3

⊗(A0 A1 A2 A3

)
=


A0B

0 A1B
0 A2B

0 A3B
0

A0B
1 A1B

1 A2B
1 A3B

1

A0B
2 A1B

2 A2B
2 A3B

2

A0B
3 A1B

3 A2B
3 A3B

3

 ,

and for another example,

AµBν =
(
A0 A1 A2 A3

)
⊗
(
B0 B1 B2 B3

)
=
[(
A0B0 A0B1 A0B2 A0B3

)
,
(
...
)
,
(
...
)
,
(
A3B0 A3B1 A3B2 A3B3

)]
,

etc. Notice that the elements of the rows or columns can also be rows (or
columns).

In this way, now we can give a more reasonable matrix-form of gµν , the
metric tensor of Minkowski space-time:

gµν = [
(
1 0 0 0

)
,
(
0 −1 0 0

)
,
(
0 0 −1 0

)
,
(
0 0 0 −1

)
]

compare it with the matrix-form mentioned at the beginning of the article.

Its contraction-product is, for instance:

gµνA
ν = [

(
1 0 0 0

)
,
(
0 −1 0 0

)
,
(
0 0 −1 0

)
,
(
0 0 0 −1

)
]


A0

A1

A2

A3



=
(
1 0 0 0

)
A0+

(
0 −1 0 0

)
A1+

(
0 0 −1 0

)
A2+

(
0 0 0 −1

)
A3

=
(
A0 0 0 0

)
+
(
0 −A1 0 0

)
+
(
0 0 −A2 0

)
+
(
0 0 0 −A3

)
=
(
A0 −A1 −A2 −A3

)
=
(
A0 A1 A2 A3

)
= Aµ
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2. Conditions of Coordinate Transformation for the Matrix-form
of Tensor

As mentioned above, tensor can be represented by a column or row matrix
which elements itself are also column (or row) matrices, just like the vector can
be represented by a column or row which elements are numbers. But the matrix
which can represent a tensor must obey the rule of coordinate transformation,
that is:

While operating a coordinate transformation, the Jacobian Ma-
trix of coordinate transformation must operate the left-contraction-
product directly acted to each of the columns (including each element
which itself is a column) at the same time, and the Jacobian Matrix of
reverse coordinate transformation must operate a right-contraction-
product directly acting from right to each of the rows (including each
element which itself is a row) at the same time, besides which the
effects of acting on the larger matrix will be handed on to the smaller
matrices.

For example, in the case of 2D, when coordinate transformation is : x→ x′,

T j
′

i′ =

[(
T ′1

1 T ′1
2

)(
T ′2

1 T ′2
2

)] =

(
∂x1′

∂x1
∂x1′

∂x2

∂x2′

∂x1
∂x2′

∂x2

)
(
T 1
1 T 1

2

)( ∂x1

∂x1′
∂x1

∂x2′

∂x2

∂x1′
∂x2

∂x2′

)
(
T 2
1 T 2

2

)( ∂x1

∂x1′
∂x1

∂x2′

∂x2

∂x1′
∂x2

∂x2′

)
 =

∂xj
′

∂xn
∂xm

∂xi′
Tnm

another example:

T i
′j′ =


(
T ′1

1

T ′1
2

)
(
T ′2

1

T ′2
2

)
 =

(
∂x1′

∂x1
∂x1′

∂x2

∂x2′

∂x1
∂x2′

∂x2

)
(
∂x1′

∂x1
∂x1′

∂x2

∂x2′

∂x1
∂x2′

∂x2

)(
T 1
1

T 1
2

)
(
∂x1′

∂x1
∂x1′

∂x2

∂x2′

∂x1
∂x2′

∂x2

)(
T 2
1

T 2
2

)
 =

∂xi
′

∂xm
∂xj

′

∂xn
Tmn

ect.

3. Summary About the Matrix-form of Representation of N-Dimensional
(p,q)-Type Tensor

Suppose there are n smaller columns (or rows) in a larger column or row ma-
trix, we say there is one class in the form, and so on, until there are n numbers
in the smallest columns or rows, then, if totally there are p classes of columns
and q classes of rows in the form, it could be a matrix-form of the representa-
tion of n dimensional (p, q)-type tensor. (And besides it must obey the rule of
coordinate transformation.)

Appendix
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1. Matrix-form of Levi-Civita Symbol:

εijk=[[(0,0,0);(0,0,1);(0,-1,0)];[(0,0,-1);(0,0,0);(1,0,0)];[(0,1,0);(-1,0,0);(0,0,0)]]

Now let εijk or εijk ect. only represents the corresponding one element in the
matrix, according to the rules of arraying the matrices, we can find:

εijk = εkij = εijk = εijk, ect.

(here εijk or other one temporarily does not represent a matrix-form of a tensor,
but only represents an element or a component of a matrix or a tensor.)

2. Matrix-form of electromagnetic field tensor:

Fµν =




F 00

F 01

F 02

F 03


F 10

F 11

F 12

F 13


F 20

F 21

F 22

F 23


F 30

F 31

F 32

F 33





=




∂0A0 − ∂0A0

∂0A1 − ∂1A0

∂0A2 − ∂2A0

∂0A3 − ∂3A0


∂1A0 − ∂0A1

∂1A1 − ∂1A1

∂1A2 − ∂2A1

∂1A3 − ∂3A1


∂2A0 − ∂0A2

∂2A1 − ∂1A2

∂2A2 − ∂2A2

∂2A3 − ∂3A2


∂3A0 − ∂0A3

∂3A1 − ∂1A3

∂3A2 − ∂2A3

∂3A3 − ∂3A3





=




0
E1

E2

E3


−E1

0
B3

−B2


−E2

−B3

0
B1


−E3

B2

−B1

0




so,
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∂µF
µν =

(
∂0 ∂1 ∂2 ∂3

)




0
E1

E2

E3


−E1

0
B3

−B2


−E2

−B3

0
B1


−E3

B2

−B1

0





= ∂0


0
E1

E2

E3

+ ∂1


−E1

0
B3

−B2

+ ∂2


−E2

−B3

0
B1

+ ∂3


−E3

B2

−B1

0



=


−∂1E1 − ∂2E2 − ∂3E3

∂0E
1 − ∂2B3 + ∂3B

2

∂0E
2 + ∂1B

3 − ∂3B1

∂0E
3 − ∂1B2 + ∂2B

1



Reference:

[1] Lewis H.Ryder: Quantum Field Theory,
Michael E. Peskin and Daniel V.Schroeder: A Introduction to Quantum Field
Theory,
Mark Srednicki: Quantum Field Theory, etc.
[2] P.A.M.Dirac: General Theory of Relativity

(g may be denoted as η, and, “+” and “−” may be exchanged.)
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