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Abstract 

This work exhibits a generalized Painlevé-Gambier XVII equation and its applications in 

physics. 

 

1. Introduction 

A century later, after their elaboration, Painlevé-Gambier equations continue to 

be the subject of intense study since their analytical properties and applications 

are not fully investigated. Ince in his book [1] studied many aspects of the 

properties of these equations by determining the first integrals and 

corresponding analytical solutions. Recently other authors have studied these 

equations by computing other first integrals in addition to those found by Ince 

[1] in order to systematically express the exact analytical solutions by the 

generalized Sundman transformation [2]. The generalized Sundman 

transformation is a powerful mathematical tool in the linearization of nonlinear 

differential equations to facilitate their solving process by the usual methods [2-

4]. This method of Sundman linearization was recently applied to detect for the 

first time the existence of a class of nonlinear differential equations of Liénard 

type whose solutions are trigonometric [3] but with amplitude dependent 

frequency or with isochronicity that is amplitude independent frequency. Thus it 

was allowed to show for the first time that some Painlevé-Gambier equations 

could admit explicit and exact general trigonometric periodic solutions [3]. 
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Recently, this generalized Sundman transformation proposed by Akande et al. 

[3] was used to calculate the explicit and exact general periodic solutions of the 

cubic Duffing equation and of some Painlevé-Gambier equations [4].The present 

work is still interested in the Painlevé-Gambier equations, in particular in 

Painlevé-Gambier equation XVII. It must be noted, first of all, that the general 

solution of this equation has been given in the book of Ince [1]. So under these 

conditions, it remains in the analytical investigation of this equation to propose 

other elegant alternative ways for explicit and exact general solutions, 

generalized equations or evidence of other properties which are not directly 

studied by Ince [1]. Thus, the problem of interest in this work is to build a 

generalized Painlevé-Gambier XVII equation with isochronicity property [5, 

6],which admits explicit and exact general solution of trigonometric form [4]and 

the linear harmonic oscillator equation, that is the prototype of isochronous 

systems, as special case with several applications in physics. Therefore, the 

question to be solved under these conditions can be announced as follows: Is 

there a generalized Painlevé-Gambier XVII equation admitting the linear 

harmonic oscillator equation as limiting case? It is asserted that this generalized 

Painlevé-Gambier XVII equation with isochronicity exists. The identification of 

this equation is of great importance given the numerous possibilities of 

applications it may offer in physics, especially in classical mechanics, quantum 

mechanics, mechanics of continuous media and nonlinear optics. The nonlinear 

differential equations with isochronicity may be of high interest in physics and 

engineering applications when the dynamical systems with amplitude 

independent frequency are concerned. In classical mechanics as well as in 

practical applications, the linear harmonic oscillator equation, as well known, is 

often used in the study of mechanical oscillations [7]. However, this structural 

model could not take into consideration, for example, the nonlinear phenomena 

of energy dissipation in heat and geometrical nonlinearities exhibited by real 

mechanical systems. As such, nonlinear differential equations with explicit and 

exact general periodic solutions with the damping and geometrical nonlinearity 

properties for which the linear harmonic oscillator equation consists of a 

limiting case are required in mathematical modeling of mechanical oscillations. 

In that, it has been observed that these dissipation phenomena and geometrical 

nonlinearities may be better captured by oscillators described by quadratic 

Liénard type equations [8-15]. These quadratic Liénard type equations may 

therefore be considered in the calculation of the quantum properties of 

dynamical systems. In addition such equations exhibit a position dependent 
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mass dynamics, which has been of great importance in improving description of 

the classical and quantum properties of dynamical systems [11-14, 16]. Thus, 

these harmonic oscillators with a mass varying with distance have been used in 

many fields of quantum physics as well as engineering applications, and are still 

the subject of intense research activity [11-14, 16, 17]. However, the 

Schrödinger equation with a mass varying with distance becomes quickly more 

complicated to be formulated and solved than the usual Schrödinger equation 

with a constant mass. The formulation of such a Schrödinger equation is not 

easy because the Hamiltonian operator is no longer Hermitian. One way of 

overcoming this difficulty is to consider the expression of the Hermitian 

Hamiltonian of von Roos [18]. But this introduces another complication in the 

Schrödinger equation known under the ambiguity parameter problem, because 

there is no rule leading to a rational parametric choice. As soon as this problem 

is solved, it remains therefore the choice of the appropriate method of solving 

the Schrödinger eigenvalue equation with a position dependent mass. There is a 

multitude of techniques for solving such equations in the literature, which 

proves that there is no standard method that works in all cases of study. In this 

contribution, the quantization of the generalized Painlevé-Gambier XVII 

equation has been carried out in the formalism of the Schrödinger equation with 

a mass varying with the displacement to show its application in quantum 

mechanics. The mechanics of continuous media is devoted to study the loading 

behavior of structural materials assimilated to media with continuous properties 

as opposed to discrete considerations. In this sense, the continuous media are 

often modeled according to three schemes. The elastic medium which 

instantaneously covers its initial state after removal of the stress causing its 

deformation may be distinguished. The viscoelastic medium which covers its 

initial state in a delayed manner after removal of the involved stress and the 

viscoplastic medium which exhibits a permanent residual deformation after 

suppression of stress may also be noticed [15]. The viscoelastic media are 

essentially characterized by the nonlinear phenomena of creep under constant 

stress and relaxation of stress under constant deformation. Such phenomena are 

of central importance in the integrity of the structures designed in these 

materials during their service, which can threat the safety and comfort of the 

users. So one may note that the prediction and numerical simulation models of 

such phenomena is of considerable importance. In this perspective the 

generalized Painlevé-Gambier XVII equation is shown to have the ability to be 

used in the interpretation of stress relaxation curves in materials with 
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viscoelastic behavior, that is to say, it can be considered as a simulation model 

of this phenomenon. On the other hand, it is well known in nonlinear optics that 

the dielectrics exhibit a polarization phenomenon when they are subjected to an 

electric field, which may be connected to the resulting strain. In general the 

strain response is viscoelastic due to the phenomena of dissipation of energy in 

heat which are observed in living materials as well as in engineering materials. 

In this respect, it is shown that the generalized Painlevé-Gambier XVII equation 

may be useful in describing the polarization dynamics of dielectrics. Therefore 

to perform the purpose of this work, the general theory needed to be considered 

[6] in the determination of the generalized Painlevé-Gambier XVII equation 

under study is briefly formulated (Section 2), as well as its explicit and exact 

general solutions (Section 3). Finally, the applications of this generalized 

Painlevé-Gambier XVII equation are exhibited (Section 4) as well as a 

conclusion for all the work. 

 

2. General theory 

It has recently been shown by Monsia et al. [6] that some classes of mixed or 

quadratic Liénard type nonlinear differential equations can be explicitly and 

exactly solved by application of the Riccati variable transformation. In this work 

let us consider such a class of equations defined by [6]  
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in which 0)( xh , is an arbitrary function, 0a  , 0  and   being arbitrary 

parameters. The dot over a symbol designates a derivative with respect to time 

and  prime means differentiation with respect to .x  The problem to be solved 

under these conditions is to find the appropriate function )(xh to be used to 

specify (1) as a generalized Painlevé-Gambier XVII equation with isochronicity, 

having the ability to ensure applications in physics. Imposing mxxh )( , where 

,0m is an arbitrary parameter, the equation (1) leads to 
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the equation (2) may be rewritten  
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The equation (2) or (4) is the desired generalized Painlevé-Gambier XVII 

equation. It suffices to note that for the parametric choice ,0b that is for 
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known as the Painlevé-Gambier XVII equation [1]. As such one may observe 

the generalized equation (4) as the Painlevé-Gambier XVII equation with linear 

external forcing function bx . The equation (4) belongs to the general class of 

quadratic Liénard type equation for which a sufficient condition for exhibiting 

periodic oscillations has been established [5]. So knowing that the term bx is odd 

function, one may expect that the generalized Painlevé-Gambier XVII equation 

exhibits periodic oscillations, that is, the origin to be a center. According to the 

above the explicit and exact general solution to (4) may be computed and 

applied to show that the equation (4) may exhibit not only periodic oscillations 

but also an isochronous center. 

3. Explicit and Exact general solution 

This part is devoted to calculate the explicit and exact general solution to (4). 

This solution is used to show that the equation (4) may exhibit isochronicity 

property. It is also demonstrated that for an appropriate parametric choice, the 

general solution to the Painlevé-Gambier XVII equation given by Ince [1]is 

recovered by means of the linearizing transformation applied in this research 

work to find solutions.  

3.1 Painlevé-Gambier XVII equation 
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To solve explicitly and exactly the Painlevé-Gambier XVII equation, let us 

consider the Riccati transformation [6] 
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By application of mxxh )( , the equation (7) reduces to the equation of the free 

particle motion 

0y                                                                                                                  (8) 

with the general solution 
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where 
1k  and 

2k are arbitrary parameters, so that the general solution to (5) 

becomes  
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In this regard, the general solution to the Painlevé-Gambier XVII equation may, 

knowing that ,1a  be written 

 mktktx 21)(              (11) 

The solution (11) is the same as that given by Ince [1]. This solution is also 

obtained recently by other authors by applying a generalized Sundman 

transformation [19]. It is interesting to note that here, imposing ,
2

1
m and ,1a  

the equation (6) reduces to the inverted Painlevé-Gambier XI equation  
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which admits the general solution  

 2

1

43)( ktktx             (13) 

where 3k  and 
4k are constants of integration. Now one may consider the explicit 

and exact general periodic solution to the generalized Painlevé-Gambier XVII 

equation of interest. 



7 
 

3.2 Generalized Painlevé-Gambier XVII equation 

By applying the Riccati transformation (7) with mxxh )( , the explicit and exact 

general periodic solution of (4) may be expressed as 

 KtbAtx a

m
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 sin)(                                                                                       (14) 

where A and K are arbitrary parameters, and .0b  Such a solution is periodic 

with amplitude independent  frequency so that for 0b , the generalized 

Painlevé-Gambier equation defined by (4) exhibits isochronicity property. For 

,1
a

m the equation (4) reduces to that of the harmonic oscillator for ,0 such 

that the explicit and exact general periodic solution (14) becomes a 

trigonometric periodic solution with fixed frequency, that is with amplitude 

independent frequency. An interesting case is also where the exponent 
a

m

 
in the 

expression (14) is a positive integer greater than or equal to two, making it 

possible to write the solution (14) as a linear combination of terms having the 

form )sin( qt or  qtcos  where q denotes a positive integer, and   is an 

arbitrary parameter. Under these conditions, the solution (14) assumes for ,2
a

m  

a very interesting expression  
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                                                                             (15) 

where KC 2 . The solution (15) is a trigonometric solution like that of the 

harmonic oscillator but with a shift factor 
2

2A
. Some applications in physics of 

equations previously developed may now be shown in the sequel of this work.  

4. Applications 

As mentioned in the above, some applications of the generalized Painlevé-

Gambier XVII equation developed are shown in this section to illustrate its 

physical interest. 

4.1 Isochronous oscillations 

In this subsection some graphical examples are exhibited to illustrate the 

isochronicity characteristic of the equation (4) under the condition that .0b  
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Figure 1 shows the isochronous oscillations of (4) with ,2
a

m
,005.0b  and the 

initial conditions 2.0x , and 5.0x , at .0t  The solid line represents the 

solution (15) and the circles denote the solution obtained by numerical 

integration of (4). Figure 2 shows the phase periodic orbits obtained from the 

analytical solution (solid line) and numerical solution (circles line) of equation 

(4), corresponding to the preceding initial conditions and parameter values. 

It is interesting now to show that the generalized Painlevé-Gambier XVII 

equation may be quantized in the perspective that it may be used in physical and 

practical applications to compute the discrete bound state energy spectrum of 

dynamical systems. 

4.2 Discrete bound state solutions 

The objective of this part is to compute the exact discrete bound state solutions 

for the equation (4). This will be carried out under the formalism of Schrödinger 

equation with position-dependent mass by application of the well known 

Nikiforov-Uvarov method. Given the equation (4), the mass distribution 

function )(xM may be calculated as [10-12] 
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so that the potential function takes the form  
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In this way the Schrödinger eigenvalue problem to be solved may clearly be 

stated. 

4.2.1 Schrödinger eigenvalue problem 

        a. Problem description 

Let us consider a particle described by (4) of mass ),(xM  moving in the potential
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According to [10-12] the Schrödinger eigenvalue problem which has been 

described previously may be written in the form 
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where prime designates the derivative with respect to .x  Substituting  the 

equations (16) and (17), when ,2
a

m  into (18) yields the desired Schrödinger 

equation with position dependent mass 
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over the interval .0  x  The Schrödinger wave equation (19) appears to be an 

interesting case from the physical point of view as well as mathematical 

viewpoint, since the restriction 
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yields the well known second order ordinary differential equation [20] 
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where )(xLn  designates the Laguerre polynomials [20]. This finding is of the high 

importance since it will allow testing the efficiency of the Nikiforov-Uvarov 

method [21] for solving the Schrödinger wave equation (19). It is interesting to 

mention that the preceding result may be recovered using the Liouville 
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This leads to 

0)(2
4

12
)(''

2









 xZb

xx

E
xZ                                                                          (25) 

so that for  the previous values of E  and b , the variable )(xZ  may take the form 
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where 0b , and 2
a

m , for application of the Nikiforov-Uvarov (NU) method, 

on the interval .0  x  

4.2.2 Solving of Schrödinger wave equation 

The Nikiforov-Uvarov method has been widely used by several authors [11, 12, 

23] to solve exactly the Schrödinger wave equation with position-dependent 

mass. This method is very interesting due to its simplicity and elegance in 

solving process. The Nikiforov-Uvarov method is usually applied to solve the 

general second order linear equation [21] 
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where )(~ x is a polynomial at most of first degree while )(x and )(~ x are 

polynomials at most of second degree. In this regard the wave function )(x is 

expressed as 

)()()( xyxx n                                       (29) 

where the function )(xyn  satisfies the hypergeometric type linear differential 

equation 
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The polynomial )(x is required to be at most of first degree with the conditions 

that 
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As such the hypergeometric type function )(xyn  is considered as a polynomial of 

degree n  with an expression given by the Rodrigues formula 
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in the sense that the weight function )(x satisfies 
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and nA denotes the normalization constant. In the context where 
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which becomes under the requirement that the derivative of )(x  must be 

negative 

bxx 2)(                (39) 

where 

Ek 2                                        (40) 

and 

)(2)(~)( xxx                                        (41) 
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bxx 221)(                                       (42) 

In this regard one may easily compute the exact discrete bound state energy 

spectrum 

a. Discrete bound state energy eigenvalues 

The substitution of )(x into (35) leads to 
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In this fashion the application of (34) yields 
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In this perspective the discrete bound state wave functions may be exactly 

calculated. 

b. Discrete bound state wave functions 
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According to the above, the function )(x defined by (31) may be computed 

under the form 

bxeCx 2

0)(                                       (47) 

so that the hypergeometric type function )(xyn may take the expression  
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where )(XLn  denotes the Laguerre polynomials and xbX 22 . The 
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such that the wave function )(xn
 may be, in definitive, written as 
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That being so, the ability of the developed generalized Painlevé-Gambier XVII 

equation to model the stress relaxation process in material system exhibiting 

viscoelasticity behavior may be investigated. 
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4.3 Analysis of stress relaxation curves 
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