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Abstract

The Galilean space-time transformation is predicated on a salient theme of Galilean/Newtonian physics:
relative motion at constant velocity has no physical consequences beyond the minimum which is required
by that motion’s existence. Therefore, since the electric field produced by a point charge at rest is spheri-
cally symmetric around the charge’s location, and since a point charge at rest produces zero magnetic field,
Galilean physics implies that a point charge moving at constant velocity produces an electric field which
is spherically symmetric around that charge’s instantaneous location and that it produces zero magnetic
field. But the Biot-Savart-Maxwell Law has it that a point charge moving at nonzero constant velocity
produces nonzero magnetic field, and Faraday’s Law has it that this time-varying magnetic field, which
has zero component along the line of the charge’s motion, produces an electric field which isn’t spherically
symmetric around the charge’s instantaneous location. Thus the Galilean space-time transformation is
violated by electromagnetic phenomena in a definite way, and must be modified. The needed modification
produces the Lorentz space-time transformation, which can straightforwardly be shown to never change
the speed of electromagnetic radiation. The fate of the Galilean/Newtonian constant-velocity relative-
motion paradigm was actually already sealed when it was observed that the presence of direct current in
a wire deflects an adjacent compass needle.

Introduction

The theoretical physics idea which underlies the Galilean space-time transformation of constant velocity v,
namely,

r′ = (r− vt), t′ = t, (1)

is that relative motion at constant velocity has no physical consequences beyond the minimum which is
required by that motion’s existence.

Therefore since the electric field of a point charge at rest, namely er/|r|3, manifests spherical symmetry
around that charge’s location, Galilean logic implies that the electric field of a point charge traveling at con-
stant velocity v ought to manifest precisely the same spherical symmetry around that charge’s instantaneous
moving location vt; indeed its electric field ought to be precisely e(r − vt)/|(r − vt)|3. By the same token,
the Galilean prediction for the constant-velocity point charge’s electric potential would, in the appropriately
chosen gauge, be e/|(r− vt)|. Since a point charge at rest produces precisely zero magnetic field , and also,
in the appropriately-chosen gauge, zero vector potential , the Galilean prediction would be that a constant-
velocity point charge produces zero magnetic field and also, in the appropriately chosen gauge, zero vector
potential .

However an outright zero value for the magnetic field of a constant-velocity point charge flies utterly and
completely in the face of the Biot-Savart-Maxwell Law of electromagnetism, which is,

∇×B = (4πj + Ė)/c. (2a)

Direct current which is impelled by a battery in a length of copper wire can, to reasonable approximation, be
thought of as consisting of well-shielded electric charges moving along at constant velocity, and there is no
doubt whatsoever that they produce a magnetic field, one in accord with the Biot-Savart Law (the fact that
the electric field of the charges in the wire is well-shielded eliminates the effect of the Maxwell source term
Ė/c). There is thus no doubt that electromagnetic physics is at loggerheads with the theoretical physics idea
which underlies the Galilean space-time transformation, and that that transformation requires modification.

The way in which the electric field of a constant-velocity point charge differs from e(r− vt)/|(r− vt)|3,
or the way in which its electric potential differs from e/|(r− vt)| should speak volumes concerning how the
Galilean space-time transformation of Eq. (1) needs to be modified .

The calculation of the electric and magnetic fields of a constant-velocity point charge was first carried out
by Oliver Heaviside in 1888, and Heaviside’s results were famously cited by George FitzGerald in 1889 and
by Hendrik A. Lorentz in 1892 in the endeavors of those two physicists to attain theoretical understanding
of the null reading for the “aether wind” of the 1887 Michelson-Morley experiment [1].

∗ Retired, American Physical Society Senior Life Member, E-mail: SKKauffmann@gmail.com

1



While the fact that a constant-velocity point charge produces a nonzero magnetic field is a first-order
consequence of the Biot-Savart-Maxwell Law of electromagnetism, the alteration of a constant-velocity point
charge’s electric field and electric potential from what would be expected from the Galilean space-time trans-
formation is a second-order consequence, via Faraday’s Law , namely via,

∇×E = −Ḃ/c, (2b)

of the existence of that first-order magnetic field. Furthermore, because that first-order magnetic field departs
altogether from spherical symmetry—it has zero component along the line of the point charge’s motion—its
electric-field consequence that is produced by Faraday’s Law isn’t spherically symmetric around the charge’s
instantaneous moving location.

A sensible way to deal with such “fed-through” physical phenomena is to combine the first-order electro-
magnetic field equations, such as the one of Biot-Savart-Maxwell and the one of Faraday, into second-order
“driven-wave” type equations. The treatment below of the electromagnetic potentials and fields of the
constant-velocity point charge is carried out entirely using such second-order driven-wave type electromag-
netic field equations.

We turn now to the details of calculating the electromagnetic potentials and fields of a constant-velocity
point charge. A nonzero magnetic field is obtained, one which has zero component along the point charge’s
line of motion, and therefore no semblance whatsoever of spherical symmetry . Obtained along with that
magnetic field is the distortion induced by it , via Faraday’s Law, of the electric-field and electric-potential
shapes e(r−vt)/|r−vt|3 and e/|r−vt| whose spherically-symmetric forms around the constant-velocity point
charge’s instantaneous location vt follow from the Galilean space-time transformation. Taking into account
the distortion which is obtained of these shapes that follow from the Galilean space-time transformation
enables repair of the Galilean space-time transformation to be effected.

The electromagnetic potentials and fields of a constant-velocity point charge

The two electromagnetic laws given by Eqs. (2a) and (2b) are completed by the addition of both Coulomb’s
Law,

∇ ·E = 4πρ, (2c)

and the Gauss Law,
∇ ·B = 0. (2d)

The technical development of the second-order driven-wave type electromagnetic field equations begins by
applying the curl operator to both sides of both the Biot-Savart-Maxwell and Faraday Laws. The resulting
field divergence terms are then eliminated by insertions of the Coulomb and Gauss Laws. The electric and
magnetic fields can then be fully decoupled from each other by eliminating the remaining field curl terms
in the second-order equations by insertions of the original Biot-Savart-Maxwell and Faraday Laws. The two
second-order driven-wave type electric and magnetic field equations which result are,

(1/c2)Ë−∇2E = −4π
(
∇ρ+ (1/c2)∂j/∂t

)
, (1/c2)B̈−∇2B = 4π(∇× j)/c. (3)

Since these electric-field and magnetic-field driven-wave type equations have complicated source terms, it is
convenient to introduce the electromagnetic scalar potential φ and the electromagnetic vector potential A in
Lorentz gauge, which also satisfy driven-wave type equations, albeit ones with much simpler source terms,

(1/c2)φ̈−∇2φ = 4πρ, (1/c2)Ä−∇2A = 4πj/c. (4a)

In addition to satisfying these driven-wave type equations, φ and A are related to each other by the Lorentz
condition,

(1/c)φ̇+∇ ·A = 0. (4b)

The electric field E and the magnetic field B are obtained from φ and A via the two relations,

E = −∇φ− (1/c)Ȧ, B = ∇×A. (4c)

Combining the two relations of Eq. (4c) with the simple driven-wave type equations for φ and A of Eq. (4a)
is readily seen to yield the more complicated driven-wave type equations for E and B of Eq. (3). Also the
second relation of Eq. (4c) implies the Gauss Law for B as given by Eq. (2d), while the first relation of
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Eq. (4c) combined with both the Lorentz condition of Eq. (4b) and the simple driven-wave type equation for
φ of Eq. (4a) yields Coulomb’s Law for E as given by Eq. (2c).

Now a point charge of strength e traveling with constant vector velocity v has the charge density,

ρ(r, t) = eδ(3)(r− vt), (5a)

and it has the current density,
j(r, t) = evδ(3)(r− vt) = vρ(r, t). (5b)

It can be readily shown that the charge density of Eq. (5a) and the current density of Eq. (5b) together
satisfy the required equation of continuity, namely ρ̇(r, t)+∇·j(r, t) = 0. With these source terms, which are
appropriate to a point charge of strength e traveling at constant vector velocity v, the two simple driven-wave
type equations of Eq. (4a) read,

(1/c2)φ̈−∇2φ = 4πeδ(3)(r− vt), (1/c2)Ä−∇2A = (v/c)4πeδ(3)(r− vt), (5c)

which makes it apparent that,
A(r, t) = (v/c)φ(r, t), (5d)

so we only need to solve,
(1/c2)φ̈(r, t)−∇2φ(r, t) = 4πeδ(3)(r− vt), (5e)

a task which we undertake by applying Fourier transforms and their inverses.
Insertion of the Fourier ansatz ,

φ(r, t) =

∫
d3k dω ei(k·r+ωt)φ̄(k, ω), (6a)

into Eq. (5e) yields,(
|k|2 − (ω/c)2

)
φ̄(k, ω) = 4πe(2π)−4

∫
d3r dt e−i(k·r+ωt)δ(3)(r− vt) =

4πe(2π)−4
∫
dt e−i((k·v)t+ωt) = 4πe(2π)−3δ(ω + (k · v)),

(6b)

so the Fourier transform φ̄(k, ω) of φ(r, t) is evaluated to be,

φ̄(k, ω) =
e

2π2

δ(ω + (k · v))

|k|2 − (ω/c)2
. (6c)

Insertion of Eq. (6c) into Eq. (6a) produces,

φ(r, t) =
e

2π2

∫
d3k dω ei(k·r+ωt)

δ(ω + (k · v))

|k|2 − (ω/c)2
. (7a)

Using the delta function to carry out the integration over ω then yields,

φ(r, t) =
e

2π2

∫
d3k

eik·(r−vt)

|k|2 − (k · (v/c))2
. (7b)

In order to evaluate the integral in Eq. 7b we choose a Cartesian coordinate system whose x-axis points in
the direction of v. In that Cartesian coordinate system, v = (v, 0, 0) and k · v = k1v, so Eq. (7b) can be
written,

φ(x, y, z, t) =
e

2π2

∫
dk1 dk2 dk3

ei[k
1(x−vt)+k2y+k3z]

(k1)2(1− (v/c)2) + (k2)2 + (k3)2
. (7c)

We now change the three integration variables from (k1, k2, k3) to (q1, q2, q3)
def
= (k1(1 − (v/c)2)

1
2 , k2, k3),

which implies that (k1, k2, k3) = (γq1, q2, q3), where γ
def
= (1−(v/c)2)−

1
2 . With that change of the integration

variables, Eq. (7c) becomes,

φ(x, y, z, t) =
eγ

2π2

∫
dq1 dq2 dq3

ei[q
1γ(x−vt)+q2y+q3z]

(q1)2 + (q2)2 + (q3)2
, (7d)
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which can be written more compactly as,

φ(x, y, z, t) =
eγ

2π2

∫
d3q

eiq·R(x,y,z,t;v,γ)

|q|2
, (7e)

where the time-dependent radius-like vector field R(x, y, z, t; v, γ) is of course seen from Eq. (7d) to be,

R(x, y, z, t; v, γ)
def
= (γ(x− vt), y, z), (8a)

in which γ is defined as,

γ
def
= (1− (v/c)2)−

1
2 . (8b)

The integral over d3q which appears in Eq. (7e) is a standard one which is familiar from the case of the
Coulomb potential for a point charge at rest; as a matter of fact, in the special case that the point charge
e has its speed |v| put equal to zero, φ(x, y, z, t) must reduce to the straightforward static Coulomb result
e/|r|, where r = (x, y, z). That fact implies that the integral which occurs in Eq. (7e) has the value
2π2/|R(x, y, z, t; v, γ)|, namely that,∫

d3q
eiq·R(x,y,z,t;v,γ)

|q|2
= 2π2/|R(x, y, z, t; v, γ)|,

a result which alternatively can be obtained by simply carrying out the relatively straightforward integration
over d3q. From this result and Eq. (7e) it follows that,

φ(x, y, z, t) =
eγ

|R(x, y, z, t; v, γ)|
=

eγ

(γ2(x− vt)2 + y2 + z2)
1
2

, (9a)

where we have used Eq. (8a) to obtain the second equality.
Since γ = (1 − (v/c)2)−

1
2 > 1, the electric potential φ of Eq. (9a) deviates from the form e/((x −

vt)2 + y2 + z2)
1
2 predicted by the Galilean space-time transformation. Eq. (9a) shows that the details of

electromagnetic theory have distorted the spherical symmetry around the constant-velocity point charge’s
instantaneous location which is predicted by the Galilean transformation, with that distortion occurring
along the charge’s line of motion.

We next obtain the constant-velocity point charge’s vector potential and magnetic field. Since from
Eq. (5d), A(x, y, z, t) = (v/c)φ(x, y, z, t), and from the discussion below Eq. (7b), v = (v, 0, 0), we obtain
from Eq. (9a) that,

A(x, y, z, t) =
eγ((v/c), 0, 0)

(γ2(x− vt)2 + y2 + z2)
1
2

. (9b)

From Eq. (9b) it is apparent that the three components of A(x, y, z, t) are,

A1(x, y, z, t) =
eγ(v/c)

(γ2(x− vt)2 + y2 + z2)
1
2

, A2(x, y, z, t) = 0, A3(x, y, z, t) = 0,

and therefore the magnetic field B = ∇×A produced by the moving point charge is given by,

B = ∇×A = (0, ∂A1/∂z,−∂A1/∂y) =
eγ(v/c)(0,−z, y)

(γ2(x− vt)2 + y2 + z2)
3
2

. (9c)

This magnetic field clearly vanishes entirely when the point charge is at rest , namely when v = 0, and it
has no semblance whatsoever of spherical symmetry around the point charge’s instantaneous location since
it has vanishing component along the point charge’s line of motion. But as we have strongly emphasized
in the Introduction, the fact that this magnetic field is nonzero at all contradicts the theoretical physics
idea which underlies the Galilean space-time transformation, namely that constant relative velocity has no
physical consequences beyond the minimum required by its existence. As we have also emphasized, this
nonzero time-varying magnetic field B, which departs so strongly from spherical symmetry around the point
charge’s instantaneous location vt = (vt, 0, 0), modifies, via Faraday’s Law ∇ × E = −Ḃ/c, the constant-
velocity point charge’s electric field E and electric potential φ (shown in Eq. (9a)) in a way that distorts the
electric-field shape e(r−vt)/|r−vt|3 and the electric-potential shape e/|r−vt| which follow from the Galilean
space-time transformation (and are consequently spherically-symmetric around the constant-velocity point
charge’s instantaneous location vt). That distortion is clearly apparent in the Eq. (9a) expression for the
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electric potential φ of the constant-velocity point charge; the distortion occurs because of the presence of

the factor γ
def
= (1− (v/c)2)−

1
2 > 1. The result for the electric field E of the constant-velocity point charge

will be similarly distorted by the presence of that factor γ > 1.
We next work out E, this constant-velocity point charge’s electric field. Since E = −∇φ − (1/c)Ȧ, we

need to use Eq. (9a) to calculate,

−∇φ(x, y, z, t) =
eγ(γ2(x− vt), y, z)

(γ2(x− vt)2 + y2 + z2)
3
2

,

and in addition we need to use Eq. (9b) to calculate,

−(1/c)Ȧ(x, y, z, t) =
eγ(−(v/c)2γ2(x− vt), 0, 0)

(γ2(x− vt)2 + y2 + z2)
3
2

.

We can now assemble the above two intermediate results to obtain E, the constant-velocity point charge’s
electric field,

E = −∇φ− (1/c)Ȧ =
eγ((x− vt), y, z)

(γ2(x− vt)2 + y2 + z2)
3
2

=
eγ((x− vt), y, z)
|R(x, y, z, t; v, γ)|3

. (9d)

Comparison of Eq. (9c) with Eq. (9d) shows that (B·E) always vanishes identically . This is an interesting re-
sult which has to do with the exact non-Galilean space-time transformation properties of the electromagnetic
fields; we will have more to say further on about those exact non-Galilean space-time field transformations.

We note that γ
def
= (1− (v/c)2)−

1
2 is very close to unity when (v/c)2 � 1, so under those circumstances

Eq. (9d) shows that the electric field E is nearly spherically symmetric around the instantaneous location
(vt, 0, 0) of the constant-velocity point charge. However, as (v/c)2 → 1, γ can become arbitrarily large,
which can markedly distort the electric field E away from spherical symmetry , weakening it along the line of
motion of the point charge relative to its strength perpendicular to that line of motion.

We note that the key entity which underlies the character of both the electric field E of Eq. (9d) and
the electric potential φ of Eq. (9a) is the constant-rate translating, radius-like vector field R(x, y, z, t; v, γ) =
(γ(x − vt), y, z) of Eq. (8a), which is distorted away from spherical symmetry along its line of motion. A
crucial property of (γ(x − vt), y, z) is that when (v/c)2 � 1, so that γ is very close to unity, it reduces to
the three spatial components (x′, y′, z′) = ((x − vt), y, z) of the Galilean space-time transformation which is
given by Eq. (1) (bearing in mind that we have meantime specialized to a Cartesian coordinate system where
v = (v, 0, 0), so that (r− vt) = (x, y, z)− (vt, 0, 0) = ((x− vt), y, z)—see the discussion below Eq. (7b)).

However, although (γ(x − vt), y, z) reduces to the three spatial components (x′, y′, z′) = ((x − vt), y, z)
of the Galilean space-time transformation when (v/c)2 � 1, (γ(x − vt), y, z) becomes vastly different from
((x − vt), y, z) as (v/c)2 → 1. Thus the Galilean transformation becomes less and less consistent with
electromagnetic theory as the transformation speed |v| approaches the universal constant c of electromagnetic
theory.

It is therefore clear that the Galilean transformation must be replaced by a transformation which has the
property that,

(x′, y′, z′) = (γ(x− vt), y, z), (10a)

where, of course,

γ
def
= (1− (v/c)2)−

1
2 . (10b)

The three requirements of Eq. (10a) for the replacement transformation for the Galilean transformation
aren’t sufficient to determine t′ in terms of t and x. However, the Galilean transformation, as given by
Eq. (1) with v = (v, 0, 0), namely,

(x′, y′, z′, t′) = ((x− vt), y, z, t),

is readily verified to have the inverse,

(x, y, z, t) = ((x′ + vt′), y′, z′, t′).

Thus the inverse of the Galilean transformation is the same as the Galilean transformation itself except
that v is replaced by −v. That fact is completely sensible from a physical standpoint; indeed, from a
physical standpoint it is well-nigh inconceivable that replacing v by −v wouldn’t invert the transformation.
There is no reason which is apparent to doubt that the correct replacement transformation for the Galilean
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transformation is as well inverted by replacing v by −v. Therefore in addition to Eqs. (10a) and (10b), we
also expect the correct replacement transformation to satisfy,

(x, y, z) = (γ(x′ + vt′), y′, z′), (10c)

which takes into account the fact that γ doesn’t change when v is replaced by −v, as is seen from Eq. (10b).
In consequence of Eq. (10c) we obtain that x′ = −vt′ + x/γ, while, of course, Eq. (10a) states that

x′ = γ(x − vt). We can therefore deduce that −vt′ + x/γ = γ(−vt + x), and from that we uniquely work
out t′ in terms of t and x, which is exactly what we need to fully specify the definition of the replacement
transformation for the electromagnetically invalid Galilean space-time transformation. The result of thus
working out t′ is,

t′ = γ
(
t− (x/v)

(
1−

(
1/γ2

)))
= γ

(
t−
(
vx/c2

))
,

where the last equality follows from Eq. (10b).
We combine the above result for t′ in terms of t and x with Eq. (10a) to obtain the full expression for

the replacement transformation,

(x′, y′, z′, t′) =
(
γ(x− vt), y, z, γ

(
t−
(
vx/c2

)))
, (11a)

where,

γ
def
= (1− (v/c)2)−

1
2 . (11b)

The replacement transformation given by Eqs. (11a) and (11b) above is, of course, the Lorentz space-time
transformation [2]. It is readily seen that the Lorentz space-time transformation of Eqs. (11a) and (11b)
goes over into the Galilean space-time transformation of Eq. (1) when |v/c| � 1.

With a modicum of algebraic effort, it can be verified from Eqs. (11a) and (11b) that the quadratic form,

x2 + y2 + z2 − (ct)2,

is preserved by the Lorentz transformations, namely that,

(x′)2 + (y′)2 + (z′)2 − (ct′)2 = x2 + y2 + z2 − (ct)2.

The physical relevance of the preservation of this quadratic form lies with the fact that that x2+y2+z2 = (ct)2

is the three-dimensional analytic-geometry equation of a spherical shell of electromagnetic radiation whose
radius is expanding at speed c. Thus a Lorentz transformation of velocity (v, 0, 0) never alters the speed
c of electromagnetic radiation by a single iota, regardless of what value v has! Of course the speed of
electromagnetic radiation is determined by the two Eq. (3) driven-wave type electric and magnetic field
equations at locations far away from their driving sources, so it is absolutely patent from Eq. (3) that
that speed can never deviate from the universal constant c of electromagnetic theory. Einstein treated the
universal speed of electromagnetic radiation as a postulate to be used to obtain the Lorentz transformation [3];
here we noted that both the universal speed of electromagnetic radiation and the Lorentz transformation
are in fact built into the laws of electromagnetism, but of course they aren’t built into the Galilean laws of
Newton. The universal speed of electromagnetic radiation is clearly in complete harmony with the inability
of Michelson-Morley type of experiments to obtain positive evidence for the “aether wind” [3].

The entire set of four-dimensional homogeneous linear transformations which preserve the quadratic form
x2 + y2 + z2 − (ct)2 comprise the Lorentz-transformation group.

The locus of four-dimensional space-time points described by the equation x2+y2+z2 = (ct)2 is sometimes
referred to as “the light cone”, so the Lorentz-transformation group is sometimes said to “preserve the light
cone”.

The equations of electromagnetic theory turn out to be covariant under Lorentz transformations, and
can be reexpressed in a Lorentz tensor notation which reflects that covariance—the E and the B fields are
incorporated into a single 4× 4 second-rank antisymmetric tensor Fαβ . Likewise, the charge density ρ and
the current density j are incorporated into a single current-density four-vector jµ, and the scalar potential
φ and the vector potential A are both incorporated into a single electromagnetic four-vector potential Aµ.
Lorentz-transformation invariants which can be formed from the electromagnetic field tensor can be of special
physical interest; one of these Lorentz-transformation invariants of the electromagnetic field tensor turns
out to be equal to (B ·E), and another turns out to be equal to (|E|2 − |B|2). The Lorentz-transformation
invariant property of (B · E) enables us to understand why this entity vanishes identically in the case of a
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point charge moving at constant velocity, a fact we have previously noted from Eqs. (9c) and (9d). This
entity of course vanishes in the rest frame of the point charge, where B = 0, and it can be verified to be
equal to a constant times εαβκλF

αβFκλ, whose completely tensor-index contracted form is what makes it a
Lorentz-transformation invariant entity. Being a Lorentz-transformation invariant entity, if it vanishes in
one inertial frame of reference, it must vanish in all inertial frames of reference.

Finally we would like to understand exactly which aspect of electromagnetic physics is incompatible with
Galilean principles. Taking the Galilean limit c→∞ of the four electromagnetic laws, which are,

∇ ·E = 4πρ, ∇×E = −Ḃ/c, ∇ ·B = 0, ∇×B = (4πj + Ė)/c,

produces,
∇ ·E = 4πρ, ∇×E = 0, ∇ ·B = 0, ∇×B = 0,

so we see that in the c→∞ Galilean limit all of the sources and all of the effects of the magnetic field B fall
away ! Thus it definitely is magnetism which is incompatible with Galilean principles. We can understand
the details of this incontrovertible fact by scrutinizing the right-hand side of the Biot-Savart-Maxwell Law,

∇×B = (4πj + Ė)/c,

which tells us that it is motion which produces magnetism, specifically the motion of electric charge and
the motion of the electric field; without motion there is patently no source for the magnetic field. At the
same time, the magnetic field isn’t picky in the slightest about the character of the motion of its sources; the
Biot-Savart-Maxwell Law attests that a previously static assortment of electric charge and electric field is,
once set into uniform motion at nonzero constant velocity , a perfectly effective source of magnetic field—our
magnetic-field result B of Eq. (9c) is an exact example of that fact . But as we have emphasized in the
discussion below Eq. (9c), it is a fact which flies utterly in the face of Galilean principles and the Galilean
space-time transformation, which have it that relative motion at constant velocity has no physical conse-
quences beyond the minimum which is required by the existence of that motion: the production of completely
detectable and physically consequential magnetic field merely by dint of the magnitude of constant velocity
of relative motion is just as unequivocal and startling a contradiction of Galilean/Newtonian principles as
are the much more celebrated slowing of clocks and contractions of lengths which also occur merely by dint
of the magnitude of constant velocity of relative motion. Indeed the production of magnetic field by dint of
the magnitude of constant velocity of relative motion is a first-order effect of that velocity magnitude, while
the distortion of electric fields, the slowing of clocks and the contraction of lengths are vastly more subtle
second-order effects of that velocity magnitude. To bluntly put this matter in perspective, the discovery
that the presence of direct current in a wire deflects an adjacent compass needle already sealed the fate of the
Galilean/Newtonian paradigm, notwithstanding that scientists understandably didn’t have the wit to realize
that for a very, very long time.

Précis

By studying the behavior of the electric potential and field produced by a point charge traveling at constant
velocity (v, 0, 0), we learn that their forms aren’t functions of the time-dependent spherically-symmetric
radius vector field ((x − vt), y, z) which translates with velocity (v, 0, 0), as one would expect them to be if
the Galilean transformation were valid , unless |v| � c, where c is the universal constant of electromagnetic
theory which has the dimension of speed. Instead we find that, more generally, due to the electric-field knock-
on effect of the time-varying cylindrical magnetic field which a constant-velocity point charge also produces,
they are functions of the constant-rate translating, radius-like vector field ((x−vt)/(1−(v/c)2)

1
2 , y, z), which

is distorted away from spherical symmetry along its line of motion.
Due to that distortion, we see that the Galilean transformation, which is,

(x′, y′, z′, t′) = ((x− vt), y, z, t),

must be replaced by,
(x′, y′, z′, t′) =

(
γ(x− vt), y, z, κ(v)

(
t−
(
v1(v)x/c2

)))
,

where γ
def
= (1−(v/c)2)−

1
2 , and the coefficient functions κ(v) and v1(v) are determined by the physically unas-

sailable requirement that inverting the transformation is achieved by replacing the transformation velocity
v by −v, namely that,

(x, y, z, t) =
(
γ(x′ + vt′), y′, z′, κ(−v)

(
t′ −

(
v1(−v)x′/c2

)))
.

7



We obtain from the replacement transformation ansatz above that x′ = γ(x − vt), and from the inverse
replacement transformation ansatz above that x′ = −vt′ + x/γ, which two equations allow us to eliminate
x′, and then to determine t′ in terms of t and x, which is exactly what we need to do to remove the ambiguity
from the above replacement transformation ansatz. The result of thus determining t′ in terms of t and x is,

t′ = γ
(
t− (x/v)

(
1−

(
1/γ2

)))
= γ

(
t−
(
vx/c2

))
,

where the last equality follows from γ
def
= (1 − (v/c)2)−

1
2 . Therefore, κ(v) = γ, κ(−v) = γ, v1(v) = v

and v1(−v) = −v, which when inserted into the above replacement transformation and inverse replacement
transformation ansätze produce the Lorentz transformation,

(x′, y′, z′, t′) =
(
γ(x− vt), y, z, γ

(
t−
(
vx/c2

)))
,

and its inverse,
(x, y, z, t) =

(
γ(x′ + vt′), y′, z′, γ

(
t′ +

(
vx′/c2

)))
.

We then note the readily verified algebraic fact that the Lorentz transformation takes the quadratic form
x2 + y2 + z2 − (ct)2 into itself,

(x′)2 + (y′)2 + (z′)2 − (ct′)2 = x2 + y2 + z2 − (ct)2.

The equation x2 + y2 + z2 = (ct)2 in three-dimensional analytic geometry is that of a spherical shell of
electromagnetic radiation whose radius is expanding at speed c, so a Lorentz transformation never alters the
speed c of electromagnetic radiation by a single iota irrespective of the velocity v of the transformation. The
universal speed of electromagnetic radiation is clearly in complete harmony with the inability of Michelson-
Morley type experiments to obtain positive evidence for the “aether wind”. Einstein treated the universal
speed of electromagnetic radiation as a postulate to be used to obtain the Lorentz transformations; here
we have wrested the Lorentz transformations from the laws of electromagnetism, and have noted that the
Lorentz transformations imply the universal speed of electromagnetic radiation.

The Lorentz-transformation group is the entire set of four-dimensional homogeneous linear transforma-
tions which preserve the quadratic form x2 + y2 + z2 − (ct)2.

The four-dimensional space-time locus of the equation x2 + y2 + z2 = (ct)2 is sometimes referred to as
“the light cone”, so the Lorentz transformation group is sometimes said to “preserve the light cone”.

The equations of electromagnetism are covariant under the Lorentz transformations, which is best shown
and taken advantage of by restating them in terms of Lorentz-tensor formalism—the E and B fields are
both incorporated into a single 4× 4 second-rank antisymmetric electromagnetic-field tensor Fαβ . Likewise,
the charge density ρ and the current density j are incorporated into a single current-density four-vector jµ,
and the scalar potential φ and the vector potential A are both incorporated into a single electromagnetic
four-vector potential Aµ. Lorentz-transformation invariants which can be formed from the electromagnetic
field tensor can be of special physical interest; one of these Lorentz-transformation invariants of the electro-
magnetic field tensor turns out to be equal to (B ·E), and another turns out to be equal to (|E|2 − |B|2).

To pinpoint which aspect of electromagnetic physics is incompatible with Galilean principles, we take the
Galilean limit c→∞ of the four electromagnetic laws, which are,

∇ ·E = 4πρ, ∇×E = −Ḃ/c, ∇ ·B = 0, ∇×B = (4πj + Ė)/c,

thus producing,
∇ ·E = 4πρ, ∇×E = 0, ∇ ·B = 0, ∇×B = 0.

We see that in the c→∞ Galilean limit all of the sources and all of the effects of the magnetic field B fall
away , so it definitely is magnetism which is incompatible with Galilean principles. To understand the details
of this fact, we ponder the right-hand side of the Biot-Savart-Maxwell Law,

∇×B = (4πj + Ė)/c,

which tells us that motion is key to magnetism, specifically the motion of electric charge and of the electric
field; without motion there is patently no source for the magnetic field. However, the right-hand side of
the Biot-Savart-Maxwell Law attests that a previously static assortment of electric charge and electric field
is, once set into motion at nonzero constant velocity , a perfectly effective source of magnetic field—the
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magnetic-field result of Eq. (9c) is an exact example of that fact . But it is a fact which flies utterly in the
face of Galilean principles and the Galilean space-time transformation, which have it that relative motion at
constant velocity has no physical consequences beyond the minimum which is required by the existence of that
motion: the production of completely detectable and physically consequential magnetic field merely by dint
of the magnitude of constant velocity of relative motion is just as unequivocal and startling a contradiction
of Galilean/Newtonian principles as are the much more celebrated slowing of clocks and contractions of
lengths which also occur merely by dint of the magnitude of constant velocity of relative motion. Indeed
the production of magnetic field by dint of the magnitude of constant velocity of relative motion is a first-
order effect of that velocity magnitude, while the distortion of electric fields, the slowing of clocks and the
contraction of lengths are vastly more subtle second-order effects of that velocity magnitude. To bluntly put
this matter in perspective, the discovery that the presence of direct current in a wire deflects an adjacent
compass needle already sealed the fate of the Galilean/Newtonian paradigm, notwithstanding that scientists
understandably didn’t have the wit to realize that for a very, very long time.
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