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ABSTRACT

It is known to experts, that in the nonlinear regression analysis, because numerous curve
fitting methods exist, which allow the statistician to cook up the data according to what
he/she wants to see. Such a deep problem in nonlinear regression methods will be
discussed in particular in the context of analyzing Hubble diagram from various existing
data. It is our aim to distinguish the raw data and foregone conclusions, in order to arrive
at a model-independent conclusion. As a preliminary remark, we deem that it remains
possible that the Hubble law exhibits nonlinearity, just like proposed by Segal & Nicoll
long time ago. More researches are needed to verify our proposition.

1. Introduction: finding the best way for nonlinear regression
Modern measurement techniques allow researchers to gather ever more data in less time.

In many cases, however, the primary or raw data have to be further analyzed, be it for the
verification of a quantitative model (theory or hypothesis) thought to describe
experimental data, quantitative comparison with other data, better visualization or simply
data reduction. To this end, a wealth of information collected during a measurement or a
series of measurements has to be reduced to a few characteristic parameters. This can be
done by regression analysis, a statistical tool to find the set of parameter values that best
describes the experimental data by assuming a certain relationship between two or more

variables.[3]
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But we should always remember the saying of Mark Twain in Chapters from My
Autobiography, published in the North American Review in 1906. "Figures often beguile
me," he wrote, "particularly when I have the arranging of them myself; in which case the
remark attributed to Disraeli would often apply with justice and force: 'There are three
kinds of lies: lies, damned lies, and statistics.[1]

The above saying seems to be quite relevant in the nonlinear regression analysis, because
numerous curve fitting methods exist, which allow the statistician to cook up the data
according to what he/she wants to see.

Two of the sources of such a problem especially in nonlinear curve fitting, are namely:
Gauss-Newton method and also model indeterminacy. Yes, there are new methods such
as Levenberg-Marquardt algorithm for nonlinear regression, but it seems such an
algorithm will not be free from problems arising from model indeterminacy.

Such a deep problem in nonlinear regression methods will be discussed in particular in
the context of analyzing Hubble diagram from various existing data. It is our aim to
distinguish the raw data and foregone conclusions, in order to arrive at a model-
independent conclusion. As a preliminary remark, we deem that it remains possible that
the Hubble law exhibits nonlinearity, just like proposed by Segal & Nichols long time
ago.

Nonetheless, this is only an early investigation. More researches and observations are

recommended to verify our propositions.

2. Neutrosophic regression and fundamentals of regression analysis
Quantitative experiments aim at characterizing a relationship between an independent

variable (x), which is varied throughout a measurement, and a dependent variable (yobs),
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which is observed/measured as a function of the former. The fitting method presented in
this protocol requires that the independent variable can be measured with much greater
precision than the dependent variablel. In other words, experimental errors
(uncertainties) in the independent variable are small compared with errors in the
dependent variable (see below). This is usually the case with experiments in which the
value of the independent variable follows a predetermined trajectory and the
experimental readout reports on the value of the dependent variable. The primary output
of a measurement is a set of conjugated independent and dependent variables, which is
called data or dataset. In addition to an experimental dataset, regression analysis requires
a regression equation (also termed fitting function). This is a mathematical relationship
describing the dependence of the dependent variable on the independent variable using
one or more parameters. These parameters (also called adjustable parameters, fitting
parameters or coefficients) are the same for every data point, i (i.e., every combination of
xi and yi). In the simplest example of a proportionality (y = a x x), the only parameter, a,
is the slope of a straight line through zero.[3]
According to FS [2], the Neutrosophic Least-Squares Lines that approximates the
neutrosophic bivariate data (x1,y1),(x2,y2),... ,(xn,yn) has the same formula as in
classical statistics

y=a+bx (1)
where the slope

b=2xy—[(Zx)(Zy)/n]Zx2—[(Xx)2/n] (2)
and the y — intercept

a=y—bx 3)
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with x the neutrosophic average of x, and y the neutrosophic average of y.[2]
While Smarandache meant his approach can be used for analyzing neutrosophic sets, in
this paper we consider it is possible to use this approach of neutrosophic regression for
analyzing astronomical data, such as Hubble data.
To include error and indeterminacy in our linear regression model we can rewrite
equation (1) as follows:

y=a+(b+e+i)x 4)
Where € and i represent error and indeterminacy in the data.
Of course, this simple linear regression will be more complicated when we start to
analyze nonlinear data. The problems is seemingly more acute if we want to
determine purely from data, when they start to become nonlinear.
We should keep in mind that for nonlinear data, there are a number of methods we

can use:
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Optimization algorithms of current application
(for the search of minima):

— steepest descent

— inverse Hessian (Newton-Raphson) method
— Levenberg-Marquardt method

— conjugated gradient method

— relaxation method (Barbasin-Krasovskii)

— Monte-Carlo methods

Many software exist for least square fitting of both linear and nonlinear data,
including NLREG and also Solver function in MS Excel. Besides, there are other ways
such as Python and also Mathematica. Nonlinear pattern recognition may also be
done by employing more modern approaches such as neural network technique.[7]
Now we will discuss how such a nonlinear least square may be useful in analyzing

astronomical data, such as Hubble diagram.
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3. Possible nonlinearity of Hubble law

Although traditionally the so-called Hubble law is assumed to be linear, there are some
grounds to let go that assumption. For instance, Segal and Nicoll have argued in favor of

nonlinearity of Hubble law.[10]
Here we include the abstract section of Segal and Nicoll’s paper:

Contributed by I. E. Segal, August 24, 1992

ABSTRACT The Hubble (linear) redshift-distance law
predicts values for directly observed quantities that are quits
deviant from their actual values in infrared astronomical
satellite (IRAS) galaxy samples. These samples are objectively
defined, have modern measurements, are presently the larges
such samples to which the Hubble law is theoretically appli-
cable, and are otherwise generally considered to be statistically
appropriate. The Hubble law predicts in particular that the
dispersion in log flux will be much greater than it is observed
to be. This type of deviation is fandamentally incapable of
explanation via the assumption of any physically known type of
perturbation. The Lundmark (quadratic) redshift-distance
law predicts values for these directly observed quantities that
are consistent with, and in fact quite close to, their actual values
in the same samples. The predictions of a cubic law are typically
deviant from observation but somewhat less so than those of the
Hubble law. The Lundmark law accurately predicts the devi-
ations from observation of statistical estimates predicated on
either the Hubble or the cubic law. Parallel predictions for the
latter laws for the results of statistical estimation predicated on
the alternative laws are typically quite inaccurate. The Hubble
and Lundmark laws are predicted at the low redshifts of the
IRAS galaxy samples by generic big bang cosmology (BBC) and
chronometric cosmology (CC), respectively. The present re-
sults confirm earlier studies of a variety of objectively defined
samples of discrete sources in other wave bands that were
contraindicative of BBC and indicative of CC.

The Hubble law (1) is the origin of big bang cosmology (BBC)
and by far its most important falsifiable prediction. It is very
important that it be tested rigorously by modern statistical
methods and accurate measurements on objectively defined

samples.
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We do not want to enter into arguments or interpretations whether Hubble law represents
cosmological redshift or not, but we wish to extract the conclusion in a model-
independent way. (There is rigorous algorithm aiming at such tests, called PEST: model
independent parameter estimation.[11])

More careful data analysis seems to point to possible nonlinearity in Hubble datasets,
although more observations are necessary, both at low redshift data and also for high

redshift data. See some figures below and also Appendix I.
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Figure 1. Hubble’s original 1929 plot [23]. Note the rather large scatter in the data.

From Cattoen & Visser [13].
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Figure 2. Modern 2004 version of the Hubble plot. From Kirshner [24]. The original
1929 Hubble plot is confined to the small red rectangle at the bottom left.

From Cattoen & Visser [13].
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FIG. 1: The best fits of g(z) with respect to redshift » constrained from the 192 ESSENCE SNe Ia data (a) and its combination
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Figure 3. from Jianbo Lu [12]
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Figure 1: Age-redshift (z)) relationship. Filled cir-
cles: ages of nine early-type stars, galaxies and
quasars (see text). Plain line: upper bound ex-

Figure 4: from Sanejouand [14]

Steady-state Theory
{S5T) :

oemological
oncordance Model
(CCM) : ———

C
%

(m-M}/m
=g Stationary Universe

Model (SUM): ——---
Einstein-deSitter-

Model (EdS): —----

Ground-discoverad
SNela: 000000

HET-diacoverad
SHelz: p @@ @ @

0z ¥ 0s 0e i 1z 14 15 1B
=z

Fig. 5
Inserting the red line of the suM-prediction shows:

Evidently the SUM does fit the data much better than EdS or SST.
However ...

Figure 5. Ostermann argues in favor of Steady State Universe [16]



While the above data analysis of Hubble law vary depending on different authors’
preferences, apparently we can agree with Segal & Nicoll that Chronometric cosmology
(CC) or Steady-State Universe cannot be ruled out. Does it mean that we should
reconsider quasi-steady state models of Hoyle-Narlikar and perhaps also Conrad

Ranzan’s Dynamic Steady State (DSSU)?

4. Concluding Remarks

Although traditionally the so-called Hubble law is assumed to be linear, there are some
grounds to let go that assumption. For instance, Segal and Nicoll have argued in favor of
nonlinearity of Hubble law. More robust methods are advised to analyze astronomical
data in a model-independent way, including the so-called Excel Solver and also Neural
Networks method (Wolfram Mathematica).
Moreover, Neutrosophic Regression may offer a new perspective in developing nonlinear
least square methods by including model error and indeterminacy. We reserve this for
future work.
Nonetheless, this is only an early investigation. More researches and observations are
recommended to verify our propositions.
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Appendix I:

182 Gold SNe la

data
No. z

1 0.478
2 0.425
3 0.62
4 0.57
5 0.3
6 0.38
7 0.43
8 0.508
9 0.518
10 0.334
11 0.44
12 0.5
13 0.46
14 0.63
15 0.828
16 0.459
17 0.511
18 0.474
19 0.537
20 0.477
21 0.455
22 0.815
23 0.949
24 1.056
25 0.278
26 1.199
27 0.47
28 0.5
29 0.54
30 0.47
31 0.49
32 0.884
33 0.882
34 0.57
35 0.528
36 0.771
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42.48
41.69
43.11
42.8
41.01
42.02
42.33
42.19
42.83
40.92
42.07
42.73
41.81
43.26
43.59
42.67
42.83
42.81
42.85
42.38
42.29
43.75
44
44.35
41.01
44.19
42.76
42.74
41.96
42.73
42.4
44.22
43.89
42.87
42.76
43.12



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
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0.832
0.798
0.811
0.815
0.977
0.4
0.615
0.48
0.45
0.388
0.495
0.828
0.538
0.86
0.778
0.58
0.526
0.172
0.18
0.472
0.43
0.657
0.32
0.579
0.45
0.581
0.416
0.83
0.43
0.74
0.543
0.04
0.033
0.056
0.036
0.058
0.046
0.061
0.028
0.029
0.032
0.038
0.025

43.55
43.88
43.97
44.09
43.91
42.04
42.85
42.37
42.13
42.07
42.25
43.96
42.66
44.03
43.81
43.04
42.56
39.79
39.98
42.46
41.99
43.27
41.45
42.86

42.1
42.63

42.1
43.85
42.36
43.35
42.67
36.38
35.53
37.31
36.17
37.13
36.35
37.31
35.53

35.7
36.08
36.67

354



80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
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0.026
0.03
0.05

0.026

0.075

0.101

0.045

0.043

0.079

0.088

0.063

0.071

0.025

0.052
0.05

0.024

0.036

0.049

0.027

0.124

0.034

0.029

0.053

0.031

0.026

0.036

1.755

0.475
0.95
0.84

0.954

0.9

0.935
0.67

0.735
0.64
1.34
1.14

1.305

1.3
0.97
1.37
1.02

35.35

35.9
36.84
35.63
37.77

38.7
36.99
36.52
37.94
38.07
37.67
37.78
35.09
37.16
37.07
35.09
36.01
36.55

35.9
39.19
36.19
36.13
36.95
35.84
35.57
36.39
45.35
42.24
43.98
43.67

44.3
43.64
43.97
43.19
43.14
43.01
44.92
44.71
44.51
45.06
44.67
45.23
43.99



123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

16 |Page

1.23
1.14
0.975
1.23
0.954
0.74
0.46
0.854
0.839
1.02
1.12
1.01
1.39
0.504
0.582
0.496
0.679
0.331
0.688
0.8
0.532
0.449
0.371
0.463
0.461
0.285
0.633
0.949
0.695
0.627
0.905
0.604
0.791
0.592
0.415
0.357
0.43
0.62
0.643
0.47
0.61
0.263
0.358

45.17
44.44
44.21
44.97
43.85
43.38
42.23
43.96
43.45
44.52
44.67
44.77

44.9
42.61
43.07
42.36
43.58
41.13
43.23
43.67
42.78
42.05
41.67
42.27
42.22
40.92
43.32
43.69
43.21
42.93
43.89

42.7
43.54
42.75
41.96
41.63
41.96
43.21
43.21
42.45
42.98
40.87
41.66



166 0.73 43.47
167 0.552 42.65
168 0.337 41.44
169 0.822 43.73
170 0.95 44.14
171 0.34 41.51
172 0.613 43.15
173 0.55 42.67
174 0.87 44.28
175 0.249 40.76
176 0.571 42.65
177 0.557 42.7
178 0.369 41.67
179 0.707 43.42
180 0.756 43.64
181 0.811 44.13
182 0.961 44.18
I
.g 30
% == mu
< = ——Linear (mu)
-0,5 0,5 1,5
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