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Abstract

| spotted a fatal error in understanding of one of the basic of mathematics used
in a PhD thesis titled: “A Generalized Variational Principle of Gravitation”,
City University, London, 1982. There also are two types of errors, one is a
typographic error and a second one is a major error. Scanned copy of part of the
thesis page (131-140) where the errors occurred is attached to this paper.

PACS numbers: 04.20.—q, 04.20.Cv, 04.50.Kd?
Keywords: Classical general relativity, Modified theories of gravity,

Lagrangian density, gravitational field equations.

Introduction

Errors may occur as typographic errors which are easy to spot, understand and
correct, it have to be corrected in any manuscript presented to the public. In
scientific researches other types of errors can occur too, but fatal errors after the
thesis has been accepted with such errors in the basic mathematics used would
have zero value, The PhD thesis based on such mathematical errors, too.

Discussion

As an example of these types of errors, | presented a copy of a part of a PhD
thesis attached to this paper- which rely extensively on using tensors and tensor
analysis- in which all these types of errors occurred.

(1) Typographic error in the thesis in pages (133-134)

In equation [4.2.29] in the second term under the integral sign in LHS a lower
case latter was used for the tensor (v**), while an upper case letter was used
(V#") in equation [4.2.31].
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(2) Major error in the thesis in page (134)
In equation [4.2.36] in the second term in RHS the % shouldn’t be there. The

reason for that it is a part of the definition of Christoffel symbols of the first and
second kind which are defined, respectively as
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The % should have been absorbed with the expression in the bracket in the

second term in RHS of equation [4.2.35] in the definition of the Christoffel
symbol of second kind to yield a correct term without the% in equation [4.2.36] .

(2) Fatal error in the thesis in page (135-140)

Equation [4.2.38] and the text below it instruct one to make a change of an
index with another specifically 12 —v.The thesis’s author didn’t differentiate
between fixed indices and dummy indices, the indices zand v in LHS and RHS
of equation [4.2.38] are fixed indices, they change together in name and values
they take and there is no summation over them, so they play a role as labels.
The other indices in RHS of equation [4.2.38] are dummy indices they could
have been replaced by any other Greek letter without changing anything in the
equation and there is summation over them, they are 1,1,«. The author thought
that making the change of index with another would make a change in one side
of the equation without making a change of the index in the other side of the
equation. Even, if that is allowed, then the statement of the author that “the first
term bracket cancels with the third bracket and the second cancels with fourth”
in equation [4.2.38] is wrong. So, the statement in equation [4.2.39] is wrong,
equation [4.2.44] is wrong, equation [4.2.45] is wrong, equation [4.2.46] is
wrong, equation [4.2.48] is wrong, equation [4.2.53] is wrong, equation
[4.2.54] is wrong.

Conclusion and Recommendation

It is unfortunate that such mathematical errors bypassed many people who were
involved in the thesis. The author couldn’t manipulate indices of tensor
guantities which have lead to wrong conclusions. | hope Secretariat of Scientific
affairs and college of graduate studies in universities establish a unit to assess
and review PhD theses coming from abroad before acceptance.
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C - GENERALIZED EQUATIONS OF THE GRAVITATIONAL FIELD

In subsection (a) we considered the introduction of

Lagrangian quadratic in R into the theory of gravitation as

“one way of modifying general re]ativity: The resulting equa-
tions are no longer those of Einstein's theory. MNow instead of
“dealing separately with differently constructed Lagrangians we
would rather assume a very general one that will allow classi-
fication for all its possible forms. This will enable us to
choose ‘from among various possible constructions the most perfect
S

Lagrangian form which will be required to lead to a complete and

self-consistent theory of gravitation that hopefully:

(1) Shares with GTR all its .successes, i.e. it reduces o
general relativity in the weak field areas and hence agrees
with experiment and admits correct Newtonian-and Minkowskian
1imits,

(2) does not exhibit any pathological behaviour anywhere,
especially in strong-field domains.

{3). becomés amenable to quantization.

In the next chapter we will introduce. our derivation based
on a certain variational principle and which will yield a fourth-
order in gy partial differential equations. different from
general relativistic equations which are of the second order

in the metric tensor derivatives.
;

For the sake of comparison with our variation we will

herein give a derivation due to C. Lanczos who first obtained

this kind of generalized equation.




(1) ~ Lanczos Variation

In his 0932)paper [23] G Lanczos employed the Hamiltonian

principle of least action I1.7.2] for the action integral
11.7.11, this would give:

sI = dedg =0 2]

where function H being invariant will contain the curvature
tensor Ruv as well as the metric tensor gﬁv or their contra-

yariant forms, i.e.

HSBCR e o) [4.2.18]

and, where, owing to [1.4,26] and [1.4.11] R™ and gwv

are related to va and gpv respectively by:

PN
BOSEUTR [4.2.19]
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“The condition of the minimum action for the integral

14.2.17] over the volume o will be carried out. with assumption

that SHV and Gy HE2, AL first, independent variables.

We also consider the change &R in R, caused by
uv iy
infinitesmally sma]} change 6gHv in gqu infinitesmally

small and we denote them by:

SR, [4.2.21]
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1= Yal(R).

“with respect to g will yield:

Ja(ﬁﬁéf) do = J(yﬁ‘ iﬁ?aR + afﬁyﬁj do = 0

using [1.4.19] which yields
Sy ﬁP .
8/q = -E g Sgpu

and by denoting the derivative of;f Wat. to R gs

S ak
Oi_aR

one will obtain [4.2.24] in the form,

1 ] I
Jyﬁzdf guvéRﬁv *‘éf Ruvﬁg“v 4 %Jfg“vﬁguv)dg =0

Now, by the aid of the following relation:
Sgu\) = '_gl-l:f\\-g'\.(\){sg?(Y
obtained from [1.4.17] and by using [4.2.19,21,22]
integral [4.2.27] will have the general form:
e, o e e
[, - o Jae = 0

where‘ = )
i 1
e

By

Then by considering the function H .as the Lagrangian density:

42,23

as it was given in [4.2.15], the variation of the action integral

[4.2.24]

Further, by knowing from [1.4.26] that, R = quRﬁv= and by

[4.2.25]

[4.2.26]

[4.2.27]

[4.2.28]
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and Y ,
VY = £HRIRY - 3 L(R)G™Y i wr e

Expréssion for pﬁv,' defined in [4.2.21] and being

_infinitely sma11‘change in Rﬁv’ caused by infinitely weak

‘deformation Yﬁv of gﬂv, was calcuylated by Lanczos [24]

o+ (1923), [257 (1925).

Following Lanczos' derivation we rewrite the Ricci tensor

I8l 1

: arhl ar?
aEEe L B [ 2. 370
B g X 2

where

i A n A
8 =13 : = L L
i i Tvn w T 4. 2,331

will vanish if a locally inertial system of coordinate was

adopted, since. in this case all r will be zero. It will be

shown also that the variation apuvwiil give no contribution to puv
Let us calculate the variations of 'eﬁv alid By e

86 = 6T)
u

xrh o ark = s 3 o ph 5?1 [4.2.34]
A wv T An

i : BIPARY BATT VN wv An
where T. s defined in [1.4.8,9] and as given in [1.7.9]

Nix 4 wmd aégau Bégak adgul 6gnu? aguu agak aguA
61“}1)k =314g : + - “ + == 3 + 7 -
: BX axt X 2

A

14.2.35]
Now by using [4.2.22,28] and [1.4.8,9] one gets
o R anop
8T ) = 1g - 4 LR " %Yp§9 Tﬁk 14.2.36]
2 X B R J -
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: 590 being a difference of twotensors.will constitute a

tensor and ETEA is also a tensor since it transforms by the
tensor Taw [1.4.10]. Further, by using the covariant '

differéntiation according to [1.4.13,14] in [4.2.35] and due to
the ‘symmetry property of both B and Y,,> One obtains the

same expression [1.2.10] while all the terms with © cancel
amongst themselves. We, thus; have:

ol -
HA z8 (Yuu_;J\ Yak;u Yuk;a)
A 1 AAO
6T = % + -
Vi z 9 (Yam;n Yan;u Yun;a)
[1.2.37]
e T 1y ;
Mu\) 2 8 (Yoeu;\) e Yow;_u Yuv;a)
A -
e s B e Tl = Tanen)
By substituting [4.2.37] into [4.2.34] we get:
280. =" "% + - 5 )
HY N Yoou;)\ Yo{A;p th;cn ;
n Ao
+ T + -
HA g (Ymv;n Yansv Yvn;u)
[4.2.38]
A T, -
- 1" ! o
An ¢ (Yuu;v e Yaviu Yuu;u)
S B 9
AR hahniuwnn YM;J

By making the change X -+ v, the first term‘bracket cancels
with the third bracket and the second cancels with the fourth,

giving for [4.2.38] the value;

de =0 [4.2.391




It will be convenient to adopt the locally inertial coordinate
system all through the deriyation and:in‘ddditionr 9,, should

be'brqugﬁt to ité standard okthogonal form.

‘Now, in virtue of [4.2.22,25] and the notation

et e
Y = g ‘Y)LDL [4.2.40]
“wWe will have
R [4.2.41]
g L
and accordingly
gt = _gwgmm = Y [4.2.42]
and
2 el
Ty S, 93a7% [4.2.43]

Then [4.2.41] and [1.4.19] yield

A :l.’.a-Y_'.
(Sl‘u)L 3 " [4.2.44]

which could be obtained also from any of equations [4.2.37] with

the use of [4.2.43],

Therefore, by taking into account [4.2.39,44], the

variation GRuv oft [4.2.320" will become

9 A 3 A

" e - —— 57" 4+ 8o
éRuv BXV'Gr“A BXA Y] uv
A
2 98T
sgidr o — [4.2.45]
St oy ;

The use of [4.2.37] and covariant differentiation will

result into:
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Ao,

= S ; AX e 0
S EE ASEi - 1 g ;
aRuvt Bloaey R q BT 9 (Yyksuak 5 Yyksv;x)
o ne e = .

i R B e

B e e
AR P ax R
SRR R e
up = “‘Y\J _.]Af__ -:Y —-—-A—fp\),a‘], [4-2.46]
Bx by i 8

<t where [pv,al] is defined in [1.4.8], and the covariant
derivatives are used instead of the ordinary ones to secure
the invariant form of 5Rﬁv‘
Further, with the help of [1.4.37] and [4.2.43]

together with the obvious relationship:

L= : 4.2.47
Vo Tpsn L !
expression [4.2.46] becomes:
. AR e 4 A
= -1 =1 e
Eva g Yiviasa E(ngl;u Bt ity
D S Ipln o
ZY,u,v) ZYchp 2 Y Ny
i o Ao B
+ 4
aYU( Sk Ruvh) % 7 [yvs.al
p P A P
i gf? - A . o 7 oy,
: AP gyt WP gy VA ggh O
2 .
: arP
1 L e [4.2.48]
| B ik

-4




;_(ii) Lanczos Generalised Field Equations
‘By.introducing the following notations:.

X

- = T
Yosm o e Xvs [4.2.49]
e ML ' '
s : ; i W B T [4.2.50]
ang the relation, s L
S 4.2.51
Ychu leg 'Rap YvARu L !
resulting from [4.2.43], where
ST i o: R
Rv g Rgv’ [4.2.52]

into [4.2.48], then due to [4,2.21] one obtains;

S 5 i e “AC
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U HVAC
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+ = Il
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where, ;
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3% 3X LI
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L _ pht
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The R.H. side of [4.2.54] can be rearranged to give the
L.H. side by uti1iziﬁg the definition of Ruvlo- which is given

Se BT Aot

Furthermore, we write the following property of the

"adjoint" differential expressidns




jdﬂ“wp(*'};v):“ Y”"D*(Uﬁv)l' = é " . “[4.2.55]

wbere‘wé 1s the integral over the surface containing the

velume @, which. according to Gauss vanishes by variation(2s]
_and, DY is the adjoint of D defined as:

dB op

o
L a3

o . [4.2.56]

I =Dla i gt (g

GB)§ﬁ5v
Now, according to [4.2.55] we can transform the term with pév

in [4.2.29] and we eventually get,

5T = J 73 [30H(UP) - VWVly da = 0 [4.2.57]
Therefore, since Yﬁv is arbitrary, we obtain the following
form for the field equation:

DYy = oy, : [4.2.58]

Then, sgbstituting for qu and Vuv from [4.2.30531]

r;bf:IALZ}BS;BSJ "yields the folfowing 4th order iw# g

differential equation.
A
- : ! oA
Huv i (R)(R;uRsv guvR;GR;Ag )
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2
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i
: Kt o
FLRIR ggﬁ(R%gpv 0, [4.2.59]
where the covariant derivatives for the scalar curvature R
are given by:

R., =2~ [4.2.60%
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It is clear from [4.2.59] that the field equations are
divergence-free since: -
‘ otk o ' [4.2.62]

Vil

(4.3) Theory with a nonlinear Lagrangian and a Timiting

curvature,

The following nonlinear Lagrangian has been chosen by

A. Miller et al [27];

;izﬁo 5 %?,[(1‘%%)m"1],"1<1 ; [4.3.1]

in order to fulfill certain necessary requirements like

n

coinciding with Einstein's general relativity in\ihe weak field
area. d.e. when R >0 . anqrsatisfying the asymptotic flatness.
This Lagrangian was ¢hpgeén to be successful also in the
sttoqg:fieidiﬁomain, wHere, in order to avoid gravitafionai‘
Jco1Té§;e an‘upper Timiting bound of the curvature has been

postulated 7J.e. ;
R g R 14.3.2]

=

As we mentioned in (0.2) the idea of the Timiting bound is
motivated by other field theories[28] [29].

By employing equation [4.2.59] with the Lagrangian [4.3.f],
the following expressions for the scalar curvature and the

digonal components; grr::A and =B in the static

Pt
isotropic metric result;
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