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Domains can be thought of as distinct functional and/or 
structural units of protein. The identification of a conserved 
domain footprint may be the only clue towards cellular or 
molecular function of a protein, as it indicates local or partial 
similarity to other proteins, some of which may have been 
characterized experimentally. Conserved Domains (CD) contain 
conserved sequence patterns or motifs, which allow for their 
detection in polypeptide sequences (www.ncbi.nlm.nih.gov/
Structure/cdd). It has been suggested that domain combinations 
are evolutionarily conserved and evolution creates novel 
functions predominantly by combining existing domains [13]. The 
Conserved Domain Database (CDD) is a compilation of multiple 
sequence alignments representing protein domain conserved in 
molecular evolution [24]. Keeping all above points in view the 
computational identification study was carried out to identify 
the conserved domains having putative function like insect pest 
resistance, improved quality parameters or for resistance to 
abiotic stresses like temperature, drought, salinity or any other 
evolutionary functions from Green gram GSS and their possible 
use in Green gram and also its related crops improvement.

Material And Methods
Sequence Retrieval

The Genome Survey Sequences (GSS) of Green gram [Vigna 
radiata (L.) R. Wilczek] available online in public domain from 
NCBI (http://www.ncbi.nlm.nih.gov). These were downloaded in 
FASTA format to be used for further analysis.

Conserved Domain Search

Search for conserved domains within query GS sequence 
(nucleotide sequence) was analyzed using conserved domain 
search service (CDD search) available online (http://www.ncbi.
nlm.nih.gov). The GS query sequences of more than 170 bp in 
length were used for the analysis. If a specific hit is not found on 
a query sequence, but the nucleotide sequence has an otherwise 
statistically significant hit (E-value cutoff of 0.01) to any domain 
model in CDD, the domain model is regarded as a non-specific hit. 
The E-value threshold used for filtering results was kept at 0.001, 
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Introduction
Sequenced crop plants are the good resources in identification 

of important genes for quality, insect pest and disease resistance, 
resistance to abiotic stresses like temperature, drought, salinity 
etc. which are possible to transfer to cultivable background by 
combining traditional and molecular breeding methods [28]. 
Genome Survey Sequences (GSS) are nucleotide sequences 
similar to EST’s that the only difference is that most of them are 
genomic in origin, rather than mRNA, While Expressed Sequence 
Tags sequences represent the expressed region of the genome 
[4]. These GSS and EST sequences used for the identification of 
“Functional Molecular Markers” (FMM) which are associated 
with trait of interest and may be transferable in closely related 
genera [3]. Genomic Survey Sequences of Green gram [Vigna 
radiata (L.) R. Wilczek] available online in public domain from 
NCBI (http://www.ncbi.nlm.nih.gov) for public use. Due to 
generation and availability of huge genomic information online 
of the crop plants, the computational studies i.e. performed on 
computer or via computer simulation are important areas of 
interest for genomics researchers for comparative genomics 
study [31, 21, 15].  

http://www.ncbi.nlm.nih.gov
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maximum number of hits for CD search kept at 500 and the result 
mode kept as standard default settings.

Results and Discussion
A total of eighty two GS sequences which were chosen 

deliberately from the Green gram [Vigna radiata (L.) R. Wilczek] 
were analyzed for the identification of conserved domains, super 
families and for multi domains. The distribution of 82 hits in CDD 
search is represented in fig 1. As the online CDD search is inbuilt 
for identification of low complexity region search as determined 
by the SEG program of [38] or for BLASTN, by the DUST program 
of Tatusov and Lipman (ftp://ncbi.nlm.nih.gov/pub/tatusov/
dust/versionl/), we used GS query sequences as such with more 
than 170 bp in length for analysis. After analysis of 82 GSS, we 
observed 30 non-specific hits, which contribute about 20 % 
sequence analyzed. The various conserved domains, super 
families having putative functions for fundamental, metabolic, 
developmental, evolutionary processes and physiogenic nature 
have been identified from the query sequences. From the specific 
hits a total of 16 conserved domains (11%) and 34 super families 
(23%) were observed, respectively and 29 multi domains (20%) 
were identified. It is interesting to note that out of 82 query 
sequence hits, 39 hits (26%) did not identify any specific CD or 
super family or multi domains indicating all these sequences 
are unique (unique GSS) to the Green gram species. A specific 
hit is a high confidence association between a nucleotide query 
sequence and a conserved domain, resulting in a high confidence 
level for the inferred function of the query sequence. In the GS 
query sequence AZ254242.1 (i.e sequence number 2) (Table l) 
the specific hit identified CD LRR_4 and have LRR_4 super family 
(Fig 2) with E-value of 2.62e-04. This leucine rich repeats are 
short sequence motifs present in a number of proteins with 
diverse functions and cellular locations. These repeats are 
usually involved in protein-protein interactions. Each Leucine 
Rich Repeat is composed of a beta-alpha unit. These units form 
elongated non-globular structures. Leucine Rich Repeats are 
often flanked by cysteine rich domains. LRR-containing proteins 
from plants have diverse overall structures and functions. Several 

classes contain LRR-containing receptor-like kinases (LRR-RLKs) 
[1, 16], LRR-containing receptor-like proteins (LRR-RLPs) [10], 
nucleotide binding site LRR (NBS-LRR) proteins [7, 26] and Poly-
Galacturonase Inhibiting Proteins (PGIPs) [8, 9, 30]. They provide 
an early warning system for the presence of potential pathogens 
and activate protective immune signaling in plants [20, 18, 35]. 
In addition, they act as a signal amplifier in the case of tissue 
damage, establishing symbiotic relationships and effecting 
developmental processes. Evolution of plant, disease resistance 
(R) genes that encode an LRR region has been studied by many 
researchers [1, 26, 27, 6, 23, 14, 25, 39, 17, 12, 32, 37, 22, 2, 40, 
30, 11, 19]. The generations of R genes are proposed to be mainly 
due to gene duplication, genetic recombination, diversifying 
selection, and sequence divergence in the intergeneric region, 
composition of the transposable elements, gene conversion, and 
unequal crossover [40, 30, 11]. Another conserved sequence in 
the GS query sequence AZ254272.1 (i.e. sequence number 5) 
(Table l) the specific hit identified AspRS_cyto_N: N-terminal, 
anticodon recognition domain of the type found in Saccharomyces 
cerevisiae and human cytoplasmic aspartyl-tRNA synthetase 
(AspRS). This domain is a beta-barrel domain (OB fold) involved 
in binding the tRNA anticodon stem-loop. The enzymes in this 
group are homodimeric class2b aminoacyl-tRNA synthetases 
(aaRSs). aaRSs catalyze the specific attachment of Amino Acids 
(AAs) to their cognate tRNAs during protein biosynthesis. This 
2-step reaction involves i) the activation of the AA by ATP in 
the presence of magnesium ions, followed by ii) the transfer of 
the activated AA to the terminal ribose of tRNA. In the case of 
the class2b aaRSs, the activated AA is attached to the 3’OH of 
the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of 
which are encoded by the nuclear genome. One set concerns with 
cytoplasmic protein synthesis, whereas the other exclusively with 
mitochondrial protein synthesis. This gene malfunctioning might 
be results in the hinderance in the protein synthesis of cytoplasm 
and mitochondria [34]. One more conserved domain in the GS 
query sequence AZ254277.1 (i.e sequence number 6) (Table l) 
the specific hit identified TVP38. The protein Tvp38 is conserved 
in yeasts and higher eukaryotes and potentially involved in 

Table 1: Specific hits identified for CD, super families and multi domains.

S.No Accession number Length of sequence Specific hits for the 
conserved domains

Specific hits for 
super families Specific hits for multi domain

1 AZ254237.1 503 HATPase_c HATPase_c PRK11107, TMAO_torS, BaeS

2 AZ254242.1 502 LRR_4 LRR_4 super family LRR_8, LRR, PLN03210

3 AZ254256.1 441 VQ gal11_coact
VQ

Tymo_45kd_70kd
Kgd

PAT1
PHA03247

4 AZ254260.1 439 LRR_4 LRR_4 LRR_8

5 AZ254272.1 451 AspRS_cyto_N Replication protein A PLN02850, PTZ0040, aspS_nondisc, 
AsnS, aspC

6 AZ254277.1 516 TVP38 SNARE_assoc SNARE_assoc

7 AZ254281.1 506 LRR_4 LRR_4 LRR_8

8 AZ254291.1 360 SANT SANT SANT, PLN03212

9 AZ254293.1 532 LRR_4 LRR_RI, LRR_4 LRR_8

ftp://ncbi.nlm.nih.gov/pub/tatusov/dust/versionl/
ftp://ncbi.nlm.nih.gov/pub/tatusov/dust/versionl/
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vesicle transfer processes at the Golgi membrane. Members of 
the so-called “SNARE-associated proteins of the Tvp38-family” 
have also been identified in prokaryotes and those belong to the 
DedA protein family. Tvp38/DedA proteins are also conserved in 
cyanobacteria and chloroplasts. While only a single member of 
this family appears to be present in chloroplasts, cyanobacterial 
genomes typically encode multiple homologous proteins. Mainly 
based on our understanding of the DedA-homologous proteins 
of Escherichia coli, it appears likely that the function of these 
proteins in chloroplast and cyanobacteria involves stabilizing and 
organizing the structure of internal membrane systems. Another 
domain name SANT (AZ254291.1 table 1) found in regulatory 
transcriptional repressor complexes where it also binds DNA. 
Based on the putative function of the conserved domains for 
the gene or gene families identified from the nucleotide query 
sequence, they could be used for the identification of gene-
targeted markers (GTMs) (Varshney and Tuberosa, 2007) and for 
the development of Functional Markers (FM) (Andersen and Lu” 
bberstedt, 2003). After validation, these markers can be used in 
the Marker Assisted Breeding (MAB) while transferring the gene 
of interest from wild species under the cultivated background of 
Green gram. In the present analysis, it has been observed that 
most of the identified CD regions are common in large groups of 
living beings viz., rice, maize, human, arabidopsis, tortula, fungus, 
bacteria, protozoan, drosophila etc. Thus during the evolution 
process, these sequences have been highly conserved in nature 
among different living organisms and additional information 
can be generated for the identified CDs or gene families or for 
the gene of interest by means of comparative genomics tools. The 
generated information for the genes of interest can be utilized 
for the improvement of Green gram and this new approach may 
help the plant breeders for identification of functional markers 
in crop plants.

Conclusion
It with From this study we observed the various conserved 

domains, super families having putative functions for 

fundamental, metabolic, developmental, evolutionary processes 
and physiogenic nature have been identified from the query 
sequences which can be further utilized for the development of 
functional markers in green gram and its related crop plants.
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