Describing a fluid in three-dimensional circular motion with one independent variable by rectangular coordinate

Valdir Monteiro dos Santos Godoi
valdir.msgodoi@gmail.com

Abstract

Describe a fluid in three-dimensional circular motion with one independent variable by rectangular coordinate and concludes on the breakdown of Euler and Navier-Stokes equations.

In [1] we showed that the three-dimensional Euler $(v=0)$ and Navier-Stokes equations in rectangular coordinates need to be adopted as

$$
\begin{equation*}
\frac{\partial p}{\partial x_{i}}+\frac{\partial u_{i}}{\partial t}+\sum_{j=1}^{3} \alpha_{j} \frac{\partial u_{i}}{\partial x_{j}}=v \nabla^{2} u_{i}+\frac{1}{3} v \nabla_{i}(\nabla \cdot u)+f_{i} \tag{1}
\end{equation*}
$$

for $i=1,2,3$, where $\alpha_{j}=\frac{d x_{j}}{d t}$ is the velocity in Lagrangian description and u_{i} and the partial derivatives of u_{i} are in Eulerian description, as well as the scalar pressure p and density of external force f_{i}. The coefficient of viscosity is v and by ease we prefer to use the mass density $\rho=1$ (otherwise substitute p by p / ρ and v by v / ρ).

An alternative equation is

$$
\begin{equation*}
\frac{\partial p_{i}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial t}+\sum_{j=1}^{3} \alpha_{j} \frac{\partial u_{i}}{\partial x_{j}}=v \nabla^{2} u_{i}+\frac{1}{3} v \nabla_{i}(\nabla \cdot u)+f_{i} \tag{2}
\end{equation*}
$$

thus making the pressure a vector: $p=\left(p_{1}, p_{2}, p_{3}\right)$. In both equations is valid
(3) $\frac{D u_{i}}{D t}=\frac{D u_{i}^{E}}{D t}=\frac{D u_{i}^{L}}{D t}=\left.\left(\frac{\partial u_{i}}{\partial t}+\sum_{j=1}^{3} \alpha_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)\right|_{L}$,
where the upper letter E refers to Eulerian velocity and L to Lagrangian velocity. The symbol $\left.\right|_{L}$ means the respective calculation in Lagrangian description, substituting each x_{i} as a function of time, initial value and eventually some parameters.

A condition indicated by us in [1] were

$$
\left\{\begin{array}{c}
\frac{\partial u_{i}}{\partial x_{j}}=0, \quad i \neq j \tag{4}\\
\partial x_{i}=u_{i} \partial t
\end{array}\right.
$$

because we have, by definition,
(5) $\quad u_{i}=\frac{d x_{i}}{d t}$,
in Lagrangian description, and for this reason the velocity u_{i}, a priori, is not dependent of others variables x_{j}, with $x_{j} \neq x_{i}$. More than a rigorous mathematical proof, this is a practical approach, which simplifies the original system.

It is very easy to accept the first equation of (4) when there is no link between the spatial coordinates during the movement of the fluid over time, but in a circular motion, for example, it seems to be no longer valid.

Let a circular motion of radius R, centered at $\left(x_{C}, y_{C}\right)$ and with constant angular velocity $\omega>0$ described by the equations:

$$
\left\{\begin{array}{l}
x=x_{C}+R \cos \left(\theta_{0}+\omega t\right) \tag{6}\\
y=y_{C}+R \sin \left(\theta_{0}+\omega t\right)
\end{array}\right.
$$

and consequently

$$
\begin{equation*}
\left(x-x_{C}\right)^{2}+\left(y-y_{C}\right)^{2}=R^{2} \tag{7}
\end{equation*}
$$

Then the velocity components are

$$
\left\{\begin{array}{l}
\alpha_{1}=u_{1}^{L}=\dot{x}=-\omega R \sin \left(\theta_{0}+\omega t\right)=-\omega\left(y-y_{C}\right)=u_{1}^{E} \tag{8}\\
\alpha_{2}=u_{2}^{L}=\dot{y}=+\omega R \cos \left(\theta_{0}+\omega t\right)=+\omega\left(x-x_{C}\right)=u_{2}^{E}
\end{array}\right.
$$

and the acceleration components are

$$
\left\{\begin{array}{l}
\frac{D u_{1}^{L}}{D t}=\ddot{x}=-\omega^{2} R \cos \left(\theta_{0}+\omega t\right)=-\omega^{2}\left(x-x_{C}\right)=\frac{D u_{1}^{E}}{D t} \tag{9}\\
\frac{D u_{2}^{L}}{D t}=\ddot{y}=-\omega^{2} R \sin \left(\theta_{0}+\omega t\right)=-\omega^{2}\left(y-y_{C}\right)=\frac{D u_{2}^{E}}{D t}
\end{array}\right.
$$

Supposing that the particles of fluid obey the motion described by (6) to (9), we have

$$
\begin{cases}\frac{\partial u_{1}}{\partial y}=-\omega, & \frac{\partial u_{1}}{\partial x}=0 \tag{10}\\ \frac{\partial u_{2}}{\partial x}=+\omega, & \frac{\partial u_{2}}{\partial y}=0\end{cases}
$$

apparently in disagree with (4) if $\omega \neq 0$. But, as x is a function of y and reciprocally, in this circular motion according (7), again (4) turns valid, for anyone signal of x and y. For to complete a three-dimensional description, we define $z=z_{0}$, without dependence of time, and $u_{3}=0$.

This is a motion of velocity without potential, because $\frac{\partial u_{i}}{\partial x_{j}} \neq \frac{\partial u_{j}}{\partial x_{i}}$ for some $i \neq j$, but if $f=\left(f_{1}, f_{2}, f_{3}\right)$ has potential we have $\frac{\partial S_{i}}{\partial x_{j}}=\frac{\partial S_{j}}{\partial x_{i}}$ for all $i, j=1,2,3$, with

$$
\begin{equation*}
S_{i}=-\frac{\partial u_{i}}{\partial t}-\sum_{j=1}^{3} \alpha_{j} \frac{\partial u_{i}}{\partial x_{j}}+v \nabla^{2} u_{i}+\frac{1}{3} v \frac{\partial}{\partial x_{i}}(\nabla \cdot u)+f_{i} \tag{11}
\end{equation*}
$$

then the system (1) has solution.
The scalar pressure of this motion is

$$
\begin{align*}
& p=\int_{L}\left(S_{1}, S_{2}, S_{3}\right) \cdot d l=\int_{L}\left(-\frac{D u}{D t}+f\right) \cdot d l \tag{12}\\
&= \omega^{2}\left[\left.\left(\frac{x^{2}}{2}-x_{C} x\right)\right|_{x_{0}} ^{x}+\left.\left(\frac{y^{2}}{2}-y_{C} y\right)\right|_{y_{0}} ^{y}\right]+U+\theta(t) \\
&= \omega^{2}\left[\left(\frac{x^{2}}{2}-x_{C} x\right)-\left(\frac{x_{0}^{2}}{2}-x_{C} x_{0}\right)+\left(\frac{y^{2}}{2}-y_{C} y\right)-\left(\frac{y_{0}^{2}}{2}-y_{C} y_{0}\right)\right]+ \\
& \quad U+\theta(t)
\end{align*}
$$

where $f=\nabla U$ and L is any smooth path linking a point $\left(x_{0}, y_{0}, z_{0}\right)$ to (x, y, z). We can ignore the use of x_{0} and y_{0} and use only the free function for time, $\theta(t)$, which on the other hand can include the terms in x_{0} and y_{0}, and nevertheless this solution shows us that the pressure is not uniquely well determined, therefore we get to the negative answer to Smale's $15^{\text {th }}$ problem, according already seen in [2] and [3], even if we assign the velocity value on some surface that we wish and even if $\theta(t)$ does not depend explicitly on the variable time t. In this motion the pressure is dependent, besides x_{C}, y_{C} and ω, specific parameters of the movement conditions of a particle, of $\theta(t)$ and more two parameters, x_{0} and y_{0}, then there is not uniqueness of solution.

Note that in order to continue using the traditional form of the Euler and Navier-Stokes equations we will have non-linear equations, which can make it difficult to obtain the solutions and bring all the difficulties that we know. To make sense to use the velocity in Eulerian description rather than the Lagrangian description in α_{j} it is necessary that, for all $t \geq 0$,

$$
\begin{equation*}
u^{E}(x(t), y(t), z(t), t)=\alpha(t)=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=u^{L}(t) \tag{13}
\end{equation*}
$$

omitting the use of possible parameters of motion, then nothing more natural than the definitive substitution of the terms $\frac{\partial u_{i}}{\partial t}+\sum_{j=1}^{3} \alpha_{j} \frac{\partial u_{i}}{\partial x_{j}}$, as well as $\frac{\partial u_{i}}{\partial t}+\sum_{j=1}^{3} u_{j} \frac{\partial u_{i}}{\partial x_{j}}$ in the traditional form, by $\frac{D u_{i}^{L}}{D t}$ or $\frac{D \alpha_{i}^{L}}{D t}$. This brings a great and important simplification in the equations, and to return to having the position as reference it is enough to use the conversion or definition adopted for $x(t), y(t)$ and $z(t)$, including the possible
additional parameters, for example, substituting initial positions in function of position and time, etc.

Thus, more appropriate Euler $(v=0)$ and Navier-Stokes equations with scalar pressure are, in index notation,
(14) $\frac{\partial p}{\partial x_{i}}+\frac{D \alpha_{i}}{D t}=v \nabla^{2} u_{i}+\frac{1}{3} v \frac{\partial}{\partial x_{i}}(\nabla \cdot u)+f_{i}$.

If $v=0$ and f is not conservative then there is not solution for Euler equations, as well as if u is conservative and f is not conservative there is not solution for NavierStokes equations, which now it is very clear to see from (14) and it is according [4].

References

1. Godoi, Valdir M.S., On a Problem in Euler and Navier-Stokes Equations, available at http://vixra.org/abs/1707.0155 (2017).
2. Godoi, Valdir M.S., Solving the 15th Problem of Smale: Navier-Stokes Equations, available at http://vixra.org/abs/1507.0022 (2015).
3. Godoi, Valdir M.S., Reviewing the $15^{\text {th }}$ Problem of Smale: Navier-Stokes Equations, available at http://vixra.org/abs/1603.0250 (2016).
4. Godoi, Valdir M.S., Breakdown of Euler Equations - New Approach, available at http://vixra.org/abs/1608.0059 (2016).
