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Abstract: Describe a fluid in three-dimensional circular motion with one independent 

variable by rectangular coordinate and concludes on the breakdown of Euler and 

Navier-Stokes equations. 

 

 In [1] we showed that the three-dimensional Euler (𝜈 = 0) and Navier-Stokes 

equations in rectangular coordinates need to be adopted as 

(1) 
𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 = 𝜈∇2𝑢𝑖 +

1

3
𝜈∇𝑖(∇ ∙ 𝑢) + 𝑓𝑖,   

for 𝑖 = 1,2,3, where 𝛼𝑗 =
𝑑𝑥𝑗

𝑑𝑡
 is the velocity in Lagrangian description and 𝑢𝑖  and the 

partial derivatives of 𝑢𝑖  are in Eulerian description, as well as the scalar pressure 𝑝 and 

density of external force 𝑓𝑖. The coefficient of viscosity is 𝜈 and by ease we prefer to 

use the mass density 𝜌 = 1 (otherwise substitute 𝑝 by 𝑝/𝜌 and 𝜈 by ν/𝜌). 

 An alternative equation is 

(2) 
𝜕𝑝𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 = 𝜈∇2𝑢𝑖 +

1

3
𝜈∇𝑖(∇ ∙ 𝑢) + 𝑓𝑖, 

thus making the pressure a vector: 𝑝 = (𝑝1, 𝑝2, 𝑝3). In both equations is valid 

(3) 
𝐷𝑢𝑖

𝐷𝑡
=

𝐷𝑢𝑖
𝐸

𝐷𝑡
=

𝐷𝑢𝑖
𝐿

𝐷𝑡
= (

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) |𝐿, 

where the upper letter 𝐸 refers to Eulerian velocity and 𝐿 to Lagrangian velocity. The 

symbol |𝐿 means the respective calculation in Lagrangian description, substituting each 

𝑥𝑖  as a function of time, initial value and eventually some parameters. 

 A condition indicated by us in [1] were 

(4) {

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗,

𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡
 

because we have, by definition, 
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(5) 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, 

in Lagrangian description, and for this reason the velocity 𝑢𝑖, a priori, is not dependent 

of others variables 𝑥𝑗, with 𝑥𝑗 ≠ 𝑥𝑖. More than a rigorous mathematical proof, this is a 

practical approach, which simplifies the original system.   

 It is very easy to accept the first equation of (4) when there is no link between 

the spatial coordinates during the movement of the fluid over time, but in a circular 

motion, for example, it seems to be no longer valid. 

 Let a circular motion of radius 𝑅, centered at (𝑥𝐶 , 𝑦𝐶) and with constant 

angular velocity 𝜔 > 0 described by the equations: 

(6) {
𝑥 = 𝑥𝐶 + 𝑅 cos(𝜃0 + 𝜔𝑡)
𝑦 = 𝑦𝐶 + 𝑅 sin(𝜃0 + 𝜔𝑡)

 

and consequently 

(7) (𝑥 − 𝑥𝐶)2 + (𝑦 − 𝑦𝐶)
2

= 𝑅2. 

 Then the velocity components are 

(8) {
𝛼1 = 𝑢1

𝐿 = �̇� = −𝜔𝑅 sin(𝜃0 + 𝜔𝑡) = −𝜔(𝑦 − 𝑦𝐶) = 𝑢1
𝐸

𝛼2 = 𝑢2
𝐿 = �̇� = +𝜔𝑅 cos(𝜃0 + 𝜔𝑡) = +𝜔(𝑥 − 𝑥𝐶) = 𝑢2

𝐸  

and the acceleration components are    

(9) {

𝐷𝑢1
𝐿

𝐷𝑡
= �̈� = −𝜔2𝑅 cos(𝜃0 + 𝜔𝑡) = −𝜔2(𝑥 − 𝑥𝐶) =

𝐷𝑢1
𝐸

𝐷𝑡

𝐷𝑢2
𝐿

𝐷𝑡
= �̈� = −𝜔2𝑅 sin(𝜃0 + 𝜔𝑡) = −𝜔2(𝑦 − 𝑦𝐶) =

𝐷𝑢2
𝐸

𝐷𝑡

   

 Supposing that the particles of fluid obey the motion described by (6) to (9), we 

have 

(10) {

𝜕𝑢1

𝜕𝑦
= −𝜔,    

𝜕𝑢1

𝜕𝑥
= 0

𝜕𝑢2

𝜕𝑥
= +𝜔,    

𝜕𝑢2

𝜕𝑦
= 0

 

apparently in disagree with (4) if 𝜔 ≠ 0. But, as 𝑥 is a function of 𝑦 and reciprocally, in 

this circular motion according (7), again (4) turns valid, for anyone signal of 𝑥 and 𝑦. 

For to complete a three-dimensional description, we define 𝑧 = 𝑧0 , without 

dependence of time, and 𝑢3 = 0. 
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 This is a motion of velocity without potential, because 
𝜕𝑢𝑖

𝜕𝑥𝑗
≠

𝜕𝑢𝑗

𝜕𝑥𝑖
 for some 

𝑖 ≠ 𝑗, but if 𝑓 = (𝑓1, 𝑓2, 𝑓3) has potential we have 
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
 for all 𝑖, 𝑗 = 1,2,3, with  

(11) 𝑆𝑖 = −
𝜕𝑢𝑖

𝜕𝑡
− ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 + 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖,        

then the system (1) has solution. 

 The scalar pressure of this motion is 

(12) 𝑝 = ∫ (𝑆1, 𝑆2, 𝑆3) ∙ 𝑑𝑙
𝐿

= ∫ (−
𝐷𝑢

𝐷𝑡
+ 𝑓) ∙ 𝑑𝑙

𝐿
 

 = 𝜔2 [(
𝑥2

2
− 𝑥𝐶𝑥) |𝑥0

𝑥 + (
𝑦2

2
− 𝑦𝐶𝑦) |𝑦0

𝑦
] + 𝑈 + 𝜃(𝑡)   

 = 𝜔2 [(
𝑥2

2
− 𝑥𝐶𝑥) − (

𝑥0
2

2
− 𝑥𝐶𝑥0) + (

𝑦2

2
− 𝑦𝐶𝑦) − (

𝑦0
2

2
− 𝑦𝐶𝑦0)] + 

      𝑈 + 𝜃(𝑡), 

where 𝑓 = ∇𝑈 and 𝐿 is any smooth path linking a point (𝑥0, 𝑦0, 𝑧0) to (𝑥, 𝑦, 𝑧). We can 

ignore the use of 𝑥0 and 𝑦0 and use only the free function for time, 𝜃(𝑡), which on the 

other hand can include the terms in 𝑥0 and 𝑦0, and nevertheless this solution shows us 

that the pressure is not uniquely well determined, therefore we get to the negative 

answer to Smale's 15th problem, according already seen in [2] and [3], even if we assign 

the velocity value on some surface that we wish and even if 𝜃(𝑡) does not depend 

explicitly on the variable time 𝑡. In this motion the pressure is dependent, besides 

𝑥𝐶 , 𝑦𝐶  and 𝜔, specific parameters of the movement conditions of a particle, of 𝜃(𝑡) 

and more two parameters, 𝑥0 and 𝑦0, then there is not uniqueness of solution. 

 Note that in order to continue using the traditional form of the Euler and 

Navier-Stokes equations we will have non-linear equations, which can make it difficult 

to obtain the solutions and bring all the difficulties that we know. To make sense to 

use the velocity in Eulerian description rather than the Lagrangian description in  𝛼𝑗 it 

is necessary that, for all 𝑡 ≥ 0,  

(13) 𝑢𝐸(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑡) = 𝛼(𝑡) = (
𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
,

𝑑𝑧

𝑑𝑡
) = 𝑢𝐿(𝑡),  

omitting the use of possible parameters of motion, then nothing more natural than the 

definitive substitution of the terms 
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 , as well as 

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1  

in the traditional form, by 
𝐷𝑢𝑖

𝐿

𝐷𝑡
 or 

𝐷𝛼𝑖
𝐿

𝐷𝑡
. This brings a great and important simplification 

in the equations, and to return to having the position as reference it is enough to use 

the conversion or definition adopted for 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡), including the possible 
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additional parameters, for example, substituting initial positions in function of position 

and time, etc. 

 Thus, more appropriate Euler (𝜈 = 0) and Navier-Stokes equations with scalar 

pressure are, in index notation,  

(14) 
𝜕𝑝

𝜕𝑥𝑖
+

𝐷𝛼𝑖

𝐷𝑡
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖. 

 If 𝜈 = 0 and 𝑓 is not conservative then there is not solution for Euler equations, 

as well as if 𝑢 is conservative and 𝑓 is not conservative there is not solution for Navier-

Stokes equations, which now it is very clear to see from (14) and it is according [4]. 
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