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Starting with homotopy type over the rationals, I am going to 
emphasize using a DGA over Q (for instance the Sullivan-Thom-
Whitney deRham complex, or a minimal model) and simply 
considering its tensorization with Qp (for every finite prime p) 
and R. 
 
With the "limited, practical definition" that we're giving for a 
homotopy type (simply connected and with finite dimensional 
cohomology algebra, say) over a field of characteristic 0, the 
following 2 points seem to hold: 
 
a) There exists a rational homotopy type X such that a rational 
homotopy type Y is equal to X if and only if it is equal p-adically 
(for every prime p) and also over the reals. 
 
b) There can be X and Y with distinct cohomology algebras over 
Q (hence distinct RHT's) but having the same adelic homotopy 
type in the sense of having the same HT over every Qp (p-adic 
numbers) and over R (real numbers).   



 
 
 
 

As to (a), one can take a formal space whose rational 
cohomology is completely determined by a single (scalar-
valued) quadratic form over Q; then the local-to-global 
principle kicks in for quadratic forms over Q (without any 
coherence required as p ranges through the primes and 
infinity). 
 
Assume for now that the cohomology algebra is actually finite 
dimensional (e.g. for the RHT of a finite CW complex). 
 
It seems that there is going to be a finiteness result for each set 
of rational homotopy types which agree over B (= the "big 
adeles", as we defined them).  In other words, the meaning is 
that given one RHT, all the RHT's for which there are p-adic 
isomorphisms for all p and a real isomorphism - in the sense 
that we defined - with the given one, must form a finite set (of 
equivalence classes in the rational homotopy category).  I have 
not checked all the details yet, but I will record the main 
ingredients here.   
 
First, for each finite dimensional 1-connected graded algebra 
H* over the rationals, consider DGA's R together with an 
isomorphism i from H* to the cohomology of R.  Then the work 
of Halperin, Schlessinger, and Stasheff shows that there is a 
conical affine algebraic variety V defined over Q, a unipotent 
affine algebraic group U defined over Q, and an action of U on 
V defined over Q such that V(Q)/U(Q) is the set of RHT's.  And 
by the same token, the set V(B)/U(B) will be the set of 



 
 
 
 

homotopy types (in our sense) over B.  In fact the map 
V(Q)/U(Q) -> V(B)/U(B) is one-to-one by a general finiteness 
result of Borel, applied to this case of the (connected) 
unipotent affine algebraic group U.  The finiteness result about 
rational to adelic equivalence is related to Galois cohomology 
of affine algebraic groups over Q, and becomes particularly 
strong in the unipotent case.   
 
Second, to get rid of the isomorphism i, consider the action of 
the automorphism group G of H*, another affine algebraic 
group defined over Q.  Now the same finiteness result gives 
that only finitely many G(Q)-orbits can go to a G(B)-orbit.  
(Technically, since the quotient V/U might not exist as an 
algebraic variety we should probably act by a single affine 
algebraic group combining the successive actions of U and G 
into one action on V, (or else stratify V and V/U - with finitely 
many strata - and apply Borel's finiteness result stratum-wise).) 
 
Notice that we already discussed examples of non-singleton 
fibers for RHT's (= HT's over Q) -> HT's over B (in the sense we 
defined), coming from distinct graded algebras over Q which 
became isomorphic over the p-adic numbers for every prime p 
and over the reals.  E.g. when there was a 3-variable cubic form 
involved in the multiplication H^2 x H^2 x H^2 -> H^6 on the 
diagonal copy of a 3-dimensional H^2.  I started to realize that 
the openness of the Tate-Shafarevich finiteness conjecture was 
not a problem since the groups involved are affine, not abelian 
varieties.  Also it was obvious that V(Q) -> V(B) was one-to-one, 



 
 
 
 

and so (assuming the Halperin-Schlessinger-Stasheff 
formulation above is exactly right) it basically became the 
following question:  if a linear algebraic group L acts on affine n-
space, then are the fibers of Q^n / L(Q) -> B^n / L(B) finite.  And 
this is essentially the result of Borel, with one-to-one in the 
(connected) unipotent case as a striking special case.  In fact, 
this kind of rational -> adelic finiteness result is almost the 
same as what Sullivan was invoking (for integral -> rational and 
real invariants).  There is a fantastic 1993 Bulletin article by B. 
Mazur on the local-to-global principle that was very helpful in 
sorting the stuff out (still on a preliminary basis, but so far 
everything seems to fit consistently together).   
 
Note the following example:  let GL1 act on the affine line by 
(t,a) -> (t^2) times a, (for t in GL1 and a in the affine line).  Then 
if we just look at the real component of the (big) adeles B, and 
nonzero points on the affine line, then we have {nonzero 
rational numbers}/{squares of nonzero rationals} -> {+/- 1} with 
infinite fibres; this is an analogue of Brown-Szczarba, just using 
the reals.  But in this case (even though GL1 is not unipotent), 
the map {nonzero rational numbers}/{squares of nonzero 
rationals} -> {invertible elements of B}/{squares of invertible 
elements of B} is one-to-one, as a special case of the Hasse 
principle for quadratic forms, but nontrivial even for 1-variable 
quadratic forms. 
 
The working statement is that for 1-connected RHT's with finite 
dimensional rational cohomology, there are only finitely many 



 
 
 
 

(over Q) that become isomorphic over the (big) adeles, where 
isomorphism of HT's over a field means equivalence under the 
relation of quasi-isomorphism of the DGA models (and the big 
adeles is a product of fields).  There are basic counterexamples 
if the hypothesis is relaxed to (1) the rational cohomology is of 
"finite type" (meaning finite dimensional in each degree), or to 
(2) the rational cohomology vanishes in large degree.  The 
counterexamples are built immediately from the single Selmer 
example of the 2 rational cubic forms in 3 variables that fail the 
local-to-global equivalence principle, using enough room 
(allowed by infinite dimensionality of rational cohomology) to 
spread out the problem degree wise and have (2) hold or within 
low degree and have (1) hold. 
 
One still gets the finiteness result after removing any finite 
number of completions of Q.  Taking care of that case uses the 
Borel-Serre generalization of Borel's earlier finiteness result 
about Q -> adeles.  (For the "unipotent part of the problem", 
any single field Qp or R is enough; but for the other part of the 
problem - related to isomorphisms of graded algebras - for a 
finiteness result, it's OK to remove any finite # of the 
completions.  As I was saying, if you do remove more than 1 
completion, this finite number of Q-things is almost always 
going to be more than just a singleton, even if the cohomology 
algebra is just based on a single quadratic form over Q.) 
 
But given that Bousfield & Gugenheim provide (i) infrastructure 

towards the general relationship between simplicial sets and 



 
 
 
 

DGA's over Q, (ii) prove their "equivalence theorem" for 

minimal algebras of finite Q-type, and (iii) sometimes work over 

an arbitrary field of characteristic 0; it would seem that 

everything's ready for addressing the question of topologizing 

the vector spaces in the appropriate cochain complexes. 

 However, note that one little cloud appears right now.  It can't 

be the case that the natural categories of DGA's over every field 

of characteristic 0 are all isomorphic to some single fixed 

category of simplicial sets, as nice as that category might be. 

 So, maybe question (1) would be to identify good ways to place 

topological conditions on appropriate categories of chain and 

cochain complexes over a single topological field, consider the 

functoriality properties under change of field (e.g. from Q to a 

completion), and then see what happens to the RHT's under 

passage to the big adeles. In other words, we get question (2) 

why did nothing change in Bousfield-Kan in going from a given 

"solid ring" of theirs, such as Q, to a larger ring such as a single 

completion of Q or the whole adeles?  In other words, why can 

the field change so much in a completion process and yet some 

co-simplicial structure over the the field not really change?  Are 

there other formulations in which the structure can change?   

From the moduli point of view, whenever there are actual 

moduli for the isomorphism classes (i.e. parameters varying in 

the field F, and not just jumping around among finitely many 



 
 
 
 

points in a non-Hausdorff quotient space), the map HT(Q) -> 

HT(F) can't be onto, even for a single field F (as in one example 

of Brown-Szczarba with F = the reals).  In other words, the 

Platonic model (which is very nearly the precise situation) is 

that there is an algebraic variety  V defined over Q and an 

equivalence relation E on V also defined over Q, so that HT(F) = 

V(F)/E(F), so as F gets big you're typically getting more and 

more points, e.g. if F is uncountable such as Q_p or R.  When F 

is algebraically closed, you expect to have V(F)/E(F) = (V/E)(F), 

to the extent that a quotient variety V/E exists.  As the simplest 

example, if W = V/E is (more or less) a 1-dimensional variety 

defined over Q, then as you enlarge the field F beyond Q you 

will typically get more points of W over F. (What is cute is that 

as long as your field is countable it might be hard to quantify 

"more points", but once you get to an uncountable set of points 

of W over some field F, the distinction with the Q-points is 

clear.)  Thus, the product B over all the completions F of Q can 

allow an astronomical difference between the rational 

homotopy types with fixed cohomology dimensions over Q and 

the adelic homotopy types with the corresponding fixed 

cohomology dimensions over B. 


