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Abstract

We use Lorentz covariant retarded gravitation theory (RGT), with-
out simplifications, to validate the earlier calculations for the flyby
anomaly as a gravitational effect of Earth’s rotation at the special
relativistic (vc ) level. Small differences persist between the theoretical
predictions of RGT and the data reported by Anderson et al. That
reported data, however, is not direct observational data but consists
of un-modeled residues. To settle doubts, we propose a 3-way ex-
perimental test to discriminate between RGT, Newtonian gravitation
(no flyby anomaly), and Anderson et al.’s formula. This involves two
satellites orbiting Earth in opposite directions in the equatorial plane
in eccentric orbits. For these orbits, Earth’s rotation should not affect
velocity on (1) Newtonian gravitation and (2) the formula of Anderson
et al. However, (3) on RGT, one satellite gains and the other loses
velocity, by typically a few cm/s/day, which is easily measurable by
satellite laser ranging.
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1 Introduction

The flyby anomaly is a tiny anomalous effect noticed when five space-
craft (four from NASA and one from ESA) flew past Earth using the
technique of Earth-gravity assist to gain or lose heliocentric velocity.
However, there was an anomalous gain or loss of geocentric velocity
(at perigee).[1] This was minute (a few mm/s) compared to the perigee
velocities of the spacecraft (∼ 10 km/s). Nevertheless, a net gain or
loss of geocentric velocity, howsoever small, is impossible on Newto-
nian gravitation. The effect cannot just be set aside since spacecraft
velocities were tracked to an accuracy of 1 mm/s, and Doppler ranging
data confirmed a small but definite anomalous change in velocities at
perigee.

Indeed, as Anderson et al. argued, the extrapolated pre-perigee
trajectory did not accurately fit the post-perigee trajectory. The NASA
orbit determination program they used, for extrapolation, incorporated
a variety of factors such as Earth atmosphere, ocean tides, solid Earth
tides, the effects of spacecraft charging, magnetic moments, Earth
albedo, solar wind, even general relativistic effects. (On general rel-
ativity the Kerr geometry around a rotating object results in frame
dragging, but that effect of Earth’s rotation is a million times smaller
than the flyby anomaly.)

Something unexpected happened at perigee.

1.1 The theoretical prediction

It may still be debated whether such a minute effect was actually
observed. However, it is theoretically predicted by retarded gravitation
theory (RGT) as a v

c gravitational effect of Earth’s rotation.[2]

1.2 RGT

RGT is a Lorentz covariant reformulation of Newtonian gravitation.
Since Lorentz covariance is a theoretical necessity,[3] RGT is superior
to Newtonian gravitation, irrespective of how it compares with general
relativity theory (GRT). Pragmatically, it is surely more convenient
than GRT for the many body problem, which is easily do-able in RGT.
The flyby anomaly itself is an example of a problem hard to solve with
GRT—in a century, no one used GRT to predict special-relativistic
effects of the kind easily brought out by RGT. Lorentz-covariant RGT
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does not suffer[4] from the instabilities of naive retarded theories of
gravitation, formulated in a pre-relativistic way, in the 19th and early
20th centuries, to explain the anomalous perihelion advance of Mercury.

In RGT, it is meaningful to speak of the gravitational force. But
the force is required to be Lorentz covariant, so it cannot be purely
position dependent, but must depend also on velocity, unlike Newtonian
gravitation. Hence, on RGT, unlike Newtonian gravitation, the rotation
of the Earth affects the motion of nearby spacecraft and satellites at
the v

c level.

1.3 The simplifications used

Our earlier calculation for the flyby anomaly used a simplified expres-
sion for the RGT force

F ≈ k

r2

(
X

r
+
V

c

)
. (1)

Here F is the 4-force acting on the particle at time t, k = GMm, m is
the (rest) mass of the “attracted” particle, while M is the (rest) mass
of the “attracting” particle, and V its 4-velocity at retarded time tr.
This is the time at which the backward null cone from the position of
the “attracted” particle at t intersects the world-line of the “attracting”
particle. X is the relative 4-position vector of the “attracting” particle,
also at retarded time, and r is the corresponding retarded distance.
As usual, c denotes the speed of light.

The earlier calculation involved a second simplification: it took r
as just the instantaneous distance.

The results obtained with these simplifications were qualitatively
correct: most of the gain or loss of energy takes place close to perigee,
something no other theory has explained so far. The quantitative
results too were very close, but there was no neat and exact fit to
data. Thus, for Galileo’s first Earth flyby (Galileo-1), the calculated
gain on RGT was 5.96 mm/s compared to Anderson et al.’s reportedly
observed figure of 3.9 mm/s. Likewise, for Cassini, the calculated
loss was -3.2 mm/s compared to the figure of -2 mm/s reported by
Anderson et al.

These calculated figures are so close that they strongly suggest that
the RGT explanation is valid: the flyby anomaly is indeed a v

c effect
due to the rotation of the Earth, as predicted by RGT.
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2 The revised calculation

Nevertheless, we have now redone the calculation using the full RGT
force:

F = − kc3

(X.V )3
X +

kc3

(X.V )3
(X.U)

(V.U)
V. (2)

Here F , k, c, X, V , are as before, and U is the 4-velocity of the
attracted particle. Since the dot products X.V , X.U , V.U are scalars
or Lorentz invariant, the RGT expression for the 4-force is Lorentz
covariant and can be used in any Galilean reference frame.

The full force law may be rewritten in a manner similar to (1) (but
without any simplification) as

F =
k

r2r
∗ h1

(
X

rr
+
V

c
∗ h2

)
(3)

where the notation rr emphasizes the use of retarded distance, and

h1 = [γv(1 +
v

c
cos(w, v))]−3 (4)

h2 =
1

γv

1 + u
c cos(w, u)

1− uv
c2

cos(v, u)
. (5)

Here ~w, ~u, ~v are the 3-vectors corresponding respectively to the
4-vectors X, U, V . Explicitly, X = (ct, ~w), U = γu(c, ~u), and
V = γv(c, ~v). Further, γv = γ(~v(tr)) is the Lorentz γ factor for
~v(tr), and ~v(tr) and ~u(t) are the 3-velocity vectors respectively of the
attracting particle (at retarded time tr), and attracted particle (at
current time t). Finally, v = ||~v||, rr = ||w||, and cos(w, v) = cos(~w,~v)
is the cosine of the angle between the 3-vectors ~w, and ~v.

For actual calculations, the terms v
c cos(w, v) etc. are conveniently

calculated using

v

c
cos(w, v) =

~w

rr
· ~v
c

=
1

rrc
~w · ~v, (6)

u

c
cos(w, u) =

1

rrc
~w · ~u, (7)

uv

c2
cos(v, u) =

1

c2
~v · ~u (8)

We continue to ignore the effects of the spacecraft on the Earth,
as in the simplified calculation.[2] In this 1-body case, the functional
(delay) differential equations of motion in RGT reduce to ordinary
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differential equations. We solved these for the six flybys as before using
the well known DOPRI code. The initial data were obtained from
NASA Horizons interface in state vector format, for a geocentric frame
with Earth mean equator and equinox of reference epoch, as displayed
below (Table 1).

Table 1: Initial data from NASA Horizons used for trajectory calculations. For
each spacecraft the first row contains the Julian day number and Gregorian date.
The second and third rows contain the position and velocity vectors in units of km
and km/s.

Galileo-1 2448234.000694444 = 1990-Dec-08 12:01:00.0000
X = 2.473779667197228E+04 Y = 2.813889802133052E+05 Z = 6.905794938512032E+04

VX = −4.941514457055581E-01 VY = −8.870912489618423E+00 VZ = −1.967648249648285E+00
Galileo-2 2448965.083333333 = 1992-Dec-08 14:00:00.0000

X = 3.533466991876042E+04 Y = 1.725196573562905E+04 Z = 2.099339477769745E+04
VX=−6.357173143445935E+00 VY=−5.098983436463288E+00 VZ=−5.502425976370658E+00

NEAR 2450836.500000000 = 1998-Jan-23 00:00:00.0000
X = 3.228651780539691E+04 Y = 1.824150970351419E+05 Z = 8.220032102022604E+04
VX=−1.018551223818951E+00 VY=−6.596090066205002E+00 VZ=−2.513531686187036E+00

Cassini 2451408.541666667 = 1999-Aug-18 01:00:00.0000
X =−1.338142479401416E+05 Y = 5.520901141486376E+04 Z = 2.971150587397455E+04
VX= 1.421307835849869E+01 VY=−6.833512053283764E+00 VZ=−3.615965629625016E+00

Rosetta 2453434.208333333 = 2005-Mar-04 17:00:00.0000
X =−9.443459287333746E+04 Y = 3.821864878059387E+04 Z = 1.506916188567711E+04
VX= 4.622615071909428E+00 VY=−1.111383971910594E+00 VZ=−2.124678157771555E-01

Messenger 2453584.958333333 = 2005-Aug-02 11:00:00.0000
X =−4.061872527992503E+04 Y = 1.331170620795427E+05 Z =−7.266170750518485E+04
VX= 1.566976521677327E+00 VY=−3.612768891021895E+00 VZ= 2.457281285018382E+00

The geocentric velocity gain or loss, calculated using RGT, for the
various spacecraft are shown in Table 2, and the graphs of detailed
trajectories are in Fig. 1.

To summarise, we get back the original results because the use
of two simplifications (use of instantaneous distance and a simplified
formula) compensated for each other, so our earlier results were correct!

2.1 Discussion

All factors have now been taken into account, in the RGT calculation.
This includes the oblateness of the Earth, which is a mere confounding
effect, and does not add anything to the energy gain or loss at infinity.
Even possible discretization errors have been checked by performing a
more analytical calculation (Suvrat Raju, personal communication).
So the above figures are valid predictions according to RGT. On the
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Table 2: Velocity gain or loss for various spacecraft flybys. ~vr is the velocity
calculated on RGT, and ~vn that on Newtonian gravitation. Column 2 shows the
difference of scalar velocities. Comparing it with column 3 shows how much ~vr
and ~vn differ in direction. The last two columns are the “observed” figures for the
scalar difference of velocities (in mm/s) as reported by Anderson et al. and those
calculated using their formula (9).

Spacecraft ||~vr|| − ||~vn|| (mm/s) ||~vr − ~vn|| (mm/s) “Observed” Anderson et al.

Galileo-1 5.96 7.4 3.92 4.12
Galileo-2 7.97 7.98 −4.6 −4.67
Near 3.73 5.68 13.46 13.28

Cassini −3.32 3.53 −2 −1.07
Rosetta 4.58 6.22 1.80 2.07

Messenger 6.85 9.17 0.02 0.06

other hand, it seems unlikely that figures so close to the stated values
are simply wrong.

3 The formula of Anderson et al.

Now, Anderson et al., too, attempted to link the flyby anomaly to
Earth’s rotation, in another way, through the phenomenological formula

∆V∞
V∞

= K(cos δi − cos δo), (9)

where ∆V∞ was the difference between the incoming and outgoing
asymptotic velocity in a geocentric frame. (Conceptually, V∞ is the
hyperbolic excess velocity at infinity of an osculating Keplerian tra-
jectory, so the difference ought to have been zero on the Newtonian
theory.) Further, δi and δo were the declinations of the incoming and
outgoing asymptotic velocity vectors. The constant K = 3.099× 10−6

was expressed in terms of the Earth’s angular rotational velocity ωE
(7.292115× 10−5 rad/s), its mean radius RE (6371 km) and the speed
of light c by

K =
2ωERE

c
.

Anderson et al. do not attempt any theoretical explanation for how
the Earth’s rotation might affect the motion of spacecraft. This is in
sharp contrast to RGT which readily explains the gravitational effect
of Earth’s rotation as a special relativistic effect.
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Further, the formula (9) is wrong since it has no distance depen-
dence. The Rosetta spacecraft in its second flyby showed no such flyby
effect. Anderson et al. explain this was because it was very far away
(height 5322 km) at perigee. However, their formula gives no indication
of the distance at which it fails or why.

It is therefore paradoxical that the formula nevertheless provides
a neat and seemingly exact fit with the data for the other six flybys,
where the height of perigee varies all the way from 303 km (Galileo-2)
to 2347 km (Messenger). How could observations so neatly fit a
wrong formula?

3.1 Un-modeled residues

In fact the data fitted by Anderson et al. is not direct observational
data, but consists of un-modeled residues. This reconstructed data
involves various speculative estimates used in modeling, which can be
tweaked. Undoubtedly the NASA orbit determination program is very
sophisticated, but there are difficulties with the way Anderson et al.
have used it.

3.1.1 Case of Galileo-2

For example, consider the case of Galileo-2. According to RGT, there
should have been a velocity gain, not the velocity loss calculated by
Anderson et al.’s formula. (This, incidentally, is a clear difference
between the two theories.)

Further, the perigee of Galileo-2 was very low at 303 km. At this
height, atmospheric drag may lead to significant velocity loss. These
atmospheric effects at high altitude depend upon unpredictable factors
such as solar storms. Hence, retrospective modeling of atmospheric
drag is not reliable. Further, we are not informed about the exact
details of this modeling by Anderson et al., but are just presented with
a speculative estimate.

3.1.2 Case of Cassini

Again, a spacecraft is not a passive point mass but is a powered vehicle.
In the case of Cassini, Anderson et al. note how effects of the flyby
may have been masked by the effects of thruster firing near perigee.
We have no information on the exact details of these thruster firings
and have not taken them into account.
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3.1.3 Case of NEAR

Anderson et al.’s formula is only for the difference of scalar velocities.
However, the flyby affects not only the speed, but also direction: in
our RGT calculations in some cases the norm of the vector velocity
difference (column 3 of Table 2) is significantly larger than the difference
of scalar velocities (column 2 of Table 2). In the case of NEAR this
difference itself amounts to 1.95 mm/s, which is twice the extrapolation
errors expected by Anderson et al.

Anderson et al. provide no way to estimate such change of direction.
Further, even continuous observational data was not always available:
as Anderson et al. note, in the case of NEAR there was a blackout of 3
hours 39 minutes in the data near perigee. In this time, the un-modeled
change of direction at perigee could have easily been amplified by other
effects, such as lunar and solar perturbations.

3.1.4 Choice of osculating orbital elements

We accept the observation by Anderson et al. that the post-perigee
trajectory cannot be simply extrapolated from the pre-perigee Kep-
lerian trajectory. But Anderson et al.’s calculation of the exact gain
or loss of velocity at perigee depends upon the fitting of osculating
orbital elements to pre-perigee and post-perigee data.

In contrast, in the above calculations with RGT, we consistently
chose orbital elements several hours before perigee (“past infinity”)
based on NASA Horizons data. Because details of thruster firing etc.
are not available in the ephemeris data, that osculating trajectory
at past infinity is not necessarily the best fit: for that we may need
to fit osculating orbital elements close to perigee. Table 3 shows the
difference between our data and Anderson et al.’s choices. Had we fitted
osculating elements to the RGT trajectory, (a better approximation to
the real trajectory) close to perigee, that change of initial data could
significantly change the velocity gain or loss on RGT.

That is, the gain or loss in Anderson et al.’s calculations also
depends on the exact fitting of osculating orbital elements before and
after perigee. This is not a trivial matter, since the real trajectory is
subject to relatively huge effects such as those of earth oblateness, or
solar and lunar perturbations etc.
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Table 3: Incoming declinations of velocity vectors of various spacecraft as used in
RGT calculations compared with the data of Anderson et al.

Spacecraft NASA Horizons data (Table 1) Anderson et al.
Galileo-1 −12.487 −12.52
Galileo-2 −34.027 −34.26
Cassini −12.914 −12.92
Rosetta −2.559 −2.81
NEAR −20.636 −20.76

Messenger 31.964 31.44

3.2 Discriminating between the two theories

Such doubts about the un-modeled residues cannot be settled by mere
retrospective arguments. The best way forward is by performing a
fresh controlled experiment to test between the two theories.

Such a controlled experiment is also important to settle any residual
doubts about whether the flyby anomaly, a fundamental departure
from Newtonian gravitation, is actually observed.

We suggest one such experiment below.

4 The two-satellite experiment

First, we note that RGT is a perfectly general replacement for New-
tonian gravitation, and not limited to flybys. It predicts theoretical
departures from Newtonian gravitation which can be tested all the
way from the laboratory to the galaxy. In particular, experiments
to test the gravitational effects of Earth’s rotation can be performed
not only with spacecraft but also satellites. This is likely to be more
cost-effective.

Such a test between RGT and Newtonian gravitation should also
include a test of Anderson et al.’s formula. This can be achieved as
follows. Anderson et al.’s formula (9) differs from RGT on the effects of
Earth’s rotation—this is already clear from the case of Galileo-2. But
these differences are most prominent in the case of an equatorial orbit.
Thus, the formula (9) involves a factor of (cos δi− cos δo), where δi and
δo are the declinations of the incoming and outgoing asymptotic velocity
vectors. When the orbit is in the equatorial plane, cos δi − cos δo = 0,
so there should be no flyby effect on their formula. In contrast, on RGT
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the velocity effect will persist in the equatorial plane. This suggests
the following experimental design.

Suppose two satellites are established in orbits in the equatorial
plane; one co-rotates with the Earth, and the other counter-rotates. On
the Newtonian theory the sense of rotation should make no difference
to the satellite orbit.

Suppose, further, that the orbits are highly eccentric, so that the
approach to perigee can be regarded as effectively a flyby. On Anderson
et al.’s formula, since the trajectory is in the equatorial plane, there
should again be no flyby effect and no difference from the Newtonian
theory.

However, on RGT, the velocity dependent force should accelerate
the co-rotating satellite and decelerate the counter-rotating satellite
even in the equatorial plane.

To calculate the amount of such gain or loss on RGT, for each orbit,
we need the two state vectors, at one instant of time, say apogee. Since
the orbit is in the equatorial plane, the z coordinate and velocity is zero.
Let us suppose that the apogee is in the x-direction, so that, at apogee,
the x-coordinate is just the apogee distance and the y coordinate is
zero. Likewise the x velocity is zero at apogee, and the y velocity is,
say, vy.

To get some definite numbers, let us start off as usual with an
initial Newtonian orbit. For this orbit, we take the perigee distance
rp = 8500 km corresponding to a perigee at an altitude of around 2129
km where the atmospheric drag may be neglected. Further, let us take
the eccentricity to be e = 0.5. If a is the semi-major axis, rp = a(1−e),
so that a = 2rp = 17000 km. The time period of the orbit T = 2π

√
a3

µ

where µ = GME ≈ 3.98 × 1014m3s−2. Thus T = 2π
√

173

3.98 × 102s

= 553.352 × 102s, or around 15.37 hours. Accordingly, we ran the
simulation for around 33 hours, starting from apogee.

From the energy equation 1
2v

2 − µ
r = − µ

2a , at apogee (r = a) we

have 1
2v

2 = µ
2a or v =

√
µ
a =

√
3.98×1014
17×106 = 0.4838 × 104m/s = 4.838

km/s. This velocity is in the y direction, either positive or negative,
depending upon the sense of rotation of the satellite in its orbit. Thus,
initial data are (in units of km, and km/s)

• case 1:

– position: (17000, 0, 0),

– velocity: (0, 4.838, 0), and
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• case 2:

– position: (17000, 0, 0),

– velocity: (0, -4.838, 0).

On Newtonian gravitation, the orbit stays on the initial ellipse. On
RGT, it deviates slightly, as follows. In case 1, using a best linear fit,
the satellite gains about 4.2 cm/s velocity in 33.33 hours, or about 3.02
cm/s/day. In case 2, it loses velocity at about the same rate. Such
a difference is easily measurable with modern satellite laser ranging
systems which have millimeter accuracy.

These are just illustrative figures: two counter-rotating satellites in
exactly the same orbit would obviously collide! The design will need
to be optimised for an actual experiment.
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Figure 1: Graphs of velocity gain or loss for the six flybys. In (c) there was a
velocity loss
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