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Translators Forward: This is generally a literal translation, terms such as versor and parataxis in use at the time are not 
updated to contemporary style, rather defined and briefly compared in an appendix. The decision to translate Lemaître’s 
1948 essay arose not merely because of personal interest in Lemaître’s ‘persona’, Physicist - Priest, but from an ever 
increasing interest in Quaternions and more recent discovery of correspondence with Octonions in additional dimensional 
(XD) brane topological phase transitions (currently most active research arena in all physics), and to make this particular 
work available to readers interested in any posited historical value during the time quaternions were still considered a 
prize of some merit, which as well-known, were marginalized soon thereafter (beginning mid1880’s) by the occluding 
dominance of the rise of vector algebra; indeed, Lemaître himself states in his introduction: “Since elliptic space plays 
an increasingly important part … I have thought that an exposition … could present some utility even if the specialists 
… must bear the judgment that it contains nothing really new”, but also because the author feels quaternions (likely in 
conjunction with octonions), extended into elliptical and hyperbolic XD spaces, especially in terms of the ease they 
provide in simplifying the Dirac equation, will be essential facilitators in ushering in post-standard model physics  of 
unified field mechanics. The translator comes to realizes that 3rd regime Natural Science (Classical  Quantum
Unified Field Mechanics) will be described by a reformulated M-Theoretic topological field theory, details of which will 
be best described by Quaternion-Octonion correspondence.    
 

 
QUATERNIONS AND ELLIPTICAL SPACE 

 
The author applies the notion of quaternions, as practiced by Klein in the Erlangen program, to determine the fundamental 
properties of elliptical space5. 
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mathematical, physical, and natural sciences and the study of related epistemological problems.  
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5 Translation of Lemaître’s original Latin abstract, termed Summarium. 



1. Introduction 
 
Quaternions were invented in 1843 by Sir William 
Rowan Hamilton. It is hard to imagine with what 
enthusiasm, and also with what confusion this awesome 
idea was developed by its author. 
 In the “Introduction to Quaternions” published in 
London (MacMillan, 1873) by P. Kelland and P.G. Tait, 
the first author declares: “The first work of Sir Wm. 
Hamilton” Lectures on Quaternions (1852), “was very 
dimly and imperfectly understood by me and I dare say 
by others”. He added that the Elements of Quaternions 
(1865) [Hamilton] and even exposits that most of the 
work of his co-author P.G. Tait: An Elementary Treatise 
on Quaternions cannot be regarded as elementary. 
 The book itself in which these remarks were 
certainly taken in an elementary character, he even 
exaggerated in this direction, by presenting 
demonstrations of too familiar theorems for which the 
use of a new type of calculation does not seem to be 
justified. 

However, the influence of Hamilton’s discovery was 
very great. Not only did vector calculus, with its fecund 
notions of scalar product and vector product emerge, but 
also the development of elliptic geometry by Cayley, 
Clifford, etc., seems to have been strongly influenced by 
the new calculus, as shown by the title of one of these 
works: “Preliminary sketch on bi-quaternions” (1873). 

I do not propose to disentangle the dense history of 
these discoveries, but by studying elliptic or spherical 
space, it appeared to me that quaternions provide 
extremely simple and elegant notations from which the 
properties of this space immediately flows. 

Since elliptic space plays an increasingly important 
part in cosmogonic6 theories, I have thought that an 
exposition which presupposes in the reader only 
elementary knowledge of analytic geometry could 
present some utility even if the specialists in the fields 
of algebra, geometry and history of science of the last 
century, must bear the judgment that it contains nothing 
really new. 

For the history of the question, the reader may refer 
to treatises on geometry and particularly to the work of 
V. Blaschke, Nicht Euklidische Geometrie und 
Mechanik (Teubner 1942), which has more than one 
point in common with the present exposition but is 
addressed to a completely different category of readers. 

 
 
2. Vectors 
 

                                                           
6 Cosmogony - theories of the origin of the universe. 
Cosmogony distinguishes itself from cosmology in that it 
allows theological argument. 

A vector will be represented by the geometric point of 
view and algebraic perspective. 
  In algebraic terms, the vector is obtained from the 
body of the real numbers, called a scalar, by introducing 
their new symbols not contained in the set of real 
numbers, and generally designated by the letters i, j, k. 
 Except for these three letters, whose employment is 
enshrined in use, we will assume that any Latin letter 
denotes a scalar, that is to say a real number. 
 A vector will be represented by 
 

xi + yj + zk.      (1) 
 

 The addition of vectors and the multiplication by a 
scalar will be obtained by the ordinary rules of 
calculation as if i, j, k were numbers. The result of these 
operations will still be a vector. 

Geometrically, the symbols i, j, k represents a basis, 
that is to say three vectors of unit length not situated in 
the same plane. We shall assume that this basis is 
orthogonal, that is, the three vectors i, j, k are mutually 
perpendicular.  

Then, the three scalars x, y, z are the components, or 
orthogonal vector projections, onto the three vectors of 
the basis.  

The components of the sum of two vectors are the 
sums of the components of these vectors. 
 
 
3. Directions 
 
It is customary to designate vectors by Greek letters. We 
will however deviate somewhat from this traditional 
notation by reserving Greek letters for the unitary 
vectors alone, That is to say to the vectors for which the 
sum of the squares of the components is equal to one. 

We thought it necessary to introduce a shorter 
designation for the expression "unit vector". The term 
"direction" was deemed appropriate. Indeed, since a 
vector is a directed quantity, the unitary vector, whose 
magnitude is fixed once and for all, only indicates the 
direction thus the term direction is well suited to it. 
 
 
4. Quaternions 
 
The main idea of Hamilton has been to define the law of 
multiplying the symbols i, j, k in such a way that all the 
rules of the algebraic calculation remain valid except for 
one: The commutative property of multiplication. He 
thus founded the noncommutative algebra. 
 In this algebra, the value of a bridge product depends 
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on the order of the factors. 
 Starting from the multiplication table of two of the 
symbols i and j,  
 

 2 21,   1,   i j ij ji k                  (2) 

     
we can easily deduce from these formulas (by the 
application of ordinary rules of the calculus, taking care 
to respect the order in which the factors present 
themselves) that the analogous formulas obtained by 
circularly permuting the letters i, j, k,  
 

2 1,   ,   k jk kj i ki ik j          (3) 

 
are valid. 
 Applying these rules of computation to the product 
of a direction of components x, y, z, by another direction 
alpha of component x', y', z' we obtain 
 

 

 
 
 
 

                   +

                   +

                   + .

xx yy zz

yz zy i

zx xz j

xy yx k

      

 

 

 

   (4)  

 
This expression is formed with a scalar part and a 

vector part. 
The usage has prevailed of calling the scalar product 

(dot product) the changed scalar part of sign, while the 
vector part is still what we call the vector product of the 
two vectors. 

This aggregate of a scalar and a vector is called a 
quaternion. 
 
 
5. Quaternion Conjugates 
 
We can replace the three basis vectors i, j, k by another 
basis of opposite chirality, that is to say, presenting with 
the former the same relations as the right hand with the 
left hand. 
 Such a basis is 
 

                                                           
7Versor: - Rotations of Unit Quaternions. Term introduced by 
Hamilton in developing quaternions. Versor is sometimes used 
synonymously with "unit quaternion" with no reference to 
rotations. An algebraic parametrization of rotations. In 
classical quaternion theory, a versor is a 
quaternion of norm one (unit quaternion). Each versor has the 

 ,   ,   i i j j k k        .    (5) 

 

     The relations that exist between the , ,i j k    are 

analogous to those which exist between i, j, k. But the 
factors are transposed, that is to say, written in the 
reverse order. 
 For example, 
 

 k ij ji                             (6) 

 
we deduce 

 
       .k j i i j           (7) 

 
      Suppressing the prime inflections as useless, would 
indicate that the quaternion conjugate is the same 
quaternion but referred to in the basis of opposite 
chirality. The conjugated quaternion will thus be 
obtained while retaining the scalar part and by changing 
the sign of the vector part or, if the quaternion is written 
as a product of quaternions, by multiplying the 
conjugates of the written factors in the reverse order. 
 
 
6. Versors7 
 
The product of a quaternion with a quaternion conjugate 
is a scalar, which is called the norm of the quaternion. 
 The norm of the product of two quaternions, 
Q and Q  is the product QQ QQ  . But Q Q  the 

product of Q  by the quaternion conjugate Q  is the 

norm N  of Q , likewise N = QQ  is the norm of Q
. The norm of the product of NN is thus the product of 
the norm of the factors. 
      A quaternion whose norm is equal to one is called a 
‘versor’. The product of two versors is a versor. 
      One direction may be considered as a quaternion. It 
is a quaternion whose scalar part is zero. 
      Moreover, it is a versor. For if, in the formula of the 
product of two directions, we first make ,   this 

product is equal to minus one, so that the directions may 
be considered as roots of minus one. 

form  expq ar  cos sin ,a r a   2 1, 0, ,r a   

where the 2 1r    condition means that r is a 3D unit vector. 
In case / 2,a  the versor is termed a right versor. The 

corresponding 3D rotation has the angle 2a about the 
axis r in axis–angle representation. The word is derived from 
Latin versare "to turn" or versor "the turner").  
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      The conjugate of the vector is this vector of changed 
sign, the norm, product of the vector by the conjugate 
vector, is thus the square of the changed sign, that is to 
say, plus one. A direction is therefore a versor.  
      If u is the scalar and v the magnitude v and 

direction   the vector of a versor V, we will have  

 

 V u v                               (8) 

 
with 
 

2 2 1u v            (9) 
 
      We can therefore write  
 

cos ,   sinu c v c                    (10) 

 
and with 

 

cos sinV c c      (11) 

 
If 
 

V         (12) 
 

- cos c is the scalar product of the two directions 

 and    while the vector product is a vector of 

magnitude sin c  and of direction  . 

      We can thus interpret geometrically   and c, saying 

that   is a direction perpendicular to the plane of the 

two directions  and   , and that c is the supplement 
of the angle formed by these directions, that is, the 
external angle of these two directions. 
      Conversely, each versor is the product of two 
directions located in a plane perpendicular to the versor 
vector closing an angle, in the proper direction, equal to

.c   
      The formulas of analytic geometry furnish an 
algebraic equivalent of these geometrical notions. They 
make it possible to establish the result which we have 
just obtained even if we take a purely algebraic point of 
view.  
      The product of two directions is a direction only 
when the product scalar is zero, that is to say when the 
two directions are perpendicular. 

 If  and   are perpendicular, that is to say if   

 

         (13) 

 

then this product is equal to a direction   which is 

perpendicular to an   and a .  

 
 
7. Exponential Notation 
 
It is very useful to represent a versor using the notation 
 

 cV e                                 (14) 
 

which we will explain. 
The exponential defines itself by its development in 

a series of powers 
 

 
0 !

n
c n

n

c
e

n
 





                          (15) 

 
which can be decomposed into 
 

   
2 2 1

2 2 1

0 02 ! 2 1 !

m m
m m

m m

c c

m m
 

 


 


    (16) 

 
As  

  2 1
mm                           (17) 

 
and  
 

 2 1 1
mm           (18) 

 
and that the development of the cosine and sine are 
respectfully 

 

 
 

2

0

cos
2 !

m m

m

c
c

m






           (19) 

 
and 
 

 
 
 

2 1

0

sin
2 1 !

m m

m

c
c

m








                       (20) 

 
one obtains 
 
 

cos since c c     (21) 
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 Clearly, until we have cause, the exponential 
continues in the same direction, that is to say for the 
same root of minus one, we can use the rules of the 
calculus of exponentials and in particular the law 
 

 
 c cc ce e e                        (22) 

 
Note also that if   is perpendicular to   we have 

 

 c ce e                        (23) 
 
indeed, the first member is 
 

  
cos sin cos

sin cos sin .

c c c

c c c

  
  

  

 
        (24) 

 
 
8. The Erlangen Program8 
 
In our presentation of spherical and elliptical geometry, 
we will adopt the point of view proposed by Klein in the 
Erlangen program. 

The geometry is then specified when we give, for 
every pair of points, a certain expression called the 
distance invariant. Two pairs of points for which the 
distance invariant has the same values are then 
considered as congruent or superimposable. 
 A transformation which transforms any pair of 
points into a pair of points invariant of distance is called 
a displacement and the study of groups of displacements 
is reduced to the study of groups of transformations 
which leave the invariant of distance invariant. 

The distance itself must be a function of the distance 
invariant, such that the length of a line segment divided 
into two partial segments is the sum of the lengths of 
these segments. 
      The length of the segment is defined as the distance 
between its ends. 
      As for the straight line, we shall consider it as an axis 
of rotation, such as a locus of points left invariant by a 
displacement. 
 
 
9. The Distance Invariant 
 
We will assume that each point of the spherical space is 

                                                           
8 Erlangen Program - Method of characterizing geometries 
based on group theory and projective geometry introduced 
by Felix Klein in 1872 as Vergleichende Betrachtungen über 
neuere geometrische Forschungen (Comparative consider-
ations on recent geometric researches [4]) named after 

specified by a versor V.  
If  and V V   are the versors representing two 

points we will define the distance invariant of this pair 
of points by the scalar  

 

  1
I V V

2
V V                  (25)  

 
In this expression  and V V   denote the conjugates of 

V and V .  
These definitions suffice to define the geometry in 

the sense of the Erlangen program. 
Although this is not necessary for the rest of the 

exposition, we interspersed here some remarks which 
have no other purpose than to show how we were led to 
choose this point of departure.  

If u is the scalar and x, y, z the components of the 
vector of the versor V, we have 
 

 2 2 2 2 1x y z u                  (26) 

 
which can be considered as a hyper-sphere of radius one 
or spherical space. This shows how a pourer can 
characterize a point of the spherical space.  

Similarly, if the primed letters designate the 
analogous quantities for the versor V ,   the distance 

invariant is 
  

I xx yy zz uu                  (27) 

 
an expression which generalizes the expression of the 
cosine to four dimensions as a function of the angle of 
the direction of the cosine boundaries. 
    We can therefore predict that the distance invariant 
will be the cosine of the distance. 
 
 
10. Parataxis9 
 
A first group of displacements is obtained by 
multiplying the representative versor of the various 
points of the space by a fixed versor. We shall call these 
displacements of the parataxies, parataxies on the left if 
the multiplication is made on the left, parataxies on the 
right if it is made on the right. 
     Let us designate 

the University Erlangen-Nürnberg, where Klein was given a 
professorship. 
9 Paratactic- A Parameter whose association/ 
arrangement/juxtaposition is only implied. 
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 ,   a ae e  

                          (28)  

 

two arbitrary points of space, Let ce  be the fixed versor 

and be  and be  
the two points in which the points 

ae 
and 

ae  
are transformed by a parataxis to the left, 

we shall have 
 

       b c a b c ae e e e e e          .     (29) 
 
     If I  denotes the distance invariant after 
transformation, we have to verify that I  = I.  It 
becomes 
 

2I b b b be e e e         .           (30) 
 

     For the conjugates 
 

b a ce e e                     (31) 
 

and 
 

b a ce e e                      (32) 
 

obtained by taking the product of the conjugates in the 
reverse order it becomes 

 

I Ic ce e                       (33) 
 
which reduces to I since I is a scalar that can equally 
well be inscribed as head of the product.                      
      From the fact that the product of two versors is a 
versor, the parataxis on the left form a group.  

 For the parataxis on the right, we will have the 
same 

 
b a c

b a c

e e e

e e e

  

     




                  (34) 

 
and so 
 

2 2I.a c c a a c c aI e e e e e e e e                  (35) 
 

 
The parataxies with straight lines are thus also 
displacements and form a group of  

displacements. 
 
 

11. Homogeneity of Space 
 
A versor whose vector is zero reduces to the scalar one. 
We will call the corresponding point the origin. 

Any point can be transformed at the origin by a right 
or left parataxy. It is enough to take for the symbol of 
the parataxis the versor conjugated to the symbol of the 

point to be transported at the origin. For c ae e  we 

have 1.be    
It follows from this that the space considered is 

homogeneous since there are displacements which carry 
every point at the origin. 
 
 
12. Rotation 
 
If a parataxy is performed successively on a left and a 
right parataxis having as a symbol the versor conjugated 
to that of the parataxis on the left, evidently a 
displacement is obtained. That is to say a transformation 
which preserves the distance invariant. This 

Transformation transforms any point ae   into a point 
be  by the formula 

 
b c a ce e e e                         (36) 

 

If ae  is the origin, be  will also be at the origin. The 
transformation thus preserves the origin; we shall say 
that it is a rotation around the origin. 
 
 
13. Straight Lines 
 
This allows us to define a straight line as an axis of 
rotation. 
      The points that are retained by the rotation are 
included in the expression 
 

 
ce 

                                (37) 
 
where c can assume an arbitrary value.  

This expression for the c variable is the equation 
of a line passing through the origin. 

By displacing the origin with a parataxis, we obtain 
the equation of a line passing through the point in 
which the parataxy has transformed the origin. 
 
 
14. Straight Parataxies 
 



Quaternions and Elliptical Space (Quaternions et Espace Elliptique) 
 

The parataxies of the same species (i.e. all to the right or 
all to the left) of fixed direction  , for any parameter c 

form a group, subgroup of the group of parataxies which 
results from 
 

(38) 

 
such that the two parataxies of parameter c and c  
carried out successively in any order are equivalent to a 
single parataxy of parameter 
 
 c c c                            (39) 
 

      This particular group retains the straight line ce  (c 
variable), that is to say, transforms the points of this line 
into points of the same line. 

 This group will retain (even if it is a left parataxy), 
all straight lines 

 

 
c xe e 

                          (40) 
 

(c variable, , ,x  fixed). 

 For different values of x and   but the same value 

of  , these lines are called parataxies (left). 

      Similarly, the straight lines 
 

 
x ce e 

                        (41) 
 
(c single variable) are preserved by right parataxies and 
are right paratactic. 
 
 
15. Distances 
 
Consider two left parataxis of direction and 

parameters c and c', carried out successively.       

      The first transforms the origin into the point ce 

. The second transforms this point into a point in 
  .c ce 

 
When we have three points in a straight line, the 

length of the total segment must be the sum of the 
lengths of the partial segments. The length of a segment 
is the distance of the extremities, that is to say a function 
of the distance invariant for these two points. The 
invariant is cos c and cos c for the partial segments 

and cos c for the total segment.  

, ,c c c  are functions of the distance invariants and 

since 
 

 c c c                                  (42) 
 
are additive functions.  

For a suitable choice of the unit of length, ,c c and 

care the distances themselves. 
 
 
16. Perpendicular Lines 
 
Consider two straight lines passing through the origin, 
as 
 

xe 
                                 (43) 

 
for the x variable and 
 

ye 
                                 (44) 

for the y variable. 
Suppose further that the directions  and  are 

perpendicular to one another; we intend to show that the 
two straight lines are perpendicular.  

This may seem obvious, but in reality, this must be 
demonstrated. Indeed, the directions have been 
introduced without reference to the spherical space and 
to its distance invariant. 
      We shall define the right angle, as in Euclid, by the 
condition that the angle is equal to the adjacent angle 
obtained by extending one of the sides. In other words, 
there must be a displacement (a rotation) which 
transforms the first right angle into the second and the 
second right angle into the angle opposite the first.  
      The calculation is very elementary, but we give it 
in detail by way of example of this type of calculation.  
       Since the directions   and   are perpendicular, 

there exists a direction  such that 

 

       .                     (45) 

 
      Consider then the rotation 
 

 1 1b ae e e e
                        (46) 

 

which transforms any point ae  into .be   We must 

show that if we set ,a xe e   we obtain b xe e   

and if we set a ye e  , we obtain .b ye e   
      In the first case, we have 

 

 c cc ce e e    
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   

  

   

1
1 1

2
1

1 1 cos
2
1

1 1 sin
2

b xe e

x

x

  

 

  

   

  

 

.        (47) 

 
but 
 

  1 1 2                     (48) 

 
and 
 

     2
1 1 1 2 2               (49) 

 
it becomes therefore 
 

 cos sinb xe x x e   .           (50)  

 
In the second case 

 

   1
1 1

2
b y xe e e               (51) 

 
the calculation is the same,  replacing ,  but 

 

   .                       (52) 

 
 
17. Left Rectangles 
 

Let ce   be a fixed point; then for x and y variables 
with   perpendicular to   then 

 
c xe e 

                               (53) 
and 

c ye e 
                                (54) 

 
represent two straight lines perpendicular to one 
another. 

In particular, if   , the second 

 

 
 c ye 

                             (55) 
 
is a line which passes through the origin, it is the line 

joining the origin to the point 
ce 

. The first line is the 

left parataxis to the line 
xe 

 passing through the fixed 

point, 
ce 

. 

 As the line 
xe 

 is also perpendicular to the line 
 c ye 

, we see that the two paratactics 
xe 

 and 

 c xe e  have a common perpendicular. 

Let us make a right parataxis of symbol xe   ( x
fixed) the two lines 

xe 
 and  c xe e  , left parataxies, 

are each transformed into themselves and the common 
perpendicular moves while maintaining the same length. 

The figure formed by the two parataxies and the two 
common perpendiculars is therefore a rectangle in the 
sense that it is a quadrilateral whose angles are right with 
the opposite sides equal to each other. But it is not a 
plane figure, but a left rectangle (in the English sense of 
"skew"). 
 
 
18. Clifford Surfaces 
 
The Clifford surface is called, the place where the 
paratactic lines have the same straight line, called the 
axis of the surface, and such that the perpendicular 
common to the axis has the same length as the radius of 
the surface. 
      Let us first consider left parataxies; the surface 
points of the Clifford axis 
 

 xe                                    (56) 
(x variable) are 
 

c xe e                                  (57) 
 

where c is the radius of the surface and where x is 
variable as well as the direction   which can represent 

all directions perpendicular to  . 

For right parataxies, it would be the same 
 

x ce e  
                             (58) 

 
      The two expressions are equal 
 

,   c x c xx x xe e e e                     (59) 

 
that is to say 
 

x xe e    .                         (60) 
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     This shows that the place of the paratactic on the right 
is the same as that of the paratactic on the left. 

The Clifford surface is the locus of points at constant 
distance c from the axis of the surface. It is a regulated 
surface which admits two systems of generators, the 
paratactic ones to the left and to the right of the axis of 
the area. 

If one performs paratactic displacements which 
retain the axis, the Clifford surface transforms into itself, 
the generators of one system are transformed into 
themselves and the generators of the other system are 
interchanged. 

Two pairs of generators of each of the two systems 
thus form parallelograms, the angles are equal or 
additional and the opposite sides are equal.  

The angle of these parallelograms is easily 
calculated; in fact, the two generators passing through 

the point ce   are 
 

c xe e                              (61) 
 

(x variable) and 
 

x ce e 
                          (62) 

 

( x variable). A parataxis with the left symbol ce   
brings the vertex of the angle to the origin, the lines are 
transformed into 
 

xe                                (63) 
 

and 
 

c x ce e e                         (64) 
 
which are transformed one into the other by a rotation of 
the angle 2c. 
      Perhaps this last point is not perfectly clear, we shall 
return to it in an instant after having studied the plane. 
 
 
19. Conjugate Lines 
 
In the particular case where / 2c   we have 
 

 ce                               (65) 

 
and therefore, since   and   are assumed to be 

perpendicular 
 

 x xe e                             (66) 

 
the two paratactic ones, the one on the right and the 
one on the left are therefore identical. Their points 
correspond to 
 
 x x                                  (67) 

 
Consider any point on the line 

 

 V xe                               (68) 

 
(that is to say, a particular value of the variable x ) 
and any point on the line 
 

V xe                                (69) 
 

      These two straight lines are right parataxies for the 

exceptional case 2.c    

      We will show that these two points are the same 

distance 2 , that is to say that their distance 

invariant is zero. In fact 
 

 

 

   

1
I V V

2
1 1

2 2
1

0
2

x x x x

x x x x

V V

e e e e

e e

   

 

 

 

   

  

   

  

    

.      (70) 

 
      It would be easy to show that the straight line joining 
V  and V , that is to say, any line intersecting the two 

straight lines v  and v (for x  and x variables) is 
perpendicular to these two straight lines. But no doubt 
we have given sufficient examples of these calculations.         

      The paratactic lines for 2c   are said to be 

conjugate or absolute polar. 
 
 
20. The Plane 
 
The plane can be defined as the locus of straight lines 
perpendicular to the same straight line 
 

 ,  c xe e                                 (71) 
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(x variable). 
      The points of the plane are thus represented by the 
versors 

 V c ye e                          (72) 
 
y is arbitrary and   also but perpendicular to  .  

We shall show that the plane is the locus of points 

situated at distance 2  from a point 

 

V ce                           (73) 

 
called the center of the plane. 
      We must verify that the distance invariant of the 
two points V and V  is zero. We have 
 

 

 

1
I V V

2
1 1

2 2
c y c c y c

V V

e e e e e e        

   

 
       (74) 

 
which is null, since for      we have 

 
y ye e                         (75) 

 
Or we can put in the equation of the plane, the versor 
V  representing the center. 

 If 
                            (76) 

We have 
 

 
 

V V

V cos sin V .

ye

y y



  

  

   
      (77) 

 
      It is easy to realize that   is a direction that is 

arbitrary. Indeed, it is the direction whose orthogonal 
projections on the directions   and   are 

respectively cos y  and sin y .   is therefore in the 

plane of   and   forming an angle y with  . But    

is an arbitrary direction perpendicular to   and since y 

is arbitrary,   is also arbitrary. 

In particular, if the center is at the origin, we see that 
the directions represent the points of a plane, that is to 

say of a sphere of radius 2  centered on the origin.  

As the familiar theorems which show that the angles 
at the center are measured by the intercepted arc on the 

sphere apply without modification, it follows that the 

angle of two straight lines from the center xe   and ye   
is the distance of the two directions   and  . 

When the versors are reduced to directions, the 
distance is reduced to the scalar product of the two 
directions. The angle of the two straight lines is therefore 
the angle of the directions of these lines. 

In particular, with the rotation  
 

 b c a ce e e e                        (78) 
 

we have for 2a b      

 

 c ce e                          (79) 

 
and if   is perpendicular to    

 
2 cos 2 sin 2ce c c              (80) 

 

   has thus rotated by an angle 2c  in the plane 

perpendicular to .  

      This completes the justification of the end of 
section 18. 
 
 
21.  Antipodal Points 
 
When x varies from zero to 2 , the expression 

 

 xe                                   (81) 
 
represents successively the various points of a straight 
line, partly from the origin, and on returning there to 
traverse in the same order the points already traversed. 
In fact, 
 

 
 2x xe e    .                      (82) 

 
The line is therefore a closed line whose length is 
equal to 2 .   
If we consider all the straight lines passing through 

the origin, that is, when we consider different values of 
the direction ,  we see that for x   all these lines 

pass through the point -1.  
This point is called the antipode of the origin.  
If we consider similarly straight lines passing 

through a point ce   we would see that all these lines 

pass through the point ce  the antipode of ce  .  
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The antipode points are thus represented by versors 
from opposite signs, every straight line passing through 
such a point also passes through the antipode of this 
point. 
 
 
22. Elliptical Space 
 
If, instead of the invariant of distance I,  we had taken 

as invariant distance, 
2I  or the absolute value of I,  then 

two versors V and V V    would have as distance 
invariant plus one. Instead of considering them as 
representing distinct points of space, the antipodes, they 
should be considered as two representations of one and 
the same point of space. 

Apart from this circumstance concerning the 
disappearance of the antipodes, all the formulas 
established for the spherical space remain valid for the 
new space. 

This is called the elliptical space. 
Some authors nevertheless call it a simply elliptic 

space so as to leave to the term “elliptical space” a 
generic meaning which applies to both of the spaces 
considered as various "forms" of the elliptical space. 

 
 

23. Representations of Elliptical Euclidean Space 
 
First of all, we note that infinitely small figures of 
elliptical space can, in the limit, be considered as 
Euclidean figures. 

This already appears in the fact that the angle of 
warping of a left rectangle is equal to the dimension; It 
therefore tends to zero if this side is infinitely small and 
then the rectangle becomes a plane and the geometry 
Euclidean.  

We can also show that when , ,x y z  and , ,x y z  
are infinitely small, the invariant of distance I  becomes, 
neglecting the quantities of order higher than the second 
 

     2 2 21
I 1 ' ' ' ...

2
x x y y z z          (83) 

 
as I  is the cosine of the distance r, it is at the same 
approximation equal to the Euclidean value 
 

      2 2 22 ' ' 'r x x y y z z           (84) 

 
      We can use this remark, to represent the totality of 
the elliptical space, in a sphere of infinitely small radius 

 . Let us note that by exception we use this Greek letter, 
in its traditional sense of an infinitely small scalar. 
 A point 

 xe                                  (85) 
 
may be represented inside the sphere by the point 
 

'x xe e                            (86) 
 

or by neglecting the terms in 2   by the point 
 
 1 x                                (87) 

 
       Since geometry can be considered as Euclidean in 
the sphere, we shall have, taking    as units of 
Euclidean lengths, that a point of the elliptica space 

xe  is represented by a Euclidean vector of direction   

and length x. 
We obtain all the points on the line considering all 

the values of x from minus 2  to plus 2 . The 

extreme points represented on the sphere of radius 

 2   are the antipodal points of this sphere and 

would represent the antipodes of space if we consider 
the spherical space. As we consider the elliptical space 
these two points represent two representations of the 
same point of the elliptical space. 

All the points of this space are thus represented 
inside our Euclidean sphere and the points situated on 
the frontier of the representation are represented there 
twice. It is therefore never difficult to follow the 
representation on a contour which reaches its edge, since 
all the points on the edge have two representations in 
such a way that, instead of leaving the sphere, it can 
always pass to the other representation of the same point 
and continue to walk towards the interior of the sphere. 
 
 
24. Representations of Spherical Space 
 
An analogous representation can be used for spherical 
space. It is now assumed that within the sphere there are 
two kinds of points. We will say the blue dots and the 
pink dots. The points of the frontier are not more of one 
species than the other. We will say that these are mauve 
points.  
      We shall suppose that we cannot pass from a pink 
point to a blue point than through a mauve dot. 
      In other words, there are, within the sphere, two 
distinct spaces, the blue space and the pink space, and 
these two spaces are connected by the purple border, the 
surface of the sphere. 
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This representation can be modified in a variety of 
ways with respect to the topology by making it resemble 
the projections of the sphere, such as the stereographic 
projection or the orthogonal projection. But these 
developments would lead us outside our subject. 

 
* * * 
 
Translators Appendices 
 
Appendix A: Brief Definitions of Terms 
 
1. Versor – An affinor (affine tensor) which effects a 
rotation of a vector through a right angle. For 
quaternions, the versor of an axis (or a vector) is a unit 
vector indicating its direction. In general, a versor 
defines all of the following: a directional axis; the 
plane normal to that axis; and an angle of rotation.  For 
quaternions, the versor of an axis (or of a vector) is 
a unit vector indicating its direction [5]. 

Rotations of Unit Quaternions. Term introduced by 
Hamilton in developing quaternions. Versor is 
sometimes used synonymously with "unit quaternion" 
with no reference to rotations. An algebraic 
parametrization of rotations. In classical quaternion 
theory, a versor is a quaternion of norm one (unit 
quaternion). Each versor has the form  expq ar  

cos sin ,a r a   2 1, 0, ,r a    where the 2 1r    

condition means that r is a 3D unit vector. In case 
/ 2,a  the versor is termed a right versor. The 

corresponding 3D rotation has the angle 2a about the 
axis r in axis–angle representation. The word is derived 
from Latin versare "to turn" or versor "the turner").  
 
2. Parataxis – Corresponds to a hyperbolic displace-
ment by a half line. 
 
3. Paratactic lines -  In elliptic geometry two oblique 
lines with an infinite set of common perpendiculars of 
the same length are called Clifford parallels, equidistant 
or paratactic lines in elliptic geometry if the 
perpendicular distance between them is constant from 
point to point. 

The concept was first studied by William K. 
Clifford in elliptic space. Since parallel lines have the 
property of equidistance, the term parallel was taken 

                                                           
10 In Euclidean geometry, equipollence is a binary 
relation between directed line segments. A line 
segment AB from point A to point B has the opposite 
direction to line segment BA. Two directed line 
segments are equipollent when they have the same 
length and direction. 

from Euclidean geometry, but the lines of elliptic 
geometry are curves with finite length, unlike lines in 
Euclidean geometry. Quaternion algebra describes the 
geometry of elliptic space in which Clifford parallelism 
is made explicit. 
 
4. Hyperbolic geometry – a Lobachevskian, or non-
Euclidean geometry, where the Euclidean parallel 
postulate is replaced with: For any given line R and 
point P not on R, in the plane containing both line R and 
point P there are at least two distinct lines 
through P that do not intersect R. 
 
5. Riemannian geometry – or elliptic geometry, is a 
non-Euclidean geometry regarding space as a sphere and 
a line like a great circle. Euclid’s 5th postulate is rejected 
and his 2nd postulate modified. Simply, Euclid’s 5th 
postulate states: through a point not on a given line there 
is only one line parallel to the given line. In 
Riemannian geometry, there are no lines parallel to the 
given line. Euclid’s 2nd postulate is: a straight line of 
finite length can be extended continuously without 
bounds. In Riemannian geometry, a straight line of finite 
length can be extended continuously without bounds, 
but all straight lines are of the same length. However, 
Riemannian geometry allows the other three Euclidean 
postulates. 
 
6. Elliptical space - Elliptic space can be constructed in 
a similar manner to the construction of 3D vector space: 
One uses directed arcs on great circles of the sphere. As 
directed line segments are equipollent10 when they are 
parallel, of the same length, and similarly oriented, so 
directed arcs found on great circles are equipollent when 
they are of the same length, orientation, and great circle. 
These relations of equipollence produce 3D vector space 
and elliptic space, respectively. Access to elliptic space 
structure is provided through the vector algebra 
of William Rowan Hamilton: he envisioned a sphere as 
a domain of square roots of minus one. Then Euler's 

formula  cos sinixe r i  
 where r is on the 

sphere, represents the great circle in the plane 
perpendicular to r. Opposite points r and –r correspond 
to oppositely directed circles. In elliptic space, arc 
length is less than π, so arcs may be parametrized with θ 
in [0, π) or (–π/2, π/2] 

The concept of equipollent line segments originated 
with Giusto Bellavitis in 1835 [6]. Subsequently the 
term vector was adopted for a class of equipollent line 
segments. 
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7. Hyperbolic versor - Regarding versors, a parameter 
of rapidity specifying a reference frame change 
corresponding to the real variable in a one-parameter 
group of hyperbolic versors. With the further 
development of special relativity, the action of a 
hyperbolic versor is now called a Lorentz boost [7].  
 
Appendix B: Erlangan Program 
 
Method of characterizing geometries based on group 
theory and projective geometry as introduced by Felix 
Klein in 1872 in Vergleichende Betrachtungen über 
neuere geometrische Forschungen (Comparative 
considerations on recent geometric researches [4]) 
named after the University Erlangen-Nürnberg, where 
Klein was given a professorship. 
 
Appendix C: Lemaître Biographical Note 
 
Georges Henri Joseph Édouard Lemaître (July 1894–
June 1966) was a Belgian Catholic priest, astronomer 
and professor of physics (rare mix in modern times) at 
the Catholic University of Leuven. As he was a secular 
priest, he was called Abbé, then, after being made 
a canon, Monseigneur. 

He is best known for the discovery of the 
proposed expansion of the universe, still widely 
misattributed to Hubble. He was the first to derive what 
is now known as Hubble's law and made the first 
estimation of what is now called the Hubble constant, 
published in 1927, two years before Hubble's article; but 
since it was published in French it was unknown in the 
US for a time. Lemaître also proposed what is known as 
the Big Bang theory, which he called his "hypothesis of 
the primeval atom" or the "Cosmic Egg" [2].  
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