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Symbols used.  
x, y. z, t, ݔ ′, ݕ ݖ ,′ ′, ݐ ′  spatial coordinates and time in Σ, and ߑ′ 

Σ, ߑ′     space of observer, space of observed 
r     spherical coordinate 
 ௣     particle radiusݎ

 ௟௢௖     local spherical coordinateݎ
 ௜௡௙     global spherical coordinateݎ

ri     spherical coordinate of ith particle  
rij     distance from ith particle in group (ij)  
     in sub-space 

i     complex number (√−1 ) 
i, j, k, g    index i, j, k, g 
c     velocity of light (3x108 m/sec) 
v     velocity 
g     group index g 
R, R     distance between particles and vectorial distance 
     between particles 
ܴ௨     radius of universe 
m,  m0     mass, rest mass 
mi, mj     mass of particle i and j 
mp, me    proton mass (1.7x10-27kg), electron mass  
     (0.91x10-30kg)  
,࢞)࢓ ࢟, ,ࢠ ࢚)    expectation value of mass in sub-space 
MS, MM    mass of sun (1.99x1030 kg) and mass of Mercury 
     (3.3x1025 kg) 
M10, M20    rest masses of body 1 and 2 
M(Ru)     mass of the universe 
px, py ,pz    momentum in x, y, and z direction  
௫.ෞ݌ ௬.ෞ݌   ௭ ෞ݌      momentum operators 

పఫ ෞ݌ ప.ෞ݌  ప.ෞ݌       momentum operator for particle i, j and particle i 

     in group (ij)   
P     expectation value of momentum  

Ĥ൫݌௫ෞ, ,௬ෞ݌ ௭,ෞ݌ ,ݔ .ݕ  ൯   Hamilton operatorݖ

E     energy 
 ௟௢௖     energy due to local interactionsܧ
 ௜௡௙     energy in open spaceܧ
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Ê(ݐ)     energy operator 
 ௜௝     energy of particle i in group (ij)ܧ

,ݔ)ܸ ,ݕ  potential energy    (ݖ

௜ܸ௝       potential energy of particle i in group (ij) 

௜௝ߝ = ௜௝ܧ − ௜ܸ௝     kinetic energy of particle i in group (ij) 

௞ߛ = 1 ඥ1 − ௞ݒ
ଶ ܿଶ ⁄⁄   relativistic transformation factor for particle 

     k=i,j or group k=g 
߰௜(ݔ, ,ݕ ,ݖ  wave function of particle i    (ݐ
௟௢௖ݎ)௟௢௖ߖ ,  local wave function    (ݐ

,௜௡௙ݎ௜௡௙൫ߖ  ൯   wave function in free spaceݐ

  ௜௝,௧     wave function of particle i in  group (ij)ߖ

߮௜௝,௧, ߮௜௝    time dependent and time independent wave  

     function of particle i in group ij as solution of the 
     KG-equation 
߶௞௟= ߮ଵ௞߮ଶ௟   interaction potential 
 ௞     angleߜ
  ௜௝     amplitude x rij of particle i in group (ij)ߙ

  ௝௜     2π x inverse wave length of particle i in groupߚ

     (ij)  
ħ     Planck’s constant/2π (1.054 x10-34 Jsec) 
h     Hubble constant (2.3 x10-18 sec-1) 
 ௜௝     amplitude of relativistic particle i in group (ij) inߛ

     sub-space 
σ     connection factor (2.7x102 Jm/kg4) 
G     gravity constant (6.673x10-11 m3/kg.sec2) 
 ૚૛     vectorial force between particlesࡲ
N     number of particles 
ࣨ     number of groups 
Ze     electric charge (Zx1.6x10-19 Coulomb) 
 ଴     dielectric constant (107/4πc2)ߝ
T, Tk     period (paragraph 10), kinetic energy (paragraph 
     13 and14). 
ω     angular velocity 
ρ଴     average rest mass density of universe   

     (10-24 kg/m3)  
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1. Introduction. 
In our daily life, gravity is experienced everywhere and at all moments. Without 
gravity the world as an entity would not exist, the Sun would not shine, water 
waves would not run, etc. Even if we would evaluate the consequences of a 
small change in the gravitational interaction, the universe would look different 
from how it is now. It is accepted as an inescapable force that keeps our 
existence together. However, where we have some basic understanding of the 
processes around us, there does not exist a suitable explanation for this force at a 
microscopic level.  
Gravitation interaction manifests itself where other forces are not the 
determining factor. Therefore, in our real world, we see that our direct vicinity 
has structures of forms that are changing over short distances like mountains, 
cities, sky scrapers, boats, forests etc. At larger distances, of the order of 100 
kilometers, the gravity becomes the dominant factor and bodies begin to take 
spherical shapes. Obviously, the smaller the gravity is, so to speak at smaller 
planets than earth, the structural variability will become larger. That the 
electromagnetic interaction becomes insignificant in shaping the environment is 
not due to the form of the electrostatic interaction, which has basically the same 
shape as the gravitational interaction, but it is due to the fact that positive and 
negative charges balance and compensate for their interaction, the influence of 
electromagnetism is becoming insignificant already at short distances. 
Now the general belief is that any suitable theory should include, or will be, a 
merger of classical quantum theory and relativity, but until now no theory that is 
widely accepted has been proposed. In the present document a new scheme of 
analysis for the mutual interaction between particles that have some exchange 
with respect to time and space will be presented. The remarkable thing is that, 
apparently for more than one reason, particles will be interacting in groups of 
two and only two and can give rise to gravitational exchange. This pair 
formation is described quantum mechanically. Either starting from the classical 
Schrödinger equation or the relativistic Einstein energy equation, but this latter 
formulated in a quantum mechanical setting known as the “Klein Gordon” (KG) 
equation, results in the same wave function describing pairs of particles. Since 
this wave function represents a pair potential, a relativistic mass can be 
attributed to it which is used in the KG-equation to derive an interaction field 
between the members that form the ensemble. It is found that the right form of 
Newton’s gravity law emerges by consequently working through the proposed 
schemes of both quantum mechanics and the basic equations of relativity theory 
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as expressed by the quantum mechanical equivalent of the Einstein energy 
equation.  

This document is based earlier papers by H.J. Veringa, published in 2016 in the 
Journal of Modern Physics, [1] and [2], but at places data, interpretations and 
conclusions are improved.   

Figure 1: The satellite Rosetta was 
launched in 2004 and arrived at 
Comet 67P/Churyumov-Gerasimenko 
on 6 August 2014. It is the first 
mission in history to rendezvous with 
a comet, escort it as it orbits the sun, 
and deploy a lander to its surface. 
The mission ended on 30 September 
2016. The comet is an irregular 
object roughly 3 kilometers wide and 
5 kilometers across  

 

 

Figure 2: The earth moon is the biggest object in our night sky, but that is only because it is 
the closest celestial body. The moon is about 27% of the size of the earth. If equal densities 
are assumed, it would be 2%  of the mass of the earth, but it is about 1.2%. The earth moon is 
the fifth largest moon in our solar system. The gravitational acceleration at the moon’s 
surface is about 17% of that of the earth (1.7 m/sec2).  
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2. The Special Relativity Theory. 
At the beginning of the previous century it became apparent that the basic rules 
of mechanics shows some discrepancies when speeds are increasing. In daily life 
this was, however, not serious because the speeds at which discrepancies occur 
are far beyond the speeds which we are used to work with, but some remarkable 
facts, particularly when our understanding of cosmology increased, were 
observed which did not allow an explanation on the basis of classical Newtonian 
mechanics. Particularly when it became possible to measure with good accuracy 
the speed of light the peculiarities became even bigger. It was thought that the 
earth and light are moving through a stationary cosmological substance, the 
“ether frame”, so that any measurement of the speed of light would depend on 
the direction at which we would measure it. It was the Michelson-Morley 
experiment [3] that showed that, whatever we try, we will always find the same 
value of the speed of light: c = 3x108 m/sec. 
This unexpected result remained puzzling for some years but later it was 
realized that also the laws of electromagnetic are entirely independent of the 
speed and place of the observer.   
So if we have a frame of reference, a coordinate system, in which the observer is 
situated, Σ, and a moving one travelling with speed v, which we call Σ’, the 
distance between points in either system remains the same.  As the information 
about this distance is based on visual observation of things which are happening, 
we can conclude that if the coordinates, including time, in Σ are x, y, z and t and 
in Σ’ they are x’, y’, z’ and t’, the following relation must hold: 

ଶݔ + ଶݕ + ଶݖ − ܿଶݐଶ = ଶ′ݔ + ଶ′ݕ + ଶ′ݖ − ܿଶݐ′ଶ.     (2.1) 

Lorentz proposed on the basis of this invariance a scheme of transformations 
between the coordinates in Σ and Σ’ to guarantee that this invariance is always 
valid. These transformations, known as the Lorentz transformations, can be 
derived from this equation (2.1) and read: 

ݔ = ݔ)ߛ ′ + ݐݒ ݕ  ,(′ = ݖ  ,′ݕ = ݐܿ ,′ݖ = ݐܿ)ߛ ′ + ݐݒ ′),     (2.2) 

with: ߛ = 1 ඥ1 − ଶݒ ܿଶ ⁄⁄ .        

Einstein realized that there is more in this than just a few transformation rules 
and generalized this idea by proposing the concept of “four-vectors”. Four-
vectors are mathematical objects in four dimensional space which transform 
according to the Lorentz rules and therefore have the Lorentz invariance as in 
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equation (2.1). Such a four vector is symbolized as {x,y,z,ct}. There are many 
different four-vectors, particularly in electrodynamics, but for the present theory 
we will only need, next to the one mentioned, the momentum-energy vector 
{px,py,pz,E/c} with the invariance: 

௫݌
ଶ + ௬݌

ଶ + ௭݌
ଶ − ଶܧ ܿଶ = ⁄(constant)ܥ .       (2.3) 

With the help of the famous mass-energy equation of Einstein: ܧ =  ଴ܿଶ this݉ߛ
invariance is readily rewritten as an equation that will be of great importance for 
the rest of this document:  

ଶܧ − ଶܿଶ݌ = ݉଴
ଶܿସ.         (2.4) 

The gradient operator {
డ

డ௫
, 

డ

డ௬
,

డ

డ௭
,

ଵ

௖

డ

డ௧
} is a special one with the invariance, but 

applied to a field φ: 

ቀ
డమ

డ௫మ +
డమ

డ௬మ +
డమ

డ௭మ −
ଵ

௖మ

డమ

డ௧మቁ ߮ =  (2.5)       ,߮ܥ

which is the well known equation describing the movement of a wave through a 
medium. If this medium is the vacuum, we can set C = 0, and signals move at 
the speed of light as the general solution is: 

߮ = ݔ)݂ − ݕ)݃(ݐܿ − ݖ)ℎ(ݐܿ −         .(ݐܿ

In which f, g and h are arbitrary functions in the arguments as indicated.   
 
The famous Lectures on Physics [4] gives a very good introduction into four-
vectors as they are dealt with in this paragraph. Further reading Special 
Relativity is recommended in Ney [3].      
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3. Quantum rules. 
In quantum theory the behaviour of a microscopic particle in space and time is 
described by a wave function, denoted by ψ. This wave function is a 
mathematical expression in space and time, usually in complex notation. The 
product of this wave function and its complex conjugated  ψ*: ψ ψ* is the 
probability that a particle can be found at that particular place and moment.  
Quantum mechanics relies largely on operators. Operators are mathematical 
abstractions that do something with a wave function. In the first place a wave 
function is a solution of the operator equation like, as an example for the 
momentum:  

௫ෞψ݌ =
ħ

௜
 

డ

డ௫
ψ =  ψ.         (3.1)݌

The expectation value of the momentum in this example then is given by:  

ࡼ = ׬ ψ∗  ௫ෞψdV,          (3.2)݌

with the integration over the entire space where the operator is active. As a 
consequence of this the normalisation of a wave function is: 

׬ ψ∗ ψdV = 1. 

The famous Schrödinger equation derives from the basic rule based on the 
Hamiltonian and energy operator acting on this wave function and gives the 
energy as a function of momentum and space as a solution. In short it reads::  

Ê(ݐ)߰(ݔ, ,ݕ ,ݖ (ݐ = Ĥ(݌௫ෞ, ,௬ෞ݌ ௭,ෞ݌ ,ݔ .ݕ ,ݔ)߰(ݖ ,ݕ ,ݖ  (3.4)    .(ݐ

In this equation the time dependence is allocated to the energy operator by 

Ê(ݐ) = ݅ħ
డ

డ௧
 , while the dependences on momentum and place are allocated to 

the Hamiltonian. The momentum in the Hamiltonian is, obviously, also an 

operator and given by ݌௫ෞ =
ħ

௜
 

డ

డ௫
, and similarly for the y- and z- coordinates. It is 

worthwhile to note that the conjugated wave function is a solution of the 
conjugated Schrödinger equation and not the result of an operation on the wave 
function itself.  
For the development of the present model we can write the Hamiltonian more 
explicitly as: ܪ = ௫݌)

ଶ + ௬݌
ଶ + ௭݌

ଶ) 2݉⁄ + ,ݔ)ܸ ,ݕ  :or as operators (ݖ

Ĥ(݌௫ෞ, ,௬ෞ݌ ௭,ෞ݌ ,ݔ .ݕ −=(ݖ
ħమ

ଶ௠
ቀ

డమ 

డ௫మ +
డమ 

డ௬మ +
డమ 

డ௭మቁ + ,ݔ)ܸ ,ݕ  (3.5)   .(ݖ
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This equation has been very successful in describing the behaviour of 
microscopic particles in their local environment. Such a local environment can 
be anywhere: in open space as well as in structures like a solid. But once speeds 
are getting higher, it is found that the validity of this equation breaks down. 
For this reason another energy equation which better fulfills the relativistic 
behaviour is proposed based on the equation (2.4), but now in the form of 
operators: 

−ħଶ ቆ
డమ 

డ௧మ − ܿଶ ቀ
డమ 

డ௫మ +
డమ 

డ௬మ +
డమ 

డ௭మቁቇ ,ݔ)߮ ,ݕ ,ݖ (ݐ =  ݉଴
ଶܿସ߮(ݔ, ,ݕ ,ݖ  (3.6)    .(ݐ

This equation is the relativistic alternative for the Schrödinger equation. It is 
called the “Gordon Klein” equation. From the form it can be seen that the wave 
function has the character of a travelling wave in open space. If there is no mass, 
mo = 0, it will propagate with the speed of light c. With mass the propagation 
speed will always be lower than the speed of light.  
Both wave equations (3.4) and (3.6) with the Hamilton operator in (3.5) will be 
used in the further development of the theory.  
If we bring together the two equations in their basic form:  

ܧ = ௫݌)
ଶ + ௬݌

ଶ + ௭݌
ଶ) 2݉⁄ + ,ݔ)ܸ ,ݕ  and:             (3.7a) ,(ݖ

௫݌) =  ଶܧ
ଶ + ௬݌

ଶ + ௭݌
ଶ)ܿଶ+ ݉଴

ଶܿସ,                       (3.7b) 

             
we see immediately that in the second equation all the parameters show up as 
squares whereas in the first one it is a mixed representation. This means that the 
quantum mechanical rules and the relativistic rules are incompatible. But there 
are ways to circumvent this problem. For instance, Dirac found a way to fulfill 
both equations and arrived at the magnetic moment of particles and its 
peculiarities.  
In respect of the development of the theory of gravity one important remark has 
to be made about the use of operators. The expectation value for the mass is 
found by considering the mass as an operator. Therefore the mass distribution 
due to the wave function ߰(ݔ, ,ݕ ,ݖ   :is given by (ݐ

,࢞)࢓ ࢟, ,ࢠ ࢚) = ,ݔ)∗߰ ,ݕ ,ݖ ,ݔ)݉(ݐ ,ݕ ,ݖ ,ݔ)߰(ݐ ,ݕ ,ݖ  (3.8)    .(ݐ

Although this looks self-evident, it however  is not. The equation (3.7b) 
concerns the square of the rest mass distribution ݉଴

ଶ(ݔ, ,ݕ .ݖ  and the (ݐ
expectation value is:  
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૙࢓
૛(࢞. ࢟, ,ࢠ ࢚) = ,ݔ)∗߰ ,ݕ ,ݖ ଴݉(ݐ

ଶ(ݔ, ,ݕ ,ݖ ,ݔ)߰(ݐ ,ݕ ,ݖ  (3.9)    .(ݐ

To finish these more general rules in this paragraph one more thing has to be 
done. As we are dealing with particles which do not have a geometrical structure 
we can adopt spherical symmetry throughout the development of the theory. For 
this reason the coordinates  x, y, and z are not so practical. It would be more easy 
to work with coordinates which have the same symmetry as the particles and 

their environment. The main issue therefore is to cast the operator  ݌௫ෞଶ + ௬ෞଶ݌ +

 ௭ෞଶ into a more appropriate form involving spherical symmetry so that the only݌
coordinate r is necessary.  
This is first done for a system of one particle, starting from the x-, y-, z- 
component of the gradient operator (݃݀ܽݎ)௫߰, ,௬߰(݀ܽݎ݃)  ௭߰, only(݀ܽݎ݃)

taking r- dependences: 
 

௫߰(݀ܽݎ݃) =
డట

డ௫
=

డట

డ௥

డ௥

డ௫
=

௫

௥

డట

డ௥
,  and differentiating again: 

௫߰(݀ܽݎ݃)௫(݀ܽݎ݃) =
డమట 

డ௫మ =
ଵ

௥

డట

డ௥
−

௫మ

௥య

డట

డ௥
+

௫మ

௥మ

డమట 

డ௥మ ,  

and the same for the y- and z- coordinates we find, remembering that 
ଶݔ  + ଶݖ + ଶݕ =  :ଶݎ

ቀ
డమ 

డ௫మ +
డమ 

డ௬మ +
డమ 

డ௭మቁ ߰ = ቀ
డమ 

డ௥మ + 
ଶ

௥

డ

డ௥
ቁ ߰ =

ଵ

௥మ

డ

డ௥
ଶݎ డట

డ௥
 .                             (3.10a) 

But for a system of two particles, labeled i and j we have to use vector notation 
for the gradients working on the wave function. This wave function describes in 
one expression the set of the i and j particle. We first take the gradient for 
particle i as before:  

௫௜߰(݀ܽݎ݃) =
డట

డ௫೔
=

డట

డ௥೔

డ௥೔.

డ௫೔
=

௫೔

௥೔

డట

డ௥೔
,   

 
and the same for the y- and z- component of the coordinates of particle i and  j. 
So we have in the ri- direction: 

௥௜߰(݀ܽݎ݃) =
డట

డ௥೔.
.  

 
Applying the same procedure for gradient in the rj- direction we get the final 
result:  
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௥௝߰(݀ܽݎ݃)௥௜߰(݀ܽݎ݃) =
డట

డ௥೔

డట

డ௥ೕ
.                     (3.10b) 

Although these rules are not particularly quantum rules, they will be important 
for the development of the quantum-based theory.  

For the further development of the theory, however, one other aspect has to be 
paid attention to. That is how a particle, which is part of a specific structure like 
a solid, can be treated. The operators mentioned until now have particular 
emphasis for freely moving particles, but it is obvious that also particles 
constituting larger entitles do show gravitational interaction.  
From the basic concept of quantum mechanics we know that particles do have a 
non zero probability to show up anywhere in space. This probability can be very 
small and for the determination of its behaviour in its local environment it is so 
small that it is usually neglected. But for gravitational interaction, which in 
essence is extremely small compared to any other force, it is of relevance.  
To investigate this problem we therefore construct a wave function that 
combines its local behaviour with its global one,  
The total wave function describing a particle under its local influences, 

௟௢௖ݎ)௟௢௖ߖ , ,௜௡௙ݎ௜௡௙൫ߖ  ,and its extension in free space ,(ݐ ௧௢௧ߖ :൯,  is given byݐ =
௟௢௖ߖ .  ௟௢௖ is the position of the centre-of-mass of theݎ ௜௡௙. The coordinateߖ

particle inside the atom or nucleus or a solid object and the coordinate ݎ௜௡௙ is the 

position of the particle from the point of view of an outside observer. They 
therefore are mutually independent. In the same way we define, as before, the 

Hamilton operator as: ܪ ෢௧௢௧ =  ሼ̂݌ଶ}௟௢௖/2݉௟௢௖ + ሼ̂݌ଶ}௜௡௙/2݉௜௡௙ + ௟ܸ௢௖(ݎ௟௢௖) + 

௜ܸ௡௙(ݎ௜௡௙). The masses ݉௟௢௖  and ݉௜௡௙ are not necessarily the same. The ݉௜௡௙ is 

the mass to be connected to the particle as it can move freely around whereas 
݉௟௢௖  is the mass of the particle under the influence of the local interactions, 
sometimes called “reduced mass”. It follows that: 

௧௢௧ߖ෢௧௢௧ ܪ = (ሼ̂݌ଶ}௟௢௖/2݉௟௢௖ +ሼ̂݌ଶ}௜௡௙ 2݉௜௡௙ൗ  + ௟ܸ௢௖ + ௜ܸ௡௙)( ߖ௟௢௖ߖ௜௡௙) = 

 
= (ሼ̂݌ଶ}௟௢௖/2݉௟௢௖ + ௟ܸ௢௖)ߖ௟௢௖ߖ௜௡௙ + (ሼ̂݌ଶ}௜௡௙/2݉௜௡௙ + ௜ܸ௡௙)ߖ௟௢௖ߖ௜௡௙.    (3.11) 

 
Separating the local effect from the surroundings we can set:  

(ሼ̂݌ଶ}௟௢௖/2݉௟௢௖  + ௟ܸ௢௖) ߖ௟௢௖ =  ௟௢௖ and:                            (3.12a)ߖ௟௢௖ܧ

(ሼ̂݌ଶ}௜௡௙/2݉௜௡௙  +  ௜ܸ௡௙) ߖ௜௡௙ ௜௡௙ߖ௜௡௙ܧ = .                             (3.12b) 
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The first equation (3.12a) is the Schrödinger equation describing the behaviour 
of the particle in its local environment like in the nucleus or a solid where it has 
its individual interactions. The second equation (3.12b) describes its movement 
or presence in the free space in which the particle, or as part of a larger entity, 
can move around. By taking ௜ܸ௡௙ as a constant it is assumed that the behaviour 

out of its local influences is taken into consideration. This second equation is the 
starting point in the development of the theory in the next paragraphs. The 
splitting up as in equation (3.12a) and (3.12b) disconnects the local interaction 
of separate particles, as is normally done in quantum mechanics, from the 
movement or presence of the particle individually or as part of a larger entity. In 
what follows we will only consider the second equation as this gives the 
generator for the gravitational interaction. As we are interested in the effects of 
masses outside the local interactions we will from now on take for the mass 
݉௜௡௙ the quantity ݉, as it will also be the case for the coordinate.  

 
More on this subject can be read in Ney [3], Messiah [5] and [6] and Heitler [7]. 
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4. Groups of particles and sub-spaces. 
Gravity is an attractive force between two bodies, or, at a microscopic level, two 
particles and therefore any theory will have to account for multi-particle 
systems. The previous paragraph has shown that the Hamiltonian will be the 
central operator but in that representation it only accounts for single entities. For 
the development of the theory we have to modify the Hamiltonian for multi-
particle systems.  

The most simple expression for the kinetic energy in the Hamiltonian for a 
group of particles numbered by k is given by: 

ଶ/2݉̂݌ = ∑ ௞ෞଶ݌ 2݉௞ൗ௞  .          (4.1) 

This expression does, however, not clearly enough describe the behaviour of 
particle interaction as members of a group, but it will be shown that an 
alternative representation is possible in which still the total kinetic energy 
remains the same. The first step is to write equation slightly different:   

௣ොమ

ଶ௠
= ∑ ௞ෞଶ݌ 2݉௞ൗ௞ = ∑ ൫݌௞ෞ ඥ2݉௞⁄ ൯

ଶ
௞ .       (4.2) 

This equation does not look so special, but it shows that, if we want to modify 
the kinetic energy in the Hamiltonian, we will have to perform our analysis in 

the ݌௞ෞ ඥ2݉௞⁄  –space. 

For reasons that will become clear later we will now modify the Hamiltonian for 
the two-particle ensemble (ij) and refer to Figure 3.  
In Figure 3 particles mi and mj are moving with momenta pi and pj. But we are 
interested in their behaviour in the space as seen from point O2 and therefore we 
apply the cosine-rule to both triangles [1] and [2]. Knowing that:  

cos ଶߜ = −cos(180 − ௜௝/ඥ2݉௜݌ ଶ) and takingߜ = ௝௜/ඥ2݌ ௝݉, it follows that:  

పෝ݌ ଶ 2݉௜ൗ ఫෝ݌ + ଶ 2 ௝݉ൗ = ௚ෞଶ݌ 2݉௚ൗ + పఫෞ݌ ଶ 2݉௜ൗ + పఫෞ݌ ଶ 2 ௝݉ൗ .   (4.3) 

In this modified kinetic energy part of the Hamiltonian the first term at the right 
hand is the kinetic energy of the group, identified with label g, consisting of mi 

and mj with mass ݉௚ = ݉௜ + ௝݉ and moving as one single entity. The second 

term is the kinetic energy in the sub-space. The group momentum vector 

௚ෞ݌ ඥ2݉௚⁄  is not equal to any of the other ones so that  ݌௚ෞ has to be defined 

separately. As the interaction between the two particles is only within the sub-
space rij, we will not have to bother about this first term at the right hand. This is 
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very fortunate because it depends on the angle between ݌పෝ ඥ2݉௜⁄  and  ݌ఫෞ ඥ2 ௝݉⁄  

which would severely complicate the problem.  
 

mi mj
Pij/√(2mi)

Pj/√(2mj)
Pi/√(2mi)

Pji/√(2mj)

O1

Pg/√(2mg)

[1]

d2

180-d2

[2]

O2

Sub-space rij

d1

X

Y

Z

mi

mj

rij

 

Figure 3: The relation (4.3) found by applying the cosine-rule to both triangles [1] and [2] if 

the lengths of the arrows ݌௜௝/ඥ2݉௜ and ݌௝௜/ඥ2 ௝݉ are the same. In this view vectors and 

operators are treated as equivalent. Note that, differently from the situation in the real x-, y-, 
and z- space, in the representation in the two-dimensional momentum space the velocity or 
the momentum vectors for particles always have the same origin.   

It can also be seen that this modification of the Hamiltonian only works well for 
two particles as the geometrical argument is confined to one plane. More 
particles would compel us to perform the analysis in many more different planes 
and would not give a tractable solution. 

Another important observation is that because ݌௜௝/ඥ2݉௜ = ௝௜/ඥ2݌ ௝݉ the sub-

space is symmetric from the point of view of an observer in O2. This issue of 
symmetry will come back in the solution of the Schrödinger equation with the 
modified Hamiltonian in the sub-space.   
We will now extend the modified Hamiltonian equation for more than two 
particles, but all of them interacting in groups of two and only two:  

∑ ௞ෞଶ݌ 2݉௞ൗ௞ = 1/ܰ(∑ ௚ෞଶ݌ 2݉௚ൗ௚ + 1/2 ∑ (௜ஷ௝ పఫෞ݌ ଶ 2݉௜ൗ + పఫෞ݌ ଶ 2 ௝݉ൗ ). (4.4) 
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The N-factor, the number of particles, is necessary as in the summation each 
particle is counted N times. The pairs are counted by the g-index. Later, when 
the analysis brings us to the final result, we will come back to the group 
momentum and evaluate the consequence of its dependence on the momenta of 
mi and mj.  
For completeness we will now derive this dependence but come back to it later. 
For this we apply the cosine-rules from the corner O1 for the triangles [1] and [2] 
separately and together: [1+2]. the equations are:  

൫݌పఫෞ ඥ2݉௜ + ఫపෞ݌ ඥ2 ௝݉⁄⁄ ൯
ଶ

= పෝ݌ ଶ 2݉௜ൗ ఫෝ݌ + ଶ 2 ௝݉ൗ − 

పෝ݌2− ఫෝ݌ ݏ݋ܿ ଵ/ඥ4݉௜ ௝݉ ,                (4.5a) 

௚ෞଶ݌ 2݉௚ൗ = పෝ݌ ଶ 2݉௜ൗ ఫෝ݌ + ଶ 2 ௝݉ൗ − పఫෞ݌ ଶ 2݉௜ൗ − పఫෞ݌ ଶ 2 ௝݉ൗ .          (4.5b) 

This cosine factor showing up complicates the analysis, but in the end it will not 
trouble our analysis as it can be circumvented. 

Now also the analysis will have to be repeated starting from the equation (2.4), 
but as it is only dealing with the momenta, the result of the previous analysis can 

be used if we simply replace the vector  ݌௞ ඥ2݉௞⁄  by ܿ݉௞ඥߛ௞
ଶ − 1 with the k- 

label representing i, j, g and  ݌௜௝ ,  ௝௜ unchanged. The analysis will be continued݌

in paragraph 13. 

  



 

5. The sub-space in more detail
Starting from the unmodified Hamiltonian, the 
equation describing independent particles in spherical symme
the operator: 

ଶ/2݉̂݌ = ∑ ௞̂݌
ଶ 2݉௞⁄௞  , and reads:

ߖ =. . ௝ߖ௜ߖ … ௟ߖ =. . ቀ
ఈ೔

௥೔
ቁ

= ∏ ቀ
ఈೖ

௥ೖ
ቁ ݁௜ఉೖ௥ೖ

௞ .    

For this equation the equations (3.4), (3.5), and (3.10) have been used. But we 
have regrouped the kinetic contribution to the Hamiltonian for the same set of 
particles as: 

௣ොమ

ଶ௠
= ∑ ௞̂݌

ଶ 2݉௞ ⁄௞ = 1/ܰ

and first we will only consider the second part of it at the right hand side, to start 
with the group (ij) of two particles 
only, thus we restrict ourselves t
sub-space with coordinates 

 
Figure 4: Forming and describing of 
ࣨ=N!/2(N-2)! Pairs. In this example the 
number of groups is three.  
 

 

Per group there are two independent 
particles, for the group under consideration like in Figure 4, it is indicated by the 
masses mi and mj . and they experience some force reflected by the potential 
and Vj . Spherical symmetry is next adopted and the on
that the wave function is zero at infinity. An observer at 
particle mj and another on 
equation of the individual pair (
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more detail.  
Starting from the unmodified Hamiltonian, the general solution of a wave 
equation describing independent particles in spherical symmetry is initiated by 

, and reads:  

ቀ ቁ ݁௜ఉ೔௥೔x ൬
ఈೕ

௥ೕ
൰ ݁௜ఉೕ௥ೕx....xቀ

ఈ೗

௥೗
ቁ ݁௜ఉ೗௥೗x … =

       

For this equation the equations (3.4), (3.5), and (3.10) have been used. But we 
have regrouped the kinetic contribution to the Hamiltonian for the same set of 

ܰ(∑ ௚̂݌
ଶ 2݉௚ ൗ௚ + 1/2 ∑ ௜௝̂݌)

ଶ 2݉௜ ⁄௜ஷ௝ + 

will only consider the second part of it at the right hand side, to start 
) of two particles 

only, thus we restrict ourselves to the 
space with coordinates rij. 

: Forming and describing of 
2)! Pairs. In this example the 

Per group there are two independent 
particles, for the group under consideration like in Figure 4, it is indicated by the 

and they experience some force reflected by the potential 
. Spherical symmetry is next adopted and the only boundary condition is 

that the wave function is zero at infinity. An observer at mi at a distance 
and another on mj at rji from particle mi will see that the total wave 

equation of the individual pair (ij) is defined as follows [5]: 

general solution of a wave 
y is initiated by 

= 

  (5.1) 

For this equation the equations (3.4), (3.5), and (3.10) have been used. But we 
have regrouped the kinetic contribution to the Hamiltonian for the same set of 

௝௜̂݌ 
ଶ 2 ௝݉ )ൗ ),  

will only consider the second part of it at the right hand side, to start 

particles, for the group under consideration like in Figure 4, it is indicated by the 
and they experience some force reflected by the potential Vi 

ly boundary condition is 
at a distance rij from 

will see that the total wave 



17 
 

పఫ෢ܪ ௜௝,௧ߖ = ݅ħ
డ

డ௧
௜௝,௧ߖ =  − ൬

ħమ

ଶ௠೔

ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
௜௝ݎ

ଶ డ

డ௥೔ೕ
+

ħమ

ଶ௠ೕ

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
௝௜ݎ

ଶ డ

డ௥ೕ೔
൰ ௜௝,௧ߖ +

+൫ ௜ܸ + ௝ܸ൯
 
 ௜௝,௧.                   (5.2)ߖ

 ௜௝,௧ is the time and space dependent wave function. The time dependence canߖ

be removed by replacing the time dependent wave function ߖ௜௝,௧ by 

 :௜௝݁௜ா೔ೕ௧/ħ.  Further, define   ௜ܸ+ ௝ܸ by ௜ܸ௝and we getߖ

௜௝ܧ) − ௜ܸ௝)ߖ௜௝ +
ħమ

ଶ௠೔

ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
௜௝ݎ

ଶ డ

డ௥೔ೕ
௜௝ߖ +

ħమ

ଶ௠ೕ

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
௝௜ݎ

ଶ డ

డ௥ೕ೔
௜௝ߖ = 0.  (5.3) 

To simplify the equation replace  ܧ௜௝ − ௜ܸ௝  by ߝ௜௝  to propose a solution that is 

valid in areas where the Vij is not of great influence anymore as follows: 

௜௝ߖ = ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ ,         (5.4) 

where ߙ௜௝and ߚ௜௝ are constants independent of space coordinates and time. This 

solution means that we consider the wave function outside the surroundings 
where the potential energy with all its peculiarities has a very minor effect on 
the shape of the wave function. The only interaction that can play a role will 
then be based solely on gravitational interaction. By substituting the solution in 
equation (5.3) the following relation is found: 

 −
ħమ௜

௥೔ೕ ௥ೕ೔
൬

ఈ೔ೕఉೕ೔

௠ೕ
+

ఈೕ೔ఉ೔ೕ

௠೔
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ − 

ħమ

ଶ
൬

ఉ೔ೕ
మ

௠೔
+

ఉೕ೔
మ

௠ೕ
൰x     

x൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ +  ε௜௝ ൬

ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ = 0.            (5.5) 

The complex first term at the left hand side is to be set to zero and in a pair-wise 

process ߙ௜௝ߚ௝௜ ௝݉⁄ ௜௝ߚ௝௜ߙ+ ݉௜⁄ = 0 and ߚ௜௝
ଶ ħଶ 2݉௜⁄ ௝௜ߚ+

ଶ ħଶ 2 ௝݉ൗ  = ε௜௝ = ௜݉)ߪ  +

௝݉) so that for every value of the energy there will be a value for ߪ and the ߚ’s  
can adapt themselves. Therefore, whatever is the situation in which mi and mj 
find themselves, there is always a ߚ௝௜ and a ߚ௜௝  and they have no influence on the 

௜௝ߙ as long as ݏᇱߙ =  ௝௜. It means, that the interaction occurs in the sub-spaceߙ

with a pair to be considered as one single entity with a mass of (݉௜ + ௝݉) and, 

apart from the separation between the members of the pair (R), independent of 
the situation these members are in. Further, it has to be noticed that the 
Schrödinger equation based on the modified Hamiltonian only is possible for 
groups of two and only two particles. This conclusion has already been drawn in 
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a slightly different way in the previous paragraph where the geometrical 
argument in momentum space is only possible for two partices with momenta 
vectors in one plane.  
We already came across the fact that the sub-space rij in memontum space for 
the observer in O2 in Figure 3 is symmetric and therefore the 

solution ߖ൫ߙ௜௝ , ௜௝ߙ ௝௜൯ is symmetric, meaning, again, thatߙ =  .௝௜ߙ

At the moment not much is known about the ߙᇱݏ, but one requirement to be 
imposed on the wave function is that it represents a pair of particles. For the 
time being it can be said that: 
i. The ߙᇱݏ cannot depend on the running variables in the wave equation: rij or t. 
It will be a constant that can only depend on fundamental nature constants and 
the particle masses.  
ii. It should make no difference for the outside world how one member sees its 
partner or whether and how we see the two members of the pair. It means that 

we can say: ߙ௜௝ =  ݂(݉௜)݂൫ ௝݉൯. 
iii. There is no pair if either mi or mj equals zero so that ݂(݉௜) = 0 for ݉௜ = 0 
and the pair potential should increase linearly with both participating masses in 
the pair. 
 
To sum up also the movement of the group as one entity and the fact that there 
are N particles and ࣨ=N!/2(N-2)! pairs, the total wave function is:  

= ߖ ∏ ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔

௜௝ ∏ ൬
ఈ೒

௥೒
൰ ݁௜ఉ೒௥೒

௚ .      (5.6) 

The second product is due to the first contribution to the momentum-based 
energy term in equation (4.4) and, as already mentioned, it generates no 
gravitational interaction. The index g is identified by the pair (ij) as indicated in 
figure 3. This term gives no gravitational interaction whereas the first one in the 
product (5.6) does in the case of two, and only two members in an ensemble 
where the sum is taken over all possible and unique pairs (ij). As the pairs are to 
be considered in their own unique coordinate system ݎ௜௝ ,  there is no reason to 

consider all the pairs together but only the behaviour of a single pair. In the end 
we will add up all the contributions of the pairs as shown schematically in 
Figure 7 in paragraph 8.   
There is freedom in the choice of the  particles mi, mj, ---, ml ---. It can actuallly 
be anything like elementary particles, nuclei or even larger entities if, at least, 
we can describe such an entity by a single wave function in its own coordinate 
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system and solve the equation to form a pair with another entity.  
 
Later it will be confirmed that, as before and for the sake of symmetry in the 
mutual gravitational interaction, the two ݏ′ߙ should be equal. It also means that 
the β’s have opposite signs and fixed values and, by taking the ݏ′ߙ equal, we 
make their values independent of the masses and the energies of the members of 
the pair. The ߝ௜௝ could have been split into two separate quantities as ߝ௜௝ and 

௜௝ߚ ௝௜ to dedicate theߝ
ଶ  and ߚ௝௜

ଶ -values to the separate energies of the two 

particles.  
It is also interesting to notice that the solution of the wave equation for the pairs 
like in equation (5.6) looks different from a solution for a single particle on the 
basis of the unmodified Hamiltonian as in equation (5.1). For instance, if we 
take a look at the ri dependence in the solution (5.6), we see that there is an extra 
ri dependent factor in the exponential term. This latter term is insufficient to 
make such a solution applicable for the operator working on ri. For it to be 
sufficient we need the total pre-exponential factor as given in equation (5.6). 
 
The second approach is taking the KG-equation as the starting point. In this way 
we guarantee full co-variance throughout the entire analysis. The equation has 
been given already and reads:  
 
ଶܿଶ = ݉଴݌ - ଶܧ

ଶܿସ or expressed alternatively: ܧଶ/݉଴
ଶܿସ - ݌ଶ/݉଴

ଶܿଶ = 1,  

and translated into quantum mechanical language for an ensemble of two 
particles:  
 

௜௝ܧ)
ଶ /݉௜,଴

ଶ ܿସ − ௝௜ܧ
ଶ/ ௝݉,଴

ଶ ܿସ)ߖ௜௝ –((݌పఫෞ)ଶ/݉௜,଴
ଶ ܿଶ − /ଶ(ఫపෞ݌) ௝݉,଴

ଶ ܿଶ))ߖ௜௝ = 0. (5.7) 

Where ݌పఫ ෞ ଶ is the square of the momentum operator in spherical coordinates as 

in equation (5.2) or (5.3) and mi,o the rest mass of the particle i in the ensemble 
(ij). Also in this case it immediately can be seen that, with the solution of the 
form as in equation (5.4), the same interpretation as before can be given. So 
there is not much news in this alternative, but a wave equation with zero masses 
starting from: 

௜௝ܧ) 
ଶ + ௝௜ܧ

ଶ)ߖ௜௝ –ܿଶ((݌పఫෞ)ଶ − ௜௝ߖ(ଶ(ఫపෞ݌) = 0     (5.8) 

 
has a non constant solution in space and time coordinates. This is remarkable as 
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a zero mass particle like a photon can result in a mass-like presence in open 
space. It may well be that this is the basis for the fact that in the Friedmann 
cosmological equations also energy related gravitational pull has to be adopted 
[9]. 

 

  



21 
 

6. Summary of the general treatment and further steps to be 
taken.  
In the preceding paragraphs some of the basic rules of special relativity theory 
and quantum mechanics are given insofar they are of relevance for developing a 
theory for the attractive force: gravitational attraction between two bodies. It is 
not specified what kind of bodies we are talking about and actually it is not even 
relevant. There is absolutely no speculation about the validity of these rules. 
They have shown their validity over and over, but working with both concepts 
should be done with care as the two concepts, although they have shown their 
validity, are not completely compatible. In paragraph 3, equation (3.7a) and 
3.7b) the basic equations are compared and it can be seen that the basic quantum 
equation has both linear and squared parameters whereas the relativistic one has 
only squares. Mathematically we say that the quantum equation is not co-variant 
and the relativistic one is co-variant. The consequence of co-variance is that the 
laws of physics are the same no matter the coordinate system, in which it is 
observed, is moving or not. With this latter determination in mind we can use 
both but we should be aware of the dangers involved.  
When the two concepts are being applied to particles with the aim to describe 
their movement and connected interaction, we have seen in two different ways 
that the movement of particles can be described for all the particles together, but 
individually, and also as in groups of two and only two members. These groups 
are then described together to arrive at a complete description of the movement 
of all groups together but mutually independent. 

The grouping results in the description in a momentum based sub-space for the 
individual groups. In this momentum space the sub-spaces appear to be 
symmetric from the observer’s point of view in O2, as shown in Figure 3. This 
symmetry will also be reflected in the symmetry of the gravitational interaction 
which will be shown in what follows.    

It has been shown that particles, which can have high probability to be present in 
a physical entity like a solid material, or whatever, do have some probability to 
show up in open space outside the entity where it normally is, or stated in 
quantum mechanical language: where it has highest probability. The probability 
to show up in open space can be so low that for normal practices it is of no 
relevance and in usual quantum mechanical considerations it is neglected. If we, 
however, want to come to a theory for gravity, we cannot ignore its probability 
in open space. This low probability already has the consequence that for 
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individual particles the gravitational interaction is small but definitely not zero. 
The other consequence is that the extent where this probability is manifesting 
itself extends to the whole space. Gravity is a force that is present even at 
cosmological distances. 

Now we come to the central transition point from quantum mechanics to 
quantum-based relativity.  
The wave function as derived gives the presence of an entity for which it is 
derived. In this case it is the pair potential so that a mass can be dedicated to this 
potential defined as ߖ௜௝

∗ ݉௢
ଶߖ௜௝ and which becomes, based on the operator rules, 

equal to:  

௜௝ߖ 
∗ ܿସ݉଴

ଶߖ௜௝ = ܿସ݉଴
ଶ ൬

ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰

ଶ

.         (6.1) 

As said before, in this expression the ݉଴ which occurs in the KG-equation can 
be identified as a quantity that represents the presence of a pair of particles. It 
should therefore be linearly dependent on the masses of the participating 
particles in the pair. The same applies for both the amplitude of the wave 
function and its complex conjugated. Apart from its proportionality with ݉௜ ௝݉, 

it follows from  ߙ௜௝ߚ௝௜ ௝݉⁄ ௜௝ߚ௝௜ߙ+ ݉௜⁄ = 0 with ߙ௜௝ = ௝௜ߙ  that there is for the ߙ-

values some freedom in choosing its dependence on relativistic parameters such 
that the right hand side of equation (3.6) becomes an invariant as it should be.   

In Figure 5 the comparison is made between the effect of two particles 
separately according to equation (5.1) and the same particles in the group as an 

entity according to equation (6.1). The overlap in the factor ൫ߙ௜௝ ௜௝ݎ + ௝௜ߙ ⁄⁄௝௜ݎ ൯
ଶ
 

is due to an increased amplitude between the particles in the group. In this 
respect it is worthwhile to refer to the analogy in the preface. 
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Figure 5: Overlap of amplitudes in a group of two particles in a group. Compare this with the 
analogy of the two boats sailing as described in the Preface.   
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7. Relativistic interaction.  
Now, as a next step, the pair is considered as essentially one entity and the 
problem can be analysed in the relativistic four dimensional space where the 
KG-equation is the appropriate starting point. But the most important difference 
from the treatment before is that we will be entirely working in the momentum 
based sub-space rij where the group is seen as one single entity. The energy 
reflects the energy of the two particles together as well as masses and momenta 

like: ݌ଶ = పఫ݌)
෢ + ଶܧ :ఫపෞ)ଶ and݌ = ൫ܧప෡ + ఫ෡ܧ ൯

ଶ
 with:  

ଶܿଶ = ݉଴݌ - ଶܧ
ଶܿସ    or:     - ݌ଶܿଶ = ݉଴

ଶܿସ- ܧଶ.        
          
Again we will have to translate this equation into the appropriate quantum 
mechanical language for pairs as one entity and therefore make the following 
transformations: 

ଶܿଶ߮௜௝,௧߮௝௜,௧= (݉଴݌-
ଶܿସ-ܧଶ)߮௜௝,௧߮௝௜,௧,   ܧଶ = ൫ܧప෡ + ఫ෡ܧ ൯

ଶ
= −ħଶ డమ

డ௧మ   and: 

ଶ݌ = పఫ݌)
෢ + ఫపෞ)2  = -ħ2൬݌

ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
௜௝ݎ

ଶ డ

డ௥೔ೕ
+ 

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
௝௜ݎ

ଶ డ

డ௥ೕ೔
+

డ

డ௥೔ೕ

డ

డ௥ೕ೔
+  

డ

డ௥ೕ೔

డ

డ௥೔ೕ
൰. 

  

The last expression is, as different from earlier, a mixed sum of the momenta. 
This representation is a consequence of the fact that the particles have been 
treated only in pairs and that spherical symmetry remains to be adopted. The 
energy operators involving the momenta, which are used here, are given in 
equations (3.10a) and (3.10b).  
Referring to Figure 4 the total relativistic KG-equation for a number of pairs 
(ࣨ) now will be set up. There are N particles which make a total of  
ࣨ=N!/(2(N-2)! pairs, each of which are described by a wave function as a 
solution of the initial Schrödinger equation. As before, the ߙ-values 
accommodate all necessary multiplication factors. Adding up for all pairs and 
treating them as mutually independent and taking into account the basic rules of 
quantum mechanics, lead to: 

c2ħ2∑ ൬
ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
௜௝ݎ

ଶ డ

డ௥೔ೕ
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ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
௝௜ݎ

ଶ డ

డ௥ೕ೔
+

డ

డ௥೔ೕ

డ
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with:  

∏ ߮௜௝,௧߮௝௜,௧௜௝ = (ݐ)ܨ ∏ ߮௜௝

݉଴௜௝ is the rest mass to be dedicated to the interaction field created by the 

masses mi and mj. This factor also accommodates the 
pairs in both products, in total 

particles. The term ݁௜൫௞೒௥೒

representing the moving of individual groups, but with reducing amplitude, or, 
rather probability, as it progresses. If there is no interaction between members of 
the pairs (ߙ௠௡ = 0) we get the movement of
their local influence.  

 

Figure 6: Energy transfer from the 
pair to the surroundings and the 
sub-space (white area) with internal 
exchanges as observed from far 
away. 

 

This set-up has a very delicate 
interpretation. It shows that an 
observer from outside sees a 
pair creating a sub-space but 
cannot determine its structure inside. In the space inside, expressed by the 
coordinates rij and rji, gravitational interactions are occurring. Our observer only 
sees the separate interacting members of the pair with an energy due to this 
interaction as is shown schematically in Figure 
who have made a secret agreement an
information. We can see both persons but we cannot explain why they behave as 
they behave.  

As before the time dependences can be removed by setting: 

߮௜௝,௧߮௝௜,௧ = ߮௜௝߮௝௜݁௜(ா೔ೕା ா

so that: 
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∑ ప෡௜௝ܧ) ఫ෡ܧ+ )2߮௜௝,௧߮௝௜,௧=∑ ௜௝௜௝ܧ) (௝௜ܧ+
2߮௜௝߮௝௜.       (7.3) 

If all ߙᇱݏ would have been equal to zero, a propagating wave ߮௜௝,௧߮௝௜,௧ extending 

in the radial direction with the light velocity would have resulted. Non zero 
values of ߙ reduce this speed and, as a consequence, give mass to the field 
߮௜௝,௧߮௝௜,௧ .  The proposed solution will be:  

߮௜௝ = ௜௝ݎ௜௝ߛ

௠బ೔ೕఈ೔ೕ
ħୡൗ

,          (7.4) 

which is inserted into: 
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= ∑ ݉଴௜௝
ଶ ൬

ఈ೔ೕ
మ

௥೔ೕ
మ + 2

ఈ೔ೕ

௥೔ೕ

ఈೕ೔

௥ೕ೔
+

ఈೕ೔
మ

௥ೕ೔
మ ൰௜௝ ∏ ߮௝௜߮௜௝௜௝ .       (7.5) 

From the boundary condition that ߮௜௝൫ݎ௝௜ , ௜௝൯ߙ = 0 for ݎ௝௜  to inϐinity  a fifth 

condition on the ߙᇱݏ can be derived: 
v. ߙ௜௝ is negative under all circumstances.  

From equation (5.5) it followed that the energy in the interaction field is given 

by ε௜௝ = ൫݉௜ߪ  + ௝݉൯. From this we can derive the ݉଴௜௝
ଶ -dependence by 

subtracting from ε௜௝
ଶ  the self-energies: ε௜௝

ଶ − ε௜௜
ଶ − ε௝௝

ଶ .  

Putting all five conditions on ߙ௜௝ together with ݉଴௜௝  we can conclude that the 

explicit expression for  ݉଴௜௝ ߙ௜௝ becomes:  

vi.  ݉଴௜ ௜௝ߙ  = ݉଴௝ ௝௜ߙ  =  −σᇱ(݉௜ ௝݉)ଶ.  

Now some algebra needs to be done and it will be found that many terms on the 
left hand side are equal to the ones at the right hand side and therefore disappear.  
We get:  

௜௝ܧ)
ଶ + ௝௜ܧ௜௝ܧ2 + ௝௜ܧ

ଶ)߮௜௝߮௝௜ +  ܿħ݉଴௜௝ ൬
ఈ೔ೕ

௥೔ೕ
మ +

ఈೕ೔

௥ೕ೔
మ ൰ ߮௝௜߮௜௝ = 0    (7.6) 

At this point a remark has to be made: removing the term ߙ௞௟
ଶ ௞௟ݎ

ଶ⁄  means that 
some basic interaction occurs between the gravitational field and the particle. 
Obviously, for this separate term, a KG-equation can be formulated that shows 
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that an entity with some relativistically derived mass operates and leaves behind 
a contribution to the interaction energy in the equation (7.6). So already at this 
point there is direct interaction between the pair and the field around. Also 
removing term with  ߙ௜௝ߙ௝௜ ⁄௜௝ݎ௝௜ݎ  means that there is a third interaction between 

the fields and the pair. It is schematically represented in Figure 6. 
Taking all these interactions into account it is seen that all α-terms in equation 
(7.5) have disappeared. This has a profound meaning: in this model gravity is 
due to second order effects of the peculiarities of the spherical symmetry in a 
relativistic setting. The effect is weak and operates over a long range.   

The contributions can now be redistributed, but first multiply all terms by 
௝௜ݎ௜௝ݎ  and observe that the proposed solution is the only one that gives a sharp 

value for the quantity ܧ௜௝ ݎ௜௝  and ܧ௝௜ ݎ௝௜ : 

௜௝ܧ)
ଶ ௜௝ݎ௝௜ݎ + ௜௝)߮௜௝߮௝௜ݎ௝௜ݎ௝௜ܧ௜௝ܧ + ܿħ݉଴௜௝ߙ௜௝

௥ೕ೔

௥೔ೕ
߮௜௝߮௝௜ = 0,                   (7.7a) 

௝௜ܧ)
ଶ ௜௝ݎ௝௜ݎ + ௜௝)߮௜௝߮௝௜ݎ௝௜ݎ௝௜ܧ௜௝ܧ + ܿħ݉଴௜ ௝௜ߙ  

௥೔ೕ

௥ೕ೔
߮௜௝߮௝௜ = 0.          (7.7b) 

Cutting the equation (7.6) into two separate ones as given in equations (7.7a) 
and (7.7b) looks like arbitrary, as any cut between terms can be made. But if we 
now come back to the original suggestion as made in vi, we see that the 
gravitational interaction becomes symmetric. The gravitational energy of 
particle i is equal to the gravitational energy of particle j. It also reflects the 
point that a pair has to be seen one entity. The observer cannot distinguish 
between the separate members of the pair. 
Although not touched upon in paragraph 3, it is also important to notice that the 

operators ܧ௞෢ and ݎ௟  commute. It means that “Er” is the quantity that has a sharp 
value, meaning that E has sharp value if r is well defined.    
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8. Law of gravity. 
Most important for finding out how the members of a pair see each other is to 
look at the equations (7.7a) and (7.7b) by an observer on mi who sees the 
particle mj at a distance of ݎ௜௝ and an observer on particle mj looking at mi from a 

distance rji. Both see each other from the same distance ݎ௜௝ = ௝௜ݎ = ܴ and they 

already know that  ߙ௜௝ = ௝௜ߙ =  ᇱ. There are no operators anymore in equationߙ−

(7.7a) and (7.7b) and they can conclude that ܧ௜௝ = ௝௜ܧ =  This is an important .ܧ

conclusion. In the interpretation of the equations care has to be taken to the 
viewpoint from where the equations have been defined. This is the point O2 in 
Figure 3 so that we will have to take R/2 as distances.  Obviously an electron 
and a proton forming a pair will have mutual interaction which are the same 
although their masses differ by some factor of about 1800. The result is a simple 
relation:  

ଶ(ܴ/2)ଶܧ2 = ܿħߙ′݉଴.           (8.1) 

The boundary condition is that  ߮௜௝߮௝௜ goes to zero for r to infinity so that 

´ߙ > 0,  and because both particles in the pair change their energy by the same 
amount. It follows for the two members of the ensemble together that:  
 

ܴܧ = ඥ2ܿħߙᇱ݉଴,                     (8.2)  

and the gravitational force is given by:  -߲ܧ ߲ܴ⁄   .ଶܴ/ݐ݊ܽݐݏ݊݋ܿ = 
 
Now it is important to see how pairs consisting of particles of different masses 
present themselves in ߙ′. In view of equation (8.2) we conclude that also the 
gravitational interaction is proportional to both masses of the participating 
particles in the pair. As a consequence, the attractive force between two particles 
is proportional to the product of the two interacting masses. It also follows that, 
due to gravitational interaction which carries energy and for which a separate 
KG-equation can be set up, some mass, although not much, is attributed to the 
pairs. Taking into account the argument v and vi in the previous paragraph, the 
final result is: 

௜௝ܧ  =  √2σᇱܿħ. (݉௜ ௝݉)/ܴ,         (8.3)  

All the work done to describe the total gravitational force, or rather the potential 
energy, has been based on the idea that all pairs that have been formed are acting 



 

independently so that we can add all the contributions of different masses 
constituting bodies in the real world without any interference. 
Figure 7 where two masses 
from N1xN2 pairs described by 
contributes separately to the interaction 
energy.  

Figure 7: Interaction between masses.

Adding up all the interactions between 
particles, which in principle see each other 
at different distances is a problem that has 
already been solved in the formulation of 
the classical theory of electrostatics [8], 
finally Newton’s gravitation law is obtai
which, in vector notation  reads: 
 is defined as a ࢍ in which ܩߩߨ4
gravitational field around an entity 
constituting g space coordinates dependent 
mass density ߩ. G is the well known 
gravitational constant equal to: 6.673x10
 
In accordance with the theory of electrostatics the gravity law can also be given 
in vector representation for bodies 
at a separation of R:  
 
૚૛ࡲ = ଶܯଵܯܩ) ܴଷ)⁄   .ࡾ
 
From the equations (8.3) and (8.4) an explicit expression for the parameter 
σᇱ can be derived and also, with the help of these equations the small mass to be 
attributed to the gravitational interaction can be found. This 
equal to 2.7x102 Jm/kg4.  
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Interaction between masses.  

Adding up all the interactions between 
particles, which in principle see each other 
at different distances is a problem that has 
already been solved in the formulation of 
the classical theory of electrostatics [8], 
finally Newton’s gravitation law is obtained 
which, in vector notation  reads: ݀݅ࢍݒ =

is defined as a 
gravitational field around an entity 
constituting g space coordinates dependent 

is the well known 
gravitational constant equal to: 6.673x10-11 m3kg-1sec-2 [9]. 

In accordance with the theory of electrostatics the gravity law can also be given 
in vector representation for bodies M1 and M2 which have their centres of gravity 

       

From the equations (8.3) and (8.4) an explicit expression for the parameter 
can be derived and also, with the help of these equations the small mass to be 

attributed to the gravitational interaction can be found. This σᇱ parameter is 
   

 

independently so that we can add all the contributions of different masses 
Referring to 

have particles numbered as m1j and m2k 
combination 

In accordance with the theory of electrostatics the gravity law can also be given 
which have their centres of gravity 

   (8.4) 

From the equations (8.3) and (8.4) an explicit expression for the parameter 
can be derived and also, with the help of these equations the small mass to be 

parameter is 
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9. Transfer of energy and mass. 
In the analysis going from equation (7.5) to (7.7) terms are disappearing due to 
the solution proposed in equation (7.4). But this has to be interpreted with 
caution. The pair probability density ߮௜௝߮௝௜. in equation (7.1) represents a field 

carrying the gravitational energy. Therefore, the disappearance of the generator 
at the right hand side of equation (7.5), (ߙ௜௝ ௜௝ݎ + ௝௜ߙ ⁄⁄௝௜ݎ )ଶ, involves exchange 

of energy from the pair to the surrounding space which is equal to the energy 
given in equation (8.3). As a consequence, when the positive value for the 
energy is taken, the energy of the pair itself is reduced by the same amount. In 
that case the interaction between the members of the pair is attractive. The 
process is schematically shown in Figure 6. The transferred energy is the 
difference between the energy levels shown Figure 8.  
The opposite situation in which the energy of the pair is positive, which in 
principle is allowed by the Einstein energy equation (2.4), is not possible when 
we assume that the energy of the vacuum, to be taken as the reference point, is 
zero. In this interpretation the interaction between mass and the surroundings is 
a means to transfer mass related energy (mc2) to gravitational energy. This 
transfer changes the rest masses of the pair but does not create new mass. The 
consequences at a larger scale are worked later in this paragraph.  

 
Figure 8: Energy difference between 
local states and incorporating 
gravitational interaction.  

 
If, however the vacuum state is, as 
it is generally believed, a non-zero 
energy state there might be energy 
available which increases with the 
interaction area, the white area in 
Figure 6, that can be transferred to 

the pair. The situation could be such that, when the distance between the 
members of the pair increases, the energy needed is reducing whereas the 
energy, or number of fluctuations carrying sufficient energy is increasing. It 
means that at some separation distance of the members of the pair the interaction 
can become repulsive as the Einstein equation allows both negative and positive 
values for the interaction energy.  
 
 

time

Energy of a pair with no
gravitational interaction

Energy of a pair with
gravitational interaction Proportional to 1/R(t)

energy
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A solution for the Schrödinger equation of a pair of particles for an observer at 
distances ݎ௜௝ and ݎ௝௜ from particle i and j is given in equation (5.4). Now if we 

put our observer close by particle i, the second term in equation (5.4) becomes 
negligible against the first term: 

௜௝ߖ = ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ ≅  ൬

ఈ೔ೕ

௥೔ೕ
൰ ݁௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ and: ߖ௜௝

∗ ௜௝ߖ ≅ ൬
ఈ೔ೕ

௥೔ೕ
൰

ଶ

(9.1) 

The KG-equation in operator language now reads: 

-ħ2൬
డమ

డ௧మ −  ܿଶ ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
௜௝ݎ

ଶ డ

డ௥೔ೕ
൰ ߮௜௝,௧ = ݉଴௜௝

ଶ ൬
ఈ೔ೕ

௥೔ೕ
൰

ଶ

߮௜௝,௧.     (9.2) 

Setting the right hand side to zero, a mass-less particle, we see an equation for a 
travelling wave at the speed of  light. To get rid of the singularity we set 
௜௝ߙ ௜௝ݎ = ⁄ ௜௝ߙ  ⁄௜௣ݎ  for ݎ௜௝ < =)௜௣ݎ  ௣), and removing the first term on the leftݎ

hand side gives the London Equation that explains the shielding of the inside of 
a superconducting material from the outside magnetic field: the “Meissner” 
effect [10]. A similar thing can be imagined in this case with the ߮௜௝,௧-field 

for ݎ௜௝ <  ௣.  The distance rp can be identified as the distance from the centre toݎ

where local influences have no impact.  
We can solve the equation (9.2) with in the right hand term ݎ௣ for  ݎ௜௝, but it is 

not necessary as it can immediately be seen that it dedicates mass to the field in 
the vicinity of the particle which is equal to ݉௣ = ݉଴௜௝ߙ௜௝ ⁄௣сଶݎ . As this is the 

mass to be attributed to the ith particle, due to another particle somewhere in the 
surroundings, we will have to add up over all particles which can make a pair 
with our particle, so with mp =  mi: 

݉௣ = ∑ ݉଴௜௝ߙ௜௝ ௣ܿଶ⁄௝ݎ = (σᇱ

௣ܿଶൗݎ ) ∑ ݉௣
ଶ

௝ ௝݉
ଶ.      (9.3) 

The consequence is that either ݉௣ = 0,  a mass-free particle, or: 

݉௣ = ݎ௣ܿଶ/σᇱ ∑ ௝݉
ଶ

௝ , with, as shown, ݉଴௜௝ߙ௜௝ = −σᇱ݉௜
ଶ

௝݉
ଶ.  First the equation 

allows that there are mass-free particles like a photon which makes no pairs 
according the theorem based on the Schrödinger equation, but it can, according 
to the KG-equations in paragraph 5, equation (5.8). It could generate gravity as 
it is argued in Chapter 9: Cosmography of  W.D. Heacox’s book on the 
expanding Universe [9]. Second, the other solution is that there is a mass 
carrying particle whose mass becomes higher when ݎ௣ increases and, most 

important, it is all the mass in the surroundings that generate the mass of the ith 
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particle. It is actually mass due to the field, but since the singularity moves with 
the particle the observer nearby can only interpret it as a mass contribution to the 
particle he is looking at. The conclusion taken here corresponds to Mach’s ideas 
about the effect of all physical entities in the universe. 
It would be tempting to evaluate ݉௣ but, as we know already from observation, 

it is better to estimate the size or the extension of the particle if only this effect is 
responsible for the mass. The analysis concerns incredibly large and small 
numbers but leads to a surprising outcome.  

Starting from ݉௣̴ = ݎ௣ܿଶ/σᇱ ∑ ௝݉
ଶ

௝  and assuming that the mass of the universe is 

basically due to protons and neutrons with almost the same mass, so ݉௣ = ௝݉ , 
and assuming there are N particles in the whole universe giving it a total mass of 
 :௨ we can setܯ

௨ܯ = ܰ ௝݉ ௣ܿଶ/σᇱݎܰ =  ∑ ௝݉
ଶ

௝ = ௣ܿଶ/σᇱܰݎܰ ௝݉
ଶ = ௣ܿଶ/σᇱݎ

௝݉
ଶ.   (9.4) 

Estimates of the size of the universe on the basis of the inverse Hubble constant 
and the fact that the average intergalactic density is 1000 hydrogen atoms per 
cubic tells us that the total mass of the universe is of the order of 1055 kg. σᇱ is 
calculated in paragraph 8 at 2.7x102 Jm/kg4 and the proton mass is 1.7x10-27 kg 
[11]. It leads to an estimate for the ݎ௣-value in the order of 10-15 m, which is 

about the size of a proton (0.8 femtometers) [12]. An electron which is 1840 
times lighter than the proton will, according to equation (9.3), see the same 
surrounding as the proton, so its size would be smaller by the same factor. 
Although the correspondence with measured data is surprisingly good, it is still 
a rough estimate and not without speculation.  
Even a discrepancy by a factor of 10 would already be acceptable for the 
outcome of this analysis. For instance, the sub-space due to the generator 

݉଴௜௝
ଶ ௜௝ߙ) ௜௝ݎ + ௝௜ߙ ௝௜⁄ൗݎ )ଶ would be a quantum-mechanical reality, but it says 

nothing about its internal structure and interactions. The mass of the universe is 
rather uncertain in view of the discussion about dark matter, and the proton size, 
or how to define it, is not so obvious.  
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10. The hydrogen atom and the planet Mercury. 
Consider the hydrogen atom with one outer electron of mass ݉௘ that is 
circulating at some distance from the nucleus of mass ݉௣ and experiencing a net 

charge Ze. The Schrödinger equation which incorporates both electrostatic 
interaction, given by ܼ݁ଶ ⁄ݎ଴ߝߨ4   and gravitational interaction, ݉ܩ௣݉௘/ݎ reads 

as follows:   

ቀ
ħమ

ଶ௠೐
ቀ

ଵ

௥మ

డ

డ௥
ଶݎ డ

డ௥
ቁ + ܧ +

௓௘మ

ସగఌబ௥
+

ீ௠೛௠೐

௥
ቁ  ߮ = 0,                        (10.1)

        
from which it can be seen that the gravitational contribution is completely 
insignificant for any value of r. The general solution is:  

߮ = ௔௥ି݁ܣ
௡ܲ(ܽݎ),                (10.2)

        
where ௡ܲ(ܽݎ) is a polynomial, for instance for n = 1, ௡ܲ = (2 −  :and  ,(ݎܽ
ܽ = ܼ݉௘݁ଶ ⁄଴ߝħଶߨ4 + ௣݉௘݉ܩ

ଶ ħଶ⁄ .  But now, as a “thought-experiment” 

(Gedanken Experiment), we ignore the electrostatic contribution and take the 
general solution. It will be found that: ܧ௡ = −݉௣݉௘

ଶܩଶ/2ħଶ݊ଶ and ݎ =

ħଶ݊ଶ ௣ൗ݉ܩ  leading to: ܧ = ௣݉௘݉ܩ− ⁄ݎ  in the limit of n to infinity. According 

to the correspondence principle the electron, when moving in electro-statically 
determined orbits (s-, p-, d-states), has very high quantum numbers in the 
reference frame of gravity. Returning to the thought- experiment we conclude 
that, if the atom is held together by gravitational forces only, the electron would 
have orbits at distances from the nucleus many orders of magnitude smaller than 
is actually the case. The argument above would, however, suggest that the 
electromagnetic force, although much larger than the gravitational interaction, 
manifests itself similarly in the entire space, but at some distance of the order  of 
1/a opposite charges start to compensate and electromagnetic forces due to the 
charge of the nucleus will be suppressed and only gravitational forces start to 
dominate. 

Now we will shortly investigate the precession of the planet Mercury.  
Mercury is the planet closest to the Sun and it has an almost circular orbit. But 
the point nearest to the sun also, to some extent, moves around the Sun. This is 
called “precession”. It is a small effect and actions have been taken to explain it 
due to the existence of the other planets nearby with the help of Newtonian 
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mechanics. But the result was that it could only partly explain the rate of 
precession.  

 

Figure 9: The planet Mercury: Duration of one 
Mercury year: 88 earth days, mass: 5.5 % of 
earth mass, radius: 2440 km and gravity at the 
surface: 3.7 m/sec2. 

 

However, with the help of general 
relativity the last pieces of this puzzle 
were found and actually it was one of the 

major breakthroughs in the acceptance of the general relativity theory. To give 
the most simple argument based upon the findings in the document we can 
consider a piece of matter ݉଴ in a gravitational field generated by a larger mass 
Mo, and an observer far away out of this gravitational field, like on earth. This 
observer will interpret the real rest mass of mo  after he has taken it from a 
distance of R from the center of gravity to his free space. For the observer the 
rest mass is given by ݉଴(1 + ଴ܯܩ ܴܿଶ⁄ ). Similarly the observer sees the other 
mass Mo, generating the gravity field, as ܯ଴(1 + ଴݉ܩ ܴܿଶ⁄ ).  If the two masses 
are the Sun-Mercury system: ܯௌ −  ,ெ are encircling each other at a distance rܯ
the observer will conclude that the force balance is given by: 

ଷݎெ߱ଶܯ = ௦(1ܯெܯܩ + ெܯܩ ܴܿଶ⁄ )(1 + ௌܯܩ ܴܿଶ⁄ ).                    (10.3) 

Actually we should not have taken the rest mass for the dynamic mass of the 
planet Mercury, as the Mercury-Sun system has to be considered as a group, but 
since the mass ݉଴ shows up in the left and right hand side of equation (10.3) the 
effect cancels out and we have not to bother about it. It is important to note here 
that, for the observer outside the gravity field of the two masses, the experience 
of equality of the gravitational mass and inertial mass is not valid anymore.  
Also the observer sees that the time lapse T in the ܯௌ −  ெ system is changedܯ
to: 
T (1 + ெܯܩ ܴܿଶ⁄ )(1 + ௌܯܩ ܴܿଶ⁄ )and the length r is changed to r/((1 +
ெܯܩ ܴܿଶ⁄ )(1 + ௌܯܩ ܴܿଶ⁄ )). 
When the observer on the planet Mercury, knowing that his mass is much 
smaller than the mass of the Sun, sees that he has made one complete revolution 
around the sun, so: ߱ܶ =  the observer in outer space will see in accordance ,ߨ2
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with equation (10.3) that the planet Mercury has made a round trip of  21)ߨ +
3 ௌܯܩ ܴܿଶ⁄ ).  Only the first order terms in ܯܩௌ ܴܿଶ⁄ , with r = R at the end, 
have been taken in the calculation. The outcome corresponds with the original 
analysis given by Einstein as the result of a more lengthy calculation [13].  
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11. The Bohr-Einstein controversy. 
The model describing the gravitational interaction between particles has a some 
relation with the classical Bohr-Einstein dispute [14]. This dispute has been 
dealt with in many sessions between 1913 and 1930 as a subject of the Solvay 
Conferences. The issue was Einstein’s belief that the quantum theory is an 
incomplete theory as he rejected the idea that positions in space-time could 
never be completely known. Einstein did not want to allow the uncertainty 
principle to necessitate an apparently random non-deterministic mechanism by 
which the law of physics would be operating.  
The controversy culminated in the well known Einstein-Podolsky-Rosen 
Paradox, (EPR) of 1935 [15] which comes close to the ideas presented in this 
document. Two particles have a common source, like two photons originating 
from one process in terms of space and time. From a quantum mechanical point 
of view the set of the two particles are represented by a joint wave function. One 
particle has orientation up (U) and the other down (D) and we do not know on 
beforehand which of the two is up and which or down: 

ଵଶߖ = (ܦ)ଶߖ(ܷ)ଵߖ +  ଶ(ܷ).                       (11.1)ߖ(ܦ)ଵߖ

This is a superposition of two states of the ensemble. At some moment we do an 
experiment and find out that one of the particles is specified as “up”. From 
quantum theory we conclude that the other should be “down”. It might be that 
the system is influenced by the measurement so that the result “up” emerged, but 
the other particle is definitely not influenced and we know that it is 
characterized as “down”. It appears that the wave function has selected the 
option ߖଵ(ܷ)ߖଶ(ܦ) out of the superposition. From quantum mechanical point 
of view the process occurs independently of where in space and at which 
moment it takes place.  
For Einstein this was unacceptable and he suggested that the particle might have 
some “hidden variables” which we do not know and which decide the choice of 
the system. Niels Bohr could, however, justify his result by working out the 
situation in a more statistical way as quantum mechanics is basically a theory of 
probabilities which has been experimentally confirmed on several occasions 
[16]. 
We can now identify the solution for the pair potential in equation (5.4) or, more 
generally, equation (5.6), for a multi group particle pair system, in a similar way 
as the ”up/down” combination given above. As Max Born pointed out in a letter 
to Einstein [17]: “There is a wholeness to a quantum events that persists over 
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time and space and makes linkages possible”. These linkages, leading to the 
definition of the invariant in the KG-equation, apparently, give rise to the 
gravitational interaction. Apparently a single particle sees an environment and 
makes pairs with all of the particles around it. Suppose that at the other side of 
our galaxy two particles k,l annihilate. Suddenly the number of pairs reduces and 
this is seen by our particle. This change in the wave function:  
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Figure 10: Niels Bohr and Albert Einstein in 
Ehrenfest’s home in Leiden in December 
1925. 

 

produces a gravitational wave 
travelling through empty space at the 
speed of light and that adjusts to the 
new situation. But the information that 
the gravitational wave must start has 
already been exchanged between our 
particle with the observer and the 
annihilating pair. Again we end up in 
the same controversy as between Bohr 
and Einstein. 
It is like a person somewhere far away 
sends me a message that something 
will be put into water so that I can go 

to the beach in The Netherlands and observe that much later there is some small 
rise of the sea level. If I will see anything, I have no idea where and when and in 
which way it originated, only that something has happened. Most likely the 
signal will be too small compared with the random disturbances. This analogy, 
however, is different from gravitational waves in that I have at least the sand of 
the beach as a reference level, whereas with gravitational waves such a thing 
does not exist. 
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12. Summary of preceding paragraphs and some remarks for 
completeness.  
An important first conclusion in an earlier summary was that particles with a 
mass can be described as a single non-interaction pair containing only two 
members. The individual members can make pairs with all other mass in its 
surroundings. This, already peculiar pair effect, is used in the KG-equation 
which, in a quantum-mechanical representation, describes a field around these 
members. The second conclusion made is that energy is subtracted from the pair 
and gives rise to an attractive force between the two members of a pair. By 
setting this force equal to the well-known parameters of Newton’s third law, 
numerical values can be given to the main parameters found with the KG-
equation. It is then found that an observer watching the pair will see that the pair 
has two members, but he cannot see how they interact or exchange information, 
only that it leads to a force between them. This force is independent of the 
movement of the members in the sub-space as shown in Figure 3.  
The field that occurs due to the KG-equation is not only present outside the 
particle but must also have its influence in areas where the particle mass density 
manifests itself. Not much is known about what this field inside the particle 
looks like and its local interactions, but the most simple approach would be to 
assume that the amplitude of the generator of this field is constant. The 
dependence on space coordinates of this field inside the outer boundary of the 
particle leads to the attribution of mass. This mass is then found to be a 
consequence of all the interactions which the single particle has with the 
surrounding mass in which the distance, apparently, plays no role. If we start 
from the values of the parameters derived from the gravitational interaction, and 
the known mass of a proton, its outer boundaries can be calculated which agree 
surprisingly well with the data found experimentally. However, it must be 
stressed that this last reasoning is speculative.  
Going from small to large the theory that is developed has its consequences. One 
is that mass is to be attributed to a rest mass in a gravity field which in normal 
cases is merely negligible, but it has consequences on, for instance, the 
movement of the perihelion of Mercury during its encircling of the Sun. It is 
also shown how mass and gravity are intimately connected and that the 
description of the cosmos at large distances is governed by the specific 
gravitational interaction between bodies constituting the universe.  
One point, difficult to accept from logical point of view, is that members of a 
pair seem to have instantaneous contact no matter how far they are apart and 
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therewith generate the interaction field that gives rise to gravity. Gravity waves 
move at the speed of light or slightly less, depending on the mass density it is 
moving through, but its generator works apparently without delay. The situation 
is the same as the classical debate in the previous century between Einstein and 
Bohr and have remained to be an issue which is hard to believe but more than 
once shown to be true.  
Another point to remark here is the occurrence of a generator creating a sub-
space. It follows unambiguously from the Schrödinger equation but nothing can 
be said about its internal structure where particles are entangled and apparently 
exchange information. This might be close by the idea of Einstein about “hidden 
variables”.  

The gravitational constant in Newton’s law, ܩ, is expressed by ܩ = √2σᇱܿħ in 
which the parameter σᇱ, equal to 2.7x102 mJ/kg4, can be seen as a universal 
constant that connects relativity with quantum mechanics. 
The surprising, and at the same time bizarre, conclusion of the analysis given is 
that, apparently, each single particle has interaction with all other particles in the 
cosmos. It means that in the universe an unimaginable number of pair-wise 
interactions exists with greatly varying intensity and extensions and which 
depend on the masses of the members of the pair. It is difficult to comprehend, 
but it follows unambiguously from the equations describing the behaviour of the 
pairs.  

An important aspect to mention is the fact that the right hand side in equation 
(7.5) should be invariant under Lorentz transformation. However, the rkl 
transforms as a member of a four-vector. Therefore, the parameters ߙ௞௟ should 
transform in the same way as rkl, but apparently it would make left and right 
hand side in equation (8.2) transform differently, which cannot be the case. We 
should however notice that the Planck’s constant, h, is invariant, but ħ = ℎ/2ߨ 
is not. 
Make the following “thought-experiment”. Consider a pair flying away from us 
at a speed v such that the separation vector of the members of the pair is aligned 
in the direction of v. Due to the fact that ߨ transforms just like 1/rkl the result is 
that the interaction energy of the pair we measure becomes invariant. There is 
invariance throughout if the alignment perpendicular to the speed. So the 
conclusion is that the interaction energy in the pair is invariant and independent 
of the alignment towards the observer, as it has to be.  
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As a last remark for this paragraph, causality is of importance to keep in mind. 
The model starts from the fact that there are masses, and it is seen that they can 
form pairs and generate gravity. It yields numerical data about the masses 
following gravitational parameters. The strength of the model is the consistency 
of the data with what we observe in reality. On the other hand one can say that 
the mass can be introduced into the Schrödinger equation as an unknown 
quantity and the theory comes back with a numerical value for it if the size of 
the particle is known.  
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13. Gravity depending on dynamical mass. 
Mentioned in paragraph 4 at the end is that a group as a whole, identified with 
the label l, has kinetic energy and therefore a relativistic mass equal to ߛ௚݉௚ܿଶ. 

Although the present theory is only concerned about the situation in the sub-
space rij where gravity originates, it still is of interest to know the dynamic mass 
of the group because of the fact that the Hamiltonian operator has been 
modified. The dynamic mass is influenced through the group-momentum 

௚ෞ݌ ඥ2݉௚⁄ . 

The equations (4.5a) and (4.5b) can, in principle, give the value for this group 

momentum if the replacement of the vectors ݌௞ෞ ඥ2݉௞⁄  by their relativistic 

equivalents has been done. However, there remains a disturbing ܿߜݏ݋ଵ-term 
making a general solution inappropriate. But the purpose of an endeavour in 
which such a group related dynamic mass is significant makes only sense where 
gravity is important and speeds are approaching the speed of light. So it is not 
relevant outside the realm of cosmology.  
In this respect the main problem of the incompatibility between quantum theory 
and relativity comes to the surface.  
We therefore have to carefully replace the vectors in Figure 3 by the 
relativistically relevant ones which are to be derived from the equations (4.5a) 
and (4.5b) leading to the transitions: 

௔/ඥ2݉௔݌ ↦ ܿ݉௔ඥߛ௔
ଶ − 1  with ܽ = ݅, ݆ and ݃. 

Now we can put our observer on one of the interacting particles, say mi in the 
group (ij), and consider the surroundings from this point of view so that ݌௜ = 0. 
In this case ܿߜݏ݋ଵ = −1. but because ݌௜ = 0 the ܿߜݏ݋ଵ- factor has no influence 
anymore. We end up in a rather complicated situation if we want to know the 
mass and ߛ௚- values for the group and after a tedious lot of algebra we find:  

non relativistic:  

௚ߛ
ଶ − 1 =

௠ೕ

ଶ൫௠೔ା௠ೕ൯
൫ߛ௝

ଶ − 1൯, and relativistic: 

௚ߛ
ଶ − 1 =  

௠ೕ
మ

ଶఎమ൫௠೔ା௠ೕ൯
మ ൫ߛ௝

ଶ − 1൯.                    (13.1a, 13.1b) 

The extra parameter ߟ complicates the situation. If our observer is on mass mi 
which is much smaller than mj: 1=ߟ, and both equations are identical. If our 
observer is on a mass ݉௜ = ௝݉, like in the case of direct proton-proton-neutron-
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neutron interaction as the most common one in the universe: ߟ = ඥ1/2, the 

result is:   

௚ߛ
ଶ − 1 = ൫ߛ௝

ଶ − 1൯/4.                 (13.2) 

With the aid of the definition of ߛ this result is easily changed into the relation: 
 

௚ݒ
ଶ ܿଶ⁄ = ௝ݒ

ଶ (4ܿଷ − ⁄(ଶݒ3 .                        (13.3) 

This gives the mass to be allotted to both members of the group. At low 
velocities (v << c), The mass of the group particles is determined by half the 
speed of the moving particle. When the speed of the moving particle approaches 
the light velocity, both speeds become equal. So at low speeds we have to 
dedicate dynamic mass to both particles and the Newton’s equation will read: 

૚૛ࡲ = ܩࡾ ൬ܯଵ௢(1 − ௝ݒ
ଶ 4ܿଶ)⁄

ିଵ
ଶൗ

ଶ଴(1ܯ − ௝ݒ
ଶ 4ܿଶ)⁄

ିଵ
ଶൗ

൰ ܴଷൗ .         (13.3) 

 
It is like the two rest masses, ܯଵ௢ and ܯଶ௢, are moving away with opposite 
speeds but equal to ݒ௝/2 from the observer, in the middle.  

When speeds are approaching the speed of light, of course, the speeds of both 
particles are still the same and opposite, but at the value ݒ௝. This result is similar 

to the velocity addition rule for relativistic velocities on the basis of standard 
relativity theory [3], but in this case arrived at in way involving gravity.  
An alternative way of interpreting equation (13.3) is to place the observer in the 
sub-space in the middle between the two particles so that their speeds are 
opposite and equal to v as seen from the observer’s point of view. In that case 
the equation becomes:  
 

૚૛ࡲ = ଵ௢/ඥ(1ܯ൫ܩࡾ − ଶݒ ܿଶ⁄ ଶ଴/ඥ(1ܯ − ଶݒ ܿଶ⁄ ൯ ܴଷ⁄ .                    (13.4) 

 

As a side step: In the interpretation of equation (13.2): even if the two particles 
with the observer in the middle have speeds approaching the speed of light, the 
observer on one of these sees the other one not moving at almost 2c, but at 
nearly the speed of light, c.  
 
In conclusion it can be said that particles in a group have gravitational 
interaction as if they have in the sub-space their rest masses. These rest masses 
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must be corrected with the relativistic transformation factor ߛ௚ as defined by 

equation (13.1). 

The kinetic energy of the group remains to be defined by the value 

௞௜௡ܧ  = ܶ = ଵߛ)ଵ௢ܯ − 1)ܿଶ + ଶߛ)ଶ௢ܯ − 1)ܿଶ.                     (13.5) 
 
One may say that this allocation of dynamic mass to the masses in the Newton 
equation started from the assumption that we only have particles with equal 
masses, but we can, as a “thought-experiment”  build up the parts out of separate 
but equal masses. After adding up all the effects of them in the separate groups 
we arrive finally at the same result as in equation (13.3).  
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14. Cosmological consequences. Dark matter and energy? 
The model presented here started from the Schrödinger equation where no 
boundary conditions are imposed on a system of particles. The subsequent 
finding of the pair formation as a result of this has consequences. First it means 
that the entire space, in which the particle pairs are embedded, is necessary for 
the interaction. Second, it is only the pairs that create the forces between them 
such that in Newton’s law the product of the masses gives rise to a total 
gravitational force. Also, the particular form of the solution of the Schrödinger 
equation, in which the wave function amplitude itself is used as an operator in 
the KG equation, leads to the R2- dependence. It is also important to remark that 
the gravitational interaction, leading to an interaction energy, is, for the observer 
in the sub-space, dependent on the product of the rest masses and independent of 
the speed in any direction in which one of the members of the pair or both are 
moving, even though the total mass of the pair changes relativistically.  
We will calculate the energy balance of the universe assuming that, where 
matter is manifesting itself, the mass is distributed homogeneously. This 
assumption ignores any clustering of matter that will influence the energy, but it 
can be shown that this contribution is negligible against the energy that is 
dedicated to the relativistically defined masses (mc2). To start with, relativistic 
masses are not taken into consideration. If the density of the rest mass is given 
by ρ0 there are two contributions: potential energy, V, as the masses feel their 
gravitational pull to all other surrounding masses, and the kinetic energy, ௞ܶ, as 
the masses are moving relatively to each other. Now:  
 

ܸ = − න
(ݎ)ܯܩ

ݎ

ோೠ

଴
ܯ݀ = − න (

ோೠ

଴
4 3⁄ ଴ߩߨܩ(

ଶݎଶ4ݎߨଶ݀ݎ = 

= −(16 15⁄ ଴ߩଶߨܩ(
ଶܴ௨

ହ,                            (14.1a) 

ܶ = ׬ ݎଶ݀ݎଶℎଶݎ଴ߩߨ2 = (2 5⁄ ଴ℎଶܴ௨ߩߨ(
ହோೠ

଴
,                          (14.1b) 

where h is the so-called “Hubble constant”. It connects the expansion speed, v, 
of the matter with the distance, r, from the observer so that: v=hr. 
We will take the sum as zero which means that, in the case of a “flat, matter 
only” universe, ultimately the universal expansion comes to rest, and we find:  
 

ℎଶ = (8 3⁄ ܩ଴ߩߨ( = ܿଶ

ܴ௨
ଶൗ =  (14.2)                      .ܩ଴ߩ8.37
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This value of 8ߨ 3⁄  occurs as a proportionality constant in the Friedmann 
expansion equations which are based on the geodesic equations as derived from 
the Einstein field equation [9]. The last step is based on the assumption that the 
expansion speed is equal to the speed of light at the outer boundary of our 
cosmos.  
It is interesting to evaluate this last equation, knowing that ܴ௨/c is the radius of 
the universe in light seconds, that the average intergalactic density is about 1000 
hydrogen atoms per cubic meter so that ܴ௨/c = 0.3x1017 light seconds or about 
1010 light years and that the generally accepted value of h is 2.3x10-18 sec-1. 
These values are in the right order of the values assumed on the basis of 
telescopic observations.  
 
Now we want to play the same game as above, but in a relativistic context. For 
this we should first, again as a “thought-experiment”, place an observer 
somewhere in space and make him or her look around. He or she will see a 
universe in which all objects are moving away from him or her. and independent 
of the place where we have put him. In other words: the universe is isotropic and 
approximately homogeneous as seen in a cosmological context.  
We will first for our observer calculate how much dynamic mass ܯ(ܴ௨) is 
around in a volume bounded by the radius ܴ௨: 
 

(௨ܴ)ܯ  = න ଴ߩ
ଶݎߨ4

ඥ1 − ℎଶݎଶ ܿଶ⁄

ோೠ

଴
ݎ݀ =

଴ܿଷߩߨ4

ℎଷ න
ݖଶ݀ݖ

√1 − ଶݖ

௛ோೠ ௖⁄

଴
= 

= 
ସగఘబ௖య

௛య ቂ−
௭

ଶ
√1 − ଶݖ +

ଵ

ଶ
ቃ(ݖ)݊݅ݏܿݎܽ

଴

ଵୀ௛ோೠ ௖⁄
= ଴ܴ௨ߩଶߨ

ଷ,                   (14.3) 

In this equation the factor ඥ1 − ℎଶݎଶ ܿଶ⁄  is connected to the mass increase due 
to the expansion speed.  
Just for the moment we can calculate the mass of the “observable” universe 
when ℎܴ௨ ܿ⁄ = 1, (௨ܴ)ܯ  = ଴ܴ௨ߩଶߨ

ଷ and the apparent volume is: ܯ(ܴ௨) /ρo. 
This is significantly larger than the non-relativistic number.  
The kinetic energy cannot be evaluated by “Mv2/2” but more simply by: 

௞ܶ = ଶܿ(௨ܴ)ܯ − ଴(ܴ௨)ܿଶܯ = ଴ܴ௨ߩଶߨ
ଷܿଶ −

ସ

ଷ
଴ܴ௨ߩߨ

ଷܿଶ.           (14.4) 

For the potential energy we need a second “thought-experiment”. Suppose the 
observer is sitting on a mass m and this interacts gravitationally will all masses 
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around. We take the universe as isotropic and dedicate the relativistic mass only 
to the moving matter. Then we find:  

ܸ(݉) = − න ଴ߩܩ݉
ݎߨ4

ට1 −
ℎଶݎଶ

ܿଶ

ோೠ

଴
ݎ݀ = −

ଶܿܩ଴݉ߩߨ4

ℎଶ ቂඥ1 − ଶ ቃݖ
଴

௛ோೠ ௖ൗ
= 

= − ଶܿܩ଴݉ߩߨ4 ℎଶ⁄                          (14.5) 

We can then replace m by (4 3⁄ ଴ܴ௨ߩߨ(
ଷ and obtain the result: 

V(M) = −(16 3⁄ ଴ߩଶߨܩ(
ଶܴ௨

ହ.                        (14.6) 

Again, setting the sum equal to zero, it gives:  
 

ℎଶ = (
ଵ଺గ ଷ⁄

గିସ⁄ଷ)
ܩ଴ߩ( = ܿଶ

ܴ௨
ଶൗ =   (14.7)                       .ܩ଴ߩ9.5

This result is not so different from the non-relativistic value. This is because the 
relativistic kinetic and potential energy both depend on the dynamic masses in 
almost, but not entirely, the same way.  
There is more than one way of interpreting this result. First we can say that from 
our observer’s point of view the energy due to expansion speeds in the outer 
areas is so high that it will never balance the gravitational energy, whereas for 
the observer in the outer areas, however, it could. From another point of view 
our observer sees that time is progressing more and more slowly in the outer 
areas and even, if the expansion speed will slow down, he will never be able to 
see it.  
This interpretation already indicates that there is a problem: 
We have placed our observer on a mass which consists of particles where all are 
members of groups with the masses that are moving away from him, or her. So 
we have, due to the arguments given in paragraph 3, to dedicate a relativistic 
mass also to the mass on which we have placed the observer. If we take this 
effect into account, like as was done in equation (14.5), we see that, when 
performing the integration up to the Hubble limit of ℎܴ௨ ܿ⁄ = 1,  there is no 
convergence: infinities are showing up .  
There have been speculations that, by unknown mechanisms, the creation of 
mass is balanced by a loss in potential energy [9], [18]. In the model expressed 
by the equations (14.4) and (14.5) it would mean that in equation (14.5) we only 
use the Mc2 – term:  
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ℎଶ = ܩ଴ߩ(16/3) = ܿଶ

ܴ௨
ଶൗ =  (14.8)                      .ܩ଴ߩ5.3

In that case, the universe should be significantly larger, or heavier, than on the 
basis of the analysis of the “non relativistic” universe. But this latter argument 
should be considered with scepticism. Rest mass m0 seen by an observer in free 
space changes from its value in a local gravity field by a factor of  1 +
ܯܩ ܴܿଶ⁄ ,  in which M is the mass with which m0 is interacting and R the 
distance, but mass is not newly created. The argument suggests that there is a 
mechanism by which gravitational energy can be changed into new rest mass.  
The factor mentioned is a small correction that plays no significant role in the 
analysis here, but it has been shown in paragraph 10 that it is of significance in 
calculating the precession of the perihelion of the planet Mercury around the 
Sun. 

Returning to the argument where we also have to take the relativistic value for 
the mass on which we have placed the observer into account, there is by far 
enough of potential energy available to balance for the creation of new mass. No 
conclusion can, however, be connected to these considerations. It may well be 
that the universe cannot be considered as infinite and isotropic. It can also be 
that the gravity loses its significance beyond a certain distance of cosmological 
scales.   

Having done all the bookkeeping for the masses and wave function in the KG-
equation it is worthwhile, as a “thought-experiment”, to concentrate all masses 
of the interacting pieces of material into one point at the centre of gravity, so 
that the system can be represented in the one-plane subspace, as in Figure 3. In 
this way the attractive force between macroscopic bodies can be calculated.   
In reality this is however not precisely right. The (ߙ௜௝ ⁄௜௝ݎ + ௝௜ߙ ⁄௝௜ݎ )-value varies 

from place to place and therefore have to be averaged out taking the clustering 
of masses into account. This clustering can be thought of as having occurred in 
two steps. First, basic particles carrying mass are clustered into the nuclei of 
atoms, and, subsequently, into crystalline structures, or a liquid or a 
concentrated gases.  

Therefore we average out the  ߙ௜௝ ⁄௜௝ݎ  -factor by assuming that in a certain 

region, R1, there are a number of ߙ௜௝ ௜௝ݎ  ⁄ -carrying particles: 
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and again we cluster into a macroscopic structure confined into R2: 
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In our world of material, clustered into solids, liquid and molecular gases, we 
have related our gravitational interaction to the gravity law on the basis of 
௜௝ߙ ⁄௜௝ݎ  -values for which no clustering is assumed. This leads, however, to a 

gravity law that corresponds to Newton’s third law, but one in which the ߙ௜௝-

value is taken too low, compared to a situation in which we have no clustering. 
For our daily earth-bound life it makes no difference as our direct 
neighbourhood, our solar system, consists almost entirely of clustered material. 
At the scale of a galaxy, however, the situation is different. There we have to a 
high extent non-clustered and almost non-interaction single particles like 
hydrogen atoms. For them an ߙ௜௝  -value of more than twice higher than the one 

in our environment has to be taken. So, apparently, there is more gravity 
interaction than we can expect on the basis of our earth-bound interpretation.  
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