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Abstract

In present paper we argue that to explain the shape of the Rotation
Curves (RC) of galaxies, there is no need to involve the concept of dark
matter. Rotation curves are completely determined by the distribution
of baryon matter and gas kinetics. Such parameters of the galaxy as
barion mass and its distribution can be easily calculated from the ob-
served RC. We show the extended parts of RCs to be just a wind tails,
formed by gas of the outer disks in assumption that it obeys the laws
of gas kinetics. As examples, the Galaxy, NGC7331 and NGC3198 are
considered. We calculate total mass of the Galaxy and find it to be
23.7x10(10)M sun. For the NGC7331 and NGC3198 the calculated total
masses are 37.6x10(10)M sun and 7.7x10(10)M sun respectively. Conse-
quences for cosmology are discussed.
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galaxy.
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1 Introduction

From the very beginning of its discovery in 1932 by Jaan Oort and confirmation
made by Fritz Zwicky in 1933, the phenomenon of Dark Matter (DM) was widely
discussed. Unfortunately, in the past 85 years, there has been no significant
progress in understanding the nature of DM and the dynamics of galaxies. In
present paper we have tried to fill this gap and offer a physically reasonable
explanation for the DM phenomenon.

To begin with, we would like to mention here some arguments against exis-
tence of DM, at least in it’s actual meaning.
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- It is well known that the halo stars (the old population of the galaxy) move
more slowly than the young population of the disk does. This fact clearly indi-
cates an unsatisfactory explanation of the Rotation Curves (RC), as provoked
by the spherically distributed DM.

- An immense dispersion of the star velocities beginning at distances of the
order of 10 kpc, which can not be explained with a homogeneous, spherically
distributed DM. Such a spread can be explained probably by the presence of a
compact structure such as the arms of galaxy, which are baryonic by nature.

- Recently it was shown that there is a significant correlation between the
features in the RC and the spiral structure of the baryonic disk. As the authors
say: ”The dark and baryonic mass are strongly coupled” [1], [2], [3], [4] but it
is impossible in the framework of the usual DM paradigm.

- This year the rotation curves for high redshifted galaxies were reported and
it was clearly shown that a large fraction of massive high - redshifted galaxies are
strongly baryon-dominated (see [5] and references therein). These data clearly
indicate the absence of the DM in the early epochs and its mystical appearance
in our time.

- The FERMI experiment for search of anniquilation of DM and anti-DM,
clearly show negative result [6]

All of the above clearly indicate the need to revise the concept of DM and a
more accurate simulation of the galactic baryon component.

In present paper we prove that the RC of spiral galaxies are just the wind
tails of the baryon gas following the preceding baryon matter, and we do not
need the DM concept to explain rotation curves. We base our proof not only on
numerical estimates, but also on exact calculations for galaxies and a comparison
of the results with observations.

The article is organized as follows:
In part 2 we discuss RC produced by spherically distributed matter, we

suggest an analytical solution for the density function under condition V⊥ =
const, and compare it with those obtained with numerical simulations.

Part 3 is devoted to the construction of a realistic and convenient density
function of the baryon component in a cylindrical coordinate system. We com-
pare it with the Miyamoto-Nagai function by example of the Galaxy. Analytical
solution for the RC, that corresponds to the density function is suggested. Ex-
pression for the total mass of S-type galaxies is obtained

The main part 4 is devoted to the gas dynamics and relationship of the
baryon gas density distribution function to the RC. Obtained results are in
excellent agreement with the observational data.

In conclusion the main results of this paper are summarized and important
consequences are discussed.

2 Rotational curves in the case of spherical sym-
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metry

The case, when the density distribution has the spherical symmetry deserves
a separate consideration because on the one hand the DM is thought to be
spherically distributed, as it is supposed in all numerical simulations, and on
the other hand we need it to compare with the density function obtained in part
4 of our paper. So we consider here the spherically symmetric case in details.

It is well known that for point - like source the gravitational potential can
be written as

du =
Gdm(r)

r
. (1)

Let’s consider spherically symmetrical density σ(ρ) in [g ·cm−3]. In this case
the mass differential can be expressed as

dm = σ(ρ)ρ2 sin θdρdθdφ . (2)

For this reason we have the following potential function for a spherically
symmetric system:

du =
Gσ(ρ)ρ2 sin θdρdθdφ
√

R2 + ρ2 − 2Rρ cos θ
, (3)

where R is the distance from the observer to the origin of the sphere under
consideration.

Performing elementary integration with respect to the angles θ and φ, we
obtain:

du =
4πGσ(ρ)

R
ρ2dρ, (4)

or

u =
4πG

R

∫ R

0

σ(ρ)ρ2dρ, (5)

which gives us in particular case of constant density the following relation
for the square velocity:

V 2
⊥ = R

du

dR
= 4πGσR2, (6)

Now let’s consider how should density depends on distance to maintain con-
dition V⊥ = const. in the case of spherically distributed matter.

The DM density function (which could produce approximately constant RC
in a certain range of distances) is widely discussed and applied to model DM
haloes, see for example [7], [8], [9] and references therein. Unfortunately to date,
such density functions are calculated only from numerical simulations. We will
not offer here an exhaustive description of all such functions, but mention just
two most commonly recognized. The first were suggested by Navarro, Frenk
and White [7] and has the form

σNFW (r) =
σ0

r
rs
(1 + r

rs
)2
. (7)
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Another function was obtained recently by Di Cintio et al. [10], [11] and
was compared with the first one in [9]. As it was stressed in [9], the function
of Di Cintio et al. much better approximates the observed RC. This density
distribution of DM can be represented as:

σDC14(r) =
σ0(

r
rs
)|γ|

(1 + ( r
rs
)α)

β−γ
α

. (8)

In the case of DM dominated galaxy, this distribution is characterized by
the following values of the parameters γ ≈ −0.88, α ≈ 1.4 , β−γ

α ≈ 2.6 .
It should be emphasized again that these functions were obtained from nu-

merical simulations on the basis of the requirement to describe an approximately
constant velocity in a strictly defined range of distances, in order to approxi-
mate RCs of real galaxies. Let’s calculate analytically the density function which
corresponds to constant velocity. By taking into account that

V 2
⊥ (R) = R

du

dR
, (9)

and requiring that V⊥ = const , we immediately obtain from the eq. (5) the
following differential equation for the density σ(r):

σ′(R)R3 + 2σ(R)R2 =
V 2

4πG
. (10)

Or by normalizing the variable for convenience of comparison x = r/rs , we
have:

σ′(x)x3 + 2σ(x)x2 =
V 2

4πGr2s
. (11)

Integrating (11), we find

σ(x) =
V 2

4πGr2s

ln( r
rs
)

( r
rs
)2

. (12)

This is exact expression for the density function, which comply condition
V⊥ = const over the entire range of distances. As can be seen, expressions (7),
(8) and (12) have similar behavior for the argument r

rs
greater than one.

3 Rotation curve in the case of cylindric sym-

metry

It is well known that the baryon component of galaxies consists of stars and gas.
The stars can be considered as collisionless gas, while the real gas also obeys
the laws of gas dynamics and should be described by Fick’s laws. Due to the
fundamental differences, these two components should be considered separately
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and in this part of paper we will consider only the stellar component. Physics
of the gas component will be considered in the 4-th part of the paper.

Now consider a thin disk of radius a , characterized by thickness 2z0 = 2b.
Let dm be a point - like mass inside of the disk and r is the distance from the
mass to observer (which also is located inside of the disk at distance R from the
center of galaxy). Than the distance observer - point-like mass can be written
as:

r2 = z2 +R2 + ρ2 − 2Rρ cosϕ, (13)

where ρ , z and ϕ are cylindrical coordinates of the mass under consideration.
For the convenience, we split the potential formed by the mass in the point

of observer, into longitudinal and tangential components u = u‖ + u⊥.
It is clear that tangential component will not affect on the RC. For longitu-

dinal component we have

u‖ = u
R− ρ cosϕ

r
. (14)

But for the point - like mass the potential is u = Gm/r, so

du‖ = Gdm
R− ρ cosϕ

r2
, (15)

or in it’s complete form

u‖ = G

∫ R

0

∫ b

−b

∫ 2π

0

σ(ρ, z)(R− ρ cosϕ)ρdρdϕdz

z2 +R2 + ρ2 − 2Rρ cosϕ
, (16)

and integrating over ϕ we obtain:

u‖ =
2πG

R

∫ R

0

∫ b

0

σ(ρ, z)ρdρdz. (17)

In order to follow further, we need the density distribution function be de-
fined. To the best of our knowledge, the most used one to describe observed
galaxies, is the Miyamoto - Nagai density function [12]. Unfortunately, this
function is not convenient for analytical calculations and therefore we approx-
imate it by a factorized function of the same degree that does allow simple
integration:

σ(ρ, z) =
1010M⊙

(γt2 + 1)3/2

∑ αk

(βkx
2 + 1)3/2

k

. (18)

Here γ, αk , βk are parameters of approximation and dimensionless variables
are x = ρ/a and t = z/b. The density function of Miyamoto - Nagai (M-N)
is widely used in calculations, and therefore it will be useful to compare our
model (18) with the well known M-N density function for the Galaxy. Figure 1
suggests this comparison for the plane z = 0. Parameters for the best fitting of
the M-N function by the expression (18) are as follows: γ = 30, α1 = 0.024 ,
β1 = 12 , α2 = 3.7 , and β2 = 10000.
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Figure 1: Baryon density as a function of distance R for bulge + disk model of
the Galaxy. The density of Miyamoto - Nagai (solid line), and density given by
the expression (18) (dashed curve) are compared.

For the density function (18), the integration over z can be carried out easily:

I =

∫ b

0

1

(γt2 + 1)3/2
dz =

bt
√

γt2 + 1

1

|=
0

b√
γ + 1

, (19)

and we obtain

u‖ =
ηb

R
√
γ + 1

∫ R

0

∑

k

αk

(βkx
2 + 1)3/2

ρdρ, (20)

where we introduce the constant η = 2πG1010M⊙. Integration over ρ gives

u‖ =
ηa2b

R
√
γ + 1

∑

k

αk

βk

[

1− 1

(βk
R2

a2 + 1)1/2

]

. (21)

This is gravitational potential produced by galaxy in the point R. The
required RC can be found now both from (20) and from (21) as

V 2
⊥ =

ηa2b

R
√
γ + 1

∑

k

αk

βk

[

1−
3
2βk

R2

a2 + 1

(βk
R2

a2 + 1)3/2

]

, (22)
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where all distances are measured in kpc. This expression was obtained for
the density function (18) characterized by the parameters γ, αk and βk, and it
can be used immediately to calculate RC.

Now we introduce for convenience new coefficients α∗
k and β∗

k in which
we include the parameters of the model. Namely let α∗

k = bαk/
√
γ + 1 , and

β∗
k = βk/a

2 . In this case (22) became:

V 2
⊥ =

η

R

∑

k

α∗
k

β∗
k

[

1−
3
2β

∗
kR

2 + 1

(β∗
kR

2 + 1)3/2

]

. (22a)

Plotted with relation (22a) RC for our Galaxy is shown in Fig.2, in compar-
ison with the observed RC [13],[14],[15] (is shown by squares with error bars).
The parameters of the model are α∗

1 = 0.2317 , β∗
1 = 0.112 , α∗

2 = 6.358 ,
β∗
2 = 28.8, α∗

3 = 7.005 , and β∗
3 = 1440.
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Figure 2: Rotation curve obtained with density (18) for the Galaxy.

As can be seen, the obtained RC perfectly coincides with the observational
data in the range R < R0 ≈ 15 kpc , while one can see the discrepancy for
the outer part of the disk (We define R0 as a distance, at which the tangential
velocity V⊥ = VK if R < R0 and V⊥ = (VK+Vd) > VK ifR > R0 where VK is the
Keplerian velocity). It can be explained by the fact that the RCs for distances
R > R0 are measured mainly with HI 21cm. line and formed by gas. For this
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reason this part of the RC can not be obtained from simple gravitational model,
and more sophisticated physics based on the gas kinetics should be applied. We
consider it in details in the part 4, but now to conclude this part we would like to
suggest evaluation for the total mass of our Galaxy. For the density distribution
model used for better fit of the observed RC presented in Fig.2 (solid line) we
obtain, integrating (18):

MG = 4π1010M⊙

∑

k

α∗
k

β∗
k

(

1− 1
√

β∗
ka

2 + 1

)

. (23)

By substituting the parameters found above and taking for the Galaxy a =
15 kps (it should be noted here that parameter a weakly affects the calculated
mass), we obtain the baryon disk mass (actually this is the total mass because
the mass of the gas is negligible) of our GalaxyMG = 23·1010M⊙ which perfectly
agrees with the Oort limit.

4 Rotation curves measured with HI line

4.1 Preliminary estimates

To begin with it should be stressed again that there are two very different
components of galaxy population: stars and gas which are used to measure the
RC of galaxy in optics and in radio respectively. The first component is drived
only by gravitation potential, whereas to describe the second one we should
take into account collisions and the diffusion equations should be involved into
consideration. Rough estimate of the mean free path time for a hydrogen atom
tfp = (NσVt)

−1 (here N is the density of the gas in sm−3 , σ is cross-section
for elastic collision and Vt is the mean thermal velocity of the atom) gives
tfp ≈ 1.3 · 1010/N (sec) = 4.1 · 102/N (yrs). For the typical HI density outside
of the R25 : N ≈ 10−3 − 10−4 we obtain evaluation tfp ≈ 4.1 · (105 − 106) yrs.
Thus, one can see that for description of the neutral hydrogen, located in the
outer R > R25 & R0 part of galaxy’s disk, the complete gas dynamic equations
should be used for correct description of the RC.

Now let’s made another estimation to answer the question : ”Will the gas
be able to follow the underlying falling baryon matter to form the wind tails?”.
From observations we know that baryon matter of a S-type galaxy moves along
a spiral. In this case we may model it as a piston (baryon matter in inner
R < R0 part of galaxy) that moves in the spiral tunnel with ideal walls, and is
followed by the HI gas (here we will not consider the processes of star formation,
that dilute the gas component, but we only note here that accounting for such
processes will increase the effects we are discussing). The mean acceleration of
the ”piston” for typical galaxy can be evaluated as < w >= ∆V/∆t = (200
Km/s) / (109 yrs) = 10−9 (cm/s2) . By taking into account the evaluation
of tfp made before, we can estimate the variation of the piston’s velocity ∆V
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during the mean free path time of the hydrogen atom. We have ∆V =< w >
tfp = 10−9 · 2 · 1010/N = 20/N (cm/s). For typical density N = 10−3 (cm−3)
we obtain ∆V = 2 · 104(cm/s) << Vt ≈ 106(cm/s). So one can conclude
that gas will follow the ”piston” if the gas density is enough high: N(cm−3) >
2 · 10−5 · (106/Vt) . These were rather crude assessments, suggested here to
show simplistically the physics of processes. To conclude this part we would
like to stress that in consequence with these simple evaluations, the gas, driven
by collisions, can easily follow the underlying baryon matter. Actually the gas
under consideration forms the wind tail which is rigidly follows the underlying
baryon matter that is driven mainly by the gravity at distance R0. This way
the absence of RC of S-type galaxies in early universe can be explained easily.
Rough estimate of distance over which the wind tail (or, the same RC) can
spread is t · Vt ≈ 1010yrs · 3 · 107 · 106 ≈ 3 · 1023(cm) = 100 kpc. This trivial
evaluation clearly shows why the RC measured with HI line are seen in our
epoch, but can not be observed in early universe, when t < 1010 yrs., as it was
recently reported [5].

4.2 Gas density as a function of distance for constant RC

Now we consider detailed description of the process by using the diffusion dif-
ferential equations. From observations we know that gas in outer parts of spiral
galaxy follows a spiral which we write as

R = R25 ek(ϕ), (24)

where the distance R25 has usual definition. In this case for the total lon-
gitudinal Vq and tangential V⊥ velocity one can write Vq = k′V⊥ , where k′ is
∂k/∂ϕ . But the longitudinal velocity is given by the Fick’s first law of diffusion:

Vq = −D

N

∂N

∂R
, (25)

or

k′V⊥ = −D

N

∂N

∂R
, (25a)

where D is the diffusion coefficient, N is density and R is distance in the
cylindric coordinate system. Formally speaking one can put into equation (25a)
the HI gas density, measured for different spirals and obtain RC, but it is
methodologically more correct and easier to solve the inverse problem. Namely,
we are interested in the question: ”which HI column density function corre-
sponds to the case of constant rotation curve of baryon matter in absence of
DM for an S-type galaxy?”

By taking into account the fact that D = const for very depleted gas and
assuming that V⊥ = VK0 = const., (here VK0 is Keplerian velocity at the
distance R25) we obtain

D

n

1

R25

∂n

∂r
= k′VK0, (26)
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where we introduce n = N/N25 , r = R/R25 , and by definition

VK0 =

√

MG

R25
. (27)

Integrating (26) we obtain:

n = n0 exp

{

−VK0R25k
′

D
r

}

, (28)

where

n0 = exp

{

VK0R25k
′

D

}

. (29)

As one can see this density distribution distinct dramatically of that, ob-
tained for the spherically distributed DM (12) written for a collisionless DM
gas. Now we are ready to find the column density formed by distribution (28).

4.3 Column density

By definition the column density is

NL = 2

∫ L

0

Ndl, (30)

where N is density function. By taking into account that l2 = R2 − ρ2 , the
eq. (30) can be rewritten as:

NL = 2N25R25

∫ rmax

r=ρ/R25

nrdr
√

r2 − ρ2

R2
25

. (31)

Expanding the expression in a row:

1
√

1−
(

ρ
rR25

)2
≈ 1 +

1

2

(

ρ

rR25

)2

+
3

8

(

ρ

rR25

)4

, (32)

we obtain

NL(ρ) ≈ 2N0R25

∫ rmax

r=ρ/R25

n(r)

[

1 +
1

2

(

ρ

rR25

)2

+
3

8

(

ρ

rR25

)4

+ ...

]

dr, (33)

where n(r) is given by relation (28). So, the column density can be expressed
as

NL ≈ NL1 +NL2 +NL3, (34)

where
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NL1 = 2N25R25

∫ rmax

r=ρ/R25

e−κ(r−1)dr, (35)

NL2 = N25R25

(

ρ

R25

)2 ∫ rmax

r=ρ/R25

e−κ(r−1) dr

r2
, (36)

NL3 =
3

4
N25R25

(

ρ

R25

)4 ∫ rmax

r=ρ/R25

e−κ(r−1)dr

r4
, (37)

where

κ =
VK0R25k

′

D
. (38)

these expressions can be integrated and we obtain for the first term:

NL1(
ρ

R25
) =

2N25R25

κ

e−κ( ρ
R25

−1)
(

1− e−κ
ρ

R25

∆V
V

)

, (39)

where ∆V/V is the relative bandwidth by velocity.
Estimating the integrals (36) and (37), it is easy to show that the second,

third and higher terms of our expansion, will have the same exponential behavior
(∝ exp(−κ(ρ/R25 − 1))), but in absolute value they will be much smaller than
the first term (39). For this reason for our aim we can take expression (39)
as a good approximation for the column density. The column density (39) is
compared with observed values [16] for NGC7331 (fig.3) and NGC3198 (fig.4).

These galaxies were chosen because they are placed edge on in respect to
the observer. Due to this circumstance, in this case, there is no need to take
into account the angle of inclination of galaxy, that simplifies the model.

As can be seen at fig.3 and fig.4, obtained density distribution excellently
approximates the observed column densities for very different galaxies, charac-
terized by different slopes of the column density function. So we can conclude
that RC are formed by wind tails of falling gas that obeys the diffusion equa-
tions, and we do not need dark matter to explain the rotation curves of galaxies.

Now we estimate the masses of two galaxies mentioned above from their
measured RC suggested in [17],[18] and [19] by using previously obtained relation
(23). The coefficients α∗

k and β∗
k we immediately find from approximation of

the RCs for these two galaxies. Figures 5 and 6 demonstrate results of such
approximation for NGC7331 and NGC3198 respectively.
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Figure 3: Measured (squares) [16] and calculated with (39) (solid line) column
density of HI for NGC7331.

The thick straight line in the figures shows wind tails formed by gas. As
can be seen, wind tails extend exactly to the distance where the column density
function has the exponential form (39) (see also fig.3 and fig.4).

Obtained coefficients for NGC7331 are α∗
1 = 0.2317 , β∗

1 = 0.112 , α∗
2 = 6.358

, β∗
2 = 28.8, and for NGC3198 we find α∗

1 = 0.2317 , β∗
1 = 0.112 , α∗

2 = 6.358 ,
β∗
2 = 28.8. Now the masses of these galaxies can be obtained immediately with

relation (23). For NGC7331 we have M7331 = 37.6 · 1010M⊙ and for NGC3198
the total mass is M3198 = 7.7 · 1010M⊙ .

5 Conclusions

As it is known, the need for the DM arises from the three observable problems
(we will not mention here the Cosmology and problem of the observed structure
formation for the reasons stated below).
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Figure 4: Measured (squares) [16] and calculated with (39) (solid line) column
density of HI for NGC3198.

1) Rotation Curves of spiral galaxies.
2) The peculiar velocities of galaxies in clusters and the problem of the

gravitationally bound state of clusters.
3) Gravitational lensing on large structures.
As to the first problem, we have shown clearly in present paper, that rota-

tion curves of galaxies can be explained without invoking the hypothesis of the
existence of a DM. Actually the RC can be obtained directly from the baryon
density distribution if we recognize that the gas movement obeys the diffusion
laws.

The second problem deserves more detailed consideration for the following
reasons:

2a) In the worst case of large cluster, characterized by size 3 Mpc and the
velocities dispersion 1000 km/s , we obtain for a galaxy the cluster crossing
time t = 3 · 3 · 109 = 1010 yrs that is comparable with the cosmological time.
This mean that the cluster does not need to be bounded in the strict sense of
the word.
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Figure 5: Measured (squares) [17],[19] and calculated with (22a) (dashed line)
rotation curve for NGC7331. Wind tail that corresponds to the HI distribution
(see fig.3) is shown by the horizontal bold solid line.

2b) Strictly speaking the virial theorem can not be directly applied to the
cluster if some of its members have masses comparable (and this is the case)
with the cluster mass.

2c) The geometry of our universe does not have to be (pseudo-) Rieman-
nian. Moreover, there are serious reasons to believe that we live on the Finsler
manifold (see discussion below) and in general case the dynamics for large mass
and distances will distinct of the Newtonian one.

All this clearly indicates the weakness of the second argument.
If we talk about the third argument in favor of the DM, first of all, we must

remember again that we do not know the metric tensor of the variety on which
we live. For this reason it is not entirely correct to use the expression for lensing,
obtained for a particular case of Riemannian geometry.

However, let us return to cosmology. It is well known that DM plays a
key role in the formation of the observable structure of the universe. Within
the framework of the (pseudo-) Riemannian geometry, cosmological time is not
sufficient for the observable structure be formed in the absence of the DM.
However, now there are several arguments against the need for DM. On the one
hand, as it was shown by P. Kroupa et al [20], cosmological models based on
warm or cold DM are not able to explain observed regularities in the properties
of dwarf galaxies. On the other hand, as we have shown, we do not need
DM to explain rotation curves of galaxies. All this clearly indicates that the

14



1 10
50

100

150

200
Ro

ta
tio

n 
cu

rv
e 

(K
m

/s)

Distance R (kpc)

 

 

Figure 6: Measured (squares) [17,18,19] and calculated with (22a) (dashed line)
rotation curve for NGC3198. Wind tail that corresponds to the HI distribution
(see fig.4) is shown by the horizontal bold solid line.

paradigm should be revised. The only reasonable extension of the existing
paradigm, which satisfies the principle of the Occam’s razor, is the extension
of the (pseudo-) Riemannian geometry to the Finslerian one, that gives the
necessary time we need to form the observed structure. As it was said by
Shiing-Shen Chern, ”Finsler geometry is just Riemannian geometry without the
quadratic restriction” [21]. Actually the (pseudo-) Riemannian geometry is a
very special case of the Finslerian one, and there is no reason for this particular
restriction. Moreover, only within the framework of the Finslerian geometry,
the cosmological constant appears in a natural way from geometry itself, it
has natural explanation and it becomes possible to unify quantum theory and
gravity [22],[23].

Besides that on the Finslerian manifold the Planck constant calculated from
the first principles (with measured cosmological parameters) coincides with it’s
experimental value up to second digit [22] , whereas if it is calculated in the
(pseudo-) Riemannian world, we find that the Planck constant differs by factor
3/2 from it’s exact value [24]. This is more than a serious argument in favor of
the Finsler geometry.

The main results of the paper can be summarized as follows:
1) We obtain an analytic expression for the density function of spherically

distributed matter, satisfying the following condition: V⊥ = const and com-
pared it with those found for DM from numerical simulations of rotation curves
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produced by DM.
2) A new density distribution function is proposed, which allow integrate

analytically.
3) On the basis of new factorized density function, which excellently fits the

Miyamoto-Nagai one, we obtain a general expression for the galactic RC and
its baryon mass.

4) We argue that RCs are formed of two parts. One (inner) is formed by
collisionless ideal gas, consisting of stars, and the other (outer) by the real gas,
whose motion obeys not only the gravity, but also the laws of kinetics (diffusion
equations).

5) The direct and exact relationship between RC and outer gas density func-
tion is shown. We calculate the HI column density functions, that correspond
to the measured rotation curves for two edge-on spiral galaxies: NGC7331 and
NGC3198. The calculated column density are in excellent agreement with the
observed.

6) The total mass of three spiral galaxies is calculated. Our evaluation for
the Galaxy is MG = 23 ·1010M⊙ . For NGC7331 we find M7331 = 37.6 ·1010M⊙

and for NGC3198 the total mass is M3198 = 7.7 · 1010M⊙ .
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