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Abstract

In present paper we show that the rotation curves of our Galaxy, can
be obtained directly from the baryon matter distribution function and
there is no need to involve the concept of dark matter. Such parameters
of the galaxy as its mass and the distribution of baryonic matter can be
easily calculated from the observed rotation curves. Calculated total mass
of the Galaxy is 35x10(10)M sun.

Keywords: Dark Matter; Rotation Curves; Gravitational Potential; Mass of
the Galaxy.

Pacs numbers: 04.60.-m, 04.65.+e, 11.15.-q, 11.30.Ly
May 2017

1 Introduction

From the very beginning of its discovery in 1932 by Jaan Oort and confirmation
made by Fritz Zwicky in 1933, the phenomena of Dark Matter (DM) was widely
discussed. In present paper we consider the kinematics of the baryon component
for our Galaxy.

To begin with, we would like to mention here some interesting facts.
- It is well known that the halo stars (the old population of the galaxy)

move more slowly than the young population of the disk does. This fact clearly
indicates an unsatisfactory explanation of the Rotation Curves (RC) as provoked
by the presence of DM.

- An immense dispersion of the star velocities beginning at distances of the
order of 10 Kpc, which can not be explained with a homogeneous, spherically
distributed DM. Such a spread can be due only to the presence of a fine structure
such as the arms of galaxy, which are baryonic by nature.

- Recently it was shown that there is a significant correlation between the
features in the RC and the spiral structure of the baryonic disk. As the authors
say: ”The dark and baryonic mass are strongly coupled” [1], [2], [3], [4].
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- This year the rotation curves for high redshifted galaxies were reported and
it was clearly shown that a large fraction of massive high - redshifted galaxies
are strongly baryon-dominated (see [5] and references therein).

All this clearly indicates the need for a more accurate simulation of the
galactic baryon component.

In present brief letter we suggest analytical solution for RC of gravitationally
bounded systems and argue that there is no need to involve the concept of DM
to explain rotation curves of all known galaxies. Here we suggest an integral
approach to the problem. Of course the same result can be obtained by the direct
solution of the Poisson differential equation in cylindrical coordinate system. An
interested reader can find this material here [6].

The article is organized as follows:
In part 2 we discuss RC produced by spherically distributed matter, we

suggest an analytical solution for the density function under condition V=const,
and compare it with those obtained with numerical simulations.

In part 3 we suggest analytical solution for RC in the case of cylindrically
distributed matter. We apply our solution to describe RC of our Galaxy and
find excellent agreement with the observed ones.

2 Rotational curves in the case of spherical sym-

metry

The case, when the density distribution has spherical symmetry deserves a sep-
arate consideration because of the DM spherical distribution, supposed in all
numerical simulations. But to begin with, let’s look at common misconceptions
and a simple example.

It is commonly accepted in current literature that in the case of Newtonian
dynamics, for the stars of a rotationally supported galaxies the following relation
for the velocity should be satisfied: V ∝ R−1/2 [1] [7] [8]. However, as it will
be shown below, this is not true in both cases of spherically and cylindrically
distributed matter, because in reality this relation depends dramatically on the
distribution of gravitating matter. In the case of cylindrical symmetry, we can
illustrate this misunderstandings with the following very simple reasoning. Let’s
consider a massive sphere of unit thickness characterized by radius r. Let the
observer be at the point located at a distance R from the sphere. Consider forces
produced by the matter distributed on the nearest and the remote walls of the
sphere and restricted by small solid angle Ω as the observer sees them. It is easy
to show that in this case these two forces will be equal: F1 = F2 = Gπa2s1/R

2

and can be substituted by an effective force Fe = G(m1+m2)/(R+r)2, produced
by imaginary central mass m1 + m2 (here a is the radius of the circle clipped
by solid angle Ω in the nearest wall and s1 stay for the surface density of the
sphere).

In the case of a cylindrically distributed matter, we can develop similar
arguments, however, if our assumptions on the mass m1 = πa2s1 remain valid
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for the nearest mass (we suppose the solid angle be reasonable, the force remain
to be F1 = Gπa2s1/R

2, then for the second one it will not be so, because the
remote mass m2 will be formed by a thin strip instead of a complete circle
clipped out on the sphere by Ω, as it was before. As a consequence the center
of the effective mass shifts toward to the observer.

This trivial reasoning clearly shows that such a simple relation V ∝ R−1/2

can not be applied to the systems with cylindrical symmetry (strictly speaking,
as we will show it below, it can not be applied even for spherical systems if
the density function depends on distance and the observer is inside of such a
system).

By taking into account that the so-called dark matter is thought to be spher-
ically distributed, it is important to consider the spherically symmetric case in
details.

It is well known that for point - like source the gravitational potential can
be written as

du =
Gdm(r)

r
. (1)

Let’s consider spherically symmetrical density σ(ρ) in [g ·cm−3]. In this case
the mass differential can be expressed as

dm = σρ2 sin θdρdθdφ . (2)

For this reason we have the following potential function for a spherically
symmetric system:

du =
Gσρ2 sin θdρdθdφ

√

R2 + ρ2 − 2Rρ cos θ
, (3)

where R is the distance from the observer to the origin of the sphere under
consideration.

Performing elementary integration with respect to the angles θ and φ, we
obtain:

du =
4πGσ(ρ)

R
ρ2dρ, (4)

or

u =
4πG

R

∫ R

0

σ(ρ)ρ2dρ, (5)

which gives us for the constant density the following relation for the square
velocity:

V 2 = R
du

dR
= 4πGσR2, (6)

i.e. in this particular case we have V ∝ R, instead of V ∝ R−1/2. This simple
example we suggest just to stress again that RC are dependent dramatically
on the density distribution function which, in turn, changes during the galaxy
evolution.

In the case of an arbitrary density distribution, as one can see from the
relation (5), in the Newtonian dynamics and for spherical symmetry, the velocity
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in general case does not obey the expected trivial relation V ∝ R−1/2 mentioned
by authors cited above. Actually we should chose very special form of the
density function to comply relation V ∝ R−1/2, or to reach more interesting
case of constant velocity.

Now let’s consider how should density depends on distance to maintain con-
dition V = const. in the case of spherically distributed matter.

The DM density function (which could produce approximately constant RC
in a certain range of distances) is widely discussed and applied to model DM
haloes, see for example [9], [10], [11] and references therein. Unfortunately to
date, such density functions are calculated only from numerical simulations. We
will not offer here an exhaustive description of all such functions, but mention
just two most commonly recognized. The first were suggested by Navarro, Frenk
and White [9] and has the form

σNFW (r) =
σ0

r
rs
(1 + r

rs
)2
. (7)

Another function were obtained recently by Di Cintio et al. [12], [13] and
was compared with the first one in [11]. As it was stressed in [11], the function
of Di Cintio et al. much better approximates the observer RC. This density
distribution of DM can be represented as:

σDC14(r) =
σ0(

r
rs
)|γ|

(1 + ( r
rs
)α)

β−γ
α

. (8)

In the case of DM dominated galaxy, this distribution is characterized by
the following values of the parameters γ ≈ −0.88, α ≈ 1.4 , β−γ

α ≈ 2.6 .
It should be emphasized again that these functions were obtained from nu-

merical simulations on the basis of the requirement to describe an approximately
constant velocity in a strictly defined range of distances, in order to approxi-
mate RCs of real galaxies. Let’s calculate analytically the density function which
corresponds to constant velocity. By taking into account that

V 2 (R) = R
du

dR
, (9)

and requiring that V = const , we immediately obtain from the eq. (5) the
following differential equation for the density σ(r):

σ′(R)R3 + 2σ(R)R2 =
V 2

4πG
. (10)

Or by normalizing the variable for convenience of comparison x = r/rs , we
have:

σ′(x)x3 + 2σ(x)x2 =
V 2

4πGr2s
. (11)
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Integrating (10), we obtain

σ(x) =
V 2

4πGr2s

ln( r
rs
)

( r
rs
)2

. (12)

This is exact expression for the density function, which comply condition
V = const over the entire range of distances. As can be seen, expressions (7),
(8) and (12) have similar behavior for the argument greater than one.

3 Rotation curve in the case of cylindric sym-

metry

Now consider a thin disk of size a = 25Kpc and thickness 2b = 6Kpc. Let dm
be a point - like mass inside of the disk and r is the distance from the mass to
observer (which also is located inside of the disk at distance R from the center
of galaxy). Than the distance observer - point-like mass can be written as:

r2 = z2 +R2 + ρ2 − 2Rρ cosϕ, (13)

where ρ , z and ϕ are cylindrical coordinates of the mass under consideration.
Let’s split the potential formed by the mass in point of observer, into longi-

tudinal and tangential components u = u‖ + u⊥.
It is clear that tangential one will not affect on the RC. For longitudinal

component we have

u‖ = u
R− ρ cosϕ

r
, (14)

But for the point - like mass the potential is u = Gm/r, so

du‖ = Gdm
R− ρ cosϕ

r2
, (15)

or in it’s complete form

u‖ = G

∫ R

0

∫ b

−b

∫

2π

0

σ(ρ, z)(R− ρ cosϕ)ρdρdϕdz

z2 +R2 + ρ2 − 2Rρ cosϕ
. (16)

Integrating over ϕ we obtain:

u‖ =
2πG

R

∫ R

0

∫ b

0

σ(ρ, z)ρdρdz, (17)

In order to follow further, we need the density distribution function be de-
fined. To the best of our knowledge, the most used one to describe observed
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galaxies, is the Miyamoto - Nagai density function [14]. Unfortunately, this func-
tion is not convenient for analytic calculations and therefore we approximate it
by a factorized function of the same degree that allows integration:

σ(ρ, z) =
1010M⊙

(γt2 + 1)3/2

∑ αk

(βkx
2 + 1)3/2

k

. (18)

Here γ, αk , βk are parameters of approximation and dimensionless variables
are x = ρ/a and t = z/b. In this case the integration over z can be carried out
easily:

I =

∫ b

0

1

(γt2 + 1)3/2
dz =

bt
√

γt2 + 1

1

|=
0

b√
γ + 1

, (19)

and we obtain

u‖ =
ηb

R
√
γ + 1

∫ R

0

∑

k

αk

(βkx
2 + 1)3/2

ρdρ, (20)

where we introduce the constant η = 2πG1010M⊙. Integration over ρ gives

u‖ =
ηa2b

R
√
γ + 1

∑

k

αk

βk

[

1− 1

(βk
R2

a2 + 1)1/2

]

. (21)

This is gravitational potential produced by galaxy in the point R. The
required RC can be found now both from (20) and from (21).

V 2 =
ηa2b

R
√
γ + 1

∑

k

αk

βk

[

1−
3

2
βk

R2

a2 + 1

(βk
R2

a2 + 1)3/2

]

. (22)

This expression was obtained for the density function (18) characterized by
the parameters γ, αk and βk, and it can be used immediately to plot RC. As an
example let’s calculate the RC for our Galaxy, the density function for which has
been most thoroughly studied. It’s density function was suggested by Miyamoto
and Nagai (MN) [14] and contains two terms that describe the inner, central
part of the Galaxy and disk, respectively. To compare our density function (18)
with the MN one, we left two terms in the sum in the expression (18). We
normalized our density function in a way that makes it easier to compare it
to the MN one. These two functions are shown in Fig.1. As can be seen, the
approximation proposed by us is in excellent agreement with the MN function
in the most important distance region 1 < R < 25Kpc .

Now, we can plot RC for our Galaxy using expression (22). The result
is shown in Fig.2 for five-terms approximation of the density function (which
correspond to the core, main bulge, disk and thin disk), in comparison with the
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Figure 1: Density as a function of distance R. The density of Miyamoto - Nagai
(solid line), and density determined by the expression (18) (dashed curve)

observed RC [15] (are shown by open squares). The parameters values of the
model are γ = 30, α1 = 0.007 , β1 = 2.5 , α2 = 0.1 , β2 = 20, α3 = 0.35 ,
β3 = 100, α4 = 13.0 , β4 = 20000, α5 = 13.0 , and β5 = 900000. As can be
seen, the obtained RC perfectly coincides with the observational data. So we
can conclude that DM is not needed to explain rotation curves, and this is the
baryon density distribution, who is responsible for the RC shapes. Moreover,
by using eqs. (18) and (22) we can reconstruct the baryon density distribution
from observed RC. To conclude this part we would like to suggest evaluation for
the total mass of our Galaxy. For the density distribution model used for better
fit of the observed RC presented in Fig.3 (solid line) we obtain, integrating (18):

MG =
4πa2b1010M⊙√

γ + 1

∑

k

αk

βk

(1 − 1
√

βk + 1
), (23)

and the baryon disk mass of our Galaxy is MG = 35.9 ·1010M⊙ which agrees
with the Oort limit.

So we can conclude that we do not need dark matter to explain the rotation
curves of our galaxy.
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Figure 2: Rotation curves for our Galaxy obtained with density function (18) ,
compared with observed one [15].

4 Conclusions

The main results of the paper can be summarized as follows:
1) We argue that RC obtained for pure baryon component does depend

on the distribution function and does not necessarily depends on distance as
V ∝ R−1/2 , as is claimed in papers [1], [7], [8].

2) We obtained an analytic expression for the density function of spherically
distributed matter, satisfying the following condition: V = const and com-
pared it with those found for DM from numerical simulations of rotation curves
produced by DM.

3) On the basis of new factorized density function, which excellently fits the
Miyamoto-Nagai one, we obtained a general expression for the Galactic RC. We
applied this expression to describe the RC of our Galaxy and find an excellent
coincidence with observations.

4) We calculate the baryon disk mass of our Galaxy. Our evaluation is
MG = 35.9 · 1010M⊙ .
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