Electro-Strong interaction

By Wan-Chung Hu

Here, I will propose electro-strong interaction to solve the problem of gluon mass based on standard model. Based on Yang-Mills standard model:

$$Fuv = \partial uAv - \partial vAu - [Au, Av]$$

QHD formula is :

$$U(SU(2)) = \exp{[ig\sum_{j=1}^8 F_j\,G_j(x)]}$$

Thus :

$$\partial^{\mu} = \partial^{\mu} + \mathrm{ig} F * \mathrm{G}(\mathrm{x})$$

Besides , F=1 / 2λ , λ is GelMann matrix

$$\begin{split} \lambda_1 &= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \lambda_2 &= \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \lambda_3 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \lambda_4 &= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \\ \lambda_5 &= \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix} \end{split}$$

$$\lambda_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\lambda_{7} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}$$
$$\lambda_{8} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

For Photon, there is an additional matrix :

$$\lambda_9 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We let R or $\underline{R} > = (1,0,0)$, B or $\underline{B} > = (0,1,0)$, and G or $\underline{G} > = (0,0,1)_{\circ}$ Then, the whole

matrix is :

rī	bī	gī
rb	$b\overline{b}$	gĐ
rģ	bġ	gg

Besides, every matrix has the corresponding gluon or photon :

$$G_{1} = \frac{1}{\sqrt{2}} (r\bar{b} + b\bar{r})$$

$$G_{2} = \frac{i}{\sqrt{2}} (r\bar{b} - b\bar{r})$$

$$G_{3} = \frac{1}{\sqrt{2}} (r\bar{r} - b\bar{b})$$

$$G_{4} = \frac{1}{\sqrt{2}} (r\bar{g} + g\bar{r})$$

$$G_{5} = \frac{i}{\sqrt{2}} (r\bar{g} - g\bar{r})$$

$$G_{6} = \frac{1}{\sqrt{2}} (g\bar{b} + b\bar{g})$$

$$G_7 = \frac{i}{\sqrt{2}} (b\bar{g} - g\bar{b})$$
$$G_8 = \frac{1}{\sqrt{6}} (r\bar{r} + b\bar{b} - 2g\bar{g})$$

Besides, photon boson is :

$$\mathbf{B} = \mathbf{G}_9 = \frac{1}{\sqrt{3}} \left(\mathbf{r} \bar{\mathbf{r}} + \mathbf{b} \bar{\mathbf{b}} + \mathbf{g} \bar{\mathbf{g}} \right)$$

Thus, there are nine bosons (8 gluons and 1 photon) as a whole 3x3 matrix to interact with Higgs bosons. We will use a complex scaler field for the Higgs boson. The Higgs field is:

o

$$\phi(x) \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} \phi 1 + i\phi 2 \\ \phi 3 + i\phi 4 \\ \phi 5 + i\phi 6 \end{pmatrix}$$

And,

 $\varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 = \varphi_6 = 0 \text{ and } \varphi_5 = v$

Then, the Higgs represents as ($0,0,V/\sqrt{2}$)

Langragian is :

$$L(\phi) = (\partial_v \phi)(\partial^v \phi) - \mu^2(\phi(x))^2 - \lambda(\phi(x))^4$$

Then

$$\begin{split} &\frac{1}{4} |\left[\left(ig\lambda G(x) \right) * \phi(x) \right]^+ \left[\left(ig\lambda G(x) \right) * \phi(x) \right] | = \\ &\frac{1}{8} (\frac{1}{\sqrt{2}} gv(G_4 - iG_5), \frac{1}{\sqrt{2}} gv(G_6 - iG_7), v \left(\frac{1}{\sqrt{3}} kB - \frac{\sqrt{2}}{\sqrt{3}} gG_8 \right)) \\ &\times (\frac{1}{\sqrt{2}} gv(G_4 + iG_5), \frac{1}{\sqrt{2}} gv(G_6 + iG_7), v \left(\frac{1}{\sqrt{3}} kB - \frac{\sqrt{2}}{\sqrt{3}} gG_8 \right)) \end{split}$$

We set $G^4 = 1 / \sqrt{2}(G_4 + iG_5)$, $G^5 = 1 / \sqrt{2}$ (G₄ - iG₅) and we get $G^6 \not = G^7$. We let $\sqrt{2}/\sqrt{3}g = g''$ and $1/\sqrt{3}k = g'_{\circ}$ Then, we will get :

$$\begin{aligned} G^{8u} &= (g'B^{u} - g''G^{u}_{8}) / \sqrt{(g'^{2} + g''^{2})} \text{ and} \\ A^{u} &= (g'G^{u}_{8} + g''B^{u}) / \sqrt{(g'^{2} + g''^{2})} \end{aligned}$$

Like electro-weak theory, we get G8 mass:

$$mG^{8} = \frac{v\sqrt{g'^{2} + g''^{2}}}{\sqrt{2}}$$

We get G^{8} field and photon :

$$G^{8} = \frac{g'}{\sqrt{g''^{2} + g'^{2}}} B - \frac{g''}{\sqrt{g''^{2} + g'^{2}}} G_{8} = B \sin \theta - G_{8} \cos \theta$$

$$A = \frac{g'}{\sqrt{g''^{2} + g'^{2}}} G_{8} + \frac{g''}{\sqrt{g''^{2} + g'^{2}}} B$$

$$= G_{8} \sin \theta + B \cos \theta$$

Besides, the new gluon mass for $G^1 \cdot G^2$ $\Re G^3$ is still zero. Because mass term is $1/2M^2Vu$, gluon mass for $G^4 \cdot G^5 \cdot G^6$ $\Re G^7$ is $1/2vg(v/2)_{\circ}$ Because of symmetry breaking, G^8 mass term is $1/4M^2G^{8u}G_{8u}$ and G^8 gluon becomes $gg(v/\sqrt{2})$. And,

$$\frac{1}{\sqrt{2}}(G_1 - iG_2) = r\bar{b} - \frac{1}{\sqrt{2}}(G_1 + iG_2) = b\bar{r}$$

Thus, we get eight new gluons : R<u>B</u> , B<u>R</u> , <u>R</u>R / B<u>B</u> , <u>B</u>G , <u>G</u>B , <u>G</u>R , <u>R</u>G and <u>G</u>G. And, <u>R</u>R / B<u>B</u> is:

$$\frac{1}{\sqrt{2}}(r\bar{r}-b\bar{b})$$

If $\alpha\text{-ratio} \text{ is } 1$, we will get

$$\sin\theta = \frac{1}{\sqrt{3}}$$

$$\cos\theta = \frac{\sqrt{2}}{\sqrt{3}}$$

Thus,

$$\label{eq:G8} \begin{split} G^8 &= g \overline{g} \\ A &= \frac{1}{\sqrt{2}} (r \overline{r} + b \overline{b}) \end{split}$$

This equation solves the problem of Yang-Mills mass gap. That is the reason why neutron or proton is heavier than inside quarks. Via electro-strong interaction, we get five green-color related massive gluons G^{4-8} : bg, gb, gr, rg, and gg. Besides, we have non-massive bosons: $\lambda 1$, $\lambda 2$, $\lambda 3$, & A. The later four gluons can interact with Higgs boson (0,V/ $\sqrt{2}$) and get v/2 mass of rb and br as well as $v/\sqrt{2}$ mass of bb , and non-massive rr. Finally, we get eight massive gluons to mediate short-distance strong force. Thus, we united electromagnetism and strong force.