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Introduction

The fundamental problem of finding general periodic solutions to nonlinear differential equations constitutes yet an
active research field of mathematics since such solutions are only possible for a few number of nonlinear differential
equations. As many practical problems are modeled in terms of nonlinear equations, there appears then logic to be
interested to mathematical theories which may provide with a relative simplicity general periodic solutions to these
equations. In the matter the theory of finding exact trigonometric periodic solutions to quadratic Liénard type
differential equations introduced recently by the authors of this paper seems to belong to this class of mathematical
theories [1]. Indeed, this theory has the ability to linearize some classes of Liénard type nonlinear differential
equations in order to establish exact analytical solutions by means of the generalized Sundman transformation, and
conversely to highlight some families of Liénard type equations from linear differential equations. So an interesting
finding of this theory was the detection of a general class of quadratic Liénard type equations whose solutions are
trigonometric periodic functions. The problem is here to perform a mathematical analysis of an extended class of
quadratic Liénard type differential equations, more specifically to calculate the general periodic solutions to these
equations. For this it is of importance to consider the theory previously elaborated by Akande et al. [1], as the basic
theory. Consequently it becomes necessary to know if one can extend the class of quadratic differential equations
of the Liénard type resulting from this theory by Akande et al. [1]. In this regard it is appropriate to state the
fundamental question: Is it possible to perform a generalization of this theory by using the forced general second
order ordinary differential equation? The present work assumes this possibility. This fact may give the advantage
to detect large classes of Liénard type equations for which exact analytical solutions may be calculated. To do so, a
brief review of the theory introduced by Monsia and his coworkers is given (section 2) and secondly, the generalized
theory under question is carried out (section 3). Finally the general periodic solutions to cubic Duffing equation
and for some Painlevé-Gambier equations are determined (section 4) and a conclusion for the research contribution
is formulated.

1corresponding author. E.mail: monsiadelphin@yahoo.fr
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1 Theory by Akande et al. [1]

Let us consider the general second order linear differential equation as

y′′(τ) + by′(τ) + a2y(τ) = 0 (1.1)

where prime denotes differentiation with respect to τ , a and b are arbitrary parameters. By application of the
generalized Sundman transformation

y(τ) = F (t, x), dτ = G(t, x)dt, G(t, x)
∂F (t, x)

∂x
6= 0 (1.2)

with

F (t, x) =

∫
g(x)ldx, G(t, x) = exp(γϕ(x))

where l and γ are arbitrary parameters, and g(x) 6= 0 and ϕ(x) are arbitrary functions of x , to (1.1), one may
obtain

ẍ+ (l
g′(x)

g(x)
− γϕ′(x))ẋ2 + bẋ exp(γϕ(x)) +

a2 exp(2γϕ(x))
∫
g(x)ldx

g(x)l
= 0 (1.3)

as general class of mixed Liénard type differential equations.

The parametric choice b = 0, leads to

ẍ+ (l
g′(x)

g(x)
− γϕ′(x))ẋ2 +

a2 exp(2γϕ(x))
∫
g(x)ldx

g(x)l
= 0 (1.4)

as general class of quadratic Liénard type nonlinear equations. An interesting case of (1.4) is obtained by considering
l = 0, viz

ẍ− γϕ′(x)ẋ2 + a2x exp(2γϕ(x)) = 0 (1.5)

The importance of (1.5) is that it exhibits trigonometric functions as exact periodic solutions but with amplitude-
dependent frequency. In [1] it is shown for the first time that some existing Liénard type equations may exhibit
exact trigonometric periodic solutions. One may also find that the quadratic Liénard type equation

ẍ+
1

2

ẋ2

1 + x
+

x

1 + x
= 0 (1.6)

used to model oscillation of a liquid column in a U-tube [2] belongs to the class of equations defined by (1.5) by
putting ϕ(x) = 1

2
ln(1+x), and γ = −1, so that this equation may exhibit trigonometric functions as exact periodic

solution [3]. That being so the generalized theory may be formulated.

2 Generalized theory

The objective of this section is to extend the preceding theory to look for large classes of linearizable Liénard type
equations in order to ensure exact solutions which may be expressed explicitly or by quadratures. In the previous
theory the general second order linear equation is considered in the form of homogeneous equation that is with
no forcing function. Instead in this section, let us consider the general second order linear equation (1.1) with a
constant forcing term, that is

y′′(τ) + by′(τ) + a2y(τ) = c (2.1)

where c is an arbitrary parameter. The application of the generalized Sundman transformation (1.2) to (2.1) yields

ẍ+ (l
g′(x)

g(x)
− γϕ′(x))ẋ2 + bẋ exp(γϕ(x)) +

a2 exp(2γϕ(x))
∫
g(x)ldx

g(x)l
− c exp(2γϕ(x))

g(x)l
= 0 (2.2)

The comparison of (1.3) with (2.2) shows that the constant forcing function c contributes to the general class of

mixed Liénard type equation (1.3) by an additional term − c exp(2γϕ(x))
g(x)l

. This establishes the extension of the

theory by Akande et al. [1] to a wider class of Liénard type nonlinear differential equations. The question now is
to know: What happens to equations (1.4) and (1.5) with respect to this additional term? Let us consider then
b = 0 and l = 0. The parametric choice b = 0 leads to

ẍ+ (l
g′(x)

g(x)
− γϕ′(x))ẋ2 +

a2 exp(2γϕ(x))
∫
g(x)ldx

g(x)l
− c exp(2γϕ(x))

g(x)l
= 0 (2.3)
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The comparison of (1.4) with (2.3) shows also the persistence of the preceding additional term in the generalized
class of quadratic Liénard type equations represented by (2.3). The application of l = 0 to (2.3) gives the class of
quadratic Liénard type equations

ẍ− γϕ′(x)ẋ2 + a2x exp(2γϕ(x))− c exp(2γϕ(x)) = 0 (2.4)

which differs from the class of quadratic Liénard type equations (1.5) by the additional term −c exp(2γϕ(x)). By
noting

y(τ) = A0sin(aτ + α) +
c

a2
(2.5)

where a 6= 0, the general solution to (2.1) with b = 0, the general solution to (2.4) becomes

x(t) = A0sin(aφ(t) + α) +
c

a2
(2.6)

where A0 and α are arbitrary parameters, and τ = φ(t) satisfies

dt = exp(−γϕ(x))dφ(t) (2.7)

The solution (2.6) remains of periodic form. For a convenient choice of ϕ(x) and γ the solution (2.6) may exhibit
harmonic periodic behavior but with a shift factor c

a2
. This extends therefore the theory by Akande et al. [1]. It

is then convenient to show the ability of the current theory to provide general periodic solutions to some existing
Liénard equations.

3 Applications of theory

This section is devoted to show the usefulness of the present theory by considering some well known nonlinear
equations.

3.1 Cubic Duffing equation

The cubic Duffing equation is one of the most investigated equations from mathematical as well as physical view-
point. The motivation results from the fact that this equation arises in mathematical modeling of many problems
of mechanics and quantum mechanics, for example. The cubic Duffing equation is of the form [4]

ẍ+ ω2
0x+ βx3 = 0 (3.1)

where ω0 and β are arbitrary parameters.

From the mechanical viewpoint, the parameter β > 0 is called hardening parameter while β < 0 is called
softening parameter, and β = 0, gives the well known linear harmonic oscillator equation. The equation (3.1) may be
recovered from the general class of quadratic Liénard equations (2.3). Indeed, the functional choice ϕ(x) = ln(f(x))
leads to

ẍ+ (l
g′(x)

g(x)
− γ f

′(x)

f(x)
)ẋ2 +

a2f(x)2γ
∫
g(x)ldx

g(x)l
− cf(x)2γ

g(x)l
= 0 (3.2)

which for f(x) = x2 and g(x) = x, yields

ẍ+ (l − 2γ)
ẋ2

x
+

a2

l + 1
x4γ+1 − cx4γ−l = 0 (3.3)

The parametric choice l = 2γ = 1, reduces (3.3) to

ẍ− cx+
a2

2
x3 = 0 (3.4)

which is the Duffing equation (3.1) by noting c = −ω2
0 , and a2

2
= β. So the general solution to the Duffing equation

(3.1) may be written according to (2.5)

x(t) = ε

√
−ω2

0

β
+ 2A0 sin(aφ(t) + α) (3.5)

where

εdt =
dφ(t)√

−ω2
0

β
+ 2A0 sin(aφ(t) + α)

(3.6)
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and ε = ±1. The evaluation of the integral resulting from (3.6)

J =

∫
dφ(t)√

−ω2
0

β
+ 2A0 sin(aφ(t) + α)

(3.7)

depends on the value of ω2
0 and β. Therefore three distinct cases are considered in this paper [5].

Case 1: β > 0, and ω2
0 < 0

In this case where β > 0 and ω2
0 < 0, it is moreover assumed that −ω

2
0
β
> 2A0 > 0. By noting [5]

p = 2

√√√√ A0

−ω2
0

β
+ 2A0

that is

p = 2

√
βA0

2βA0 − ω2
0

(3.8)

and

δ = arcsin

√
1− sin(aφ+ α)

2
(3.9)

the integral J becomes [5]

J = −1

a

p√
A0

F (δ, p) (3.10)

where F (δ, p) is the elliptic integral of the first kind so that using (3.6)

sin δ = sn

(
−aε
√
A0

p
(t+ C), p

)
(3.11)

where sn(z, k) designates a Jacobian elliptic function and C an arbitrary parameter. In this way√
1− sin(aφ+ α)

2
= sn

(
−aε
√
A0

p
(t+ C), p

)
that is to say

sin(aφ+ α) = 1− 2sn2

(
−aε
√
A0

p
(t+ C), p

)
(3.12)

from which the general solution to the Duffing equation (3.1) becomes

x(t) = ε

[
−ω

2
0

β
+ 2A0 − 4A0sn

2(−aε
√
A0

p
(t+ C), p)

] 1
2

(3.13)

which reduces to

x(t) =
2ε
√
A0

p

[
1− p2sn2(−aε

√
A0

p
(t+ C), p)

] 1
2

(3.14)

Using the identity k2sn2(z, k) + dn2(z, k) = 1, the relation (3.14) becomes immediately

x(t) =
2ε
√
A0

p
dn

(
aε
√
A0

p
(t+ C), p

)
(3.15)

Knowing that a = ε
√

2β, (3.15) may be written in the form

x(t) =
2ε
√
A0

p
dn

(√
2βA0

p
(t+ C), p

)
(3.16)

By making A = 2
√
A0
p

, and Ω =
√
2βA0
p

, that is Ω = A
2

√
2β, the general solution to (3.1) definitively reads

x(t) = εAdn (Ω(t+ C), p) (3.17)

where dn(z, k) is a Jacobian elliptic function, and p2=
2(βA2+ω2

0)

βA2 .

4



Case 2: β < 0, and ω2
0 > 0

For β < 0 and ω2
0 > 0, it is also assumed that −ω

2
0
β
> 2A0 > 0. So, the general solution to the Duffing equation

(3.1) takes, using (3.17), the form

x(t) = εAdc
(

Ω(t+ C),
√

1− p2
)

(3.18)

where A = 2
√
A0
p

, and Ω = A
2

√
2|β|. The function dc is a Jacobian elliptic function.

Case 3: β > 0, and ω2
0 > 0

In this case, it is assumed that 0 < | − ω2
0
β
| < 2A0, that is 0 <

ω2
0
β
< 2A0. So, the integral J may be written as [5]

J = −
√
A0

aA0
F (δ,

1

p
) (3.19)

where

δ = arcsin

[√
2βA0(1− sin(aφ+ α))

2βA0 − ω2
0

]
(3.20)

p has the preceding value, and F (δ, 1
p
) denotes the elliptic integral of the first kind. In this regard the following

relationship may be written, taking into consideration (3.6)√
2βA0(1− sin(aφ+ α))

2βA0 − ω2
0

= sn

[
−aε
√
A0(t+ C),

1

p

]
(3.21)

that is

sin(aφ+ α) = 1− 2βA0 − ω2
0

2βA0
sn2

[
−aε
√
A0(t+ C),

1

p

]
(3.22)

which may be rewritten

sin(aφ+ α) = 1− 2

p2
sn2

(
−aε
√
A0(t+ C),

1

p

)
(3.23)

In this perspective the general solution to (3.1) reads

x(t) = ε

√
−ω

2
0

β
+ 2A0 −

4A0

p2
sn2

(
−aε
√
A0(t+ C),

1

p

)
which may take the expression

x(t) =
2ε
√
A0

p
cn

(
a
√
A0(t+ C),

1

p

)
(3.24)

Knowing a = ε
√

2β, A = 2
√
A0
p

, and Ω = a
√
A0, that is Ω = pA

√
2β

2
, or Ω =

√
βA2 + ω2

0 , the general solution to
Duffing equation (3.1) reduces immediately to the form

x(t) = εAcn

(
Ω(t+ C),

1

p

)
(3.25)

where cn(z, k) denotes a Jacobian elliptic function It would be now interesting to consider in the sequel of this
work some Painlevé-Gambier equations.

3.2 Painlevé-Gambier XII equation

This subsection is intended to carry out the general solution to the Painlevé-Gambier XII equation [6]

ẍ− ẋ2

x
− qx3 − βx2 − r − δ

x
= 0 (3.26)

for r = δ = 0, that is to say

ẍ− ẋ2

x
− qx3 − βx2 = 0 (3.27)
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The Painlevé-Gambier equation (3.27) may be found from (2.4) by choosing ϕ(x) = lnx2, γ = 1
2
, a2 = −q, and

c = β. Therefore the general solution to (3.27) takes the expression

x(t) = A0 sin(ε
√
−qφ(t) + α)− β

q
(3.28)

where ε = ±1, and dt = dφ(t)
x(t)

that is

dt =
dφ(t)

A0 sin(ε
√
−qφ(t) + α)− β

q

(3.29)

By integration the quantity

J =

∫
dφ(t)

A0 sin(ε
√
−qφ(t) + α)− β

q

(3.30)

leads to consider two distinct cases following the value of qA0
β

.

Case 1: q2A2
0

β2 < 1

In this case the integral J becomes [5]

J = − 2q

βε
√

q3A2
0

β2 − q
tg−1

 tg( (ε
√
−qφ(t)+α)

2
)− qA0

β√
1− q2A2

0
β2

 (3.31)

such that

ε
√
−qφ(t) + α = 2tg−1

√1− q2A2
0

β2
tg

−βε
√

q3A2
0

β2 − q(t+ C)

2q

+
qA0

β

 (3.32)

So the general solution to (3.27) becomes

x(t) = A0 sin

2tg−1

√1− q2A2
0

β2
tg

−βε
√

q3A2
0

β2 − q(t+ C)

2q

+
qA0

β

− β

q
(3.33)

The solution x(t) is real for q < 0. In this way, the solution (3.33) may clearly exhibit a harmonic periodic behavior
with a shift factor −β

q
.

Case 2: q2A2
0

β2 > 1

This case corresponds to [5]

J = − q

βε
√
q − q3A2

0
β2

ln

 tg( (ε
√
−qφ(t)+α)

2
)− qA0

β
−
√

q2A2
0

β2 − 1

tg( (ε
√
−qφ(t)+α)

2
)− qA0

β
+
√

q2A2
0

β2 − 1

 (3.34)

which gives according to (3.29)

ε
√
−qφ(t) + α = 2tg−1


√

q2A2
0

β2 − 1

(
1 + exp(−βε

q

√
q − q3A2

0
β2 (t+ C))

)
(1− exp(−βε

q

√
q − q3A2

0
β2 (t+ C)))

+
qA0

β

 (3.35)

Therefore the general solution x(t) may be expressed in the form

x(t) = A0 sin

2tg−1


√

q2A2
0

β2 − 1

(
1 + exp

(
−βε

q

√
q − q3A2

0
β2 (t+ C)

))
(

1− exp(−βε
q

√
q − q3A2

0
β2 (t+ C))

) +
qA0

β


− β

q
(3.36)

For q < 0, the solution (3.36) is real and then may exhibit also a harmonic periodic behavior with a shift factor
−β
q

.

Consider now as final illustrative example a generalized Painlevé-Gambier XIX equation.
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3.3 Generalized Painlevé-Gambier XIX equation

The Painlevé-Gambier XIX equation is of the form [6]

ẍ− 1

2

ẋ2

x
− 4x2 − 2x = 0 (3.37)

A general form of (3.37) may be written as

ẍ− 1

2

ẋ2

x
+ a2x2 − cx = 0 (3.38)

so that for a2 = −4, and c = 2, one may recover the Painlevé-Gambier XIX equation. The equation (3.38) may be
obtained from (2.4) by setting γ = 1

4
, and ϕ(x)=lnx2. Thus the solution to (3.38) immediately takes the expression

following (2.6)

x(t) = A0 sin(aφ(t) + α) +
c

a2
(3.39)

where

dt =
dφ(t)√

A0 sin(aφ(t) + α) + c
a2

(3.40)

This equation is of the same form as (3.6). So three distinct cases may be distinguished

Case 1: a2 > 0, c > 0, and c
a2 > A0 > 0

In this case [5]

p =

√
2a2A0

a2A0 + c
(3.41)

and

δ = arcsin

(√
1− sin(aφ+ α)

2

)
(3.42)

so the integral

J =

∫
dφ(t)√

A0 sin(aφ(t) + α) + c
a2

(3.43)

becomes

J = − p
√

2

a
√
A0

F (δ, p) (3.44)

where F (δ, p) designates the Jacobian elliptic integral of the first kind. So according to (3.40) one may write

−a
√
A0

p
√

2
(t+ C) = F (δ, p)

that is

sin δ = sn

(
−a
√

2A0

2p
(t+ C), p

)
(3.45)

In this regard, the general solution (3.39) becomes

x(t) =
2A0

p2
dn2

(
a
√

2A0

2p
(t+ C), p

)
(3.46)

which may take the expression

x(t) = A2dn2 [Ω(t+ C), p] (3.47)

where A =
√
2A0
p

, Ω = a
√
2A0
2p

that is Ω = aA
2

, and p may be rewritten as p2= 2(a2A2−c)
a2A2
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Case 2: a2 < 0, c > 0 and 0 < | ca2 | < A0

In such a situation, the integral [5]

J = −1

a

√
2

A0
F (δ,

1

p
) (3.48)

where δ = arcsin

(√
a2A0(1−sin(aφ+α))

a2A0+c

)
, and p =

√
2a2A0
a2A0+c

. So the use of (3.40) leads to

−a
√
A0

2
(t+ C) = F (δ,

1

p
) (3.49)

which may give √
a2A0(1− sin(aφ+ α))

a2A0 + c
= sn

(
−a
√
A0

2
(t+ C),

1

p

)
(3.50)

from which

sin(aφ+ α) = 1− a2A0 + c

a2A0
sn2

(
−a
√
A0

2
(t+ C),

1

p

)
(3.51)

Therefore the general solution (3.39) may take the expression

x(t) =
2A0

p2

[
1− sn2

(
−a
√
A0

2
(t+ C),

1

p

)]
(3.52)

The general solution (3.52) may be also expressed as

x(t) =
2A0

p2
cn2

(
a

√
A0

2
(t+ C),

1

p

)
(3.53)

which becomes

x(t) = A2cn2

(
apA

2
(t+ C),

1

p

)
(3.54)

where A2 = 2A0
p2

.

For a2 = i2|a2|, that is a = ±i
√
|a2|, the general solution x(t) may take the form

x(t) = A2cn2

(
i
√
|a2|pA
2

(t+ C),
1

p

)
that is

x(t) =
A2

cn2

[√
|a2|pA
2

(t+ C),
√

1− 1
p2

] (3.55)

which becomes definitively

x(t) =
A2

cn2
[
Ω(t+ C),

√
1− 1

p2

] (3.56)

where Ω =

√
|a2|pA
2

, and i is the purely imaginary number.

By making a2 = −4, and c = 2, the exact doubly periodic solution to Painlevé-Gambier XIX equation may
be written as

x(t) =
A2

cn2
[√

2A2 + 1(t+ C),
√

A2+1
2A2+1

] (3.57)

that is

x(t) =
A2

cn2
[
Ω(t+ C),

√
A2+1
2A2+1

] (3.58)

where A2 = 2A0−1
2

, and p = 1
A

√
2A2 + 1
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Case 3: a2 > 0, c < 0 and 0 < | ca2 | < A0

This case corresponds also to p =
√

2a2A0
a2A0+c

, δ = arcsin

(√
a2A0(1−sin(aφ+α))

a2A0+c

)
, and the integral

J = −1

a

√
2

A0
F (δ,

1

p
) (3.59)

So the general solution (3.39) may be written as

x(t) =
2A0

p2
cn2

(
a

√
A0

2
(t+ C),

1

p

)
(3.60)

that is

x(t) = A2cn2

(
Ω(t+ C),

1

p

)
(3.61)

where

A2 =
2A0

p2
(3.62)

and

Ω =
apA

2
(3.63)

The parameter p may also be expressed as p2 = 2(a2A2−c)
a2A2 .

That being so it is then possible to show the equivalence between the Duffing equation and the generalized
Painlevé-Gambier XIX equation.

4 Equivalence between equations

This section is devoted to highlight the mathematical equivalence between the Duffing equation and the generalized
Painlevé-Gambier XIX equation. The comparison of (3.6) with (3.40) as well as the comparison of resulting general
solutions suggest this mathematical equivalence, that is to say the mapping of the Duffing equation onto the
generalized Painlevé-Gambier XIX equation and vice versa, the mapping of the generalized Painlevé-Gambier XIX
equation into the Duffing equation. In other words, the general solution to the Duffing equation may be obtained
in terms of the solution to the generalized Painlevé-Gambier XIX equation and vice versa, the solution to the
generalized Painlevé-Gambier equation may be calculated in terms of the general solution to Duffing equation.
Formally consider the variable transformation

x2 = 2W (4.1)

due to the above general solutions to Duffing equation and general solutions to the generalized Painlevé-Gambier
equation (3.38). The substitution of (4.1) into (3.1) yields

Ẅ − 1

2

Ẇ 2

W
+ 4βW 2 + 2ω2

0W = 0 (4.2)

which is the generalized Painlevé-Gambier XIX equation (3.38) by taking a2 = 4β, and c = −2ω2
0 . So with that

the equivalence between Duffing equation and the generalized Painlevé-Gambier XIX equation has been shown and
a conclusion may be formulated for the present work.

Conclusion

The vital problem of finding exact periodic solutions to nonlinear differential equations is still an active research
field of mathematics. A slight generalization of an earlier Liénard type nonlinear differential equations theory is
introduced in this paper for the determination of exact periodic solutions as well as exact trigonometric periodic
solutions. By doing so the general solution to the cubic Duffing equation as well as for some Painlevé-Gambier
equations are in a clear and simple fashion determined. In this perspective as an interesting result, it has been
shown that the cubic Duffing equation is mathematically equivalent to the generalized Painlevé-Gambier XIX
equation such that the solution of the last equation may be obtained in terms of the solution of the first and vice
versa, the solution of the first may be determined in terms of the solution of the last equation.
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