Mathematics 29 August 2018

A Brief Solution to the Riemann Hypothesis over the Lagarias Transformation

Mesut KAVAK*

Over the paper of Lagarias [1], for a positive integer n, let $\sigma(n)$ denote the sum of the positive integers that divide n. Let H_n denote the nth harmonic number by

$$H_n = \sum_{n=1}^n \frac{1}{n}$$

Does the following inequality hold for all $n \ge 1$ where $\sigma(n)$ is the sum of divisors function?

$$H_n + \ln(H_n)e^{H_n} \ge \sigma(n)$$

Definition for the solutions

Theorem: First of all, let's define an imaginary function as $\rho(n)$, and know that this function is the sum of the elements which are not dividable being the result is an integer in a function as nH_n ; so according to this definition, it becomes as the following.

$$H_n = \frac{\sigma(n) + \rho(n)}{n}$$

By using the equation, $H_n + \ln(H_n)e^{H_n} \ge \sigma(n)$ inequality turns into (1).

$$H_n + \ln(H_n)e^{H_n} \ge nH_n - \rho(n) \tag{1}$$

If it is edited, it becomes (2) over (2a).

$$\frac{\ln(H_n)e^{H_n} + \rho(n)}{n-1} \ge H_n$$

$$\ln(H_n)e^{H_n} \ge nH_n - H_n - \rho(n)$$
(2a)

$$\ln(H_n)e^{H_n} \ge nH_n - H_n - \rho(n) \tag{2a}$$

Condition: Right this point assume, that the actual inequality is not (2) but is (3).

$$\frac{e^{H_n}}{n} \ge H_n \tag{3}$$

On (2), actually the numerator is always bigger than e^{H_n} , and also if the divisor was n-1, this would increase the possibility of to be greater than H_n of the division; so for the worst possibility, let's use this as (3).

Now, let (3) be (4).

$$\sqrt[n]{e} \ge \sqrt[nH_n]{nH_n} \tag{4}$$

 $\sqrt[n]{e} \ge \frac{\sqrt[n]{e}}{\sqrt[n]{n}}$ For $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, (4) becomes (5).

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \ge \sqrt[nH_n]{nH_n} \right) \tag{5}$$

For this, it can be written as (6)

$$\lim_{n \to \infty} \left(n + 1 \ge nk \right) \tag{6}$$

where $k = {}^{nH_n}\sqrt{nH_n}$. For $n \ge nk-n$ it becomes $\frac{1}{n} \ge k-1$; so what ever the direction of the inequality, even if both sides were equal to each other, k would not become a number smaller than 1 since n is always positive. It is always k > 1. Here assume, that is (7)

$$n = nk - 1 + b \tag{7}$$

since it is $n \ge nk-1$ over (6), where b is a number being $b \in \mathbb{R}^+$

$$n = \frac{b-1}{1-k} \tag{8}$$

and thus being b > 0; thus it becomes (8) over (7). $n = \frac{b-1}{1-k} \tag{8}$ Since is k > 1, then b must always be smaller number than 1 to be positive of the division; thus it becomes 1 > b > 0; so k cannot take random values since n is positive integer. If it is k > 1, for the greatest value of k, it becomes $\lim_{k \to 0} k = 2$. For this value, equality of (7) becomes n = 2n - 1 and thus becomes n = 1. It means, actually k decreases as long as nincreased; thus it means it is always (9),

$$1 = \lim \sqrt[m]{m} \tag{9}$$

 $1 = \lim_{m \to \infty} \sqrt[n]{m}$ where $m \in \mathbb{Z}^+$; thus also means it is (10), $1 = \lim_{n \to \infty} \sqrt[nH_n]{n}$

$$1 = \lim_{n \to \infty} \sqrt[nH_n]{nH_n} \tag{10}$$

since is $H_n \ge 1$ and thus is $nH_n \ge 1$.

Conclusion

By the defined elements, over (6), it becomes (11).

$$\lim_{n \to \infty} n + 1 \ge n \tag{11}$$

 $\lim_{n \to \infty} n + 1 \ge n$ This is also equivalent of (3) and thus of (12).

$$H_n + \ln(H_n)e^{H_n} > \sigma(n) \tag{12}$$

Acknowledgment

I have been working about some unknown problems for a time [2] that Riemann Hypothesis is included as well, and a short time ago I supposed that I found a solution out to the Riemann Hypothesis; but I noticed that there is a stupid mistake; after that I published a brief approach; for a long time I did not work about it; but today I remembered it and just wanted to work because of boredom, and finally I could bring a simple solution out indirectly in a few hours again after midnight even if it is not so sexy and enlightening about functions. Even so, solution is solution always.

Good bye!

References

- 1. Jeffrey C. Lagarias. 2002 An Elementary Problem Equivalent to the Riemann Hypothesis, The American Mathematical Monthly. Vol. 109, No.
- 2. Kavak M. 2018, Complement Inferences on Theoretical Physics and Mathematics, OSF Preprints, Available online: https://osf.io/tw52w/

*kavakmesut@outlook.com.tr