Mathematics June 2018 (v.2)

A Brief Approach to the Riemann Hypothesis Over the Lagarias Transformation

Mesut KAVAK*

Over the paper of Lagarias [1], for a positive integer n, let $\sigma(n)$ denote the sum of the positive integers that divide n. Let H_n denote the nth harmonic number by

$$H_n = \sum_{n=1}^n \frac{1}{n}$$

Does the following inequality hold for all $n \ge 1$ where $\sigma(n)$ is the sum of divisors function?

$$H_n + \ln(H_n)e^{H_n} \ge \sigma(n)$$

1 Definition for the solutions

Theorem: First of all, let's define an imaginary function as $\rho(n)$, and know that this function is the sum of the elements which are not dividable being the result is an integer in a function as nH_n ; so according to this definition, it becomes as the following.

$$H_n = \frac{\sigma(n) + \rho(n)}{n}$$

By using the equation, $H_n + \ln(H_n)e^{H_n} \ge \sigma(n)$ inequality turns into (1).

$$H_n + \ln(H_n)e^{H_n} \ge nH_n - \rho(n) \tag{1}$$

$$H_n + \ln(H_n)e^{H_n} \ge nH_n - \rho(n) \tag{2}$$

If it is edited, it becomes (3) over (3a).

$$\frac{\ln(H_n)e^{H_n} + \rho(n)}{n-1} \ge H_n \tag{3}$$

$$\ln(H_n)e^{H_n} \ge nH_n - H_n - \rho(n) \tag{3a}$$

Condition: Right this point, assume that, the actual inequality is not as (3) but it is (4).

$$\frac{e^{H_n}}{n} \ge H_n \tag{4}$$

On (3), actually the numerator is always bigger than e^{H_n} , and also if the divisor was n-1, this would increase the possibility of to be greater than H_n of the division; so for the worst

possibility, let's use this as (4). This final inequality is true for any $n \ge 1$ integer, and so as it is for the worst possibility, it means that for greater n values, accuracy of the main inequality increases; but how we can prove it?

2 Conclusion

I have been working about some unknown problems for a time [2]. Also a short time ago I supposed that I found a solution out to the Riemann Hypothesis; but I noticed that there is a stupid mistake; so, I want to only publish a very simple approach.

References

- Jeffrey C. Lagarias. 2002 An Elementary Problem Equivalent to the Riemann Hypothesis, The American Mathematical Monthly. Vol. 109, No. 6, pp. 534-543
- Kavak M. 2018, Complement Inferences on Theoretical Physics and Mathematics, OSF Preprints, Available online: https://osf.io/tw52w/

*kavakmesut@outlook.com.tr