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Abstract     

  The book consists of three parts. The first part describes new method of optimization that has the 

advantages at greater generality and flexibility as well as the ability to solve complex problems which 

other methods cannot solve.  

  This method, called the “Method of Deformation of Functional (Extreme)”, solves for a total minimum 

and finds a solution set near the optimum. Solutions found by this method can be exact or approximate. 

Most other methods solve only for a unique local minimum. The ability to create a set of solutions 

rather than a unique solution has important practical ramifications in many designs, economic and 

scientific problems because a unique solution usually is difficult to realize in practice. 

  This method has the additional virtue of a simple proof, one that is useful for studying other methods 

of optimization, since most other methods can be delivered from the Method of Deformation.  

  The mathematical methods used in the book allow calculating special slipping and breaking optimal 

curves, which are often encountered in problems of optimal control. 

  The author also describes the solution of boundary problems in optimization theory. 

  The mathematical theory is illustrated by several examples. The book is replete with exercises and can 

be used as a text-book for graduate courses. In fact the author has lectured on this theory using this 

book for graduate and post-graduate students in Moscow Technical University. 

  The second part of the book is devoted to applications of this method to technical problems in aviation, 

space, aeronautics, control, automation, structural design, economic, games, theory of counter strategy 

and etc. Some of the aviation, aeronautic, and control problems are examined: minimization of energy, 

exact control, fuel consumption, heating of re-entry space ship in the atmosphere of planets, the 

problems of a range of aircraft, rockets, dirigibles, and etc. 

   Some of the economic problems are considered, for example, the problems of a highest productivity, 

the problem of integer programming and the problem of linear programming. 

  Many economic problems may be solved by the application of the Method to the Problems of non-

cooperative games. 
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 The third part of the book contains solutions of complex problems: optimal thrust angle for different 

flight regimes, optimal trajectories of aircraft, aerospace vehicles, and space ships, design of optimal 

regulator, linear problems of optimal control. 

  This book is intended for designers, engineers, researchers, as well as specialists working on problems 

of optimal control, planning, or the choosing of optimal strategy. 

  For engineers the book provides methods of computation of the optimal construction and control 

mechanisms, and optimal flight trajectories. 

  In addition, the book will be useful to students of mathematics, general engineering, and economic.   
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        Part 1 

Mathematical Base of the Optimization Methods 

       Abstract 

 A new method of optimization by means of a redefinition of the function over a wider set and a 

deformation of the function on the initial and additional sets is proposed. 

  The method (a) reduces the initial complex problem of optimization to series of simplified problems, 

(b) finds the subsets containing the point of global minimum and finds the subsets containing better 

solutions that the given one, and (c) obtains a lower estimation of the global minimum. 

Introduction 

 The classical approaches this problem is following: 

Problem A. Find a minimum of the given function. 

  Together with problem A the following problems are considered: 

Problem B. Find a smaller subset contains the all points of the global minimum. 

Problem C. Find a subset of better solutions where the function is less that given value. 

Problem D. Find a lower estimation of function. 

  These non-classical approach B,C, and D require innovative methods, different from the well-known 

methods. 

  The author offers a new mathematical methods for the solution of these problems. 

  The new methods have turned out to be much more general, so that while solving one of the above 

problems, another may be solved in passing, which may help in the solution of the former. Thus, if a 

satisfactory lower estimate found, it can be compared with various engineering solutions and give rise to 

one very close to the optimum. 

  This method is applied to many mathematical problems of optimization. For example, functions of 

several variable, constrained optimization, linear and nonlinear programming, multivariable nonlinear 

problems described by regular differential equations and equations in partial derivatives, etc. 

  One can easy get from the given method to many well-known methods of optimization, for example, 

Lagrangian multiplier method, the penalty function method, the classical variational method, 

Pontragin’s principle of maximum, dynamic programming and others. 
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  At present, the most of researchers in optimization fields are using the traditional optimization 

problem – find a minimum of the given functional (Problem A). They look a single, local minimum. An 

engineer, however, is usually interested in a subset of quasi-optimal solutions. He must make sure that 

the optimum does not exceed a given value (Problem C). Also, a good estimation from below will 

indicate how far a given solution is from the optimum solution (Problem D). An addition an engineer 

usually has other considerations that cannot be introduced into a mathematical model or can lead to 

impractical complications. Approach C provides him with some choice. 

  Problem D is also of particular interest. If an estimate from bottom closes to the exact infinum  of the 

function is found, the optimization can frequently be reduced to finding a quasi-optimal solution by trial 

and error. 

  Solution of the Problem B can significantly simplify the solution of any of the above problems, since it 

narrows the set containing optimal solution. 

  These non-classical Problems B.C. and D require innovative methods, different from the well-known 

method of variational calculus, maximum principle and dynamic programming. This new method is 

general, so that while solving one of the above problems, another may be solved in passing, which may 

help in the solution of the former. Thus, if a satisfactory estimate from below has been found, it can be 

compared with various engineering solutions and give rise to one very close to the optimum. 

 Our reasoning in this book is not complex. But we are using symbolic of set Theory, which many 

engineers forget. That way we are given these information in Appendix A of the book. 

 

 In Book we are using the double numbering of formulae, theorems and drawings. The first figure in 

nubbering formule or theorem notes the number of paragraph, the second figure is number formula or 

theorem in this paragraph. The first figure of drawings means the number of chapter, the second is the 

number of drawing. 

Chapter 1 

Methods of 𝜷 and 𝜸 functions 

§1. Methods of 𝜷 −functions 

1. Statement of the Problem. Main theorems. Algorithm 1. 
 

  10. Statement of the Task. Assume that the state of the system is described by element x. A series of 

these elements form the set X={x}. The numerical function I(x) (functional) is defined and bounded by its 

lower estimate over X. The relationships and limitations imposed on the system yield a subset  XX *

. 
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 Traditionally the problem of optimization has been set as follows: 

A. Find a point of the minimum of the function I(x) over the set X*. 
We shall also consider the following problems: 

B. Find a smaller subset *XM   that contains point x* of global (absolute) minimum, Mx * . 

C. Find a subset *XN  on which I(x)≤ c, where c ≥ I(x). 
D. Find the lower estimates of I(x) over X*. 
We will name the point (element) x the solution if x is result any presses, procedure, calculation or 

reasoning. It not means that x is point of optimum. We will tell the point x1 is better solution than the 

point x2, if I(x1) < I(x2) and the point of the same solution, if I(x1)=I(x2).  

For simplicity we assume that the point of global minimum x* exists in X*, but this is not impotent 

limitation. The most results can be obtained without this assumption. 

Let us introduce a set Y={y} and define a bounded numerical function (functional) β(x,y) over XY. 

We shall call it β-functional. 

Then we set 

).,()(),( yxxIyxJ   

Call our initial problem of finding x* and ** ,)(inf)( XxmxIxI      Problem 1 

and the problem of finding x and 

                  XxyxxIyyxJ  )],,()(inf[)),((      Problem 2 

We assume that )(yx  exist over XY.  

We deformed arbitrarily our functional I(x) by adding β(x,y). Moreover we widened the domain of 

the deformed functional and arbitrarily defined it on the set Y. we should do so in such a way that 

problem 2 will be easier to solve. 

It might seem that this makes no sense because we must find the points of minimum of our initial 

functional I(x), i.e., solve Problem 1. But it appears that from the solution of the simpler Problem 2 we 

can obtain information about Problem 1. We can use freedom in choice of   the functional β(x,y) and the 

set Y for such a deformation of functional J(x,y) and the set Y that we solve the initial Problem 1, but in 

an easier way. 

20. The Fundamental Theorem. The following main theorem establishes the relationship between 

Problem 1 and 2, as well as between Problems A, B, and C (The Principle 1 of Optimum). 

Theorem 1.1. Distinguishing between the sets containing: (1) The global minimum points, (2) only 

better solutions than the one given, (3) only worse solutions than one given. 
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Assume )(,* yxXX   are the points of global minimum in Problem 2. Then: 

(1) The points of global minimum in Problem 1 are contained in the set 
};),),((),(:{ YyyyxyxxM    

(2) The set  

},:{ YyIJIJxN   

      contains the same or better solutions (that is over N, we have )()( xIxI   ); 

(3) The set  
};),),((),(:{ YyyyxyxxP    

     contains the same or worse solutions (that is over P   )()( xIxI   ). 

 

Proof. 3. By subtracting the inequality 

)()()),(())((),()()),((),( xIxIgetweyyxyxIyxxIfromyyxyx    

over P. Point 3 of the theorem is proved. 

1. Point 1 of Theorem 1 is obvious because X=M+P and xIxI ()(  ) over P, we have Mx * . Point 1 

of the theorem is proved. 

2. By subtracting the inequality )()( xIxIgetweIJIJfromJJ  over N. 

Point 2 of the theorem is proved. 
Theorem 1 is proved. 

 

   If in sets N and P we write the strong inequality   , then the set N will contain only better 

solutions and the set P will contain worse solutions that xI ( ). 

   Theorem 1.1 is correct when X* X, but M,N,P contain elements from X*. 

Let us focus our attention on the fact that after solving the simpler Problem 2, we distinguished in our 

set X three subset: M, which contains a point of global minimum, subset P, containing the same or 

worse solutions, and subset N, which contains the same or better solutions. 

 Consequences: 

1. Element x  is the point of global minimum of the functional over the set PX. 

2. x  is the element which gives the maximum of the  functional I(x) over the set NX. 

3. If X* P, then x  is the point if global minimum Problem 1 over set X*. In this case we have M={x}. 
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4. If β=β(x), xX, then 

   )},()(:{ xxxM    )},()(:{ xxxP   IJIJxN  :{ . 

   Theorem 1 is correct when X* X, but M,N,P contain element from X*. 

5. Let X* X. If X*M=, then )(xI  is the lower estimation I(x) over the set X* (because in this case we 

have X* P). 

6. Let X* X. If X* N, then )(xI  is the top estimation I(x) ≤ )(xI  over the set X*. 

If x X*, the sets M,N,P will always contain at least one element from the set X*. This element is x . 

Remarks: 

1. N M. The proof: Let us denote 
o

P =P-{ x }.  Then 
o

P  N=, because over 
o

P we have I(x)>I( x ) 

and over N we have I(x) ≤ I( x ). But N X and M=X-
o

P . Hence N M. 
2. Assume the definitions of the sets N, P (see Theorem 1) contain strong inequalities. Then the set 

N will contain on; y better solutions and the set P – only worse solutions, compared to x . 
3. We can use the dependence of the sets M,N,P from y in order to change the “dimensions” of 

these sets. 
4. β - functions exist and their number is infinite.  

The last statement is obvious because we can define β-functionals over the set XY in any 

possible way. 

   The theorem 1 gives the Algorithm 1 (a β-functional method for finding the subsets that contains the 

points of global minimum or better solutions). 

  Algorithm 1. Define βi(x,y) so that Problem 2 becomes easier to solve, and find sets Mi and Ni. Then 

M= Mi (that is not empty) is the set that contains the points of global minimum and N=Ni (if that is 

not empty) is subset contains min )}({ ixI or better solutions. 

  Note: The getting M is more “narrow” (contains less points x) subset then initial M. That means the 

finding x* is easier. The decreasing of M is especially important in a “method of dynamic programming” 

because it is decreasing the number of computation. 

  Theorem 1.2. (The lower estimate) Let us assume that β(x,y) is a defined and bounded functional over 

XY  then the lower estimate over X is 

)],(sup)),(())(([)( yxyyxyxIxI
X

      for  Yy .   (1.1) 

Proof: By adding the inequalities 

),(sup),()),(()(),()( yxyxandyyxxIyxxI
X
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           over X, we get the estimate (1.2). 

Remarks: 

      1. For case β = β(x) the estimate (1.1) is 

)(sup)(inf)( xxJxI
XX
  ,     (1.1’) 

2. When X  X* the estimate (1.1) is correct over X*, because X* X. In this case we can use the 
better estimates: 

),(sup)(inf)(
*

xxJxI
XX
    ),(sup)(inf)(

*

xxJxI
XX

    ),(sup)(inf)(
*

*
xxJxI

XX
   (1.1”) 

  When we found the set M for βi the following estimate may be used 

   ),(sup)(inf)(
*

xxJxI
MX
      (1.1’”) 

  The proof of (1.1’), (1.1”), (1.1’”) is same the proof of theorem 1.2. 

3. Dependence of the estimate (1.1) from y may be used for its improving 

)],(sup)(inf[sup)(
*

xxJxI
xxy

     (1.1IV) 

  When we use the estimates (1.1’) - (1.1IV) we decide  the problem 
X

sup


. It may be used for 

  Theorem 1.3. Assume X=X*, x  is point of a global minimum in the problem 
X

sup


, 

Then: 

1) The points of global minimum in Problem 1 are contained in the set 
 

    Contains the same or better solutions. 
2) The set  

    

 

3)  The set 

 

 

Contains the same or worse solutions. 

},:{)( YyIIxyM  


},:{)( YyIIxyN 




},:{)( YyIIxyP  
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  Here is )(xII


 . 

Proof of Theorem 1.3. 

1, 3. By subtracting the inequality 


  from 


 II  we get II


 over set P. 

        The statement 1, 2 follow from this. 

2. By subtracting the inequality 


  from 


 II  and multiply this result by -1,  

       we get II


 over N. The theorem 1,3 is proofed.  

Remark: 

 For proof of the theorems 1.1-1.3 the existence of  x, x , x


 is not important, but corresponding inf and 

sup must be existed. 

Example 1.1. 

Find minimum of functional 




  x
xx

xeI x ,
12.0

1.0
cos

2

24

,  (1.2) 

Solution. Take 

       
12.0

1.0
)(

2 


xx
x . 

Then 

2cos
4

xeIJ x  . 

  The minimum of this J is obvious: .0x  

  From theorem 1.1 we got the point of the global minimum is in set 

M={x: 𝛽(𝑥) ≥ 𝛽(0)} 

or 

1.0
12.0

1,0
2


 xx

 , 

  The solution of this inequality is 

0≤ x ≤0.2 . 

  It’s not difficult to find the point of global minimum in this small interval by any known method. 

     We get the lower estimate (theorem 1.2) 
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101.1101.01sup)0(  
x

J . 

  Value I(0) = -1.100 . We see I(x) for x = 0 is very close to global minimum. 

Example 1.2 

  Find minimum 




 xxx
xx

I ,2cos44cos
102

1.0
2

  (1.3) 

Solution: We take 

xxx  2cos44cos)(   . 

Then  

.1,
102

1.0
2




 x
xx

IJ   

  This solution is global minimum of Problem1 over set 

P = {x: β(x) = β(1)} 

or  

32cos44cos  xx  . 

  We transform this inequality in 

-8sin4πx ≤ 0 . 

  We see P ={x: x<}. Therefore P=X*. That means (see Consequence 1) x =1 is point (and alone) of 

global minimum of the functional (1.3). 

Example 1.3 . 

  More full, we are demonstrating the new method on following simple functional. 

  Find the absolute minimum of the functional  

     I=2x4+x2-2x+1  on the set X*={x: x<} .    (1.4) 

   It is a simple example, which can be solved using well-known methods. For example, take the first 

derivative, make it equal to zero. Solve an algebraic 3-d  order equation (it may not be a simple task) and 

then analyze the points so found with respect to maximum and minimum. 

  We shall try to solve this example by the above method as it follows from algorithm 1. 
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 Let us introduce a series βi(x). As follows from Theorem 1.1 we have the sets Mi: 

1) Take β1=2x. Then 

}0:{havewefrom,0,12 1

24

1  xxMxxxIJ  . 

As we see the domain which contain a global minimum have become less in two times. 

2) Take β2= -x2+2x. Then 

}20:{havewefrom,0,12 1

4

2  xxMxxIJ  . 

Our interval contained a global minimum is only 0≤x≤2. 

  For given β2 we can use an estimation of the functional which follows from Theorem 1.2. 

011)2(sup1)(sup)()( 2

2  xxxxJxI
XX

 , 

where the point of supreme of β is 1x


. 

 From theorem 1.3 we have the additional set M: 

}1:{)}()(:{ 33  xxMorxJxJxM


. 

 As we see the set  }10:{32  xxMMM , The global minimum of this problem is in the 

interval 0≤x≤1. 

3) Take 5.022 2

3  xx . Then 5.02 24

3  xxIJ  . From inf J we have 5.02,1 x . 

4) Find for point x1 set M: 

}5.15.0:{,5.0 41  xxMx , 

}5.05.0:{,5.0 52  xxMx  . 

  The estimation gives I(x )≥ 3/8 – 0 = 3/8 . 

  We see that the diameter of the set M=Mi decreases until reduces in the point 5.0x . Therefore 

this point is one of the absolute minimum of the Problem 1 and I(0.5) = 3/8 . 

 

50. The geometric illustration of Theorem 1.1 is given in fig, 1.1 for single variable. The curves I(x), J(x), 

β(x), I(x)+0.5 β(x) and point x  are drawn. There are the sets M, N, P.  P is set x, where  

)()( xx   , M is set X\P and N is set x, where )(5.0)()(5.0)( xxJxxJ   . 

  We can see that N M.  

In fig.1.2 we see sets M, N, P for the case when I(x1,x2) is function of two variables x1 and x2. 
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                 Fig. 1.      Fig. 2. 

 

Fig.1.1. Geometric illustration of Theorem 1.1 for case of single variable. 

Fig.1.2. Sets M, N, P for case of two variable. 

2. About Convergence of Algorithm 1. 

 Consider condition of convergence **),(inf),(inf
8

xtoxandXxxJtoXxxJ
XxXx




  

for Algorithm 1. when we have the succession βi(x), I = 1,2,…  This succession gives the succession of the 

sets Mi, Ni and values of functionals )( ixJ . 

  The succession )}({inf ixJ  

For i   is monotonous decreasing and bounded of bottom, that’s way it has a limit. If this limit equals 

one of lower estimates, that )()( *xIxJ   . 

  Let us to consider now convergence of diameter d(M), d(N) of sets M=Mi, N=Ni for i. 

This convergence is also monotonous decreasing and bounded of bottom: d ≥ 0. Therefore it has a limit. 
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  We have got the following simply criterian of convergence 

  Theorem 1.4. Assume, the point of the absolute minimum of functional I(x) over set X=X* is single. 

     If d(M)0, than x=limM(i)=x*, i. 

  In this case the set contained of point of global minimum M=Mi decrease in point. Therefore this 

point is the point of the absolute minimum of Problem 1. 

  Let us take succession of function Ws(x), s =1,2,… . Take )(xi  as  

)(
1

xWc s

i

s

si 


      (1.5) 

where cs is constants. 

We will take these constants cs from condition 

)](sup)(inf)([min xxJxI i
XX

ii
c

i  . 

  The value ∆I is difference functional from its lower estimate. Other words value ∆ show how much 

value )( ixI  differs from optimum. We name this number ∆-estimate (delta-estimate). It is obvious that 

succession {∆i} is monotonous decreasing because every next sum (1.5) contains previous sum. It is also 

limited of bottom (∆i≥0). Therefore the succession  {∆i} converge.  

  From destination ∆i  we get the following 

Theorem 1.5. If ∆i 0  Than )(inf)(inf
*

xIxJ
XX

 .       

Theorem 1.6. Assume X=X*, βi=ciβ(x), I(x), β(x) is continuous and β(x) is limited on X. 

Then, if ci 0  we have J(x) m=inf I(x) over X*.  

  Statement of Theorem 1.6 follows from continuous J(x). 

  This theorem may be useful for finding of the local minimum of I(x) by way of methods of successive 

approximations. Assume c1=1 and problem inf J(x) can decided simply. Because functional J(x) is 

continuous, we can wait, that small change of c give small changing (moving) x . 

Therefore x  is good the initial approximation for c2 < c1. It is known, that a good initial approximation is 

very important for speed of convergence. We come to x* by decreasing c to 0. 

  These criterions of convergence may be used for solutions Problem A, B, C, D (see §1,A). 
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3. Modification of the Theorem 1.1 
 

  Over we have considered the case, when we are looking for the additional function (x,y) such us the 

problem 2 became simpler for solution. 

  But sometimes it's more comfatable to take such function J(x,y) that the problem ),(inf yxJ
X

 became 

easy for solution. 

 In this case Theorem 1.1. better to write as following 

Theorem 1.1'. Assume )(,
_

yxXX   is the point of global minimum in Problem 2  .
     

                                                        
).(inf

_

yxJ
X

J 
   

 

Then  

1) The points of global minimum in Problem 1 are contained in the set 

   },:{)(
__

YyIJIJxyM  . 

2) The set 

   },:{)(
__

YyIJIJxyN   

 Contains the better or same solutions. 

3) The set 

   },:{)(
__

YyIJIJxyP   

 Contains worse or same solutions. 

 

This Theorem is correct if J = kJ1, where k = const>0. 

4. Method of big steps in set of better solutions. Algorithm2. 
 

   From the Theorem 1.1 we can get the following  

Algorithm 2 (Method of big steps in set of better solutions) 

  Take any point x1 from X* and such function J1(x) that point x1  is its minimum. Find the set N1  of better 

solutions. Take from this set a point x2 and such function J2(x) that x2 is its minimum. Find the set N2 and 

so on. 
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  It is obvious that ...
321
 NNN  . Let us suppose that result of this process is following - set Ni  

become point xN . 

Theorem 1.7. Assume X* is open set, I(x), Ji(x) are continuously and differential (of Freshe) on X*. 

Then point xN  is a stationary point of the function I(x) over X*. 

Proof in Appendix 4o of  Chapter 1.           

Theorem 1.8. If in point xN  we have   

)],()(sup[
*

)()( xIx
X

NN xIx    

Then xN  is point of global minimum of Problem 1.                                                                     

Proof is in Appendix 5o of Chapter 1. 

   If conditions of Theorem 1.8 is executed only in small sphere around point xN then xN  is point of local 

minimum of Problem 1. 

  The example for illustration of this method (for tests of constrained minimum) will be given in § 4 

(remark 4.3). 

  We can get the direction in the set N, if we calcule a gradient of function in N. 

 The advantegies this method with comparison of gradient method is big steps. When you are in set N, 

you have not a danger of to get worthier solution than given one. This can substentionaly decrease 

amount of calculation. 

5. Method of -function for Problems with constrains 

A) Assume I(x) is function by its lower estimate over set X. The subset X*  is separated from X by 

functions 

qjxkixF
ji

,...,2,1,0)(,,...,2,10)(  ,   (1.6) 

where x - is n-dimentional vector of numerical values. 

  Take -function as following (we have a sum for lower index i,j) 

)(),()(),(),( xyxxFyxyx
jjii

  , 

where i(x,y), ),( yx
j

  are functions of x,y, yY, .0),( yx
j

  

  Write J-function  
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)(),()(),()(),( xyxxFyxxIyxJ
jjii

  .    (1.8) 

  Theorem 1.9. Assume exist x*X*, y is fixed. 

In other x  to be a point of global minimum of function I(x) over X* necessary and enough to exist of 

function (x,y) such as  

0),()4,0),()3,)2),,(inf
*

),()1 


 yxXoveryxXxyxJ j
Xx

yxJ  ,       (1.9) 

  The proof in Appendix 6o of Chapter 1. 

 

Theorem 1.10. (The lower estimation) 

 Assume y is fixed, x is point of minimum  (1.8) for conditions  0),( yx
j

 . 

Then ),( yxJ  is lower estimation of function I(x) on X*. 

Proof: On set X* we have 0,0 
jjii

F   (that is )0),( yx . Since over X* we have 

)(),( xIyxJ  . Theorem is proved. 

 Likely a common case for  - function we can get the sets 

}:{},:{},:{   xPIJIJxNxM   

and in this case. 

  Freedom in choice of y we can use for improvement of estimation and decrease sizes of sets M, N. 

Remark only that )(yxx  and for every y corresponding  x  you must find  inf J(x,y), xX.  

Remark: 

  We can take -function  (1.7) in form 

 
 




k

i

q

j

x

i

jaxFax
1 1

)(2 )(
2

1
)( . 

It is possible to show for some conditions:  [I(x), j(x), Fi(x) are continuous, x is compact set, x* is close 

set and don't contain separated points; x*X* and exist], when a  ,  we have *, xxmJ  . 

B) Assume Fi(x) = 0 in (1.6) absent, i.e. the Problem is  

qjxxI
j

,...,2,1,0)(min,)(   
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 For solution of this problem we can use following algorithm: 

1. Take any functions  (x,y) (it's may be less zero) and find the point )(yx of global minimum (one may 

be implicit form 0),( yx  ) of general numerical function 

   XonxyxxIJ
jj

)(),()(  .    (1.12) 

2. Solve equations 

qjxyxyx
jj

,...,2,1,0)(),(,0),(       (1.13) 

3. Select from these solutions such which satisfy inequalities 

        qjyx
j

,...,2,1,0),(  .     (1.14) 

 These are points of global minimum of Problem (1.11) because all request the theorem 1.4 is satisfy. 

  We can solve (1.13) by different ways. For example, find x from equation 0),( yx  and substitute in 

the last equations (1.13) 

   qjyxyyx
jj

,...,2,1,0))(()),((      (1.15) 

Find y from this system of equations. Select from these solutions such which satisfy inequalities  

   qjyyx
j

,...,2,1,0)),((  ,     (1.16) 

or we can find y from 0),( yx  and substitute in the last equations (1.13) and find x . 

  6. Application the method of  - functions to linear programming. 

  The Problem of Linear Programming is 

   mkbxaxcI
k

n

j
jkji

n

i
i

,...,2,1,0min,
11

 


   (1.17) 

Here kkji
bac ,,  are constant. 

  Take ij
y . Then equation (1.13) are 

    mkbxay
k

n

j
jkjk

,...,2,1,0)(
1




    (1.18)  

    niyac
j

m

j
iji

,...,2,1,0
1




     (1.19) 
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  Selective from (1.18) l equations max),,(  lmlnl and l variables xj such that determinant 

0
kj

a . Find j
x~ from these l linear equations (1.18) (corresponded yk0). 

   If this solution don't satisfy inequalities (1.17), we take l other equations and repeat this procedure 

(process) while we find j
x~  which saticfy  (1.17). If these equations absent, we take l -1 equations (1.18) 

and repeat process, than l - 2 equations and so on, while we get l = 0. 

  If solution, which satisfy (1.17), absent that inequality (1.17) is conflicting (incompatible) and cannot be 
solved.  

  Assume that by using this procedure we find the solution j
x~ , that satisfy (1.17). Take in (1.19) all yj, 

which don't belong the taken questions (1.18), equal zero and find y from equation (1.19). If all 0~ 
j

y   

then j
x~  is point of minimum of problem (1.17). If part of 0~ 

j
y , then we change corresponded 

equations (1.18) by other and repeat this process while get all 0
j

y . 

  We can suppose that this process makes all 0~ 
j

y . Inequality 0~ 
j

y  means that anti-gradient has 

direction into internal of the corresponding constraints. Because our problem and constrains are linear, 

anti-gradient, which has direction into constrains, will has this direction in any point of corresponding 

hyper plate (1.17). It means that this procedure will increase the amount of 0
j

y . 

  Example 1.4.  

  Find minimum of Problem 

   01,01,0,0,
212121

 xxxxxxI .  (1.20) 

The equations (1.18),(1.19) are 

    
.01,0)1(,0

,01,0)1(,0

422422

311311





yyxyxy

yyxyxy
   (1.21) 

 Chose equations 01,01
21

 xx . From solution of them we have .1~,1~
21
 xx  They satisfy 

(1.20). From the first column of (1.21) we get y1 - y2 = 0, and from the last column (1.21) we find y3 = y4 = 

-1. Inequality yi  0 is not satisfied. Change equalities by others 0~,0~
21
 xx . We get 01~~

21
 yy . 

Hence 0~~
21
 xx  is point of the global minimum. 

  Example 1.5. 

  Find point of global minimum in Problem 

     0,
2121
 xxxxI . 

Solution. Write equations (1.18),(1.19) 
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,1,0)(
21

yxxy   

From 0
21
 xx  we get 

21

~~ xx  . From  -1+y = 0 we get y = 1 > 0. Sence any 
21

~~ xx   is optimal. 

7. Application of method -function to quadratic programming. 

This problem is following: 

  mkbxaxxcI
kjkjji

n

j

n

i
ij

,...,2,1,0,
1 1

 
 

.       (1.22) 

  Assume that quadratic form in function (1.22) is positive. If don't consider constraints in (1.22), it is 

obvious the point of minimum in this problem is .0* 
j

x  If this point satisfy inequalities in (1.22), the 

process of solution is finished. In particular, we have this case when all bk  0. We consider not triviality 

case. Take jj
y . Equations (1.13) and (1.14) are: 

  0,0;,...,2,1,0)(
111

 


kjk

m

j
lj

n

j
ijk

n

j
jkjk

yayxcnkibxay .  (1.23) 

  Later procedure is analogous of the Linear Programming.  

Example 1.6.   

 Problem are:  

    01,01,01,5.05.0
2121

2

2

2

1
 xxxxxxI .  (1.24) 

 The equations (1.23)  

   
0,0

0)1(,0)1(,0)1(

212211

2212121





yyxyyx

xyxyxxy
   (1.25) 

  Take the 2-nd and 3-rd equations. We get 1~~
21
 xx . The inequalities (1.24) are satisfied, but from two 

the last equations (1.25) for y1 = 0 we have 1~~
32

 yy . It is contrary the request 0~ 
i

y . 

  Take the 1-st equation in (1.25). We have 12

~1~ xx  . Solve it together with equations 

0~~,0~~
1211
 yxyx  we get 02/1~~,2/1~~

2121
 yyxx . Hence x1=x2=1/2 is point of global 

minimum. 

Appendix to #1. Proof of Theorems.  

1o. Proof of Theorem 1.1. Proof of: 

Statement 3. By subtracting the inequality )),((),( yyxyx    from 

)),(())((),()( yyxyxIyxxI    we get PxIxI over)()(  . Statement 3 of the Theorem 1.1 is 

proved.  
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Statement 1 of the Theorem 1.1 is obvious because X=M+P and PxIxI over)()(  , we have 

.* Mx  Statement 1 of Theorem 1.1 is proved.  

Statement 2. By subtracting the inequality IJIJJJ  from  we get NxIxI over)()(  . 

Theorem 1.1 is proved. 

2o. Proof of Theorem 1.2. By adding the inequality 

)),(())((),()( yyxyxIyxxI    and  ),(sup),( yxyx
X

   over X, we get the estimate (1.2). 

3o. Proof of Theorem 1.3.   Statements 1, 3. By subtracting the inequality  ˆ  from  ˆˆ  II  we 

get II ˆ over set P. Statement 1 follow from this. 

Statement 2. By subtracting the inequality  ˆ  from II ˆˆ   and multiply this result by -1, we 

get  II ˆ over N, The theorem 1.3 is proved. 

4o. Proof of Theorem 1.7.  Assume N
x is point of the minimum of the objective function J(x).Therefore 

0)( 
N

xJ  because J(x) is continuously and differential, N
x is single point Ni on set X* since this is (see 

Theorem 1.1') 

)()()()(
NN

xJxIxJxI  . 

This means that )]()([inf)( xJxIxJ
X

Ni
 . The function I(x), J(x) are continuously and differential, hence 

0)()( 
NN

xJxI . But 0)( 
N

xJ , therefore 0)( 
N

xI . Theorem 1.7 is proved. 

5o. Proof of Theorem 1.8. By subtracting the inequality N
  from  NN

II    we get N
II  over 

set X*. The Theorem 1.8 is proved. 

6o. Proof of Theorem 1.9.  

Sufficiency. From "1)" of (1.9) we have 

jjiijjii
FIFI   . 

From this and "4)" (1.9) we get IFI
jjii
  . Look it inequality over X*. On X* we have 

0,0 
jjii

F   hence )()( xIxI  . Because *Xx   hence x  is the point of global minimum of I(x) 

on X*. 

Necessity. (Method of designing). Assume that Xx *  exists. Design  (x,y) following way. Take 
*on0 X

i
 and take functions 0, 

ji
  such us  *\)( XXsetonmxJ  . Then we have as 

the result of our design 
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0,0,),(inf)( ***

*





j
Xx

XxxJxJ . 

The theorem 1.9 is proved. 

§2. Method of combining of the extremes. 

  Let us  to have the problems: 

Problem 1    ** ),(inf)( XxxIxI  ; 

Problem  2 XxxxIxJ  )],()(inf[)(  ; 

Problem 3 .),(sup)ˆ( Xxxx    

  Assume that all points xxx ˆ,,*  are exist. 

Theorem 2.1. Let X=X*, then  for every couple )ˆ,(
ii

xx which satisfy the condition ii
xx ˆ  we have  

                                                                   *ˆ
iii

xxx  . 

 Proof . Let ii
xx ˆ  Then 

   )()()()()()()(sup)(inf
iiiiii

xIxxxIxxJxxJ   . 

 But with other side from Theorem 1.2  we have IxxJ inf)(sup)(inf   . That is )()( *xIxI
i
 . As x* 

is point of global minimum and X=X* hence must be only )()( *

ii
xIxI  . As far as i

x  and *

i
x exist we can 

find the point of minimum *

i
x such that *

ii
xx  . Theorem 2.1 is proved. 

Theorem 2.2. Let X=X*.If exist at least one of the couple )ˆ,(
ii

xx  such that 11
x̂x  , then in every point *

i
x

we have 

1) 
iiii

xxxx  ** )2,ˆ . 

Proof.  1. Assume the contrast: *

ii
xx  . Than summarize )ˆ()()()()( **

iiiii
xxxandxIxI     

     we get )()( *

ii
xJxJ  . This contrasts )(inf)( xJxJ

i
 . 

2. Add )ˆ()()()()( **

iiiii
xxxandxJxJ    we get )()( *

ii
xJxJ  , hence 

ii
xx * . Theorem  

    2.2 is proved. 

 

 From Thorems 2.1, 2.2 we have 

Consequence: 
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 If we want to find all points of minimum of Problem 1 it necessary and sufficiently to find all 

corresponding couple )ˆ,(
ii

xx . 

  We shall call the Problems 1 and 2 equivalents if all correspondent points of minimum of these 

Problems are coincided.  

  From Theorem 2.2 we have: 

1. For equivalence of Problems 1, 2 is sufficient  to exist one couple such that 
ii

xx ˆ . 

2. Let exist -functional and although one of couple )ˆ,(
ii

xx  such that 
ii

xx ˆ . 

   Then any points of minimum of Problem 2 and point of maximum of Problem 3 is point of minimum of 

Problem 1, and back, any point of minimum of Problem 1 is point of minimum of Problem 2 and point of 

minimum of Problem 3. 

  Remarks: 

1. If )(inf)(infthen,0)( xIxJx  . 

2. If xx ˆ , then the lower estimate (1.1) in §1 coincide with infinum of the functional I(x). 

  From consequence 1 §2 we have the following 

Algorithm 3. (Method of combining the extremes) 

 Let us take some bounded functional (x,y) where y is an element of the set Y. We solve this problem  

*)],,()(inf[ XxyxxI    

and find the point of minimum 

)(
11

yxx  . 

From  

),(sup yx  

we find  

)(
22

yxx  . 

After this we equate 

    )()(
21

yxyx      (2.1) 

and from this equation of the combination of extreme we find the roots yi.   
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  These roots are the points of minimum for Problem 1: 

)()(
21 ii

yxyxx   

  Since the Problem of finding of minimum is reduced to Problem of finding at least one root of equation 

of the combination of extremes (2.1). 

  The exist and difficulty of finding of roots dipend from chouse of -functional, from freedom of its 

deformation, which give the "y" relation. 

  Note that is differ from the regular method  of finding of minimum. In the usual method  we take 

partial derivatives, equal its zero, get the set equation and from them we find only the stationary 

(extreme) points. They may be points local minimum, maximum, or inflection. By this method we find 

points of global minimum. 

  Thus we find the connect two various (different) problems. 

  The existence of solution in equation of the combination of extremes is sufficient condition for the 

existence of absolute minimum of functional in Problem 1. 

  The mathematic has good achievements in the field of existence of solution of equations. And equation 

(2.1) give connection between these problems and give some opportunity in solving of optimals 

problems. 

 Note also that equation (2.1) not requests that functional was continuous and differential function, 

hence it has wider domain for application. 

 If point of minimum cannot be get in explicit form than we can write this equation in form  

0),(,0),(
21

 yxyx  ,                                           (2.1') 

where function 1, 2 are got from 

),(sup),,(inf yxyxJ
XX
 . 

Example 2.1. Find a point of minimum of functional 

 xxxxI ,122 24  

Solution: Use algorithm 3. Take 

xyx 22  . 

Than 

1)1(2 24  xyxIJ  . 
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Denote x2=w and substitute in J: 

1)1(2 2  WywJ . 

Find point of minimum this functional 

                                              )1(
4

1
,0)1(4 2

1
 yxwywJ

w
 

 and point of maximum functional : 

                                           yxyxxyxx
x

/1,022,2)(
2

2   . 

Equate 
21

to xx  

)1)(2(4,
1

)1(
4

1 223

2

2

2

2

1
 yyyyy

y
yxx  

 This equation has only alone root 2y . Since 
2

11


y
x . 

§3. Remark about -functional 

A) Let us take  
     )(]1)([)( xIxx                                                      (3.1) 

then 

)()()( xxIxJ  . 

  This form of common functional is sometimes more comfortable because we can chouse the 

multiplier to I(x) which make J(x) simpler. 

  Using  our results about -functional for this case we get following: 

If X=X* and we finding the point of global minimum Problem 2: 

     )]()([inf)(inf xxIxJ
XX

                             (3.2) 

than 

1) Set 

},:{ XxIJIJxM   

   contains the point of global minimum of Problem 1; 

2) Set 
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},:{ XxIIIIxN    

contains the better or same solutions than x  (that is over N, we have )()( xIxI  ); 

3) Set 

},:{ XxIJIJxP   

contains the worse or same solutions than x (that is over P, we have )()( xIxI  ). 

 

  All these statement follow from (3.1) and Theorem 1.1. 

Lower estimate (from Theorem 1.3 and (3.1) look as  

    )(supinf)( IJJxI
XX

 .                                           (3.3) 

Condition of equivalence of Problem 1 and 2 (theorem 2.1) in this case (X=X*) is: 

x and x̂ , which are founded from problems  

)]()([sup)(inf
8

xIxJandxJ
XX

 , 

must equal respectively.  

  Algorithm 3 (Method of combining the extremes) is used for this case without change. 

 

B) However for this case we get some new results.  

Let define functional (x,y)  0 over set XY. We call it as -functional. Take functional 

),()(),( yxxIyxJ   

Theorem 3.1. 

Assume X=X*, x is point of global minimum of Problem 2: 

)()(,),(inf xxIJwhereXxxJ  , 

Then: 

1) Set 
}0:{   xP  
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   contains worth or same solutions of  Problem 1 (that is )()( xIxI   over P); 

2) Set  

}0:{   xN  

  contains better or same solution of Problem 1 (that is )()( xIxI   over N); 

3) The point of global minimum is in set }0:{,\   xPwhereXM
o

. 

 

Proof: 1. From inequalities    0,II  we have      1/,/  II . That is II  . 

2. From inequalities   0,II  we get 1/,/  II . That is II  . 

3. Because X=M+P and 0
o

PM , we have 
o

PXM  . Theorem is proved. 

 

Theorem 3.2. Assume 0sup 
X

. Then we have the lower estimation 

    Xon
J

xI
sup

)(  .     (3.4) 

If  Yyforyx
X

 0),(sup  , we have the lower estimate 

   


















X

Y X

J
xI

sup
sup)( .     (3.4)' 

Proof: 1) For written conditions from  II  we got 
X

JIandJI sup//  . 

2) Take this estimate by y, we get expression (3.4)'. 
 

Example 3.1. Find the lower estimate for functional 

     xexxI x 2)1(2 )1cos( . 

Take 

     
2)1(  xe . 
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Then 

     1cos2  xxJ . 

Is it obvious the point of minimum this functional  

    1sup,01,0  
X

x . 

Use the estimate (3.4) we get 0)( xI . But for x = 0 we have I(0) = 0. That way x = 0 is point of global 

minimum. 

§4. Application  - function to the multi-variables nonlinear problems of 

constrained optimization and to problems described by regular differential 

equations. 

A) The first problem is following. Find minimum of functional 
      I=fo(x) ,     (4.1) 

Where x-n-dimensional vector, which satisfy independent equations 

     nmixf
i

 ,...,2,1,0)( .    (4.2) 

Functions f(x) is defended in the open domain n-dimensional vector of space X. The admissible set X* 

separate from X by equations (4.2). 

  Let us take some functional  (x), such that to find 

     *

0
on)]()(inf[ Xxxf  . 

It is easier to solve. 

 Then from solution of Problem 2 in accordance with thorems of §1 we get the following information 

about Problem 1: 

1) The point of global minimum is in set )}()(:{ xxxM   ;  

2) The set }22:{
00

  ffxN  contains better ans same solutions (that is 

Nxfxf on)()(
00

 ); 

3) The set )}()(:{ xxxP    contains worth and same solutions (that is Pxfxf on)()( 00  ; 

4) If  X=X*P, that x is point of global minimum of problem 1 (consequence 3 of §1). 
 

Let us assume we widen the set X*  for simplification of solution. For example, we rejecte the part of 

constrains (4.2). Then we have  

5) If  MX * , than )(xJ  is lower estimation f0(x) on X* (consequence 5, §1). 
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  It is more comfortable some times to take the suitable J(x) at first and find the point minimum of 

problem inf J(x) on X*. 

 Then the corresponding sets will be (from theorem 1.1') 

  }:{ IJIJxM  ,  }:{ IJIJxN  ,  }:{ IJIJxP  . 

If we solve the problem *)(sup)ˆ( XXonxx    we get the additional lower estimate 

    )ˆ()()()(
00

xxxfxf   , 

(theorem 1.3) and set 

  }ˆˆ:{
00

  ffxM ,  }ˆˆ:{
00

ffxN   ,  }ˆˆ:{
00

  ffxP . 

(theorem 1.4). 

  Take series i  we  can get the solution of one from Problems of §1 or to facilitate thesolution of 

Problem 1. 

  The example for case X*=X was over (see Examples 1.1-1.3). Explain by simple examples (how you can 

apply the method -functional for case, when X*X that is problem  with constrains. 

Example 4.1. Find minimum of functional  

0122  yxonxI  . 

Take any admissible point, for example  )(0,1
00

xJandyx   functional as 

 2
01

xxJ  . 

  The point of minimum of this functional is obvious 0
xx  . The set M, containing the point of global 

minimum, is 

  2/32/311,
2

11
 xorxxisthatIJIJ  

 The boundaries of this inequality together with admissible subset (circle) draw on fig.1.3a. We see the 

point of absolute minimum is in left half of circle. 

  Take now the admissible point 0,1
0

 yx  and J-functional in more common case as 

  0,
2

02
 cxxcJ . 

 Then M set is  

122  xccxcx . 
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Take c = 0.5. Then we get 1x  (fig. 1.3b). 

  Set M contain only two admissible point : x1=1 and x2= -1. But point x1=1 from the J1 cannot be the 

point of absolute minimum. Since the point of global minimum is 0,1  yx . 

 

                                

      Fig. 1.3 

 

Example 4.2.  Find the point of global minimum of functional with constrain   

  01ln,1222  xxyyyxxI . 

 Take J functional 

   2
0

2

0
yyxxJ  . 

The set M is separated by inequality 

    axxyyorIJIJ  1212,
00

, 

where 

2

00

2

00
222 yyxxa  . 

  Take the admissible point 0,1
00
 yx . Then 

    









2

1

2

1
:, xyyxM       (Fig.1.4). 

 From drawing we see M is small domain and find the point of global minimum no difficult. 
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    Fig. 1.4,         Fig.1.5. 

 

Example 4.3.  Given functional and constrains is 

yyxyxI  2ln,22  

Take 

   2
0

2

0
yyxxJ  , 

where couple x0, y0 is admissible point. 

  The set N is separated with according Theorem 1.1 by inequality IJIJ  , that is  

      211
2

0

2

0
 yyxx . 

  This is interior of the circle (fig.1.5). 

 Assume that a center of this circle is located in the point A. The set N intersect with admissible curve  ln 

x = y2 - y. If we take a point x0, y0 from this intersection, we will descent along this curve whole the set N 

become by point. This take place in point B, where  the tangent to admissible  curve has the angle  -450 

(because the center of the circle is located from point x0,y0 from  -1, -1, that is the angle +450, (fig. 1.5). 

Any moving from this point will return us to it. 

  May be shown that the point B is the point of global minimum.  

  Take into consideration when we have used the methods of -functional (Chapter 1) we have not used 

in continuously  and differ of functional (4.1) and constancies (4.2) unlike from known methods (for 

example, theory of extreme functions).  

B) Consider how we can apply the methods given in §1 to optimization problems are described by 

regular differential equations. Below we write the statement of problem, which we widely use in future.   

  Assume that the moving of object is described by set of independent differential equations 
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   ].[,,...,2,1),,,( 21 ttTtniuxtfx ii  ,    (4.3) 

where x(t) is n - dimensional continually piece-differential vector-function of the phase coordinates, 

xG(t); u(t) is n - dimensional function which continuous on T except the limited number of point where 

it can have discontinuities of the 1-st form, uU is an independed variable. Boundary values t1, t2 is 

given, x(t1)G(t1), x(t2)G(t2). 

  The aim function is     

   )(),(,),,(),( 2211021
2

1

txxtxxdtuxtfxxFI
t

t
 .  (4.4) 

  Functions F(x1,x2), fi(t,x,u), i = 0,1,…,n are continuous over TGU. Set of continuous, almost  

everywhere differentiable functions x(t)G(t) we denote D. Set of pies-continuous functions x(t)U, we 

denote V. Set of couple x(t), u(t) which satisfy these requirements and almost everywhere comply with 

equations  (4.3) we shall call admissible and denote Q,  Q  DV. 

  Consider the problems: 

a) Find the coiple u*(t), x*(t)D, which give the minimum of function (4.4) (Traditional statement). 

b) Find sup-set N  GUT such that any admissible curve from N we have I(x)  c, where c is constant. 
c) Find the lower estimate of I(x) over Q. 

 

Take the function 
2

1

),,(
t

t
dtuxt , where  (t,x,u) is a definite and continuous function on TGU. 

  Theorem 4.1. Let us assume that F 0 and Problem 2 is solved. That means 

    QuxJuxJ on),(inf),(  , 

where 

      2

1

)],,(),,([ 0

t

t
dtuxtuxtfJ  . 

Then: 

1) Set 

   },22:,,{ 00 TtffuxtN    

   contains the same or better solutions of Problem 1. 

3) Set  

     },:,,{ TtuxtP    
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   contains the same or worse solutions of Problem 1. 

 

Proof: 1. On set Q from N we have 

    dtfdtf
t

t

t

t
)2()2(2

1

2

1
00    . 

Subtract from this inequality following    

    dtfdtf
t

t

t

t
)()(2

1

2

1
00    ,                                                       (4.5) 

we get over Q from N 

dtfdtf
t

t

t

t 
2

1

2

1
00 . 

2. By analogy with above, subtract from inequality  

      dtdt
t

t

t

t 
2

1

2

1

  

the inequality (4.5) we get over Q from P 

dtfdtf
t

t

t

t 
2

1

2

1
00 . 

The Theorem 4.1 is proved. 

  

     Sets N, P not empty. They contain at least one curve from Q. This curve is .)(),( Qtutx   

  If we solve the additional problem 

      
2

1

sup
t

t
Q

dt , 

we get additional information about sets N, P and lower estimate. It is following 

   Theorem 4.2.  Let us assume F  0   and solved the Problem 

    
2

1

on),,(sup
t

t
Qdtuxt . 

Then 

1) Set 

    },ˆˆ:,,{ 00 TtffuxtN    
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 contains the same or better solutions: 

2) Set 

    },ˆˆ:,,{ 0 TtffuxtP    

 contains the same or worse solutions. 

  Here  )(ˆ),(ˆ),ˆ,ˆ,(ˆ
00 tutxuxtff   is curve of extreme  

     
2

1

on)(sup
t

t
Qt .      

Proof: 1. Over Q from N we have 

       2

1

2

1

)ˆˆ()( 00

t

t

t

t
dtfdtf   

Subtract from this inequality the following 

      
2

1

2

1

ˆt

t

t

t
dtdt  , 

we get 

dtfdtf
t

t

t

t 
2

1

2

1
00

ˆ̂
. 

2. By analogy, subtract  dtdt
t

t

t

t 
2

1

2

1

ˆ̂
 from  

     dtfdtf
t

t

t

t
)

ˆ̂ˆ̂
()(2

1

2

1
00     

we get 

      dtfdtf
t

t

t

t 
2

1

2

1
00

ˆ̂
. 

The Theorem 4.2 is proved. 

 

Theorem 4.3. (Lower estimation). 

Assume F  0, the ends of x(t) are fixed,  (t,x,u) is defined and bounded on GUT. 

Then there is lower estimate of Problem 1: 

   dtuxtuxtuxtfuxI
T

)]ˆ,ˆ,(),,(),,([),( 0      (4.6) 
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Proof:  Subtract  T T
dtdt  sup from inequality  

     dtfdtf
T T

)()( 00     

we get (4.6). The theorem 4.3 is proved.  

 

Consequence 1: Couple ux,  is curve of absolute minimum of Problem 1 over set N. 

Consequence 2: If set PTGU (or accessible) than ux,  (or  ux ˆ,ˆ ) is curve of global minimum of 

problem 1 over Q. 

  Similar results we can get for case, when F  0 and ends of x(t) can move. 

Example 4.4. Assume the problem is described by conditions: 

  .0)1(,1)0(,1,,)(
1

0

2   xxuuxdtexI u   

Use the theorem 4.1. Take ue . We get the problem 

   .0)1(,1)0(,1,,
1

0

2   xxuuxdtxI   

Its solution is .10,1,  tutx  

 Find set P:  1,. 1   ueeisThat u . 

 But value u < -1 is not acceptable. Since P is cover all admissible set points t,x,u. That way tx  . 

Is the curve of global minimum (see Consequence 2). 

Example 4.5.  Find of minimum in problem 

  .0)2(,1)0(,1,,)5.0(
2

0

2   xxuuxdtxxI   

We have here undifferentiated function in integral. Known methods us variational calculation or 

principle of maximum are not been used. 

  Change this problem following "good" (easy) problem: 

  0)2(,1)0(,1,,5.0
2

0

2   xxuuxdtxI   

and find 
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     L
tx )(

sup . 

  The solution is shown in Fig. 1.6. 

                                               

     Fig. 1.6. For Example 4.5. 

 

 By according the theorem 4.2  

     }:{ xxxP  , 

that means set P cover all accessible domain. Since abtained, solution is curve of global minimum of 

Problem 1. 

5. Method of  - function in minimizing sequences 
 

A) The sequence {xs} such that  )(inf)( xIxI
s

s 


 on the set X* is named as a minimizing sequence 

(for Problem 1). 
   We must design these sequence in a successive approximation methods and in case, when 

extreme is absent in an allowable (admissible) subset. 

Theorem 5.1. Assume  (x)  0 on X* and there exist sequence {xs}X* such, that 

   XsJxJ s onforinf)(      (5.1) 

Then: 1) *)(inf)( XonxImxI
s

s 


; 

2) Any sequence {xs}X, which satisfy (5.1) or JxI
X

s inf)(  , minimize I(x) on X*, minimize  

   and  J(x) on X. 

 Proof: 1. Because  (x)  0 on X*, we have .infinfisThat).(inf
*

JJxIJ
XXX

  From {xs}X* and 

(5.1) we have that 



39 

 

     IJ
XX *

infinf  .      (5.2) 

That is I(xs)  m. 

2. From (5.1) and (5.2) we have the statement 2 of the theorem. 

3. From mxI
s

s


)(  and (5.2) we have XsJxJ s onforinf)(  . Theorem is  

    proved. 

Remark. The requirement  (x)  0 on X* of the theorem 5.1 we can change by the requirement 

*on0sup
*

X
X

   because from sup   0 on X* we have (x)  0 on X*. 

  Theorem 5.2. Assume there exist the sequence {xs}X* such that 

  *)or(onsup)(and*)or(on)(inf)( XXxXXxJxJ s
s

s  


 (5.3) 

Then this sequence is minimized. 

 

Proof: From  supinf)(thatgetwesup)(andinf)()(  JxIxJxxI ssss . 

Because 

 supinf)(*}{supinf)(  JmxIhaveweXxexistthereandJxI sss . 

Q.E.D. 

Remark: From (1.1) and (1.1') we see that X and X* in (5.3) we can take in any combinations. 

B) Let us consider a case now, when we have both a sequence of elements {xs} and a sequence of 

functions {i (x)}. 

Theorem 5.3. In order that a sequence *}{ Xxs   minimize function I(x) on set X*. It is sufficient 

that there exist a sequence of functions {i (x)} such that 

(1) i (x)  0 over X* for all i; 

(2) There exist numbers i
i

i
X

i qqJq


 lim,inf ; 

(3) J(xs)  q  or  I(xs)  q  if  s  . 

  This theorem may be proved easy, because q = inf I over set X*. 

From theorems 2.1, 2.3 we have next statement: 
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  If there exist one sequence which satisfy theorem 2.3 then any other sequence which belong to set 

X,  Xxs }{ and satisfy the condition I(xs)  q  or J(xs)  q  is minimize for Problem 1. 

Appendix to Chapter 1. 

1. Operations with signs inf and sup. 
  Below there shown the characteristics of signs inf and sup, which can be useful for solution of 

problems. The proof is simply and no given. We assume that are shown constrains have place in 

domain of definition of function. 

.0)(if
)sup(

1

)(

1
inf.4

),(inf)]([inf.3

.0if)(inf)(inf

;0if)(inf)(inf.2

).(inf)](sup[),(sup)](inf[.1











xf
xxf

xfcxfc

constcxfcxcf

constcxfcxcf

xfxfxfxf

 

5. If  )(tx  can have breaks and ))(,( txtf  has integrality then 

    dtxtfdttxtf
t

t
x

t

t
tx

),(inf)](,[inf 2

1

2

1)(
 . 

6. Assume f() is monotone function,  /f  is continuous. Then 

  ,0/)](inf[)]([inf   fifxfxf
X

 

   0/)](sup[)]([inf   fifxfxf
X

. 
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Consequences 

).(supargHere.0)(domainin)(
)(

inf)

).(infargHere.0)(domainin)(
)(

inf)

.)(inf)(inf)

.2/)(if),(inftan)(taninf)

).(inftan)(taninf)

).0(domainin)(supcos)(cosinf)

).5.05.0(domainin)(infsin)(sininf)

.10if,inf

.1if,inf)

.10if),(suplog)(loginf

.1if),(inflog)(loginf)

,)]([inf)(inf)

.0)(if,)]([sup)(inf

,0)(if,)]([inf)(inf

,0)(if,)]([inf)(inf)

variablesingleofFunctions

)(sup)(

)(inf)(

1212

1222

1222

22

tfttfxf
dt

d

dt

xdf
k

tfttfxf
dt

d

dt

xdf
j

xfxfi

xfxfxfh

xfaxfag

xxfxff

xxfxfe

aaa

aaad

axfxf

axfxfc

xfxfb

xfxfxf

xfxfxf

xfxfxfa

t
tt

ttt

xfxf

xfxf

aa

aa

nn

nnn

nnn

nn











































 

.),(inf))(,(inf.4

.ifsignthe31inabovegaveWe

.0)(,0)(if,
)(sup

)(inf

)(

)(
inf.3

.0)(,0)(if)(inf)(inf)]()(inf[.2

).(inf)(inf)]()(inf[.1

variablesingleofFunctionsA.

Estimates

2

1

2

1)(

21

21

2

1

2

1

212121

2121

dtxtfdttxtf

xx

xfxf
xf

xf

xf

xf

xfxfxfxfxfxf

xfxfxfxf

t

t
x

t

t
Qtx
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).),((inf),(),(inf.4

.0)(,0)(if,
)(sup

)(inf

)(

)(
inf.3

.0)(,0)(if)(inf)(inf)]()(inf[.2

).(inf)(inf)]()(inf[.1.1

var.

,

21

2

1

2

1

,

212121

2121

yyxfyxfyxf

yfxf
yf

xf

xf

xf

yfxfyfxfyfxf

yfxfyfxf

iablestwoofFunctionB

yyx

yx

yx

yx









 

2. Exercises for  -  and   - functions 
 

Choosing  - function, find quasi-optimal solutions to precision 5%. 

Indication: Find the lower estimate. Separate subset which contains points of global minimum and take 

quasi-0ptimal solution from it. 

           Examples:    Answers: 

}.31:{

.9.11.02)2(},20:{,1.064.7

.
8

723)0(},05.0:{,32.6

.99.01)0(},02.0:{,14.0.5

.99.01)0(},2.00:{,12.0.4

.99.01)0(},2.00:{,12.0.3

.99.01)0(},02.0:{,12.0.2

.99.01)0(},02.0:{,12.0.1

2

32

1

3 )1(2

2

2

22

28

26

24

2



















xxM

eIxxMexxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

x

m

m

n

 

.99.1
10

1
2)2(},31:{,

10)1(

1.0
64.8

2

2 


 IxxM
x

xxI  

.9.3
11

1
4)1(},21:{,

144

1
52.9

2

2 


 IxxM
xx

xxI  

.9.195.1)2(},13:{,
233

1.0
64.10

234

2 


 IxxM
xxx

xxI  

.9.1
1

1.0
2)1(},13:{,

1.0
32.11

212

2
2 




 e
IxxM

e
xxI

xx
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.98.498.4)1(},1{,
10)1(

2.0
51.12

2

3



 IxM

x
xI  

.
5

1.0
2

6

1.0
2)2(},31:{,

5)1(

1.0
84.13

2

2 


 IxxM
x

xxI  

2

1.0
2

5

1.0
2)2(},31:{,

52

1.0
124.14

2

3 2 


 IxxM
xx

xxI  

9.195.1)2(},13:{,
233

1.0
84.15

3 234

2 


 IxxM
xxx

xxI  

.)(},:{

,0,0,0,0,.16

2

1212

2

22

11

c

d
cxIxxxxxM

mncd
cxx

d
cxxI

m

n








 

.)(},:{

,0,0,0,0,0,0,0,.17

2

1

2

1

2

1
1212

2121

22

11

k

k

k m

k n

c

c
cxIxxxxxM

kkmnccd
cxx

d
cxxI








 

.
10

1.0

11

1.0
0)0(},20:{,

101

1.0
)2(.18 


 IxxM

x
xxI  

.},20:{},:{

,0,0,)(.19

21
c

d
IbxxMbabxxM

cd
cbx

d
axxI








 

20.    .:.11)0(,0:. xIndicationIxxMx
x

x
I    11)0( I . 

21.    1.002.0)01(,18.0:.
1

1
18.1

sin

2 


 IxxMAnswer
e

xxI
x

. 

22.   1.101.10)0(,10.10cos:,
coslg10

1
1.102.02 


 IxxMAnsfer

x
xxI  
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23.   
e

IxxMAnsxexI x

4

1
1010)0(,0:..1042   . 

24.   .)0(,10:..0,ln2 eeIxxMAnsxxx
x

e
I

x

   

25.    00)0,0(,:,..242 2266  IyxyxMAnsyxyxyxI   .   I  

26.    .11)0(,:,..2 222

  IyxyxMAnsyxyxexI y  

27.   .6
1

6)1,1,0(,2:,..6
1

11
2

222
222 

 e
IzyxzxyMAns

e
zyxI

zyx
  

28. Find the minimum from all integer solutions of function  

                                          
.

lg

)1.5)(log5(log
)32( 222

x

xx
xI




 

   Indication. Take as β  the second member in I and consider the in the extended area   x0  . We 

find   3.3432:  xxM .  Calculate I for x = 32, 33, 34 and select better.    

 

Find the lower estimation by using the γ – function. 

29. 
.2,0,0)(..

sin2

)2( *

2

*

2

22





 xxxIAns

x

xx
I

 

30.  .,0)(..)lg1()2( *22 exxIAnsxxI   

31.     .00)0,0(,0,0..)( )( 22

  IMAnseyxI yx  
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Chapter 2 

Methods of α – functions. Estimtions. 

§1. α – functions over arbitrary set. 

A. The special case of  β-function is α-function. It is defined over set Z=X×Y and has the following 
properties: 

      1) There exist subset K Z with projection K on Xi  pr1K = X*. 

       2) 0),(~ yx  on K. 

  Theorem 1.1. Assume ),(~ yx  is  ~ -function and exist the point of global minimum ** Xx  . 

Then the element x  is point of the global minimum of object function I(x) over set X* if and only if 

there exist ),(~ yx  such that: 

1) KyxZyxyxxIyxJ  ,)2;,)],()([inf),(  . 

Proof: As Kyx , , then 0),( yx  and 

)(inf)],()([inf)],(~)([inf),(
*

xIyxxIyxxIyxJ
XKZ

  . 

Q.E.D. 

  One may made vice versa. Define set },,0),(~:,{1 YyXxyxyxK   . Find 111 KprX 

. Then x  is the point of minimum I(x) over X1, if   1, Kyx   . 

   The special case of ~ -function is α-function defined over Z and such that α(x,y) = 0 over X* for all 

.Yy  

  The following theorem is important: 

  Theorem 1.2. Let us assume α(x,y) = 0 over X* for all  Yy and there exist  ** Xx  . 

 The element x  will be the point of global minimum of objective function I(x) over X* if there exist 

function α (x,y) such that 

1)  *)2;,)],()([inf),( XxZyxyxxIyxJ     .      (1.1) 

Proof: As *Xx , then 0),( yx  and 

)(inf)],()([inf)],()([inf),(
*

xIyxxIyxxIyxJ
XXZ

  . 

Q.E.D. 

 If y is not constant, one can use it (the function ),( yx from y) for getting *Xx . 

  Theorem 1.3. ~  and α – functions exist and their number is infinite. 
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  Theotem 1.4. (Estimate). If in (1,1) *Xx , we have a lower estimation of the objective function I(x) 

on X*: 

                               YyallforxIyyxJ  )()),(( . 

  One can get this estimation from 0),( yx  on set X* for all Yy and Principle of Extension1 [5], 

because XX * . 

------------------------- 

1) The Principle of extension state: any extension of set, which you find on a minimum of functional, 
can only decrease on a minimum of an objective function (can only decrease value of a minimum). 
 

  The dependence J(x,y) from y one may use for improving of estimation. In particular, one can take α 

= α(x). Then from theorems 1.2,  1.3 one can get the following consequences: 

  Consequence 1. Assume α(x) = 0  on  X* and exist ** Xx  . Element x  is point of a minimum of the 

objective function I(x) on X* if and only if the exist α(x) such, that 

1)  *)2;)],()([inf)( XxXxyxxIxJ     .      (1.1’) 

Consequence 2. If  IJthenXx
XYX *

infinf,* 


 . 

 

  As far as α-function is the particular case β-function consequently the theorem 1.1 of Chapter 1 is 

right in this case. 

  Theorem 1.5. Assume x  is point of global minimum of Problem 2:  

                                    XxxxIxJ  )],()(inf[)(  . 

   Then: 1) The points of global minimum of Problem 1 are in the set   

                          }:{,**   xMwhereXMM  ;   

             2)  Set  IJIJxNwhereXNN  :,** , contain same or better solution 

that is in N  the object function )()( xIxI   ; 

    3)  Set    :,** xPwhereXPP  contains same or worse solutions  

         (that is )()( xIxI     in P ). 

The same way for this case we can be formulated the Theorem 1.1  

Since the set *X is selected by equal 0)( x  we get from Theorem 1.5 the consequences: 

Consequence 3: If  

.,0)(:3 * PXthenxIfeConsequenc    
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.,0)(:4 * MXthenxIfeConsequenc   

.,0)(:5 *XxthenxIfeConsequenc   

From Theorems 1.2 – 1.4 and Consequence 1 we get Algorithm 4 :   

  We take the bounded of below functional (objective function) defined  on X*Y, find minimal  )(yxx   

of Problem 2: XxI  ,)(inf    or minimal in implicit form 0),( yx . We solve together the 

system equations (combining equations of α- function): XxI  ,)inf(  . Then value x  - root pf this 

system is the absolute minimal of Problem1: XxI  ,)inf(  . 

Algorithm  4’ (solution by choice of αfunction). 

  We take the bounded of below functional α defined on X (or X*Y), Solve the Problem 2: 

XxI  ,)(inf  . If *Xx  , we get minimal  of Problem 1, if *Xx , we get the estimation below 

)()( *xIxJ   of value of the objective function I(x) on set *X and we get the sets M, N, P. 

Comments:  1. If the admissible set *X allocates by functional   0xFi  , you can find the  α  

functional in form    xFx ii   (here i means sum), where  xi  are some function of x. 

2. If the admissible set allocate by functional   0 xj , you can find α – functional in form  

                                                      ,xxx lll   

where  xl  are some function of x , or in form 

                                                             ,xx ll   

where   0x  and it is fulfilled the condition     0 xx ll  on *X . 

3. Assume there is some α –functional and element *Xx such XxxxIxJ  )],()(inf[)(  . 

Then any element *

1 Xx  and is satisfying the condition 

                                                        .,inf1 XxxxIxJ       (1.1”) 

is point of the absolute minimum the functional I(x)  on *X and any point of  the absolute minimum the 

functional I(x)  on *X  satisfy the condition (1.1”). 

   This direct statement follows immediately from condition 1. 

We proof the converse. Since the global minimal *

1 Xx  , it means   01 x  , then  

                                  )]()([inf)(inf 11 *
xxIxJxJxIxI

XX
 .  

Q.E.D. 
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  Thus if it is exist one element which satisfy (1.1) then all rest minimal elements of Problem 1 must 

satisfy it. 

  I illustrate the idea of α-functional the next sample. 

Let us take some function f(x) definite on interval [a, b]. Digital values ],[ ban  are admissible for it. 

We want find the minimum of this function. The addition member (α –functional) do not change f(n) 

in points  n, but deforms f(x) in gaps between n (see fig. 2.1). 

                                                 

                                                                         Fig. 2.1. 

If α – functional is “good”, then .)(inf)]()([inf
],[],[

xfxxf
baxbax 

  If in addition nx  , then we get 

the minimum of Problem 1. 

  Remark: There are different ways to solve problems by the α-functional: 

a) You can take the known function as α-functional. 

b) You can take α-functional as unknown function and find it together with the point of minimum. 

c) You can take α-functional as function α = α(x,y) where α is known function but y = y(x) is unknown 

function of x. You must find it together with the point of minimum. 

 Let us consider the example. We take as example the non-good the functional which is difficult to solve 

by conventional method. 

 

  Example 1.1. Find the minimum of function 

)2.1(...},2,1,0:5.0{
)cos)(sincos(sin

cossincossinsin

)1(4

1.444 *

33

3245

22

22










 nnxXin

xxxx

xxxxx

xx

xx
I 





 

It is difficult to apply the known methods here because the functional is defined on digital set. The 

current methods offer only the calculation of all *Xx . But number of *X equals infinity and 

calculation may be meaningless. 

  Let us to solve this example by the offered method. Take α(x)  in form 

      .
)cos)(sincos(sin

cos2sin5.0

)1(4

1.444
3322

22

xxxx

xx

xx

xx














  



50 

 

 You can see that α(x) = 0 in *X because for x = 0.5πn  .0sin2sin,...,2,1,0  nxn   

Let us to create the general functional 

.
)cos)(sincos(sin

cos2sin5.0cossincossinsin

)1(4

1.444
33

3245

22

22

xxxx

xxxxxxx

xx

xx
IJ














  

   Here the variable x is uninterrupted and - ∞ < x < ∞ (set X) 

   The additive α(x) allows to change the functional (1.2) to simple form 

.sin1
)2(4

1.0

)coscossin)(sincos(sin

sin)cossin1)(cos(sin

)1(4

1.444
22222

22

22

22

x
xxxxxxx

xxxxx

xx

xx
J 



























This general functional is simple. His minimum may be found the conventional method of theory the 

function one variable.  Here x  = - π/2 , *Xx  for 025.1,1  In . Consequently, that is absolute 

minimum (and sole) of initial functional (1.2). 

  We can apply an analogical method for finding of minimum on x the next functional 

,...}.2,1,0:5.0{,1.05.0)cos(coscos22cos2cos5.0cos *2 2

  nnxXexxxI x 

Here φ is given, x is digital. Let us take  2sin2sin5.0 x . After this we can change our functional J 

= I +  α  to simple form:  xeJ x 2sin1.0
2

  . The point of absolute minimum this task (Problem 2) is 

x = 0 . This point is in allowable set *X  for 0n . That means 0n  is point of the absolute minimum 

od the initial Problem 1. 

  The reader can think: if the allowable numerical set is limited we can use the conventional Lagrange’s 

method [7]. Let us show: that is not correct. 

   Example 1.2. Find minimum of functional: 

                               }3,0{3 *23  xxXonxxxI .    (1.3) 

 Let us to write the Lagrange’s function  

                                   )3(23 21

23  xxxxxF  ,  

where 21 ,   are LaGrange’s factors. Find the first derivative   

                                           21

2 263   xxF  . 

Substitute to here x = 0 , x = 3 and write the  equations .0)3(,0)0(  FF  We find from these 

equations 21 ,  . Find the second deviation .66  xF  When x = 0 the function .06)0( F  

When x = 3 the function .012)3( F  Consequently x = 0 is the point of maximum, x = 3 is the point 

of minimum. Let us check up. Substitute x = 0 and x = 3 in (1.3). We find I(0) = 0, I(3) = 6 . 

We see the LaGrange’s method gives the opposed result: it declare the point of minimum as the point of 

maximum, but the point of maximum as the point of minimum. In here it is violate one condition of 

LaGrange’s method: The number of additional equations is more of number of variables. This example is 

shows: this violation for LaGrange’s method is unacceptable. 
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   Let us to solve this example by the offered method. Take the α(x) in form 

                                                   α = x(x-3)(2/3-x) . 

Then 

    03/4,0,03/4),3/2)(3(23 *23  JXxxJxxxxxxIJ  . 

From Consequence 1 the point 0x is absolute minimum of functional (1.3). That shows the method of  

α – functional has more application then the the LaGrande’s method. 

 

  Example 1.3. Find minimum of integral 

             }400,...,2,1:10{)10tg(ln
310

3*3  


 nnaXondttI

a

       (1.4) 

Here the interval of integration is discrete. The direct search is difficult because integral (1.4) cannot be 

presented by simple function and it not have of tabulations.   

  Let us to find α-functional in form:  a36 10sin10  . You see on *X  the function α(x) = 0. Further 

          

.10sin
2sin

2

,2504/,010cos1010ln

,10sin10)10(ln

3

*333'

10

363

3

a
a

J

nforXxaatgJ

adtttgIJ

a

a





 











  (1.5) 

As 4.010 3  x , then J  > 0 into this interval. That means the root is single and 250n  is point of 

the absolute minimum. 

  Analogically we find the minimum of other integral which cannot be presented in simple functions 

               }105.1...,,1,0:10{]10)[sin( 33*

0

53    nnaXondttI
a

 . (1.6) 

Here is .1000;10sin10sin10 383   na  

Example 1.4 . Find the minimum of integral 

      }...,2,1,0:10{20
cos 3

2/

3  







  nnaXondta

t

at
I





.   (1.7) 

 Here the under integral function is discrete. The integral from this function cannot be presented as 

elementary functions. 

  Let us take    IJa ,10sin10 323 . Then  

aaaa
a

adtaatIJ aaa











34

3

2/

4'''

102sin1020
4

sin
4

3
sin

2

102sin102)40sin(



 





      (1.8) 
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  This derivative not exist for *0 Xa  .                         

)00(;0,0;0,0  aforJorJaforJaFor  . 

Consequently 0n  is point of absolute minimum. 

 

B) Consider the case when the point of optimum ** Xx  not exist, but exist the sequence such that 




n

n mxI )(lim . This sequence is named the minimizing sequence (see §5 of Ch.1). 

Similarly point A we can show that consequence 1 can be generalized in this case. 

Consequence 1’. Let us α(x) = 0 only on X*, For minimizing sequence  Xxn}{ is necessary and 

sufficient the existing of function α(x) such that 

                                  .)],()(inf[)]()([lim XxxxIxI nn
n




   (1.9) 

The sufficiency of this consequence is same the lemma in [2] and J(x) = L in [2]. 

   We can generalize remark 3 of item 1 in this case: If exist α function and one sequence  Xxn}{

which satisfy (1.9), then the any sequence  Xxn}{  which satisfy (1.9) is the minimizing sequence. 

And on the contrary any the minimizing seuence satisfy the condition (1.9).                                              

  2.  α – function in Banach space. 

Let us to apply Theorem 1.2 to optimal problem is described in Banach space by equation 

                                ,)(,)(,,),( 221121 xtxxtxtttuxf
dt

dx
    (1.10) 

where x, f(x,u) – element complete  linear normed space X1 and X2 respectively and  

TtttXX  ],[, 2112
 is segment of real axis. 

  Let us name the permissible control the measurable limited function (in term [1], p.85)with value 

Uu , where U is set in arbitrary topological space. In particular the set U may be metric, closed and 

limited. Let us assume that for any control u(t)the equation (1.10) has single solution x(t) with 
1)( Xtx   

for almost all ],[ 21 ttt , where x(t) is continuous almost everywhere differentiable on function on 

],[ 21 ttt . 

  Operator f(x,u) is defined on the direct product X×U . One is continuous and bounded.  Boundary 

conditions are given t1, t2, x(t1) = x1, x(t2) = x2. 

  State the problem: Find the admissible control which transfers the system from given initial state in 

given final state with function  
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2

1

),(0

t

t
dtyxfI

     (1.11) 

has a minimum. 

    Let us the set of the measurable functions u (t) is denoted V: set of the continuous, almost 

everywhere differentiable on (t1,t2) the functions x (t) is denoted D. Set of couple x(t), u(t) having named 

over properties and almost all satisfied the equation (1.10), we name admissible and denote Q. It is 

obvious  .VDQ   

    Assume ),( xt  is the some unequivocal continuous differential function defined on X×T . We 

name it the characteristic function . We will find the α – function in form 

                                        dxuxfx
t

t
x )],([

2

1

        (1.12) 

Here 
x

x






 is particular deviation of Freshe. One is linear function. The * is  sign of composition. 

Obvious that request of α-function is performed.  

  Compose the generalized function I = J + α and produce the function txx     we get 

                    BdtdtfftxttxtJ xt

t

t
1201122 )()](,[)](,[

2

1

     ,   (1.13) 

where ffB xt   0 . Because the set Q is different from the set D×V only that couple x(t), u(t) 

satisfy almost every where (1.10). For α-function in form (1.12) with according of Theorem 1.2 we can 

the initial Problem 1 (find the minimum (1.11) on Q) replace the Problem 2 – find minimum (1.13) on the 

broader set  D×V. In this set the x(t), u(t) not bind  the equation (1.10). So we have 

                                         dtuxtBJ
t

tVtuDtx





2

1

),,(inf
)(,)(

12  .    (1.14) 

  Theorem 1.6. If function )(tu getting from solution of problem dtB
t

tVtuDtx




2

1

inf
)(,)(

  is Vtu )( ,   

that it is same almost everywhere the function getting from solution the problem  dtB
t

t

Vtu
Dtx





2

1

inf

)(
,)(

  and  

                                           BdtdtB
t

t VuDtx

t

tVtuDtx





2

1

2

1

infinfinf
)()(,)(

         (1.15)  

Proof. Assume the contrary: )(inf)( *
uBuB

Uu

  on subset of interval [t1, t2] with measure not equal 

zero. In this case dtuBdtuBuBuB
t

t

t

t
)()(i.e.)()(

2

1

2

1

**

  on the subset. This contradict: the 

function )(* tu made the minimum for integral ,
2

1

dtB
t

t   
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From requirement (1.14) and Theorem 1.6 we have 

                                       dtuxtBJ
t

t VuDtx





2

1

),,(infinf
)(

12      (1.16) 

If function )](),([ tutx  is such that absolute minimum of Problem (1.16): Qtutx )(),(


, then 

ααaccording to Theorem 1.1 functions )(),( tutx  are absolute minimum of the initial Problem. 

   So, we proofed  

  Theorem 1.7. To couple function were the absolute minimum the function I ,  it is sufficient the 

existing the characteristic function  ),( xt  such that  

QtutxdtuxtBdtuxtBuxtBuxtB
t

tDtx

t

tUu

 


)(),()3;),,(inf),,()2;),,(inf),,()1
2

1

2

1 )(


;   (1.17) 

In particular, if take htp )( , where p(t) is linear function 
1Xh , then from item 1 and 

stationary condition item 2 [1.17] we get 

                                       
x

H
xpuxtHuxtH

Uu 






)(,),,(supsup),,(  ,   (1.18) 

where ).,(),()( 0 uxfuxftpH   Assumed xH  /  is Frechet derivative, which is continuous.As 

we see the necessary condition of Problem 2 following from (1.17) is same the necessary condition 

of Pontriagin principe of maximum generalized in Banach spaces. 

 

3. Design of  α-function for allowable subset of two function connected by logical conditions 

  Assume two functions F1(x) and F2(x) are refinished on the set X. Allowable are only points xX and 

functions F1 and F2 which are connected the logical conditions. Assume F1(x) = 0 is “true” and F2(x) ≠ 0 

is “false’. The five main logical connections (↔, y, v, ʌ, ~)   ( ,,,,  y ~) are presented in next 

tables: 

 F1 F2 F1↔F2 

  t   t      t 

  t   f      f 

  f   t      f 

  f   f      t 
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Double implication 

F1 F2 F1 y F2 

  t   t      f 

  t   f      t 

  f   t      t 

  f   f      f 

disjunction in the exclusive sense 

                                                  

F1 F2 F1 ѵ F2 

  t   t      t 

  t   f      t 

  f   t      t 

  f   f      f 

disjunction in the sense of a non-exclusive 

 

F1 F2 F1 ʌ F2 

  t   t      t 

  t   f      f 

  f   t      f 

  f   f      t 

Conjunction 

 

F p 

t f 

f t 

Denial  
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We will use the symbol:  

,01sign

,00sign

,01sign







FifF

FifF

FifF

 

In this case the α-function we can search in form: 

                           

|],sign|1[()},(~)(:{)5

,)},()(:{)4

,)},()(:{)3

|],)(sign|1[)},()(:{)2

|],)(sign|1)[()},()(:{)1

21

221121

2121

2

2

2

1221121

21221121

FpxFxFxX

FpFpxFxFxX

FpFxFxFxX

FFpFFpxFyxFxX

FFFpFpxFxFxX































 

Here p, p1, p2 are some function x . 

It is using these five connections we can create all other complex logic statements. 

 

        §2. The general principle of reciprocity the optimization problems 

 

  Let us suppose we want to solve the optimal problem Ch.1 §4 p.4 : 

                                            mixfxfI i ,...,2,1,0)(,)(0  ,   (2.1) 

Design general function in form 

                                                   





ni

i ii xfyxJ
0 ,

)(),(  ,     (2.2) 

where λi(x,y) arbitrary functions of x, y. 

  Assume )(yx  is absolute minimum (2.2) on X. 

The general principle of reciprocity the optimization problems 

 1. For any Yy the point of an absolute minimum  of the function J (2.2) is the point of the absolute 

minimum any function 

                               )forsumno(,...,1.0,)().( jmjxfyx jj    ,  (2.3) 

for limits in form 

               )forsumno(,,,...,1,0,))(()),((),( ijimiyxfyyxyx iii   .  (2.4) 
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Any numbers of equality (2.4) you can change by non-equalities   

                                        ))(()),((),( yxfyyxyx iii   .    (2.5) 

  2. For any Yy the point of the absolute minimum of the function J (2.2) is point of the absolute 

minimum any sum the functions 

                                                   )(),( xfyx
j

jj      (2.3)’ 

for restrictions absent in sum (2.3) 

               )forsumno(,,,...,1,0,)(()),((),( ijimiyxfyyxyx iii   .  (2.4)’ 

Any numbers of equality (2.4)’ you can change by non-equalities  (2.5). 

  Proof.  

  1) For any function (2.3) for conditions (2.4) the Theorem 1.2 is made. The point )(yx  is point of its 

absolute minimum. As every function reaches the global minimum, obvious, the change equality (2.4) by 

restrictions (2.5) not influence to minimum. The point 2 is proofed similarly. Principle is proved. 

Consequence 1.   

Magnitude )),(( yyxJ  is the lower estimation of any function from (2.3), (2.3)’ if part or all equalities 

(2.4), (2.4)’ change equalities in form 

                                                     0)(),( xfyx ii      (2.6) 

Consequence 2.  In case corresponded (2.6) the absolute minimum of any functions (2.3) are located 

in set 

                   ))(()),((()(),(:{)( 11 yxfyyxxfyxxyM i

m

ji
i ii

m

ji
i ij 





     (2.7) 

Consequence 3. If possible the solution of Problem (2.1) by Algorithm 4, there are y such that 

                                                  )forsumno(0)(()),((( iyxfyyx ii    (2.8) 

  From the existence of solutions (2.1) follows that 0)( xfi . So ii f  is minimum, than (2.8) is 

obvious. 

       §3. Applications α-function to well-known Problems of optimization 

1. Problem the searching of conditional extreme the function of the limited number variables. 

 It is given 
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                                     nmixfxfI i  ,...,2,1,0)(,)(0    (3.1) 

Here x is  n-dimensional vector given in some numerical open region of n-dimensional space X*.  

Let us take the α-function in form 

                                           mixfxp ii ,...,2,1,)()(      (3.2) 

(repeated indexes means summarization). Here pi(x)  are functions x, given on X:  

                                      .},0|)(|:{ *

1

* XXxfxX
m

i i   
   

Let us to design generalized functional )()()( 0 xxfxJ  take some pi(x) and sole the problem  

.,)(inf XxxJ  From this solution the Problem 2, according Theorems §1, we can get the following 

information about Problem 1: 

1) If  xXx than,  is absolute minimum of Problem 1 (consequence 1, §1).   

2) If   Xx , then:  

    a) )(xJ  is the lower estimation of function fo(x) on X* (Theorem 1.4). 

    b) For  xx 0)(  is located in set )}()(:{ xxxP   (consequence 3, §1). 

    c) For  xx 0)(  is located in set )}()(:{ xxxM   (consequence 4, §1). 

   d) Set   XNN where }22:{ 00   ffxN  contains the equal or worse solutions  

       (Theorem 1.5). 

  As we see even if  Xx our computation is useful. We received the lower estimation and narrow the 

region for searching of the optimal solution. Take row of αi we can get the solution one of the Problems 

a, b, c, d or facilitate the solution of Problem a (see Ch, 1, §1). 

   Look your attention: the offered method does not require continuity and differentiability of the 

functions f0(x), fi(x) in contrast to the classical method of Lagrange multipliers. The method can be 

applied to non analitical function, for example, to the functions definished on the discret set and 

extremal problems of the combinatorics (see Ch. 10).  

2. Application the Theorems §1 to optimal problems described the conventional 
differential equations. 

 
Assume the moving of object is described by system of the differential equations 

                                     ,],[,,...,2,1,),,( 21 ttTtniuxtfx ii     (3.3) 
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where x(t) –n-dimensional continuous piecewise differentiable function, x ϵ G(t) ; u(t) – r-dimensional 

functions continuous everywhere on T, except limited number of points  where one can have 

discontinuity of the first kind  u ϵ U(t). Boundary values t1, t2 are given, x(t1), x(t2) ϵ R.     

  Optimal function is 

                                  
.)(),(,),,(),( 2211021

2

1

txxtxxdtuxtfxxFI
t

t
 

   (3.4) 

  Functions F(x1,x2), fi(x,u,t), i = 0,1,…,n are continuous, F(x1,x2)>- ∞.  Set of the continuous almost 

everywhere differentiable functions x(t)  with x ϵ G(t) we designate D. Set of the piecewise continuous 

(they can have the discontinuity of the first kind) functions u(t) such that u ϵ U(t) we designate V. 

Couple x(t), u(t) have named over properties and almost everywhere satisfy the equations (3.3) we 

name allowable and designate Q, VDQ  .    

  Enter in our research n single-valued functions λi(t.x)  i = 1,2,…,n. which are continuous and have 

continuous derivatives  on TG. Let us to take the α-function in form 

                                                 
dtuxtfxxt i

t

t
i )],,()[,(

2

1

  
      (3.5) 

 It is obvious α = 0 on Q. Let us design the general function J = I + α , integer the term 
ii x by part and 

exclude 
ix by (3.3). We get 

                                    
dt

t
xf

x
xfxFJ i

iii

i

j

j

t

t

t

tii ])([|
2

1

2

1 0








 







   (3.6) 

Designate  

                                  

t
xf

x
xfBxFa i

iii

i

j

j

t

tii














 )(,| 0

2

1

 

Apply to (3.6) Consequence 1 §1. Here the Q is X* and DxV is X (see Consequence 1 §1). Since now the 

couple of functions x(t), u(t) from DxV (having ends in R for condition 

)(),(,)(,)( 2211 txxtxxVtuDtx  ) are not connected by the equations (3.3) we can write  

                                        
 


2

121

2

1 ,,
infinf)(inf

t

t UuGxRxx

t

tVD
BdtABdtA

 

and final 

                                                       
 


2

121 ,,
infinf

t

t UuGxRxx
BdtAJ

    (3.7) 
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So we proofed the Theorem 3.1: 

The couple vector-function )(),( tutx  will be point of absolute minimum of function (3.4) if it is exist 

n differentiable λi(t,x) such that: 

                                   QuxAABB
RxxUuGx




,)3,inf)2,inf)1
21 ,,

  (3.8) 

 Note: That is sufficient condition only. That cannot be a necessary condition because we don’t know 

advance about an existence of λ(t,x).  

  From (3.8) it is follow: if we find  at least one solution of an equation in particular derivations  having 

n-unknown functions λi(t,x) : 

                                              
,0])([inf 0 











 t
x

x
xf i

ii

i

j

j
Uu




     (3.9) 

for boundary condition A = const, than points 1, 2 of the Theorem 3.1 will be executed. Any 

unsuccessful λi(t,x) (if Qtutx )(),( ) with according Theorem 1.4 gives the lower estimation of the 

global minimum.   

   Assume, for example, 0nx *. Substitute them in (3.7), we get the result published in work [2]**,  

(condition Bellman-Pikone): 

                                       
,),,(supinf

2

12211 ,,

dtuxtRJ
x

x UuGxGxGx





       (3.10) 

 Here ., 0
2

1
BffRF ixt

t

t i
   

--------------------------------- 

* This limitation is not important becouse any 0ix  in [t1,t2]. 

** Note: in given method (in difference from [2]) not request a priory assamption about existing the  

     single potensial function φ(t,x) such that φxi = λi. 

  Sometimes it is more comfortable take function φ(t,x)   

or in other terms (see [4]) ψ(t,x). Then A, B are written: 

                                            
tix ffBFA

i
  012 ,  ,   (3.11) 

    And Theorema 3.1 is same with [2], (see also [3]). 

   Function α for given task wecan define also the next way. Take some function ψ(t,x). Than                      

 
2

1

)],,([
t

t
ix dtuxtfx

i


 

Integrate but parts the first member we get 
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2

1

)(|21
t

t
tix dtf

i


 

Note: 1. Theorema 3.1 is corrected and in notations (3.8) p.1: 

.infinf
2

1

2

1 )(  


t

t UuBtx

t

t
BdtBdt

 

This form is offered in [4]. Difference between these forms is important in consideration the second 

variation, conditions in angle points and in some other cases. Let us takethe last corrected form of V. 

Krotov optimization [8] (problem of speed): 

   Example 3.1. Find minimum t2 in task: 

.0)(,1)0(,1||,, 2

2

1

  txxuuxdtI
t

t
  

 

Fig.2.2. 

If we take φ = 0, we get R = -1. Consequently
ux

R
,

sup  is reached in ANY curve, for example, u = - 0.01 (I = 

100). In case whem min forward integral for ψ = 0 we have 

                                                      
.)]([infinf 2

)()(

2

1

txtdt
Btx

t

tDtx 


 

Since the set all serves with bounded derivative 1|| x  for x(0) = 1 located between lines x = t – 1, x  = 

- t+1 (Fig. 2.2), we get .11,1 min,1  tIandutx  

Notes: 1. As set B we can take a set {x(t)} with bounded derivative }:),,({ UuuxtfXx iii  . This 

narrowing can help in finding of optimal solution. 

2. Note 3 §1 in given case has the following view: If exist the function ψ(t,x) and  at list one allowable 

couple )(),( tutx , satisfying (3.8). That any other couple satisfying (3.8) is minimum of problem 1 and 

any allowable minimum the problem 1 satisfy p.1, 2 (3.8). 

3. If t1, t2 are not fixed, we can show that point 1, 2 (3.8) are: 
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AABB
RxxttUuGx 2121 ,,,,

inf)2,0inf)1  

We can satisfy the condition inf B = 0, if we take ψ = φ(t,x) + yn+1  and 

                                         
tixn ffy

i
  01

 . 

4) Theorem 3.1 is particular case of more common theorem 2.1 considered in  Chapter Ш. 

 

  Assume we take some λi(t,x) (or ψ(t,x)). 

 

Theorem 3.2. Assume F = 0 and solved the problem B
ux ,

inf . That: 

1) Set },:,,{ 00 TtfBfBuxtN   contains same and better solutions of Problem 1; 

2) Set  },:,,{ 00 TtfBfBuxtP   contains same and worse solutions of Problem 1. 

Proof: 1) Deduct BB  from inequality  
00 fBfB  . We get                    

dtfdtfTff
TT   0000 i.e.,on  . 

2) Deduct BB  from inequality  
00 fBfB  . We get                    

dtfdtfTff
TT   0000 i.e.,on .  Theorem is prooved (QED). 

Let us take instead function (3.4) simpler function dtuxtB
T

),,(1
 (here B1 is given function). Than 

Theorem 3.3. Assume F = 0 and solved the problem QdtuxtBJ
T

on),,(inf 11  . Than: 

3) Set },:,,{ 0101 TtfBfBuxtN   contains the same and better solutions of Problem 1; 

4) Set  },:,,{ 0101 TtfBfBuxtP   contains the same and worse solutions of Problem 1. 

Proof: 1) From N we have the inequality dtfBdtBf
TT

)()( 0110  
. Deduct from this inequality 

the inequality dtBdtB
TT   11

. We get  dtfdtf
TT   00

 . 

2) From P  we have the inequality   
dtfBdtfB

T
)()( 0!01  

. Deduct 
  dtBdtB

T
11

 from this 

inequality. We get dtfdtf
TT   00

. Theorem is prooved (QED). 

Сonsequence. If set P cover the set UGT  (or reachability set) and uxQux ,then,,  are 

absolute minimum of Problem 1. 
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 Note. Delete part equation (3.1) or (3.2) [in case (3.2) xi correspoded deleted equations became the 

control in the rest equations]. Then getten solution is the low estimation of initial Problem as it is follow 

from principle of expension [5]: )(),(where),,(),(and)()( tutxuxIuxIxIxI  are absolute 

minimum “truncated” task. 

  When right parts of equations (3.3), (3.4) do not depent clearly from x(t), we can stand out not only set 

N,P but the set M. It is correct the following theorema 

  Theorem 3.4. Assume 0F , ends  x(t) is free, the right parts of equations (3.3), (3.4) depent only 

from t, u , i.e.: fi = fi(t,u)  i = 0,1,…,n. and solved task ),(inf 1
,

utB
ux

. Than: 

1) Set },:,{ 0101 TtfBfButM   contains the absolute minimum of Problem 1; 

2) Set  },:,{ 0101 TtfBfButN   contains the same and better solutions of Problem 1; 

3) Set  },:,,{ 0101 TtfBfBuxtP   contains the same and worse solutions of Problem1. 

  Proof for sets N, P full equally with the proof of Theorem 3.2. Proof for M follows from discontinuity  

u(t) and depends the right parts of equation only from u. 

                  3. Task the dynamic programming of Bellman  

     Assume there is physical system S. The control of this system separated in m steps. On every i step we 

have the control Ui. Using this control  we transver  our system from allowable stand Si-1 getted in (I - 1) 

step  in new allowable stand  Si = Si(Si-1, Ui). This transwer is bounded by some conditions. The purpose is 

minimum function 

                                                             




n

k

kwW
1

 

Let us to biuld the common function 

                                 
miwWWJ

n

k

kiii ,...,2,1,where,
1

 



 . 

In this case we can change the task of the conditional minimum inf Wi in the task of direct minimum  

i
V

Jinf . If the limitations are absent or they allow the select Uk in every step to make with associated 

conditions, then from α = 0 in the admisseble elements we get the Bellman equation [6]. 

                              .,...,2,1},,({min)( 11 miUSWSW iii
U

ii
i

 
  

3. Application α-function for solution the problems with distributed    
                                            parameters 

Let us consider about absolute minimum the Problem with distributed parameners 
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                                           ))((),,(),( 0 xFdtuxtfuxI
P

 
,     (3.12) 

where ),...,,(),,...,,(),,...,,( 212121 rnm uuuuxxxxtttt   are elements of vector space T, X, U * 

respectively. P is closed area in space T, bounded continuous piecewise smooth, fixed hypersurface S. 

On S the t = τ. P* is internal part this area, functions xi(t) on P are absolute-continious, uα(t) are 

measurable on P and have velues from area U, which can be closed and bounded. 

  Functions x(t), u(t) satisfy almost everywhere the system n.m independed differensial equetions with 

particulal deviations  

                         
mjniuxtf

t

x i

j

j

i ,...,2,1;,...,2,1),,,( 


     (3.13) 

  Funsions 
0, ff i

j
are continiouly together with its particular derivitives the first order. The function x(t), 

u(t) we name allowable if they satisfy the named above conditions (set Q). 

 Statement og Problem: Find couple function u(t), x(t), which give the function I (3.12) the minimal value. 

  Add to system (3.13) the integrability condision: 

                           
.;,...,2,1,;,...2,1,0 jkmkjni

t

f

t

f

j

i

ki

k

i

j












   (3.14) 

Not difficult to calculate, that number of difficalt equation (3.14) may be 

mnmeimnm )1(5.0,...,2,1..,)1(5.0    (number of combinations )2 nCm
. For simplicity we will 

assume: all functions φγ in (3.14) contain u and these u may be find from (3.14) Assume the number of 

independed equations (3.14) are less r. 

  Let us lead to consider m-dimentional function ψ(t,x) = {ψ1,ψ2,…,ψm}. The components of this function 

ψj(t,x)   j = 1,2,…,m  are continious and have the continuous partial derivatives almost everywhere in T. 

Name this function – charasteric function. Let us lead also the integrable vector-function  

)(),...,(),( 21 ttt p . 

  Let us take α- function in form 

                           dtfdtnx i

j
P

j

x

j

t

j

S

j

ij
)(),cos(),( 

  
,   (3.15) 

Where n is outer normal to surface S, dτ  is element surface S. We present the function J = I + α in form    


  

i

j
s

j

x

j

t

jj

P
ffBdtnxAwhereBdtAJ

ii0,),cos(),(, . (3.16) 
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Theorem 3.5. Assume .)( Vtu   In order to couple u(t), x(t) will be the absolute minimum the purpose 

function (3.12) it is sufficiently* exicting of α-fuction (3.15) such that  

  QtutxBAuxtBB
xUux




)(),()3,inf)2),,,(inf)1
)(, 

.    (3.17) 

 The proof is identical [2] №7, but in difference  from [2] the theorem 3.5 contain the integrability 

condition. 

  If JQtutx than,)(),(  is the lower estimation the function (3.12). 

  If exist the functions ψ, λ and  at least one pair )(),( tutx satisfying (3.17), then any other pair 

satisfying (3.17) is minimum of the function (3.12) and any allowable minimum the function  (3,12) is 

satisfying the points 1, 2 (3.17) (consicvently remark 3 §1). The set contains the same or better solution, 

then )(),( tutx is  

                               UPonfBuxtfuxtBuxtN  }),,(),,(:,,{ 00
, 

 Assume, functions ),,(),,,( uxtuxtf i

j

  are continuous and differentiable. Let us take ψj in form ψj = 

pij(t)xi. Let us denote: 

                             ),,(),,(),,()( 0 uxtuxtfuxtftpH ijij


 . 

 Then p.1 (3.17) of theorem 3.4 we can rewrite: HuH
Uu

 sup)(  and nessusary condition of minimum 

(stationarity condition) following  from p.2 (3.17) gives: 

                                     
.,...,2,1,0 ni

x

H

t

p

x

B

ii

ij

i














     (3.18) 

 

                                    §4. Inverse substitution method 
 

    A. From previous paragraph we have: if we know the minimum any function on acceptable set, we can 

get information about solution the Problem 1 and solve one from Problem a, b, c, g the §1. 

  It is known , that the most direct Problems inf f0(x)  on X* or 


2

1
0inf

t

t
dtf

   

on Q  (i.e. finding  the minimum  of main Problem) are difficult or do not have the satisfaction solution. 

However, if purpose function is not in advance definished, the solution for this non-definished purpse is 

finding easy. This is not suprising. In mathematics it has long been known that many inverse problems 

are solved more easily than direct problems. An example, let us consider the problem of finding the 

roots of an algebraic equation.  In the general case for n> 5 it is solved with difficulty and her decision 
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(roots) not to be expressed in terms radicals.  If the roots are given, then the corresponding algebraic 

equation may be found easy.  On the basis of this idea below it is given  method to build function for 

which an admissible element would be the point of absolute minimum on an admissible set.  Since we 

thus have to solve a problem back to the original problem (not find the minimum given function, but 

find the function for given the minmum  or for fiven field). This method is called the method of 

reverse lookup. The method is presented for two cases: problems of the theory of extrema of 

functions of a finite numbers of variables ( p.B) and optimization problems described by ordinary 

differential equations (p.C). 

B. Let us consider usial Problem of minimum the function of finite variables 
   nmixfxfI i  ,...,2,1,0)(),(0

.     (4.1) 

 Let us convert this Problem. Select m componets x and name them main (base). Suppose for 

definiteness that this is the first components m of the vector x. The rest of components n - m = r denote 

uj  (j = 1,2,…,r).  

Rganthe Problem (4.1) we can re-write 

nmiuxfuxfI i  ,...,2,1,0),(),,(0
.    (4.2) 

where x – m - dimentional vector, Xx , u – r - dimentional vector, Uu . 

  Let us take more simple purpos function J1(x,u) and find it’s the absolute minimum  on UX  . This 

solution may be used for building  of sets M, N, P:                           

                    

)5.4(.}:,{

)4.4(,}:,{

)3.4(,}:,{

0101

0101

0101

fJfJuxP

fJfJuxN

fJfJuxM





    

 Desandvantage this method is next: the some of these sets can di not have the admissible 

elements (i.e. x, u satisfacting  fi = 0).    

  Assume, the limitations 0),( uxf i
 in (4.2) may be solved abou x: 

                    miiuxx ii ,...,2,1),(   (4.6) 

and Xx for any Uu .  

  Assume we take simple function J1(x,u). Substitute in it’s the (4.6) and find uuuxJ
U

),),((inf 1
, and 

(4.6) x . This solution is analog (4.3)-(4.5). One may be used for finding sets M, N, P. The intersection of 

these sets with admissible set is not empty. You can take  J1(x,y,u), than  )( yuu  . You can use 

the dependance of M, N, P from y for changing the “size” of these sets. It is clear assesment  
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                                      ])),(()),(([supinf 1 uuxIuuxJ
uy

  . 

C.  In point 2 §3 we considered the optimization Problem described by conventional differencial 

equations   

                          
.,,...,2,1),,,(,),,(

2

1
0 UuniuxtfxdtuxtfI i

t

t
      (4.7)  

We was shown: if we take some function ψ(t,x)  and find  minimum of B
ux ,

inf  in (t1, t2) and A
xx 21 ,

inf , we 

get the  minimum of Problem 1 or the its lower estimation. 

   Statement of the Problem. Let us to state the Problem 1 the other way: the find the function which 

matches  the  function ψ(t.x) and minimum of this function of the admissible set.   

   Note. Let us note: the offered statement very different from the back problem of variation calculation. 

In variation calculation, the back problem states next: we have a curve. Find the function, which gives 

the minimum in this curve. In common case this problem is more difficult then a direct problem.  

 In our case the minimum curve not given. We find it by given function ψ(t,x). 

  Theorem 4.1.  The minimum function corresponding function ψ(t,x) is 

                          
dtuxtfdtxtBJ

t

t
tix

Uu

t

t i
]),,([inf),(

2

1

2

1
11  




   .   (4.8) 

And correcponding to it the minimum curve is given by equations 

                                ,,...,2,1)],,.(,,[ nixtuxtfx txii i
      (4.9) 

where ),,,( txi
xtuu   we find from (4.8). 

Proof. Write the expression B (see (3.11)) for problem (4.7) and check up condition (3.8) of theorem 3.1: 

                         ]),,(),([infinf)( 2
,

2 tix
ux

uxtfxtBtB
i

  .    (4.10) 

Obviosly, the (4.10) identically equals zero for ψ = ψ(t,x) from (4.8) and ux, satisfacting (4.7). If we take 

as x(t2) the value x(t), received from (4.9) for t2, then the point 2 (3.8) disappear and all condition (3.8) of 

theorem is executed. Theorem is prooved. 

  Consequence. If ),(01 xtfB  , then x(t) getting from (4.10) give the set of the minimal curves for 

boundary condition ψ2 = ψ. In particulary, if the end of curve x(t) from (4.9) match with given boundary 

conditions, that this curve is minimum curve of Problem 1. 

  Note. Boundary conditions in the left end can always be performed. For it we must start the intgration 

from the given conditions (4.9). We can perform the boundary condition in the right end the next 

method. Take in form ψ(t,x,c) where c – n – dimentional constant. Substitute ψ(t,x,c) in (4.9) and select c 

such that to perform the given end condition in the right end. 
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  Getting numerical function may be used for receiving the set N, P of Theorem 3.3 : 

                     

.givenis),()],,,,(,,[where

},:,{},:,{

00

01011010

xtxtuxtff

fBfBxtPBfBfxtN

tx 

  

If we find  

                                   
dtBfJ

t

t x
)(inf 1012

2

1

 
 , 

We get also the lower estimation. 

  Memo, the assignment ψ(t,x) gives us not single nometical function and its point of minimum. One 

gives a set of minimums satisfaction the boundary conditions ψ2 – ψ1 = c.  

  Note: We can take ψ(t,x,y). Then B1(t,x,y). If we can select such )(ty  that ),(),,( 01 xtfyxtB  and 

boundary conditions is perfomed, then ),,( yxtu  is the optimal synthesis of Problem 1. 

D.  We also show: how you can find the numerical function for given the syntes of control u = u(t,x). 

Equate the given u = u(t,x) to the control findedfrom (4.8). We get the equation in particular derivities 

                                                 ),,,(),( txi
xtuxtu  .    (4.11) 

Substitute its solution ψ(t,x) and given u(t,x) in (4.8), we find the numerical corresponding function. If B1 

= f0(t,x) that is synthesis the Problem 1 for the bounded condition ψ2 = ψ. 

  Possible the other method . We take u = u(t,x,y). Substitute its in (4.8). Then B1 = B1(t,x,c,y). We can try 

using y to reach the identify 
10 Bf   and using c to minimize the nymerical function I. 

  Example 4.1. Let us consider the task of design the regulator 

                                               

)14.4(,0)(,)0(

)13.4(,0,

)12.4(,

,

2

1





 

ioii

jiji

ji

t

t
ij

xxx

tuxax

dtxxbI



 

where f0 = bijxixj  is the positive definite form. 

  Take u  = cixi, where ci are constants. Let us to search ψ as the quadratic form ψ = Aijxixj  with unknown 

coefficients. Equate :0 f      

                                        ).( jjjijiijjiij xcxaxAxxb   

  Let us equate coefficient in same xi, xj in left and right of this equation. We get the set n(n+1)/2 the 

linear inhomogenius equations having the same number of unknown  Aij. If the determinant of this 



69 

 

system 0 , we find  Aij. We substitute 0f  in (4.12), integrate and find ),0(),( ccI   or 

using (4.14)  I = - ψ(xio,c). When we find minimum of this expression for c,we get the optimal syntes.If 

),( cx is the positive definite form then this function is the Lyapunov function (because 0  and 

the regulator is assimptotic stable. 

 

                 §5.  Method of combining extrema in problems of constrained minimum. 

   We will show in this paragraph that method combining extrema, considered in  §2 the Chapter 1, it is 

apply in tasks of theory the functions of a finite number of variables (point A) and tasks described  the 

conventional difference equations. 

A) Let us again consider the Problem of the theory the functions of a finite number of variables 
                             .,...,2,1,0)(),(0 mixfxfI i     (5.1) 

Write the numerical function 

                                     )(),()(),( 10 xcxxfcxJ   ,   (5.2) 

Here α1(x) is α – function, c is n – dimentional constant. 

  From condition 

                                                       ),(inf
*

cxJ
Xx

,     (5.3) 

  we find .0),( )1(

1 cx  

  From condition  

                                     )](),([sup),( 2
*

xcxcx
Xx

 


,    (5.4) 

we find .0),( )2(

2 cx  Solve equations φ1, φ2 together with (5.1) (cjmbining equations): 

                          0),( )1(

1 cx ,  0),( )2(

2 cx ,  x(1) = x(2) ,    (5.5) 

we receive the absolite minimum  the Problem 1. The edditive β(x,c) selectes so that tasks (5.3), (5.4) 

are solved easier. 

 For example, ., 21 iiii ff   Functions fi(x),  i = 0,1, …,n are  continious and difference , 

the functions J(x,c), Φ(x,c) have single minimum and maximum for any c.  That  we have system (3n + 

2m) equations with same numbers of unknown magnitudes  α(1), α(2), c, λ, ν. 

Example is not include. 

B)  Let us to consider the task, described the conventional different equations: 
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22110 )(,)(,,,...,2,1),,,(,),,(
2

1

xtxxtxUuniuxtfxdtuxtfI ii

t

t
    ,         (5.9) 

  Take ψ in form )1()1()1( )( ii tp   and create the function  

          )1()1()1()1()1()1()1()1()1(

01 ),,,( iiiiii xpHxpfpzuxtfB    . 

Here z(t) is r – dimentinal function. One can have the limited gaps the first type. 

  From 
1

,
inf B

ux

and (5.9) we find 

                ).,,(),,,,(, )1()1()1()1()1()1()1()1()1( uxtfxzpxtuuHp x      (5.10) 

  Take )2()2()2(

ii xp and create the function 

                    )2()2()2()2()2()2()2()2()2(

2 ),,,( iiiiii xpHxpfpzuxtB    . 

 From 
2

,
inf B

ux

and (5.9) we find 

               ).,,(),,,,(, )2()2()2()2()2()2()2()2()2( uxtfxzpxtuuHp x      (5.11) 

Using the combining equation: )2()1()2()1( , uuxx  we get final: 

     ),,,(),,,(,,),,,( )2()2()1()1()2()2()1()1()1( zpxtuzpxtuHpHpuxtfx xx   ,  (5.12) 

That is system 3n + r equations with 3n + r unknown x, p(1), p(2), z . Last equation in (5.12) is the 

combining equation. The additive function β selecting so that the solution task of finding  inf and sup 

were simpler. 

      §6. Generalizing the Theorem 3.1 in case the brocken ψ(t,x). 

Theorem 6.1. Assume there is numerical function ψ(t,x) defined on set GT   , bounded below, 

piecewise differentiable and piecewise continuous. The function ψ(t,x) and its derivatives can have the 

breaks the first types on the limited set 1,...,2,1),,(  ksxtss
 zero measure. This function is such 

that there is: 

.)(),()4,0inf)3

,1,...,2,1,,),(inf)2),(inf)1 '

1

'

1
,

QtutxB

ksttttF

TG

kkssss
xt

ok
R ss












  

 Then ux, (are got from points 1 -3) is the absolute minimum the Problem 1.  

  Here 

ss  ,  are value ψ in left and right side (along )(tx ) of the breaks the function ψ and its 

derivatives. 
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Proof: From poins 1 – 3 we have 

                     
BdtFJ

k

s

t

t ux
ss

k

s
xt

k
R

s

ss














1

0
,

1

1
,

0

1

inf)(inf)(inf 
 . 

 On feasible cirves (from Q)  the J convert in function 


2

1
0

t

t
dtfFI

. In this case if we apply the 

consequence 4 , §1, point 4 of the theorem statement is obviously. Theorem is prooved. 

 Note. The conditions 3 of Therem 6.1 is sometimes difficult to check up. In this case the requirements 

2 - 3 of theorem 6.1 we can change the damage 

                                      
]infinf)(inf[inf

1

1
BdtBdt

s

s
UG

s

s UG
ss

xts





 

 
 . 

One must be checked up in every point  ts,  s = 1,2,…,k-1.     

§7. Optimization the problems described the conventional differential 

equations having the limitations. 

  We find minimum A, B in Theorem 3.1, chapter II on the corresponding sets  R and GU  . The most 

widely method of separating the feasible sets is the separation of them from more widely set by 

equilities and inequilities. In this case, we can solve our problem by the methods the α- and β-

functions.  

  Let us shortly consider  the most common cases. 

                                1. Limitations are the equilities 

a) Assume the admissible set R is separated by equilities: 

                                      nlixxgi 2,...,2,1,0),( 21  .    (7.1) 

Then the task inf A we can change the task  

                                   )],(),,([inf 2121
, 21

xxgzxxA iii
xx

  .    (7.2) 

Here µi is known functins, z is l-dimentional unknown vector. In particulary, we can take µi = zi. 

  b) Assime the admissible set GU   is separated by equilities  

                                      rliuxti  ,...,2,1,0),,( .    (7.3) 
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Assume, we can find from (7.3) the l component the vector u. Than the problem  B
UG

inf  we can change 

the problem 

                                 )],,(),,([inf
,

uxtwxtB ii
ux

 ,     (7.4) 

Where λi are known function, wi is l - dimantional unknown vector function. In particular, we can take  

λi = wi . 

c) Assume the admisseble set G is separated by the equilities 

                                       rlixti  ,...,2,1,0),( .    (7.5) 

Differenciate (7.5) full case for t and find 

                     
nli

t
uxtf

x
uxt i

j

j

i
i 









 ,...,2,1,0),,(),,()1( 


.  (7.6) 

 If in system (7.6) there is equations do not contain u, we differenciate them next time and so on 

whole we get the the system where all l eqution contain u. Assume we can find all l components from 

this system (l < r). 

  Than the problem (7.5) is redused to the tasks the point a, b in which (7.6) is (7.3), but (7.5) and all 

equtions (7.6) not contain u, are (7.1). 

                        2. Limitations are inequalities. (excerpt) 

a) Feasible set R is allocated by inequalities: 

                                                 .,...,2,1,0),( 21 lixxgi   

Then acording the Teorem 1.4 Chapter 1 we change the problem A
R

inf  by problem (7.2) with the 

additional conditions: 

                               )sumnotishere(0,0 ig iii      (7.7) 

b) Feasible set GU   is allocated by inequalities: 

                                              .,...,2,1,0),,( liuxti      (7.8) 

All inequalities contain u. Then the task B
GU

inf we change the task (7.4) wuth conditions 

                               )sumnotishere(0,0 iiii      (7.9) 

Example 7.1. Assume in task  
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,,...,2,1),,,(,),,(
2

1
0 niuxtfxdtuxtfI ii

t

t
    

Control u is scalar, the feasible set U limited inaquility )(, babua  . Compose (7.4): 

                                         .)]()([inf 21 aubuB
U

   

According (7.9) on feasible u: .0)(,0)( 21  aubu   That way we have 

                              .inf)]()([inf
21 ,

21 BaubuB
Uuuu 

   

In right side we have one condition the Pontryagin method. 

 

(Part of the text are missing) 

=====================================================   

……. 

=====================================================  

                   

            §10.  Note on the equivalence of different forms of variational problems 

 

A) In §3 the next problem of minimization was considered   

                                      
2

1

),,(),( 021

t

t
dtuxtfxxFI ,                                            (10.1) 

on solution of equations 

                                           .,...,2,1),,,( niuxtfx ii                                            (10.2) 

  In the theoretical analysis for the sake of simplicity, we often assume that in (3.1) 

.00 0  forF  

 We show that it does not restrict the generality of our reasoning.  

Take                                         


2

1

),,(0

t

t
dtuxtfI

 

And differentiate it for the variable upper limite t and designate .01 fxn 
 We get the task 

                                  .,),( 0111 fxfxtxI niin  
     (10.3) 

B) Assume ).,( 21 xxFI   Differenciate it by t and integrate, we get numerial function  

             
dtfFI i

t

t
xi

)(
2

1


      (10.4) 
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We can same way to convert (10.1) in (10.4) and in (10.3). 

C) Let us to assume the (10.1) and (10.2) depend from constants ck which must be optimal. Designate 

ck = xi+k and add to (3.3) equation 0knx . We reduced the task having the optimising constants to 

conventional task. 

  In practice it is camfortable to solve the problema (10.1), (10.2) with constant parameters. Than to 

change them (for example the gradient method) so, the function (3.1) decreases. 

D)  The problem with fi (t,x,u) which obviously depend from t , we can reduse to problem fi (x,u) do not 

depend obviously from t , if to designate t = xn+1 and add to (10.1) the equation 11 nx . 

C) Let us to show how the task with the mooving ends t1 and t2 we can reduse the task with fix interval 
of integrate. Take the new variable t = cτ. Than task (10.1),(10.2) having variables t1 or t2 was 
redused in task with fix interval (τ1,τ2): 
                                        

,),,(,),,(
2

1
0 uxccfxduxcfFI i

t

t
  

 

where the touch means the derivative for τ. The constant c > 0 is selected from minimum I. 

 

                                                Application to Chapter II. 

1. Theorem 3.1 and known methods of solution the problem described the 
ordinary differential equations. 

 

From Theorem 3.1 we can to get the conditions which are same with known algorithms of optimal 

control, for example: Pontriagin principle *1+, Bellman equation *6+, classicaд calculus of vatiation [7], 

  Let us to request additional that function f, ψ have the need continious derivatives. 

a) Pontriagin principle. According [2] take ψ(t,x) in form ψ = pi(t)Δxi , where pi(t) are some 

differenciable functions t, .iii xxx  Create the Hamiltonian 

),,(),,( 0 uxtfuxtfpH ii  .    (1) 

Then B = - H - pixi . Necessary condition of the minimum B for x, which follows from p.1 (3.8) of Theorem 

3.1 (stationarity condition) is 

.,...,2,1,0 niHpB
ii xix      (2) 

Moreover of claim 1 (3.8) we have 
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HHuxtBuxtB
UuUuUu 

 sup)(infor),,(inf),,(    (3) 

Terms and conditions (2), (3) together with (3.3) coincide with the corresponding terms and conditions 

of the Maximum principle* [1]. 

b) Belman equation. Assume  0nx . Take all λi = 0  i = 1,2,…,n-1 with exeption  
nn xxt /),(  . 

Sabstitute them in (3.9) §3, we get the known Belman equation [6] 

0)(inf 0 


tix
Uu

ff
i

      (4) 

Boundary condition for them is A = const. Solution of this equation is the field of all optimal trajectories. 

c) Classical calculus of variation. From claims 1, 2 Theorem 3.1 easy to get the conditions of a relative 

minimum coinciding with the relevant terms of the calculus of variations [7]. 

  Let us assune U is the open area, )(),( tutx are continiosly, fi(t,xu) have continious partial deriveties up 

the third order. Take ψ = pi(t)Δxi . From (3) that at minimum 

                                      ,,..,2,1,0),,(),,( riuxtHuxtB
ii uu      (5) 

Equtions (2),(4) equal the conventional Eiler-Lagrange equations [7] §2 p.1. From [3] also follow 

                                       .,...,2,1,,0 rjiuuH jiuu ji
       (6) 

That matches with Klebs condition. 

 

(Itanslation of the Chapter 2 is not finished) 

===================================================================== 

………  

====================================================================== 
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                                                            Attachment  1 

Chapter 4A from book “Non-Rocket Space Launch and Flight”, by Alexander Bolonkin, Elsevier, 2007. 488 

pgs.  ISBN-13: 978-0-08044-731-5,  ISBN-10: 0-080-44731-7 . pp.383-422 

Optimal Trajectories of Air and Space Vehicles 

                                                                 Summary 
 

  The author has developed a theory on optimal trajectories for air vehicles with variable wing 

areas and with conventional wings.  He applied a new theory of singular optimal solutions and 

obtained in many cases the optimal flight. The wing drag of a variable area wing does not depend 

on air speed and air density.  At first glance the results may seem strange, however, this is the 

case and this chapter will show how the new theory may be used.  The equations that follow 

enable computations of the optimal control and optimal trajectories of subsonic aircraft with 

pistons, jets, and rocket engines, supersonic aircraft, winged bombs with and without engines, 

hypersonic warheads, and missiles with wings.  

    The main idea of the research is to use the vehicle’s kinetic energy to increase the range of 

missiles and projectiles. 

    The author shows that the range of a ballistic warhead can be increased 3–4 times if an 

optimal wing is added to it, especially a wing with variable area. If we do not need increased 

range, the head mass of rockets can be increased. The range of large gun shells can also be 

increased 3–9 times. The range of an aircraft may be improved by 3–15% or more. 

    The results can be used for the design of aircraft, space ship, head of rockets, missiles, flying 

apparatus and shells for large guns. 

------------------------------------------- 

Key words: Methods of optimizatiom, optimization, optimal control, aviation, space ships. 

Nomenclature (in metric system) 

a – the speed of sound, m/s,  

a1, b1, a2, b2 – coefficients of  exponential atmosphere,  

CL – lift coefficient,  

CD – drag coefficient,   

CDo – drag coefficient for CL = 0,  

CDW  – wave wing drag coefficient when   = 0,  

CDb  – body drag coefficient,  

c – relative thickness of a wing,  
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cb – relative thickness of a body, 

c1 – relative thickness of a vehicle body, 

cs – fuel consumption, kg/s/ kg thrust,  

D  – drag of vehicle, N, 

D – drag of vehicle without , N, 

D0W – wave wing drag when  = 0, N, 

D0b – drag of a vehicle body, N, 

H – Hamiltonian, 

h – altitude, m, 

K = CL/CD  – the wing efficiency coefficient, 

 k1, k2, k3 – vehicle average aerodynamic efficiencies for sub-distances 1, 2, 3 respectively, 

 L – range,   

M = V/a  – Mach number, 

m – mass of vehicle, kg, 

p = m/S  –  load on a square meter of wing,  

q=V
2
/2  – a dynamic air pressure,  

R – aircraft range or R = distance from flight vehicle to Earth center;  

R = Ro + h, where Ro = 6378 km is Earth radius,   

t– time,  

T = eV  – thrust,  N, 

V – vehicle speed, m/s, 

Ve – speed of throw back mass (air for propeller engine, jet for jet and rocket engine), m/s, 

S – wing area, m2, 

s – length of trajectory, 

T – engine thrust, N,  

Y – lift force, N, 

 – wing attack angle,  

 – fuel consumption,  
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  – angle between the vehicle velocity and the horizon,  

  – thrust angle between thrust and velocity,  

E – Earth angle speed, 

E – lesser angle between the Earth’s Polar axis and a perpendicular to a flight plate,  

 – air density. kg/m3. 

Introduction 
 

  The topic of the optimal flight of air vehicles is very important. There are numerous 

articles and books about the optimal trajectories of rockets, missiles, and aircraft. The 

classical research of this topic is by Miele1. Unfortunately, the optimal theory of this 

problem is very complex. In most cases, the researchers obtained complex equations, that 

allow one to compute a single optimal trajectory for a given aircraft and for given 

conditions, but the structure of optimal flight is not clear and simple formulas of optimal 

control (which depend only on flight conditions) are absent.  
    The author’s new theory of singular optimal solutions, developed earlier

2–14
, does not contain 

unknown coefficients or variables as previous theories have. He found that the optimal flight 

path depends only on the flight conditions and the addition of certain variable wing structures.  

    In conclusion, the author applies his solution to ballistic missiles, warheads, flying bombs, large gun 

shells, and subsonic, supersonic, and hypersonic aircraft with rocket, turbo-jet, and propeller engines. 

He shows that the range of these air vehicles can be increased 3–9 times. 

1. General equations  

 
Let us consider the movement of an air vehicle given the following conditions: (1) The vehicle moves in a 

plane containing the Earth’s center. (2) The vehicle design allows the wing area to be changed (this will 

prove important in the remainder of this chapter). (3) We ignore the centrifugal force from the Earth’s 

rotation (it is less then 1%). (4) Earth has a curvature.  

  Then the equations for flying vehicle (in a system of coordinates where the center of the system is 

located at the center of gravity of the flying vehicle, the x-axis is in the direction of flight, the y-axis is 

perpendicular to the x- axis, Fig. A4.1) are 
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Fig. A4.1 Vehicle forces and coordinate system. 
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        (A4.1)–(A4.2) 
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g
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hVDVhT

dt

dV

EE
 (A4.3) – (A4.5) 

    All values are in the metric system and all angles are taken to be in radians. 

Flight with a small change of vehicle mass and flight path angle  

 

 Most air vehicles fly at an angle  in the range 15o (  =   0.2618 rad), with the engine located along 

the velocity vector. This means  

sin  = ,    cos  = 1 ,  = 0 ,    (A4.6) – (A4.8) 

because sin15o = 0.25882, cos15o = 0.9659. 

    Let as substitute (A4.6) – (A4.8) into (A4.1) – (A4.5) 
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,

,

V
dt

dh

V
dt

dL





                 (A4.9) – (A4.10) 

,cos2
),,(

,
),,(),(

EE
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V

V

g

mV

hVY

dt

d

g
m

hVDVhT

dt

dV














                (A4.11) – (A4.12) 

,
dt

dm
         (A4.13) 

where 

max  .     (A4.14) 

    Many air vehicles fly with a low angular speed of d/dt. The change of mass is also low in flight. This 

means m = const, dm/dt  0. 

    d/dt   0,   dm/dt  = 0 .   (A4.15) – (A4.16) 

Let us take a new independent variable s = length of trajectory  

dt = ds/V,             (A4.17) 

and substitute  (A4.14)-(A4.17) in (A4.9)-(A4.13). Then system (A4.9)-(A4.13) takes the form 

.cos2
),,(

0

,
),,(),(

,

,1

EE
R

V

V

g

mV

hVY

V

g

mV

hVDVhT

ds

dV

ds

dh

ds

dL




















    (A4.18) – (A4.21) 

Let us re-write equation (A4.21) in the form 

.0cos2),,(
2

 EEmV
R

mV
mghVY      (A4.22) 

If we ignore the last element, equation (A4.22) takes the form  
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0),,(
2


R

mV
mghVY  .                        (A4.22)’ 

    If V is not very large (V <  3 km/s), the two last elements in equation (A4.21) are small and they may be 

ignored. Equations (A4.22) and (A4.22)’ can be used for deleting  from D . 

    Note the new drag without  is 

D=D(h,V).      (A4.23) 

If we substitute  from (A4.22) into equation (A4.20) the equation system take the form 

,
),(),(

,

,1





V

g

mV

hVDVhT

ds

dV

ds

dh

ds

dL










     (A4.24) – (A4.26) 

Here the variable  is new control limited by 

     max  .     (A4.27) 

 

                                                          Statement of the problem 

 Consider the problem: finding the maximum range of an air vehicle described by equations (A4.24) – 

(A4.26) for the limitation (A4.27). This problem may be solved using conventional methods. However, it 

is a non-linear problem but contains the linear control, which means the problem has a singular 

solution. To find this singular solution, we will use methods developed previously2, 4. 

    Write the Hamiltonian (for purpose – minimum of time): 












  g

m

DT

V
H

1
1 21

 ,   (A4.28) 

where )(),( 21 ss  are unknown multipliers. Application of the conventional method gives 
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  (A24.29) – (A4.31) 

Where '''' ,,, vhvh TTDD  denote the first partial derivatives of D, T by h, V respectively.  

    The last equation shows that the control  can have only two values max. We consider the singular 

case when  

       A = 021 
V

g
 .    (A4.32) 

This equation has two unknown variables 1 and 2 and does not contain information about the control 

.    Let us to differentiate equation (A4.32) for the independent variable s. After substitution the 

equations (A4.26), (A4.29), (A4.30), and (A4.32) into the result of differentiation , we obtain the relation 

for 1  0, 2 0 

   VVhh DTgDTV      (A4.33) 

    This equation does not contain  either, but it contains the important relation between the variables 

V and h on the optimal trajectory.  

If we have the formulas (or graphs) 

D = D(h,V),      (A5.34) 

T = T(h,V),      (A4.35) 

we could find the relation 

h = h(V)      (A4.36) 

and the optimal trajectory for a given air vehicle. 

    This also gives important information about the structure of the optimal solution. Investigation 

of  equation (A4.33) shows that the equation has one solution in each of the subsonic, 

supersonic, and hypersonic fields. The equation can have two solutions for a transonic field.  

 

    This means the optimal trajectory in most cases has three parts (see Fig. A4.2): 
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a) When climbing and in flight a vehicle moves from the initial point A with the angle  max up to 

the optimal curve (A4.36), then continues along the optimal curve (A4.36) and moves with at an 

angle  max  to point B.    

b) When descending and in flight (Fig. A4.3) a vehicle moves from the initial point A with the angle 

 max (up or down) to the optimal curve (A4.36), then continues down the optimal curve 

(A4.36), and moves at an angle  max (up or down) to the point B.   

 

 

 

 

 

                                                                           

 

 

Fig. A4.2.. Optimal trajectory for air vehicle climb and flight. 

 

 

 

 

 

 

Fig. A4.3. Optimal trajectory for air vehicle descent and flight. 

    The selection of direction (up or down, with max  or  – max respectively) depends only on the position 

of the initial and end points A and B.                      

    For air vehicles with rocket engines T = const, equation (A4.33) has a very simple form 

     Vh DgDV   .     (A4.37) 

    The same form (same curve) also applies for a ballistic warhead, which does not have engine thrust 

(after its short initial burn)  (T = 0). 
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If we want to find an equation for the control , we continue to differentiate equation (A4.33) with the 

independent variable s, and substitute into the equations (A4.25), (A4.26), (A4.29), (A4.30), (A4.32), and 

(A4.33). We obtain the relation for   if 1  0, 2 0 

     ,
)(

21

1














B
V

g
BmV

DTB
          (A4.38) 

where 

.)()(

,)()()(

2

1

hVhVhhhh

VVVVhVhVhh

DTgDTVB

DTgDTVDTB




          (A4.39)–(A4.40) 

    Here signs in form "

hVD  are the second partial derivates D for h, V. 

Vh

D
DhV






2

 .    (A4.41) 

    If the thrust does not depend on h, V  (T = const) or no engine (T = 0), the equation for   becames 

simpler 

.
)([

)]()[(
2

hhhVV

hVhVV

DVDDggm

DTDVDDg




     (A4.42) 

    In accordance with other publications2–8 (e,g, equation (4.2)4) the necessary condition for optimal 

trajectory is 

.0)1(
2

2





























H

ds

d
k

k
k

     (A4.43) 

where k = 1. 

    To obtain results for different forms of the drags and thrusts, we must take formulas (or 

graphs) for subsonic, transonic, supersonic, or hypersonic speed, and specific formulas for the 

thrust and substitute them in the equation (A4.33) and (A4.38). Consider two cases: subsonic and 

hypersonic speeds. 

Subsonic speed (V < 270 m/s) and different engines.  

Lift, drag, and derivative equations for subsonic speed are 
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(A4.44) 

  where ,,
2

24.6 2









 


  magnitude   2/ is an induced drag coefficient,  = l2/S, l is a wing 

span.  

    It is known in conventional aerodynamics that the coefficient of flight efficiency k is 

Do

Do
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DoD

L

C
k

C
obtainwekfrom

CC

C
k












 2
,max, max2




 . (A4.45) 

a) Aircraft with rocket engine. For this aircraft the thrust T is constant or 0. Equation (A4.33) has 
form (A4.37). Find the partial derivatives 

.0,0  hV TT      (A4.46) 

    Substituting (A4.44) to (A4.46) in (A4.37) we obtain the relation between air density , altitude h, and 

aircraft speed V: 






 1

12
ln,,

2 a
bh

S

m
p

CV

gp

Do

     ,   (A4.47) 

where p = m/S  is the load on a square meter of wing. For a diapason of h = 0–11 km the coefficients a1 = 

1.225, b1 = 9086.  

    Results of this computation are presented in Fig. A4.4. 

b) Aircraft with turbo-jet engine. The thrust for this engine is  

 .0,,
10

0  Vh T
b

T
TTT




    (A4.48) 

Substitute (A4.48) in (A4.33). We obtain 

 hVVh DVDg
V

b
TorDgD

b

T
V 








 1

1

,   (A4.48)’ 

and substituting (A4.44) and (A4.48) in (A4.33), we obtain 
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  .  (A4.49) 

We can then find , h from (A4.49) 
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  (A4.50) 

Results of computation for the different p, T = 0.8 N/kg, a1 = 1.225, b1 = 9086 are presented in Fig. A4.5. 

 

Fig. A4.4. Air vehicle altitude versus speed for wing load p = 400, 500, 600, 700 kg/m2 and a rocket 

engine. 
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Fig. A4.5. Air vehicle altitude versus speed for wing load p = 400, 500, 600, 700 kg/m2, turbo-jet engine, 

and relative thrust 0.8 N/kg vehicle. 

 

c) Piston and turbo engines with propeller. All current propeller engines have propellers with 

variable pitch. The propeller coefficient efficiency, , approximately is constant. The thrust of this engine 
is 

,,,
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               (A4.51) 

where N0 = Ne,   Ne  is engine power at h = 0. 

    Substituting (A4.44) in (A4.33). We obtain the equation for thrust  

1

2

1

1

)(

gbV

DVDgVb
TorD

V

T
gD

b

T
V hV

Vh





















  .        (A4.51)’ 

Substitute (A4.44) and (A4.51) in (A4.33). We obtain 
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     (A4.52) 

We can then find , h from (A4.52) 
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Results of computation for CDo = 0.025,  = 10, for different values of p, N are presented in Fig. A4.6.  
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Fig. A4.6. Air vehicle range versus speed for wing load p = 250, 300, 350, 400 kg/m2, piston (propeller) 

engine, and relative engine power 100 W/kg vehicle. 

 

Hypersonic speed (1 km/s < V < 7 km/s). 

 

The lift and drag forces in hypersonic flight are approximately (see (A4.22)’) 
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  (A4.55) 

The derivatives of D by V, h are 
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a) Rocket engine or hypersonic glider. The derivatives from T = const and T = 0 are 

.0,0  hV TT      

 (A4.57) 

Substituting (A4.55) in (A4.56), and expressions (A4.56) and (A4.57) in (A4.37) to find , h, we obtain for 

h  > 11,000 m 
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where a2  =  0.365, b2  =  6997 are coefficients of the exponent atmosphere for the stratosphere at 11 to 

60 km. 

    If we ignore the small term 
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where CDW   4c. If we ignore the term gb2 (for M > 3), then  
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  .     (A4.59) 

In the limit as R  in (2-54), we find 

DoCaV

pg 




2
  .     (A4.59)’ 

    Here optDoC  /  is an optimal (maximum CL/CD) wing attack angle of the horizontal flight.  

Results of the computation in (A4.58) are presented in Fig. A4.7. 



90 

 

 

Fig. A4.7. Optimal vehicle altitude versus speed for specific body load Pb = 3, 5, 7, 10 ton/m2, body drag 

coefficient Cb = 0.02, wing drag coefficient Cd  =  0.025, wing load p = 600 kg/m2. 

 

b) Ramjet engine. The thrust of the jet engine is approximately (M < 4) 

2

2

2

,
2

,
b

T
T

V

T
TVT hV 




  ,   (A4.60) 

where  is a numerical coefficient, 2 is the air density at the lower end of the selected atmospheric 

diapason (in our case 11 km). 

    Substituting (A4.60) and (A4.56) in our main equation (A4.33), by repeat reasoning we can obtain the 

equation for the given engine 
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    (A4.61) 

where T0 is taken at the lower end of the exponent atmospheric diapason (in our case 11 km). The curve 

of air density versus altitude h is computed similarly to (A4.58).  

Optimal wing area 
The lift force and drag of any wing may be written as 

),,(,),,( 2 SqDDSqYmgY   .               (A4.62) 
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Substituting  (A4.62) in (A4.28) and finding the minimum H versus S, we obtain the equation 

,0,0  SDDorSDD SS     (A4.63) 

where  is the value found from the first equation (A4.62). Equation (A4.63) is the general equation for 

the optimal wing area and optimal specific load p = m/S on a wing area. 

a) Subsonic speed.   Lift force and drag of the subsonic wing are 
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  , (A4.62)’ 

where q = V2/2 is a dynamic air pressure for subsonic speed.   

    Substituting the last equation in (A4.62) into the first equation in (A4.63), we obtain the optimal 

specific load on the wing area 
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Substituting  from (A4.62)’ into the last equation in (A4.62)’ and dividing both sides by vehicle mass m, 

we obtain 
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 .     (A4.64) 

Here D/m is specific drag (drag per unit weight for the vehicle). Substituting (A4.63)’ into (A4.64). We 

abtain the minimum drag for a variable wing 
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,     (A4.64)’ 

 where the term on the right is wing drag for the lift of one unit of weight for the vehicle. We discover 

the important fact than the optimal wing drag of a variable wing does not depend on air speed, it 

depends only on the geometry of the wing.  This may look wrong, but consider the following example. 

Wing drag is D = mg/K, where K = CL/CD  is the wing efficiency coefficient. The value D/m does not 

depend on speed.  

    If the air vehicle has a body, the minimum drag is 
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Full vehicle drag depends on speed because the body drag depends on V. 

Substituting the (A4.63)’ term for  into (A4.62)’, we obtain the optimal attack angle 


 DW
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C
 .     (A4.66) 

This is the angle of optimal efficiency, but CDW is the wing drag coefficient only when  = 0 (not the full 

vehicle as in  conventional aerodynamics). The coefficient of flight efficiency 
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b) Hypersonic speed. The equations of wing lift force and wing air drag for hypersonic speed are as 

follows: 
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Substituting  from (A4.68) into D , we obtain 
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Substituting the wing load p = m/S into (A4.68)’, we obtain 
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 .     (A4.69) 

To find the minimum the air drag D for p, we take the derivatives and set them equal to zero, then we 

obtain 
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Substituting (A4.70) into (A4.69), we find the minimum wing drag 
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The sum of the minimum vehicle drag plus body drag is 
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Substituting (A4.70) into the term for  in (A4.65), we find the optimal attack angle of a vehicle without 

a body 

 /DWopt C .     (A4.72) 

The coefficient of flight efficiency k = Y/D is 
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For hypersonic speed the coefficients are approximately   

     
DbDWDoLDbDW CCCCcCcC  ,,2,4,2,4 2
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    In numerical computation the angle  can be found from (A4.25) as   = h/Rg. 

For the rocket engine or gliding flight we find the following relation: when S is optimum (variable), the 

partial derivatives from (A4.71) are 
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    Substituting these into (A4.37), we find the relationship between speed, altitude, and optimal wing 

load for a hypersonic vehicle with a rocket engine and variable optimal wing: 
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For  = 4,  = 2  equation (A4.73)’ has the form 
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     (A4.74)’ 

    Results of computation using (A4.74)’ for  = 4,  = 2, a2 = 0.365, b2 = 6997 and different pb 

are presented in Fig. A4.7 (dashed lines). As you see, the variable area wing saves kinetic 

energy, because its curve is located over an invariable (fixed) wing. This is advantageous only at 

orbital speed (7.9 km/s) because no lift force is necessary. 

 

Estimation of flight range 
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Air and space vehicles without thrust 
 

The aircraft range can be found from equation (A4.26)  
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Consider a missile with the optimal variable wing in a descent trajectory with thrust T = 0.  

a) Make the simplest estimation using equations for kinetic energy from classical mechanics. Separate 

the flight into two stages: hypersonic and subsonic. If we have the ratio of vehicle efficiency 

DLDL CCkCCk /,/ 21  , where k1, k2 are the ratios of flight efficiency for the hypersonic and 

subsonic stages respectively, we find the following equations for a range in each region:      
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Or more exactly 
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where R1 is the hypersonic part of the range, R2 is the subsonic part of the range, V1 is the initial 

(maximum) vehicle hypersonic speed, V2 is a final hypersonic speed, and h is the altitude at the initial 

stage of the subsonic part of the trajectory. 

b) To be more precise. Assume in (A4.75)  = const (taking average air density).  

1. For the hypersonic part of the trajectory: substitute (A4.71) into (A4.76). We then have  
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2. For the subsonic part of the trajectory: substitute (A4.65) into (A4.75). We then have  
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where the values for C1, C2 are 
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The trajectory (without the rocket part of the trajectory) is 

211111 RRRRorRRR SHgSH  .   (A4.80) 

where R2 = k2h computed for altitude h at the end of the kinetic part of the subsonic trajectory. 

3. The ballistic trajectory of a wingless missile without atmosphere drag is 
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where h is the initial altitude, V1 is the initial horizontal speed of the wingless missile at altitude 

h, Vy is  initial (shot) vertical speed at h = 0, Vi is the full initial (shot) speed at h = 0 . 

    For the hypersonic interval 5 < V < 7.5 km/s, we can use the more exact equation 
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where R = 6378 km is the radius of Earth. The full range of a ballistic rocket plus the range of a 

winged missile is  

 Rf = Rb + Ra + Rg,     (A4.83) 

where Rg = kh is the vehicles gliding range from the final altitude h2  (see Fig. A4.11) with 

aerodynamic efficiency k. 

The classical method finding of the optimal shot ballistic range for spherical Earth without 

atmosphere is  
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  ,  (A4.84) 

where opt is the optimal shot angle, VA is the shot projectile speed, and Vc is an orbital speed for 

a circular orbit at a given altitude. 

4. Cannon projectile. We divide the distance into three sub-distances: 1) 1.2M < M, 2) 0.9M < 

M < 1.2M, 3) 0 < M < 0.9M.  The range of the wing cannon projectile may be estimated using 

the equation 
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where k1, k2, k3 are the average aerodynamic efficiencies for sub-distances 1, 2, 3 respectively. 

Conventionally, these coefficients have the following values: subsonic k3 = 8–15, near sonic k2 = 

2–3, supersonic and hypersonic k1 =  4–9. If  V  >  600 m/s, the first term in (A4.85) has the 

greatest value and we can use the more simple equation for range estimation: 
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    At the top of its trajectory, a modern projectile can have an additional impulse from small 

rocket engines. Their weight is 10–15% of the full mass of the projectile and increases the 

maximum range by 7–14 km. In this case we must substitute V = V1 + dV  into (A4.84)’, where 

dV is the additional impulse (150–270 m/s). 

Subsonic aircraft with thrust. Horizontal flight 

 The optimal climb and descent of a subsonic aircraft with a constant mass and fixed wing is 

described by equations (A4.50) and (A4.47). Any given point in a climb curve may be used for 

horizontal flight (with different efficiency). We consider in more detail the horizontal flight 

when the aircraft mass decreases because the fuel is spent. This consumption may reach 40% of 

the initial aircraft mass. The optimal horizontal flight range may be computed in the following 

way: 
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where m is fuel mass, cs is fuel consumption, kg/s/ kg thrust. 

a) For a fixed wing, we have (from (A4.44)) 
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    Substituting (A4.87) into (A4.86), we obtain 
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b) For a variable wing we have (from (A4.65) 
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Results of the computation are presented in Fig. A4.8. The aircraft have the following 

parameters: CDW = 0.02; CDb = 0.08; b1 = 9086; S = 120 m
2
; m = 100 tons, mk = 80 tons, cs =  

0.00019 kg/s/kg thrust; wing ratio  = 10. 



97 

 

    As you see, the specific fuel consumption does not depend on speed and altitude, a good 

aircraft design reaches the maximum range only at one point, in one flight regime: when the 

aircraft flies at the maximum speed possible for the critical Mach number, at the maximum 

altitude possible for that  engine. The deviation from this point decreases in the range in 5–10–15 

percent or more. The variable wing increases efficiency of the other regime, which that 

approximately reduces the losses by a half.   

    The coefficient of flight efficiency may be computed using equation k = g/(D/m), where the 

values 
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apply for fixed and variable wings respectively. Results of computation are presented in Fig. 

A4.9. The curve of the variable wing is the round curve of the fixed wing.  

 

Fig. A4.8.  Aircraft range for altitude H = 6, 8, 10, 11, 12 km; maximum range Rm = 4361 km; 

relative fuel mass Mr = 0.2; body drag coefficient Cb = 0.08; wing drag coefficient Cd 

= 0.02.  
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Fig.  A4.9.  Aerodynamic efficiency of non-variable and variable wings for wing load p = 400, 600, 800, 

1000 kg/m2, wing drag CD = 0.02, body drag CDb = 0.08, wing ratio 10.    

Optimal engine control for constant flight pass angle  

    Let us to consider equations (A4.1) – (A4.5) for a constant angle of trajectory,  = const. Substituting   

=  constant, thrust T = Ve , and a new independent variable s = Vt (where s is the length of the 

trajectory) into the equation system (A4.1) – (A4.5). We obtain the following equations 
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   (A4.91) – (A4.96) 

Equation (A4.95) is used to substitute for  in equation (A4.93) and for a change of air drag 

     ),,( hVD  = D(V, h).    (A4.97) 

    We find a non-linear system with a linear fuel control . This means the system can have a singular 

solution.  



99 

 

Solution 
Consider the maximum range for vehicles described by equation (A4.91) – (A4.96). 

Let us write the Hamiltonian H  
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where )(),(),( 321 sss  are unknown multipliers. Application of conventional methods gives 
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 (A4.99) – (A4.101) 

Where VD  is the first partial derivate of D by V.  

    The last equation shows that the fuel control  can have only two values, max. We consider the 

singular case when  

      A = 032  mVe  .     (A4.102) 

    This equation has two unknown variables, 2 and 3, and does not contain information about fuel 

control .  

    The first two equations (A4.91) – (A4.92) do not depend on variabls and can be integrated  

L = s cos ,       (A4.103) 

H = s sin .         (A4.104) 

In accordance with the References2 let us differentiate equation (A4.102) by the independent variable s. 

After substitution into equations (A4.93) – (A4.95), (A4.97), (A4.99), (A4.100), (A4.102), and (A4.104) we 

obtain the relation for 2  0, 3   0: 

  0)sin()sin( ,

2

,  seVeVem VmVmgDVVDVmgDVDmVVDA  . (A4.105) 

    This equation also does not contain , however it does contain an important relation between 

variables m, h and V, on an optimal trajectory. This is a 3-dimentional surface. If we know  

D = D(h,V) ,     (A4.106) 

Ve = Ve(h,V) ,     (A4.107) 
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The mass of our apparatus m, and its altitude h, we can find the optimal flight speed. This means we can 

calculate the necessary thrust and the fuel consumption for every point m, h, V  (Fig. A4.10).  

    If we want to find an equation for the fuel control , we continue to differentiate equation (A4.105) to 

find the independent variable s and substitute in equations (A4.91) – (A4.104). If we calculate the 

relation for , if 2  0, 3   0, Ve = const, then 
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Fig. A4.10. Optimal fuel consumption of flight vehicles. 

 

    The necessary condition of the optimal trajectory as it is shown in the References2– 8 (see for example, 

equation (4.2)4) is 
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    (A4.110) 

where k = 1. 

    If the flight is horizontal ( = 0), the expression (A4.108) is very simply 

eV

D
  .    (A4.111) 

This means the thrust equals the drag, a fact that is well known in aerodynamic science.  
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    To obtain the specific equations for different forms of drag and thrust, we must take formulas (or 

graphs) for  subsonic, transonic, supersonic and hypersonic speed for  thrust and substitute them into 

the equations (A4.105) and (A4.108).   

Simultaneous optimization of the path angle and fuel consumption 

Consider the case where the path angle and the fuel consumption are simultaneously optimized. 

In this case the general equations (A4.1) – (A4.5) have the form: 
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     (A4.112) – (A4.116) 

Let us write the Hamiltonian 
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The necessary conditions of optima give 
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The lambda equations are  
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  (A4.120) – (A4.122) 

If we differentiate A (A4.118), from dA/ds = 0, we find the optimal fuel consumption 
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Then we differentiate B (A4.119), from dB/ds = 0 we find the optimal path angle 
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    We have used the conventional forms for the partial derivatives in (A4.120)–(A4.124) as in the earlier 

sections of the chapter (see for example (A4.51)). 

    If we know from analytical formulas or graphical functions Ve, D, Y we can find the optimal trajectory 

of the air vehicle.  

    In the general case, this trajectory includes four parts: 

1. Moving between limitations  and . 

2. Moving between one limitation  or  and one optimal control  or . 

3. Moving simultaneously with both optimal controls  and . 
4. Moving at a given point along one limitation and/or both limitations 

. 

Application to aircraft, rocket missiles, and cannon projectiles 

A) Application to rocket vehicles and missiles.  

Let us apply the previous results to typical current middle- and long-distance rockets with 

warheads. We will show: if the warhead has wings and uses the optimal trajectory, the range of 

the warhead (or its useful load) is increased dramatically in most cases. We will compute the 

optimal trajectories for a  rocket-launched warhead at a particular altitude (20–60 km) and speed 

(1–7.5 km/s). Point B is located on the curve (A4.58) for a fixed wing and on curve (A4.73)’ for 

a variable wing (Fig. A4.11). Further, the winged warhead flies (descends) along the optimal 

trajectory BD (Fig. A4.58) according to equations (A4.58) (fixed wing) or equations (A4.73)’ 

(variable wing) respectively. When the speed is reduced by a small amount (for example, 1 km/s) 
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(point D in Fig. A4.11), the winged warhead glides (distance DE in Fig. A4.11). 

 

                                 

Fig. A4.11. Trajectory of flying vehicles. 

The following equations are used for computation: 

1. The optimal trajectory for a fixed wing space vehicle.  

a) Equation (A4.58) is used to calculate h = h(V) to find the optimal trajectory of a warhead 

with a non- variable fixed wing in the speed interval 1 < V < 7.5 km/s. The result is 

presented in Fig. A4.7. 

b)  Equation (A4.54) gives the magnitude (D/m).  

c) The equation (A4.75) in the form 
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    (A4.125) 

is used for computation in the intervals Ra, Rg (Fig. A4.11). Here Rg is the range of a 

gliding vehicle.  

d) Equation (A4.75) is used to calculate Rb in the launch interval AB (Fig. A4.11). 

e) The full range, R, of a warhead with a fixed wing and the full ballistic warhead range, Rw,  

are  

bwgab RRRRRR 2,  .    (A4.126) 

f) Equation (A4.84) is used to calculate the optimal ballistic trajectory of a shot without air 

drag (a vehicle without wings). The range of this trajectory, as it is known, may be 

significantly more than the range in the atmosphere.  
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Fig. A4.12. Range of NON-VARIABLE wing vehicle for body drag coefficient Cb = 0.02, wing  

       drag coefficient Cd = 0.025, wing load p = 600 kg/m
2
. 

 

Fig. A4.12. The relative range of a non-variable wing vehicle for the body drag coefficient Cb = 0.02,  wing 

drag coefficient Cd = 0.025, wing load p = 600 kg/m2, body load Pb = 3–10 ton/m2. 

 

    The results are presented in Fig. A4.12. Computation of the relative range (for different pb) 

using the formula  

b

f

r
R

R
R        (A4.127) 
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is presented in Fig. A4.12. The optimal range of the winged vehicle is approximately 4.5 times 

that of the ideal ballistic rocket computed without air drag. In the atmosphere this difference will 

be significantly more.  

2. Rockets, missiles and space vehicles with variable wings  

The computation is the same. For computing , h, D/m we can use equations (A4.73)’ and 

(A4.71) respectively. The results for different body loads are presented in Fig. A4.7.  The 

optimal trajectories of vehicles with variable wing areas have less slope. This means the vehicle 

loses less energy when it moves.  It travels above the optimal trajectory of a vehicle with fixed 

wings, which means it needs a lot more time (10–20) and more wing area than a fixed wing 

space vehicle (Fig. A4.14). The computation of the optimal variable wing area is presented in 

Fig. A4.15. The relative range (equation (A4.127)) is presented in Fig. A4.16. 

 

Fig. A4.14. Optimal wing load versus speed for specific body load Pb = 3, 5, 7, 10 ton/m2, body drag 

coefficient Cb = 0.02, wing drag coefficient Cd = 0.025, wing load p = 600 kg/m2. 
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Fig. A4.15. Range of a variable wing vehicle for the body drag coefficient Cb = 0.02, the wing drag 

coefficient Cd = 0.025, the wing load p = 600 kg/m2. 

 

Fig. A4.16. Relative range of variable wing vehicle for the body drag coefficient Cb = 0.02, the wing drag 

coefficient Cd = 0.025, the wing load p = 600 kg/m2, the body load Pb = 3–10 ton/m2. 
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Fig. A4.17. Vehicle efficiency coefficient versus speed for specific body load Pb  = 3, 5, 7, 10 ton/m2, body 

drag coefficient Cb = 0.02, wing drag coefficient Cd = 0.025, wing load p = 600 kg/m2. 

      The aerodynamic efficiency of vehicles with fixed (for different pb bodies) and optimal 

variable wings computed using equations (A4.125) and (A4.67) respectively is presented in Fig. 

A4.12. The difference between vehicles with fixed and variable wings reaches 0.2–0.6 . The 

slope of the trajectory to horizontal is small (Fig. A4.18).  

The range of the fixed wing vehicle computed using equation (A4.125) is presented in Fig. 

A4.12. The range of the variable wing vehicle computed using equation (A4.126) is presented in 

Fig. A4.15. The curve is practically the same (see Figs. A4.12 and A4.15). 

3. Increasing the rocket payload for the same range.  If we do not need to increase the 

range, the winged vehicle can be used to increase the payload, or to save rocket fuel. We can 

change the mass of the fuel or the payload. The additional payload may be estimated by the 

following equation  

e
V

V

e




1 ,     (A4.128) 

where  = m/mb is relative mass (the ratio of rocket mass of the winged vehicle to the ballistic 

rocket), V = Vb–V  is the difference between the optimal ballistic rocket speed  (equation 

(A4.84)) and the rocket with a winged vehicle (equation (A4.126)) for given range (see Fig. 

A4.12). Results of computation are presented in Fig. A4.19. The mass of the rocket with a 

winged vehicle may be only 20–35% of the optimal ballistic rocket flown without air drag. 
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Fig. A4.18.  Trajectory angle versus speed for body drag coefficient Cb = 0.02, wing drag coefficient Cd = 

0.025. 

 

 

Fig. A4.19.  Ratio of mass of winged rocket to ballistic rocket for specific engine run-out gas speed Ve = 

1.8, 2, 2.2, 2.4, 2.6 and 2.8  km/s. 

Conclusion: The winged air-space vehicle has a range that is greater by a minimum of 4.5–

5 times than an optimal shot ballistic space vehicle.  The variable wing improves the 

aerodynamic efficiency by 3–10% and also improves the range. An optimal variable wing 
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requires a large wing area. If you do not need to increase the range, you may instead increase 

payload. 

B) Application to cannon wing projectiles   

  Properties of a typical current cannons are shown in Table A4.1. 

Table A4.1. Properties of current typical Cannons.  

------------------------------------------------------------------------------------------------------------------       

Name   caliber, Nozzle speed,  Mass of projectile,  Range,  RAP,  

  mm  m/s   kg   km  km 

------------------------------------------------------------------------------------------------------------------  

M107  175  509–912  67   15–33 

SD-203 203  960   110   37.5 

2S19  155  810   43.6   24.7 

2S1  122  690–740  21.6   - 

S-23  180  -   -   30.4  43.8 

2A36  152  -   -   17.1  24 

D-20  152  600–670  43.5–48.8  20 

---------------------------------------------------------------------------------------------------------------   

Issue: Jane’s 

  The computations using equation (A4.84)’ for different k and RAP with dV = 270 m/s are 

presented in Figs. A4.20 and A4.21.  
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Fig. A4.20. Cannon winged projectile range for average aerodynamic efficiency k = 3, 5, 7, 9. 

 

Fig. A4.21. Cannon winged projectile relative range for average aerodynamic efficiency k = 3, 5, 7, 9. 

   

  Conclusion. As you see (Figs. A4.20, A4.21), the winged projectile increase its range 3–9 times 

(from 35 up to 360 km, k = 9). The projectile with RAP increases its range 5–14 (from 40 up to 

620 km, k = 9) . Winged shells have another important advantage: they do not need to rotate. We 

can use a barrel with a smooth internal channel. This allows for an increase in projectile nozzle 

speed of up to 2 km/s and in shell range of up to 1000 km (k = 5).  

 C) Application to current aircraft.  

    We can use equations (A4.88) and (A4.89) for computations for typical passenger airplanes 

(Figs. A4.22, A4.23, A4.24, and A4.8), where all values are divided by the maximum range Rm = 

4381 km (for a fuel mass that is 20% of to vehicle mass) at a speed of V = 240 m/s, and altitude 

H = 12 km. The speed is limited by the critical Mach number (V < M = 0.82), and the altitude is 

limited by the engine trust, when engine stability is such that it works in a cruise regime. Fig. 

A4.22 shows the typical long-range trajectory of aircraft. 

  Conclusion: The best flight regime for a given air vehicle (closed to Boeing 737) is altitude H 

= 12 km, speed V = 240 m/s, specific fuel consumption Cs = 0.00019 kg fuel/s/kg thrust. Any 

deviation from this flight regime significantly reduces the maximum range (by up to 10–50%). 

The vehicle with a variable wing area loses 50% less range than a vehicle with a fixed wing 

                      

Fig. A4.22. Optimal trajectory of aircraft. 
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Fig. A4.23. Relative aircraft range for altitude H = 6, 8, 10, 11 and 12 km, maximum range Rm = 4381 km, 

relative fuel mass Mr = 0.2, body drag coefficient Cb = 0.08, wing drag coefficient Cd = 0.02. 

 

Fig. A4.23. Relative aircraft range for speed V = 240 m/s, maximum range Rm = 4381 km, relative fuel 

mass Mr = 0.2, body drag coefficient Cb = 0.08, wing drag coefficient Cd = 0.02. 

 General discussion and conclusion  

a) The current space missiles were designed 30–40 years ago. In the past we did not have 

navigation satellites that allowed one to locate a missile (warhead) as close as 1 m to a target.  

Missile designers used inertial navigation systems for ballistic trajectories only. At the present 

time, we have a satellite navigation system and cheap devices, that enable aircraft, sea ships, 

cars, vehicles, and people to be located. If we exchange the conventional warhead for a 

warhead with a simple fixed wing with having a control and navigation system, we can 

increase the range of our old rockets 4.5–5 times (Fig. A4.13) or significantly increase the 

useful warhead weight (Fig. A4.19). We can also notably improve the precision of our aiming. 
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b) Current artillery projectiles for big guns and cannons were created many years ago. The 

designers assumed that the observer could see an aim point and correct the artillery. Now we 

have a satellite navigation system that allows one to determine the exact coordinates of targets 

and we have cheap and light navigation and control devices that can be placed in the cannon 

projectiles. If we replace our cannon ballistic projectiles with projectiles with a fixed wing, 

and a control and navigation system, we increase the range 3–9 times (from 35 km up to 360 

km, see Fig. A4.20, A4.21). We can use a smooth barrel to increase the nozzle shell speed up 

to 2000 m/s and range up to 1000 km. These systems can guide the winged projectiles and 

significantly improving their aim.  We can reach this result because we use all the kinetic 

energy of the projectile. A conventional projectile cannot remain in the atmosphere and drops 

at a very high speed. Most of its kinetic energy is wasted. In our case 70–85% of the 

projectile’s kinetic energy is used for support of the moving projectile. This way the projectile 

range increases 3–9 times or more. 

c) All aircraft are designed for only one optimal flight regime (speed, altitude, and fuel 

consumption). Any deviation from this regime decreases the aircraft range. For aircraft like to 

the Boeing 747 this regime is: altitude H = 12 km, speed V = 240 m/s, specific fuel 

consumption Cs = 0.00019 kgf/s/kg thrust.  If the speed is reduced from 240 m/s to 200 m/s, 

the range decreases by15% (Fig. A4.23).  Application of the variable wing area reduces this 

loss from 15% to 10%.  If the aircraft reduces its altitude from 12 km to 9 km, it loses 12% of 

its maximum range (Fig. A4.24).  If it has a variable wing area, it loses only 7.5% of its 

maximum range.  Civil air vehicles are forced to deviate from the optimal conditions by 

weather or a given flight air corridor. Military air vehicles sometimes have to make a very 

large deviation from the optimal conditions (for example, when they fly at low altitude, below 

the enemy radar system). A variable wing area may be very useful for them because it 

decreases the loss by approximately 50%, improves supersonic flight and taking off and 

landing lengths.    

  The author offers some fixed and variable wing designs for air vehicles (Fig. A4.25). Variants 

a, b, c, and f are for missiles and warheads, variants d, and e are for shells 

 

 

 

. 
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Fig. A4.25. Possible variants of variable wing designs: a, b, c, and f for aircraft; d and e for gun 

projectiles. 
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                                                                    Attachment 2 

             Impulse solutions in optimization problems 

                                                          Alexander Bolonkin 

                                                       C&R, abolonkin@gmail.com 

                    Abstract 

  The author considers the optimization problem named ‘the impulse regime’, when the control can 

have for a short time an instantaneous infinity value and the phase variables have gaps. In mathematics 

these mean: the variables are not continuous, not differentiable. The variable calculation and Pontryagin 

principle are not applicable. These problems are in space trajectories, theory of corrections, nuclear 

physics, economics, advertising and other real control tasks. We need a special theory and special 

methods for solution of these problems. 

  Author offers the following  method, which simplifies and solves these tasks. 

 

                                                  Introduction 

   Optimization methos are widely used in solving of technical problems. However, there are important 

classes of problems where they have great difficulties in the application.  For example, in problems of 

space travel. The fact that the operational time of conventional rocket liquid  propulsion is small 

(minutes), while the passive time of the interplanetary flight is large (months). In the result, we can 

consider  the rocket work as an impulse, the speed as a jump which must expend  minimum fuel. In 

mathematics, this means: the control is at an infinity value, the phase variables have a gap, and the 

variables are not continuous, not differentiable. The variable culculation and the Pontryagin principle 

are not applicable. 

   In 1968 the author offered the special methods [1] (see also [2 – 3]) for solution of the difference cases 

the impulse regime. In book [4] he applied this method to aerospace problems. Authors of work [5] 

developed the impulse theory for a particular case (linear version of control) using the theory of δ-

functions. But his solutions are very complex and not acceptable in many practical problems. 

  In the given article the author offers a simpler  method for solution of these problems: he shows the 

known impulse problems can be reduced to the special Pontryagin problem. Solution of them may be 

simple when methods are used in present time. 

                                 Statement of the problem 

   
1. Statement of the conventional Optimization Problem.  Assume the state of system is described by 

conventional differential equations: 

mailto:abolonkin@gmail.com
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where I is  the objective function, x is n – dimentinal continuous piece-difference function of 

phase coordinates; u is r – dimentional piece-continuous,  piece-diffrence functions of control, 

iii bua  , i = 1,2,…,r ,  a,b = const;
 
t is time. End values of x(t1), x(t2)  are given or mobile. F 

is function of the end values x(t). 

   We must find the control u, which gives the minumum the objective function I.  

  In our case (impulse problem) the control (or some its components) is at infinity (a very short 

time), the some (or all) phase variables have the gaps, and the variables are not continuous, not 

differentiable. The variable calculation and Pontryagin principle are not applicable. 

 

2. Impulse Optimization Problem. Method of Solution. 

 

  The author offer the following method for solution of impulse problems.   

We enter the special constants (unknown limited values) of impulses (sums, gaps) 

    mivi ,...,2,1 .      (2) 

These values may be binded the contions 
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ii xx , are xi is phase coordinate on left and on right from point of impulse (gap),  2,1, , ii cc are 

consts. In particule, v can be unknown constant or zero. 

The optimal problem is written in fo 
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Where v are unknown limited impulses (gaps). End values of x(t1), x(t2) are given or mobile. 

   According [2], [3], we can write the generalized functionality introdused in form  

, IJ
      (6) 
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where J - the generalized functionality introduced in [2],[3] p. 42, α is so named α – function introduced 

in [2],[3] (function equals zero on acceptable set, for example, on curves satisfying the equations (1) – 

(4)). 

In our case we take  
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Where λ(t,x) is an unknown vector function. 

We can re-write (6) as (see [3] p.42) 
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From Theorem 3.8 [3] we get: if we find at least one solution of particular equation about  λ 
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for the end condition inf A, we get optimal solution.  

 Note, the B (9) is different from the well-known Gamiltonian. If we will take the different function λ(t,x), 

we will get the different conjugated system of equations ∂B/∂x = 0. 

   In particular, if we will get λ(t) ONLY as function t, we get the conventional Pontryagin principle of 

maximum 
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and equations 
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The equations 
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are used only in the open area. λi are unknown multipliers. 

  Equations  (11) - (16) gives the optimal trajectoris (minimum of I) of the system (5). We also must solve 

the boundary value problem – find such  λi(t1)  that to get the given xi(t2) . 

 

  The gap time tθ and gap ν inside interval (t1< tθ <t2) we can also find the next way. Write the objective 

function in form 
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where Φ is additional condition in tθ (if they are given). 

  Write the general function as the sum of two functions in (t1, tθ ) and  (t1<tθ<t2) 
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In tθ the minimal condition are 
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Here up “-“ and “+” are values from left and right from point tθ. . 
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Notes:  

1. We can find in form (3) ONLY the phase coordinates which we can aproximate as the impulse (in short 

time we can change a large value – for example, the speed in long flight, agle of trajectory, laser 

excitation of atom and so on). We cannot pulse space, distance, time.  

2. The λi of corresponding  coorditate has a gap/jump in moment of impulse. The moment (time) of gap 

or new λi (at right side) we can find (in open area) from the second equation (16). We must also to 

check up the ends of the intersal [t1,t2]. 

3. In some cases, the optimal value of gap we can find by the selection of  ν.  

4. The λi of fi are functions of t, the λi of φi are constants.  

                                                                Example 

   Let us to consider the typical problem of space travel - transfer from one space orbit to other. Assume 

the space ship has circular Earth orbit having the radius r1 and speed V0 . We want to reach the ecliptic 

orbit having the maximal radius r2 > r1 and spend the minimum of fuel. The liquid rocket engine works 

some seconds, the space flight is some months. That way we can consider the rocket flight as pulse 

mode which instant change speed (gap the speed). Our task is to find minimal gap of speed (minimal 

inpulse) v = ΔV , because the minimal gap of speed is equivalent of the minimal expenditure of the 

rocket fuel.                     

  Our objective function  

                                                  
t

VdtI
0

     (20) 

  The variables (speed V and radius r) of free space flight in the Earth gravitation field is binded by the 

Law of energy conservation (kinetic + potencial energy equils constant c): 

          

























21

2

0

2 22
or,

11

2 rrr
Vc

rr
m

mV


 ,  (21) 

   Where m is mass space ship (satellite) mass, kg; r0 is initial radius, m; µ is gravity constant. For Earth µ 

= 3.9802.1014 m3/s2 , for Sun   µ = 1,3276.1020 m3/s2. That is elliptic orbite, r1 is the radius of perigee; r2 is 

the radius of apogee. We want to arrive from the circular orbite having V0 , the radius r0 = r1 (the point of 

perigee) to point of apology r2. 
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                                                   Fig.1. Orbite transver. 

 

  For elliptic orbits, the equation (21) may be re-writen in form: 
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where; V0 is speed on circular orbite having the radius r1. The speed of circular orbit is 
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Here V2 is speed in r2. Last equation in (23) is Law of momentum conservation free flight in the central 

gravitation field. 

  Let us the write the function B (13) for left end in right side of point t1 . 
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From equation (16) we have 
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The  equaetion (25) together with the equations (22),(23) allow to find the λ and the speed gap V : 
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where 
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Here V2 is speed in apogee, Va is average speed. 

We reached the request r2 by the first impulse. That way we don’t need the additional impulse and 

reseach. 

  The formula (26) for computation V is known as transfer in Gohman ellipse [6]. New is proof of 

optimization. 

  The reader can solve same way the more complex inpulse (gap) problems [4].                                      

Referances 

1. Bolonkin A.A., Impulse solutions in problem of the optimal control. Prosiding of Siberian Branch of  

    the Academy of Sciences of the USSR, series of Technical sciences. #13, Issue 3, 1968 (in Russian). 

2. Bolonkin A.A., New methods of Optimizations and their application. The post-doctoral Ph.D thesis,  

    1969, Chapter 5, pp.120-141. Leningrad Politechnic University (in Russian). 

     http://viXra.org/abs/1509.0267 Part 1, http://vixra.org/abs/1509.0265  Part2, 

     https://www.academia.edu/s/2a5a6f9321?source=link    

3.  Bolonkin A.A., New methods of Optimization and their applications. Moscow High Technical  

     University, named Bauman, 1972. 220 ps (In Russian: Новые методы оптимизации и их  

    применение. МВТУ им. Баумана, 1972г., 220 стр.,  См. РГБ, Российская Государственная  

    Библиотека,  Ф-861-83/1809-6).  http://vixra.org/abs/1504.0011 v4. ,  

    https://www.academia.edu/11054777/  v.4 

4. Bolonkin AA., “Non Rocket Space Launch and Flight”. Elsevier, 2005. 488 pgs.  ISBN-13: 

     978-0-08044-731-5,  ISBN-10: 0-080-44731-7 . http://vixra.org/abs/1407.0174 , 

    https://archive.org/details/Non-rocketSpaceLaunchAndFlightv.3 , (v.3),  

5. Дыхта В.А., Самсонюк О.Н., Оптимальные импульные управления с приложениями. 

    М.Наука,ФМ. 2000,  (in Russian). 

6. Walter Hohmann. Die Erreichbarkeit der Himmelskörper. — Verlag Oldenbourg in München 

    1925. — ISBN 3-486-23106-5. 

7.  Bolonkin A.A.,Impulse solutions in optimization problems 11 20 15. 

     http://viXra.org/abs/1511.0189;  https://www.academia.edu/s/3244c0c4f0?source=link   ??? 

http://vixra.org/abs/1509.0267
http://vixra.org/abs/1509.0265
https://www.academia.edu/s/2a5a6f9321?source=link
http://vixra.org/abs/1504.0011
https://www.academia.edu/11054777/
http://vixra.org/abs/1407.0174
https://archive.org/details/Non-rocketSpaceLaunchAndFlightv.3
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/3486231065
http://vixra.org/abs/1511.0189
https://www.academia.edu/s/3244c0c4f0?source=link


121 

 

    https://www.academia.edu/s/00538971c8 , 

    https://archive.org/details/ArticleImpulseSolutionsdoc200311115AfterJoseph  

     GSJornal: http://gsjournal.net/Science-Journals/Research%20Papers-Astrophysics/Download/6259 

30 September 2015. 

========================================================  

Book 

“Universal Optimization and its Application” 

Chapter 12. Optimal Thrust Angle of Aircraft 
 

Summary.  The optimal angle for an aircraft’s thrust vector is derived from 

first principles.  Two equations are shown to encompass six different flight 

regimes.  The main result for take-off and landing is that the optimal thrust 

angle in radians approximately equals the coefficient of rolling friction.  For 

climb, cruise, turn and descent, the optimal thrust angle equals the arctangent 

of the ratio of drag coefficient to lift coefficient.  The second result differs 

from the well-known result that optimal thrust angle equals the arctangent of 

the partial derivative of drag with respect to lift.  The author discusses this 

difference 

Nomenclature 
B = artificial function, dx/dt - H  

CD = drag coefficient 

CL = lift coefficient 

D = drag 

d = take-off or landing distance 

E  = aircraft efficiency, CL/CD  

F  = fuel consumption 

 f  = performance function 

g = n-dimensional vector constraint function  

g0 = acceleration due to gravity 

H  = Hamiltonian, -f + g  

h  = altitude 

I  = performance index  

https://www.academia.edu/s/00538971c8
https://archive.org/details/ArticleImpulseSolutionsdoc200311115AfterJoseph
http://gsjournal.net/Science-Journals/Research%20Papers-Astrophysics/Download/6259
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L = lift force  

M = aircraft mass  

OTA = Optimal Thrust Angle 

q = dynamic pressure, 2/2V  

R  = range  

S = wing area  

t = time  

T  = thrust or time of flight  

Tf  = friction force  

u = m-dimensional control vector 

V = aircraft speed  

W = aircraft weight 

wf  = specific fuel consumption  

x = n-dimensional state vector  

 = n-dimensional Lagrange multiplier  

  = thrust angle  

µ = friction coefficient 

  = specific function 

  = roll angle 

Introduction 

 
Aircraft designers must determine the angle of the thrust vector relative to the main horizontal flight 

direction.  When this angle is positive (up from the horizontal plane), an additional lift force is 

generated, but at the expense of horizontal thrust.  In this paper, the optimal thrust angle is derived, 

using both classical methods and an alternative optimization method developed by the first author.1,2  

Many methods of deflecting the nozzle exhaust stream of rocket engines to provide thrust vector 

control have been investigated, including jet vanes, gimbaled or swiveled nozzles, and extendable nozzle 

deflectors.3,4,5,6  Jet vanes have been widely applied for the control of solid rocket engines and for early 

liquid-rocket engines, including the German V-2 missile.7   Reference 8 presents metrics for assessing the 

performance of fighter aircraft implementing thrust vector control.   
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References 3 and 9 are most closely related to this paper.  In Reference 3, the authors use numerical 

calculations to search for the optimal thrust angle, whereas in this paper the focus is theoretical, rather 

than numerical.  In Reference 9, Miele presents a basic theory for analyzing the optimum flight paths of 

rocket-powered vehicles.  Miele simultaneously optimizes the time history of lift, thrust modulus and 

thrust direction, and states that the optimal thrust angle equals the arctangent of the partial derivative 

of drag with respect to lift.  In this paper, we provide theory and formulas for the OTA for six primary 

flight regimes of any aircraft type.  The formulas provided are accurate for stable flight conditions, but 

may be sub-optimal during high dynamic maneuvers.  The six flight regimes are listed below, each with 

one or more optimization objectives.   

1. Take-off, to minimize take-off ground run. 

2. Climb, to minimize fuel consumption. 

3. Cruise, to minimize fuel consumption or to maximize range. 

4. Turn, to minimize fuel consumption or to minimize turn time. 

5. Descent, to minimize fuel consumption or to maximize range. 

6. Landing, to minimize landing roll. 

General Methodology 

 
Consider the problem of minimizing a performance index I, where  

I = 
T

dtuxtf
0

),,(      (1) 

We wish to minimize I with respect to x and u, subject to the dynamic constraint  

x  ),,( uxtg      (2) 

We assume an initial condition, )0(x , is known.  Following the approach described in Chapters 1, §4B, 2 

or in Reference 1, we define an artificial α - function in form 

    
t

uxtg
x

fB











),,(     (3) 

 

  In particular, the function   may be defined by  
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xt  )(       (4) 

  If we find 

   ])(),,()(),,([minmin
,,

xtuxtgtuxtfB
uxux

    (5) 

then the values of x and u that minimize B, subject to the constraint given in Eq. (2), are optimal control 

and state vectors for the problem stated in Eq. (1). 

 

  For readers are not friendly with Method of Deformation, we can also solve this problem by a 

conventional method10 using the Hamiltonian for this problem (as it is shown in Chapter 2 most 

conventional methods may be received from Method of Deformation), which is given by 

 

   ),,()(),,(),,,( uxtgtuxtfuxtH   ,   (6) 

and  

x

H




   

As it is shown in Chapters 1 – 2, Hamiltonian is part of particular function B, which is particular case of α 

– function and α – function is particular case of β – function 

 

                 ])([min])(),,()(),,([minmin
,,,

xtHxtuxtgtuxtfB
uxuxux

    . 

  In B we find the minimum for x, u. In conventional method we find the maximum of H only for u. 

 

The values of u which maximize the Hamiltonian, subject to the constraint in (2), are optimal control 

vectors for (1).  That is 

    ),,,(max uxtHH
u

  .    (7) 

When the process does not change with time, we have a more straightforward problem: 

Minimize a performance index I, defined by 

I = 
T

dtuxf
0

),(       (8) 
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with respect to x and u, subject to the dynamic constraint     

   ),,( uxgx i for i = 1,2, …, n     (9) 

   ),()(),(),,,( uxgtuxfuxtH       (10) 

),,,(max uxtHH
u

 ,      ),( xtuu     (11) 

The parameter  is an n-dimensional unknown Lagrange multiplier and u  is the optimal control.  Eqs. (4) 

through (6) give the system of equations 

      0









jj u

H

u

B
 ,      j = 1,2, …, m;   0)( 










i

i

i x

H
t

x

B
  ,    i = 1,2, …, n (12) 

These equations are equivalent to conventional principle of maximum10; 

i

i
x

H
t




)(  ,     i = 1,2,…, n;           0





ju

H
,      j = 1,2,…,m.  (13) 

These equations, together with Eq. (2), allow us to find an extreme of the Hamiltonian H, which is 

optimal if the appropriate second order sufficient conditions for optimality are satisfied. 

 

Optimal Thrust Angle for Take-off and Landing 
 

 For take-off, the performance index is the take-off distance, described by 

    
T

Vdtd
0

 .      (14) 

The aircraft speed serves as the performance function. The dynamic constraint on acceleration is given 

by  

    fTDT
M

V  cos(
1 )     (15) 

as illustrated in Fig. 1. 
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                                                                   Fig. 1 Take-off 

 

The friction force is given by   

 sin( 0 TLgWTf  )    (16) 

We know from aerodynamics and trigonometry that 

  qSCL L , qSCD D ,  2cos1sin     (17) 

We consider only the positive root, but the result is the same for the negative root. 

To simplify subsequent calculations, make the substitution  

cosu       (18) 

so that  

21sin u      (19) 

Substituting Eqs. (16) through (19) into (15) yields 

   )]1([
1 2

0 uTLgWDuT
M

V     (20) 

which leads to function B or the Hamiltonian H 

)]1([
1

)()()()( 2

0 uTLgWDuT
M

tVtVVtVtfB     

 HVt  )(  ,        (21) 

y 

L 

W 

D T 

T

f 

d 

x 
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where      )]1([
1

)( 2

0 uTLgWDuT
M

tVH       (22) 

To find the minimum of B over all admissible u, the necessary condition is that the partial derivative is 

equal to zero, that is,  

     0




u

B
     (23) 

or  

0
1

1
)(

2






















u

u

M

Tt

u

B 
    (24) 

 

If  M, T, and   0, then from (24), it must be true that 

     21 uu      (25) 

or  

222 1 uu      (26) 

so that the final result from (26) is  

     
21

1


u     (27) 

Returning to the original notation, we have the thrust angle as a function of the coefficient of friction,   

21

1
cos





     or   


















 

2

1

1

1
cos


  radians . (28) 

We can use the trigonometric identity 

    



2tan1

1
cos


      (29) 

to get our final result,  
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     tan        (30) 

or, for small , say  < 0.2, we have the design rule-of-thumb that 

            (31) 

where  is in radians.     

The sign of  depends on our goal, minimization or maximization of the function, as well as the sign of  

and T in Eq. (24).  Clearly, the thrust must have a forward direction for aircraft take-off, and the angle  

must be positive.  Similarly, for landing, the thrust must have a backward direction to brake the airplane, 

and the angle  must be negative, pushing the airplane to the ground, as illustrated in Fig. 2. 

 

 

 

 

 

 

 

 

                                                                               Fig. 2 Landing 

 

The angles for take-off and landing are different, because the coefficients of rolling friction are different 

for take-off and landing.  For take-off, the friction coefficient is small ( approximately 0.01 – 0.05); for 

landing, the coefficient is larger ( approximately 0.3 – 0.4).  The direction of thrust is also different for 

take-off (  +1 to +3 degrees) than for landing (  -16 to -22 degrees).  For take-off, the thrust has a 

forward direction; for landing the thrust has a backward direction.  As a design “rule-of-thumb,” we can 

say that the OTA in radians is equal to the coefficient of rolling friction for take-off, and the OTA is within 

5% of the coefficient of rolling friction for landing.  The expression tan  =  is exact for any rolling 

friction coefficient.  

The optimal angles for take-off and landing are graphed in Figs. 3 and 4, respectively. 
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Fig. 3. Optimal Thrust Angle for Take-off 

 

 

 

 

 

 

 

 

 

 

                                             Fig. 4. Optimal Thrust Angle for Landing 
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Optimal Angle of Thrust Vector in Horizontal Flight (Cruise Regime) 
 

Assume that speed, altitude, and direction of flight are constant during horizontal flight time, and that 

we wish to maximize range, R, of the aircraft over the time interval [0,T].  Then 

     
T

VdtR
0

     (32) 

The equilibrium equations of motion (Fig. 5) are 

    0cos  DT  ,     (33)  

0sin0  TgWL     (34) 

 

 

 

 

 

 

                                              Fig. 5. Horizontal Flight. 

Using the notation 

 
D

L

C

C

D

L
E  ,  cosu , and 01sin 2  u   (35) 

We can substitute D and u from (35) and L from (34) into (33) to obtain 

    01 20 


 u
E

T

E

gW
uT    (36) 

Next, compose the Hamiltonian function H, as in Eq. (10) 

   )1( 20 u
E

T

E

gW
uTVH 


     (37) 

And find the maximum of this function 

y 

L 

W 

D T 

 

x 
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    0
1

1
2

















uE

u
T

u

H
     (38) 

If we take values for  and T such that 0T , we find that 

     21 uEu       (39) 

or  

      222 1 uEu      (40) 

From (40), it follows that 

     
21 E

E
u


     (41) 

or  

  
21

cos
E

E


      or 


















21
arccos

E

E
   (42) 

Note that  in degrees given by  

 /180 .     (43) 

From physical conditions, it is evident that angle  is positive.  For fighter aircraft, aerodynamic 

efficiency, E, ranges from two to ten.  For transport or passenger aircraft, efficiency ratios vary from ten 

to twenty.  Using the trigonometric identify in (29), we get a final result in simpler form, 

  
E

1
tan    or  

L

D

C

C
tan     (44) 

For small , say  < 0.2 radians, we have the design rule-of-thumb that 

      
L

D

C

C
     (45) 

The OTA for the cruise regime is graphed in Fig. 6 for aerodynamic efficiencies ranging from two to ten, 

typical of fighter aircraft.   

So far, we have used as the performance index the maximum range of the aircraft.  The results are the 

same if we minimize fuel consumption, 
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T

f dtwF
0

     (46) 

Or minimize time 


T

dtT
0

 .     (47) 

 

 

 

 

                                       Thrust Angle for Cruise Regime 
                                             Climb and Descent Regimes 
Fig. 7 illustrates the climb regime.   

 

 

 

 

 

 

 

Fig. 7. Climb. 
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Let us take as the performance index the range or altitude,  

             
T

VdtR
0

         or       
T

dtVh
0

sin             (48) 

Then the equilibrium equations are 

0sincos 0   gWDT     (49) 

0cossin 0   gWTL     (50) 

where  is the angle between trajectory and horizon.  Using the notation 

  
D

L

C

C

D

L
E  ,  ucos , 21sin u .  (51) 

and substituting Eqs. (50) and (51) into Eq. (49), we have 

0sin1
cos 20 


 


Wu

E

T

E

gW
Tu       (52) 

And 

]sin1
cos

[ 0

20 


 gWu
E

T

E

gW
TuVH 


       (53) 

The necessary condition for an extreme is 

  0




u

H
      (54) 

or 

0
1

1
2






















uE

u
T

u

H
     (55) 

That is the same as Eq. (38), which means that the final equation for the optimal angle of thrust vector 

in climb and descent will be equal to the equation for a cruise regime. 

21
cos

E

E


  or 

L

D

C

C

E


1
tan  or 

L

D

C

C
    (56) 

From physical conditions, it is evident that angle  is positive.  The aerodynamic efficiencies are different 

for climb, descent, and cruise, so that the optimal thrust vector angle will be different, but the equations 
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for the calculation are the same.  Again, note that we can use trigonometric equalities to derive the 

more concise expression, cot  = E, which is exact for any aerodynamic efficiency ratio.  The results are 

the same whether time or fuel consumption are used for the performance index. 

Turning of airplane 

 

Consider now the turning of an airplane in one plane, with a constant roll angle . 

Our performance index can be distance, minimum time of turn, or fuel consumption. 


T

VdtR
0

,  ,
0


T

dtT  dtwF

T

f
0

   (57) 

The equations of motion are 

0cos DT       (58) 

0cossin 0   gWTL     (59) 

Using the notation 

;
D

L

C

C

D

L
E    ;cos u   21sin u   (60) 

and substituting  (59) and (60) into (58), we get 

0
1cos 2

0 






E

uT

E

gW
uT


   (61) 

and 












 20 1

cos
u

E

T

E

gW
TuVH


    (62) 

The necessary condition for an extreme is 

0




u

H
    or     0

1
1

2






















uE

u
T

u

H
    (63) 

Eq. (63) is equivalent to Eq. (38), which means the final equation for the optimal angle of thrust vector in 

a roll is equal to the equation for a cruise regime 

21
cos

E

E


  or 

L

D

C

C

E


1
tan  or  

L

D

C

C
    (64) 
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From physical conditions, it is evident that angle  is positive. 

                                                             Discussion 
The problem of determining an OTA is also discussed in Reference 9, in which the OTA for 

rocket-powered aircraft is given by 

L

D




 arctan      (65) 

where  is equivalent to our angle .  In the particular case of a parabolic polar drag coefficient of the form 
2)()(

0 LDD CMKMCC  , where M is the Mach number, K is the induced drag factor, and 
0DC is the zero-lift 

drag coefficient, Eq. (65) leads to 

    )2arctan( LKC      (66) 

Eqs. (44) and (66) give very different results (Fig. 8).  For example, when there is no lift force (CL = 0), Eq. (44) 

gives  = 90º, meaning that the optimal thrust angle is strictly vertical (perpendicular to the desired trajectory), while 

Eq. (66) gives  = 0, corresponding to a horizontal thrust.  Conversely, when the lift force is maximum, Eq. (65) 

gives  = 90º.  We also see in Fig. 8 that as the lift force (CL) decreases after passing through its maximum point, 

Eq. (65) yields an optimal thrust angle greater than 90º, producing a reverse thrust force.  So, we conclude that Eqs. 

(65) and (66) do not adequately model the OTA near extreme points.    
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The angle  produced by Eq. (44) also has better trend characteristics, starting at 90º when CL = 0, then decreasing as 

the lift force is increasing and positive.  The angle  starts at zero when CL = 0, then increases as the aerodynamic 

lift force increases.  Eqs. (44) and (65) do produce the same result at one point, when the efficiency coefficient, E = 

CL / CD is maximized.  Eq. (65) was derived for an optimal angle of attack, and the result is valid at the point of 

optimal aircraft lift.  Eq. (44) is more general, and may be used at any polar coordinate in any of the four flight 

regimes: climb, cruise, turn or descent. 

                                                                 Conclusions 

 
   In this chapter, we derived two simple equations for the optimal thrust angle of an aircraft. One 

equation is valid for take-off and landing, the other for climb, cruise, turn, and descent.  During take-

off, the OTA is positive, decreases as the coefficient of rolling friction decreases, and is essentially 

equal to the friction coefficient.  During landing, the OTA is negative, increases as the coefficient of 

rolling friction increases, and is within five percent of the value of the friction coefficient.  The 

simple expression tan OTA =  provides an exact result for the OTA as a function of the rolling 

friction coefficient.    
   In the climb, cruise, turn or descent flight regimes, the OTA depends only on the coefficient of 

aerodynamic efficiency.  Here we observe an inverse proportion: the greater the coefficient of 

aerodynamic efficiency, the smaller the OTA.  The OTA is positive in all flight regimes, with the possible 

exception of air braking, which is not addressed in this research.  As in the cases of take-off and landing, 

we have a simple expression, tan OTA = 1 / E, relating the optimal thrust angle to a single parameter, the 

aerodynamic efficiency.  The equations for OTA developed in this paper were also shown to have more 

intuitive trends and better behavior at extreme points than the Miele equations. 
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Book 

“Universal Optimization and its Applications” by A.A. Bolonkin 

                       Chapter 14. Design of Optimal Regulators 

                                                                                  Summary 
   Current research suggests the use of a liner quadratic performance index for optimal control of 

regulators in various applications. Some examples include correcting the trajectory of rocket and air 

vehicles, vibration suppression of flexible structures, and airplane stability. In all these cases, the focus is 

in suppressing/decreasing system deviations rapidly. However, if one compares the Linear Quadratic 

Regulator (LQR) solution with optimal solutions (minimum time), it is seen that the LQR solution is less 

than optimal in some cases indeed (3-6) times that obtained using a minimum time solution. Moreover, 

the LQR solution is sometimes unacceptable in practice due to the fact that values of control extend 

beyond admissible limits and thus the designer must choose coefficients in the linear quadratic form, 

which are unknown. 

   The authors suggest methods which allow finding a quasi-optimal LQR solution with bounded control 

which is closed to the minimum time solution. They also remand the process of the minimum time 

decision. 

Keywords: Optimal regulator, minimum time controller, Linear Quadratic Regulator (LQR).  

-----------------------------------    

This chapter is declared a work of the U.S. Government and not subject to copyright protection in the 

USA. 

The chapter is accepted as paper AIAA-2003-6638 by 2nd AIAA “Unmanned Unlimited“ Systems, 

Technologies, and Operations- Aerospace, Land, and See Conference and Workshop & Exhibit, San 

Diego, California, USA, 15-18 Sep 2003.  

Introduction 
 

  The LQR solution is easily and conveniently written using the Riccati equation as an optimal solution. 

The scientist who accepts this may be acting as an intoxicated man in a Russian anecdote: one night a 

man is observed creeping around a streetlight. A passerby asks him, what are you doing? – I lost money. 

Where did you lose the money? –There at the other end of the street. Then, why are you looking here? 

– This is where the light is! 
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  The minimum time solution is more complex, however, it can be conveniently determined in many 

problems by the availability, generally,  of high-speed computers.   Also, this approaches us with a true 

minimum time solution.   

  For an n-dimensional problem with one control this solution found in general form in reference [1]. For 

the two-dimensional case this solution can be presented graphically, see ref. [1].  Methods for other 

general optimal solutions are offered in [2]-[4]. 

  The LQR solution has three main issues: 

1) The selection of the matrix coefficients in the performance index are designer selected and the 
solution is dependent upon the value of these coefficients. 

2) The range of control values can be large in number and this not admissible for practice. 
3) The “optimal” LQR solution can be up to 3-6 times worse, then the minimum time solution (see 

the example in this paper). 
 

   If a researcher chooses to use the LQR solution, the authors suggest a method for limiting 

maximum control (see point 2) as well as for the choice of selecting the coefficients in the 

performance index. This allows up to a 2-3 times improvement in the performance index (see 

accompanying examples) and thus makes the LQR solution acceptable in practical 

applications. 

  The traditional approach used in the design of a controlled structural system is to design the structure 

first by satisfying given requirements and then to design the control system. The structure is designed 

with such constraints placed on weight, allowable stresses, displacements, buckling, general instability, 

frequency distributions, etc. When the selection of the geometry, cross-sectional area of the members, 

and material are determined for a specified structure, then the structural frequencies and vibration 

modes become important input in the design of the control system. Some investigators have written 

papers discussing an integrated design approach for optimal control. In most references, the control 

design procedures used, do not take into consideration the limitations on the control forces developed 

by the actuators, and have not been treated as constraints or design variables. In this paper the 

problems associated with the selection of the performance index, parameters, weight coefficient in the 

LQR problem, and limitation of control forces are addressed.  

  In the following sections, theories for the synthesis of an optimal control laws with a 

quadratic performance index and bounded control forces are given. This is followed by a 

SISO (Single Input, Single Output) control problem designed using both approaches for 

comparison of the end state trajectories, with different bounds placed on control forces. Next, 

the control system for an idealized wing-box is used to illustrate a design application of the 

method. A discussion on the application of a control system with bounded control for an 

integrated design of a structure and control system can be found in ref. [5]. Related articles are 

[6]-[10]. 

1. Optimal Control 
The general optimal control problem can be described by the following equations 
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           dtxtfxxFI
t

t
),,(),(

2

1
0210   ,     dx/dt = f(t,x,v),    x(t1) = x1,   x(t2) = x2        (1-1) 

where I is the functional (objective function), t is time, x is a n-dimensional vector of state, and 

v is a p-dimensional vector of control forces. The vector vV where V can be a bounded domain. 

Boundary conditions t1, t2, x1, x2 are usually given, ( t1,t2)  T. 
  The control parameter, v is calculated so that I = min. To find the solution to this problem by 

Method of Deformation of Chapter 2 (α – function), assume the function  

                                                       = (t,x)     (1-2) 
and write the new function 

J = A1 +  B1dt      t [t1 ,t2],     (1-3) 

where  

                                   A1= Fo + (t2) - (t1) ,      B1 = fo – (x)f -  ( t)  .             (1-4)  

Here (x) is  n-dimensional vector of partial derivatives. The global minimum is 

TtforvxtBBxxAA
xvxx

 ),,(inf),,(inf 1
,

0211
,

0
1

.  (1-5) 

Depending on the nature of the functions used for , a different set of algorithms for obtaining the 

infimum can be developed. For example, if Eq.(1-2) takes the form  

 = (t)x  ,     (1-6) 

where (t) is an n-dimensional vector, the global minimum functions can be written as, 
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            (1-7) 

Using B/x =  0 and Eq.(1-7) gives 

                                                               BB
x
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 inf,


     ,    (1-8)  

where H = f(t,x,u) – fo . 

 Eq. (1-8) can be integrated to find  ,  to obtain the optimal control v and the optimal trajectory x(t). 

Another way is to enforce the condition 

                                        0inf 0 
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everywhere in the admissible domain for x. In this case, the equation for particular derivatives can be 

solved and the syntheses of the optimal control v = v(t,x) and the field of the optimal trajectory in the 

admissible domain is obtained. 

  The two control design approaches with constraints on the maximum control forces are 

discussed in this section. In the first section an objective function for establishing of the 

minimum time to suppress vibration is discussed and in the second, the quadratic function is 

minimized. 

A. Minimum Time 

  Since the main purpose of the controller is to suppress vibrations in minimum time, the time for 

the system to come to rest is taken as the objective function. A functional expression for this can be 

written 


T

dtI
0

,         T = min    (1-10) 

subject to  

dx/dt = Ax + bf,      x(0) = xo,       x(T) = 0        (1-11) 

with control force limits 

fi  Fi  ,    i = 1,2,…,p   .             (1-12) 

  This problem can be written in short form as  

         
T

dtI
0

min ,         dx/dt = Ax + bf,  x(0) = xo ,  x(T) = 0,  f  F ,           (1-13) 

where x is the state vector of dimension 2n. A is the 2n2n plant matrix, B is 2np control matrix,  f  is 

the control force vector of dimension  p, x(0) is the initial state vector, and x(T) = 0 is the final state of 

the system. Bo, in Eq.(1-7), for this problem can be written as 

Bo = 1 - (/xi)(dxi/dt) – (/ t)     (i =1.,,, n).   (1-14) 

Substituting 

 = i(t)xi       (i = 1,2,…,2n)         (1-15) 

and Eq.(1-11) into Eq. (1-14) gives 

 
 











n

j

jj

n

i

p

k

kjkij

n

J

J xfbaB
2

1

2

1 1

2

1

1       .        (1-16) 

Taking the partial derivatives of  B   (B/xi) gives  
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dj/dt = -  aijj          i  = 1,2,…,n ,   j = 1, 2,…,2n   .   (1-17)  

                j     

min Bo gives the control force   f     

fi = Fisign (bjk k)        i = 1, 2,…,p ;  k = 1, 2,…,2n .          (1-18) 

Using Eqs.(1-13),(1-17) and (1-18), the optimal control force fi(t) and trajectory xi(t) can be calculated. 

However the initial i(0) for our trajectory with x(0) = xo is not known. To find i(0), any suitable gradient 

method can be used. For example, if the assume some initial state i(0) and integrate Eqs.(1-13),(1-17) 

and (18), we can calculate the function 

)(2
2

1

TxCTI i

n

i

i


 ,       Ci > 0  ,     (i=1, 2, …,2n).        (1-19) 

  Here Ci are weight coefficients. If Cix
2

i(T)< C0, where Co  is small, the problem can be 

considered as solved. Time is optimal and xi(t) is the optimal trajectory which satisfies the final 

condition xi(T) = 0. If  Cix
2
i(T) > Co  we can  choose a new i(0) by any method and repeat the 

process until it satisfies Cix
2

i(T) < Co . 

     In practice, a new independent variable  is introduced as t = c; which can be included with 

Eq.(1-11) to prouder the additional equation 

dt/d = c  .      (1-20) 

Additionally, introducing a fixed interval of integration [0,1] a new set of equations become 





0

min cdI ,   dx/dt = (Ax +Bf)c .  x(o) = xo,  x(1) = 0,  f F  , (1-21) 

where c is some constant, which is also selected. Eq.(1-19 ) thus becomes 

I1 =  Cix
2

i(1) ,   i = 1,2,…,2n    .   (1-22) 

   For the structural system as defined by Eqs.(1-11)-(1-12) this problem can be solved for the case in 

which the number of control inputs, p, is equal to the number of modeled structural degrees of 

freedom, n. However, numerical difficulties would be encountered when this condition is not satisfied. 

Typical difficulties would be the occurrence of many local minimums, poor convergence, and the need 

for smaller step sizes. 

B.  Linear quadratic regulator (LQR) with bounded control 

  In this case, a performance index, J, is defined as  

    



0

)( dtfRfxQxJ TT
  t  [0,]   .        (1-23) 
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Where Q and R are state and control weighting matrices. The matrix Q must be positive semi definite 

(xTQx  0), and R must be positive definite (fTRf > 0). The dimensions of Q and R depend on the size of 

vectors the x and f, respectively. The matrices Q and R can be written as 

Q = Q              (1-24) 

and 

R = (1/)R-1     (1-25) 

where   and  are the design positive variables and Q and R-1 are constant identity matrices. 

   The weighting matrix R is defined in terms of the inverse of the constant matrix R in order to maintain 

positive definiteness. The function B, Eq. (1-9) for the performance index defined in Eq.(1-23) and the 

constraint equation Eq.(1-11), become  

  0)()(inf 


















t
BfAx

x
RffQxxB TT

f


   (1-26) 

If V represents an open domain, the function , can be written in the form 

 = xTPx ,     (1-27) 

where P is a 2n-dimensional unknown matrix. 

  Substituting    Eq. (1-27) into Eq, (1-26), we obtain the equation 

Q + PA + ATP – PBRBTP = 0    .     (1-28) 

  Equation (1-28) is the Riccati equation. A solution of this equation gives the matrix P and one 

can find the optimal control force as 
f = - Gx      (1-29) 

where 

G = RBTP     (1-30) 

  Integrating Eq.  (1-11) using Eq. (29) to obtain the optimal trajectory for the LQR functional. Eq. (1-29) may give 

unrealistic values of control depending on the selection of . The magnitude of control can be decreased by 

increasing , however, this may cause other perturbations of the system (such as the time it takes the oscillation to 

decay) to deteriorate. 

  In order to obtain more realistic results, bounds can be placed on the control force. This can be written as 

fi Fi ,     Fi = const,  i = 1, 2, …,p        (1-31) 

where Fi  is the magnitude bounding each controller. To obtain an optimal solution, the following restrictions must 

be satisfied: (1) among these optimal synthesis of the control must exist in the domain of interest, (2) the function B 

Eq. (1-30) must be convex, and (3) the limits of F may be constant or dependent on time only and F must not be 

equal to zero at any time (Note: if F is very small a loss in stability can occur). For a solution, the system of Eqs. (1-

11) and (1-29) must be integrated along with limits imposed by equation (1-31). 

  The norm for the displacements or total deviation can be defined by 
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               n  

      Rx(t) =S = [ xi
2
(t) ]

1/2
   i = 1, 2, …,n      (1-32)    

      i=1 

This norm is zero at the time the deviation is zero, and the structure stops vibrating. In the LQR solution 

domain this time equals infinity. For studying the behavior and comparison of different control systems, 

a measure of performances has been used based upon. The time required to reduce the norm of the 

displacements to 2% of their initial value. 

Numerical Examples. 

Example 1. SISO problem. 

   For comparison of systems with different objective functions, a vibrating structure with a single 

physical degree of freedom was been investigated. This system is described by equation the following 

set of 

dx1/dt = x2,    dx2/dt = - 2x1 – 2 x2 + cf ,  x1(0) = 0,  x2(0) = 1 ,  f   1            (1-33)          

where  = 2 is the frequency,  = 0.03 is the damping, c = 1, and  f   1 is the control. 

  The problem is solved having an objective function for minimum time as 


T

dtT
0

min ,  x1(T) = 0,  x2(T) = 0              (1-34) 

  Eqs. (1-17) and (1-18) for the system defined in Eq. (1-33) become 

       d1  dt =  - 22 ,     d2  dt = 1 - 22 ,     f =Fsign 2 .                     (1-35) 

Eqs. (1-33)-(1-35) are integrated and the initial values  1(0),  2(0) are chosen such that the conditions  

x1(T) = x2(T) = 0 are satisfied. The details of the solution scheme are not given here because of space 

limitations. 

  The performance for the linear quadratic regulator (LQR) is 

 dtxxJ 2

22

2

11
0

(
2

1
  



 .     (1-36) 

Using this performance index and solving the Riccati Eq. (1-29) gives 

f = 2(c/)(c12x1 + c2x2) ,      (1-37) 

where 

    c12 = - [2 + (4 + co1)
0.5]/2co ,   c

2 = { - + [2


2 + (0.252 + c12)co]0.5}/co ,     co = c2/ . 

In the case of   = 1 = 2 , the time history depends only on    . The total deviation is 

Rx = S = (x1
2 + x2

2)1/2 .    (1-38) 
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Eq. (1-33) is integrated with control given in Eq. (1-37). 

  The results of this investigation for the case T = min, / = 0.25 and 100 and no control (open-loop 

system) are shown in Fig’s 1, 2, & 3. 

  Fig. 1 shows the time history of deviation of x2. As can be seen, an LQR with / = 100 gives better 

results (t = 4 sec) than an LQR with / = 0.25 (time is more than 15 sec) however an even better result 

is obtained with an objective function of minimum time. In the last case, oscillations are terminated in 

1.5 sec. 

  Figure 2 shows the variation of a bounded control force f 1 for the case of T=min, LQR when / = 

0.25 and /  = 100. The case LQR (/  = 0.25) does not use the full control force, the case LQR (/  

=100) uses more of the control force, and case t =min uses the maximum control force all the time.   

     Fig.3 shows the time history for the total deviation (Rx) with no control, with an objective function for 

minimum time and with LQR given by control bounds f 1.   

 
Fig 1 

  A structural system with any number of degrees of freedom can be transformed into pairs of equations 

(1-33)(see later Eq.(1-40)-(1-48)) where every pair is independent from the other. If the number of 

controls equals the number of degrees of freedom the design approach based on minimum time can be 

used. However, if the number of controls is less than the number of pairs of equations, the solution for 

the functional T = min becomes very complex. In this case, the LQR approach is a variable alternative. 
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Fig.2 

 

 
Fig.3 

Example 2. Wing Box 

    In order to illustrate the application of an approach using the linear quadratic regulator with bounded 

control, the wing box problem in reference [5] is used and shown in Fig. 4. This structure has thirty-two 

elements and twenty-four degrees of freedom. The structure is a cantilever wing box idealized with bar 

elements capable of carrying axial loads only.  
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Fig.4. 

 

  The equations of motion for a flexible structure with no external disturbance can be written as 

DfKuuEuM   ,    (1-39) 

where M is the mass matrix, E is the damping matrix, and K is the total stiffness matrix. These matrices 

are n1n1, where  n1 is the number of degrees of freedom of the structure. In Eq. (1-39), D is the applied 

load distribution matrix relating the control input vector f to the coordinate system. The number of 

elements in vector f is equal to the number of actuators, p. The vector u in Eq.(1-39) defines the 

structural response. 

  The coordinate transformation 

u = []       (1-40) 

is introduced where  is the modal coordinate system and [] is the n1n1 modal matrix. Using Eq. (1-40), Eq.(1-

39) can be transformed into n1 uncoupled equations. These can be written as 
TKEM ][   Df    (1-41) 

where 

][][][

][][]2[

][][

2 





KK

EE

MIM

T

T

T









                (1-42, 1-44) 

The matrices ,, EM  and K  are diagonal square matrices,  is the vector of structural frequencies, and  is the 

vector of modal damping factors. The modal matrix [] is normalized with respect to the mass matrix. The control 

analysis is performed by reducing the second-order uncoupled equation [Eq.(1-41)] to a first-order equation. Only n 

of n1 uncoupled equations are used for the control system design. This can be achieved by using the transformation 
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             (1-45) 

where x is the state variable vector of size 2n. This gives 

BfAxx                      (1-46) 

where A is a 2n  2n matrix and B is a 2n  p input matrix. The A matrix and the input matrices are given by 
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A      (1-47) 
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0
      (1-48) 

  The state output equation is given by 

      y = Cx      (1-49) 

where y is a q  1 output vector, C is aq  2n output matrix, and q is equal to the total number of 

sensors. If the number of sensors and actuators equal and collocated, then q = p and 

C = BT .     (1-50) 

  For this structure, Young's modulus and weight density are assumed to be equal to 10.5 x l06 lbs/in2 

and 0.1 lbs/in3, respectively. The actuators and sensors are assumed embedded in the structural 

elements and are collocated. The actuators are assumed to apply forces along the axial directions 

providing both out of plane, in plane and twist control for the structure. It is assumed that all structural 

modes have 1% structural damping and thus  in Eq. (1-9) was 0.01. 

     The control system utilizes four actuators and sensors collocated in the four members at the tip of 

the structure connecting nodes 1-2, 3-4, 1-3 and 2-4 respectively. Non-structural masses are located at 

nodes 1 through 8. Their magnitudes are 0.5 slugs at nodes 1 and 2; 1.5 slugs at nodes 3 and 4; 2.5 slugs 

at node 5 and 7.0 and 1.0 slugs at nodes 6 and 8 respectively. For the 24 structural degrees of freedom, 

the full order state space matrix in Eq. (1-11) is 48 x 48. Since there are four actuators and sensors, the 

input matrix B and output matrix C are 48 x 4 and 4x48, respectively. The cross-sectional areas of the rod 

elements were equal to 0.1 in2. The weighting matrices Q and R in Eq. (1-28), (1-29) were equal to the 

identity matrix. 

  The four values of the weighting parameter ratios  selected for this study are 0.1, 1.0, 100 

and 1000, respectively. The maximum control forces generated by the four actuators are given in 

Table 1.  

Table 1. Calculated cases 

------------------------------------------------------------------------------------------------------------------  

Control bound F    0.5  0.15  0.05 

----------------------------------------------------------------------------------------------------------------- 
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 = 0.1   +  +  +  + 

 = 1    +  +  +  + 

 = 100   +  +  +  + 

 = 1000   +  +  +  + 

No control   + 

---------------------------------------------------------------------------------------------------------------  

 

   The initial condition used for designing the controllers is a unit displacement at node 1 in the z-

direction. This condition is used for all cases and also to obtain the response curves. The 

response curves are given for only a few cases because of space limitations. The three limits on 

the maximum allowable control forces are set equal to 0.5, 0.15, and 0.05 respectively. The 

different cases considered are summarized in Table 2.  

Table 2. Maximum actuator forces 

------------------------------------------------------------------------------------------------------------------  

      Actuator #  

   ----------------------------------------------------------------------------- 

Value    1  2  3  4   

-------------------------------------------------------------------------------------------------------   

 = 0.1   0.05  0.05  0.07  0.03 

 = 1.0   0.20  0.24  0.31  0.12 

 = 100   1.31  1.89  3.30  1.23 

 = 1000   2.95  2.25  8.25  3.73 

----------------------------------------------------------------------------------------------------------------- 

 

In the case of  = 0.1 the maximum actuator forces are less than 0.15, and for  = 1.0, they 

are less than 0.5. Fig. 5 shows the time history of the displacement norm without control bound 

for the four values of  and without control. 
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Fig.5. 

The maximum value of the displacement norm as a function of time is shown in Fig. 6. 

The time required to decrease the displacement norm to 2% of its initial value 1.0 is shown in 

Fig. 7.  

 

                                           Fig.6.     Fig.7.      

 



151 

 

In the case of no-control, the total time needed to reduce the displacement norm to two percent of 

the initial value is larger than 100 seconds. The variation in the control force in actuator 1 as a 

function of time for  equal to 100 and 1 is shown in Fig. 8. 

                           

            Fig.8. (2.47 Mb) 

  

  Fig. 9 shows the time history of control force in actuator 1 with the upper bound equal to 0.15 

for  = 100. The upper bound is enforced on all the actuators. 
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                     Fig.9. 

 The changes in the displacement norm with time for 8/y equal to 100 are shown in Fig. 10 for 

the case of control bound equal to 0.15 and without bound.  

               

        Fig.10. 
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 Fig. 11 shows the total time required to reduce the displacement norm to 0.02 for three values of 

 and four values of control bound. As the control bound decreases more time is needed to 

reduce the displacement norm to 0.02 for a given value of . The maximum root mean square 

response for different cases is shown in Fig. 12. 

        

Fig.11.     Fig.12 

2. Solution of general linear optimal problem for one control 
 

  Now consider the general optimal linear regulator problem with an objective function of minimum 

time and one control parameter. 

 Problem Statement. The system is described by a linear differential equation in vector form as, 

LuAxx       (2-1) 

where ),...,,( 21 nxxxx   is the n-dimensional state vector , ijaA   a n-dimensional square matrix of 

constant coefficients, L a column vector which contains nlll ,...,, 21 ;  u a limited control, u ,  0;  

x(0) = xo,  x(tk) = xk the initial and final condition, T = tk represent the end time of process, to =0. 

It is known the control can have only boundary value in linear system and, if eigenvalues of matrix A 

is real numbers, the system has only maximum n-1 switches [7]. 

Problem solution. The characteristic equation isA - E = 0, where E is an unit n-dimensional matrix,  

is eigenvalues  of matrix A.  

Case A.  All eigenvalues  are real, different, and not equal zero. Using 
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1

       (i=1,2,…,n),      eij = constij    

can convert the equations (2-1) to canonical form 

;1111 ubyy       ;2222 ubyy       …     ;ubyy nnnn     (2-2) 

with boundary conditions yi(0) = yi0;   yi(tk) = yik . 

  The optimal control u =   is constant everywhere. If a new variable  

zi = iyi + biu  is introduced, it is possible to write equation (2-2) in form 

   ;111 zz      ;222 zz     …;    ;nnn zz          (2-3) 

   A solution of equation (2-3) is  

t

ii
iecz


    (i = 1, … ,n). 

  Returning to the variable y we can write 

ii

t

ii ubecy i 
/     (i = 1,…,n);      ;/ iii cc     i  0.       (2-4) 

  Consider the value y1. The moment when a control parameter is changed it is marked an index “i” 

below and right and left from point ti by plus and minus sign on top of magnitudes. 

  Let us suggest, that the control has k-1 switches. From continuous condition we have 

  ii yy . Therefore we have  

iii

t

jiiii

t

ji ubecubec ijiiji 


//          (i = 1,…,n) .  (2-5) 

From (2-5) 

ijii

t

jiji buuecc ij 


/)(      (i = 1,…,k-1).   (2-6) 

The value 

  ijij cc ,1, . From (2-6), we get 

)(
1

1

0
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t
k

i i

j

jjk uue
b

cc ii


 .    (2-7) 

From the first equation (2-4) and boundary conditions for yi, we find 
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where  00 uu . 

 Substituting (2-8) to (2-7) we obtain, 
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        (j=1,…,n)     (2-9) 

 These equation (2-9) satisfies for all yi   i=1,…,n.   

If to divide the right and left parts of equation (2-9) by (–2bjuo/I), we find, 

     ;/1
2

1
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)1(... 01100111

1 1112111 ubyeubyeee i
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  ; 

     ;/1
2

1
/)1(

2

1
)1(... 022200222

1 2122212 ubyeubyeee kk t

k

ktktt   
  ; 

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                     (2-10) 
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   , 

where k=n. 

  Noting that 
i

t
we i 

  ,  equations (2-10) can be written as 
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. . . . . . . . . . . . . . . . . . . . . . . . .         (2-11) 
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  . 

 Equation (2-11) is solved in order to find  wi = wi(yo). Returning to the original variable x, we can write  

ti = - ln wi(x) . 

where xo represents the initial point x. 
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  Equations (2-11) are a set of algebraic equations. From boundary conditions we know that 

0... 11   ttt kk  . 

  That implies that 

1...0 11   www kk  . 

  For control u . This implies that equations (2-11) must be solved twice. If x(tk) = 0 (this means 

y(tk) = 0), the second solution is symmetric about  the origin. 

  The solution of equation (2-11) is easier to evaluate then the classical optimal control solution. In 

classical theory a researcher must solve a boundary problem for a set of given differential equations and 

also find a set of unknown Lagrange multipliers. In using equation (2-10) the researcher first establish 

the required time increments based upon knowledge of the physical    situation. 

   To find the switch surfaces, for t1 = 0, implies thus the trajectory is located on the first switch surface. 

In this case in equation (2-11)  11
1 


we

t . We then set about solving the first n-1 equations  (2-11) 

for w2, w3, …, wk and substitute these solutions into the last equation. This leads to an equation 

0)(1 y . By substituting for y we can find N1(x). This is the first (n-1)-dimensional switch surface.   

  Next by substituting w1 = 1, w2 = 1 in the first n-1 equations, and solving the first n-2 equations for w3, 

w4, …, wn one can obtain solutions and substitute them into last equation. We thus can find a hyper 

surface N2(x) = 0.  The intersection of this hyper surface with  N1(x) creates the second (n-2)-dimensional 

switch surface. Other switch surfaces can be found in as similar way.  

  Such an optimal control result can be easily found.  In selecting  uo, when the state point reaches the 

switch surface N1(x) = 0, u1= - uo. When the state point reaches the switch surface N2(x) = 0, u2= -u1 and 

so on. 

   If time is deleted from any two of equation (2-4), we obtain a projection of the trajectory on the 

surface yiyj 

iiiiiii ububycy ji 


/)/(
/

 , ji

jii ccc
 /

/  . 

  From (2-2) we can find the boundaries of instability, for positive eigenvalues. For example, if I > 0,  bi > 

0, then yi(tk) = 0. The necessary and sufficient condition unstable solution is given by 


i

i
i

b
y   ; 

i

i
i

b
y  . 

   We have only considered cases when the eigenvalues are real, different, and non-equal to zero. 

Additional cases have been considered in reference [6] .  
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 Example. Taking any two of equations (2-1) with eigenvalues 1, 2  (1 2, 1 0, 2 0,  1<2 ) ,  x(tk) 

= 0, a canonical form of the equations can be expressed as, 

uyy  111  ;       uyy  222  ;       y(0) = y;    y(tk) = 0;   u 1 .  (E1) 

   Equation (2-11) for uo = 1 can be written as 

2
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2
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1121

11  yww 
 ; 

2
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2

1
2221

22  yww 
 .  (E2) 

 For w1 = 1 (simplifying for the case t1 = 0),  w2 can be obtained from (E2) and thus 
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  For uo = -1 equations (2-11) are 
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  Taking w1 = 1, and using w2 from (E2), we find,  
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yy  .      (E5) 

  Using a continuity condition y1(tk) = y2(tk), the relations (E3), (E5) can be written as one relation 
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   If y1 = 0, y2 > 0, then the relation (E6) is greater then zero. From (E1) we see: y2 will be decrease faster 

if u = -1 for y2 > 0 and u = +1 for y2 < 0. This implied that   
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  To find the equations for optimal trajectories. Referring equations (2-4),(2-11) we find 
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  The last equation in (E8) gives information in the trajectories as shown in figure 13.  
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Fig13. 

These trajectories depend upon the signs of 1, 2. For then 1>0,  2<0 the non-stability region  is y1 

> 1 . For 1<0,  2>0 the non-stability region  is y2 > 2 . 

   In fig.14 also shown optimal trajectories. Once again they depend up on the signs of 1, 2. Returning 

to the variables x, the picture 14 is affined deformity.  
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  Fig.14.   

  The offered method allows capture of optimal control.  

Summary 

   Two optimum control design methods for suppression of structural vibration having bounded 

constrains have been compared. The minimum time and quadratic performance index have been used 

as objective functions. The second approach leads to use of the LQR methodology with bounded control. 

The introduction of a minimum time controller can be used when the number of actuators equals the 

number of structural degrees of freedom used in the design of the control system. When the number of 

actuators is less than the number of degrees of freedom, the minimum time controller becomes 

mathematically complicated and has been found to be difficult to solve due to the presence of local 

minimums. The minimum quadratic function controller, with bounded control, can be designed with a 

fewer number of actuators. A SISO structural control design problem has been solved using both 

approaches for comparison of trajectories and the time needed to suppress vibrations. The influence of 

control limitations and the weight coefficient  of the structure have been studied. Results indicate 

that an optimal selection of the weight coefficient  can decrease the suppression time up to 2-4 

times. 

Recommendations 

If possible, the researcher should try to design the controller for minimum time. If it is very 

difficult, he can design LQR controller. However in this case the researcher must: 

1. Consider limits on the maximum value of the control force. 
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2. Find the optimal ratio  of the weight coefficients.  

3. Solve (numerically) at least one time the real (minimum time) problem and compare what may 
be luck is loss from changing the Tmin problem to the LQR problem. 

References 

1. A.A. Bolonkin, Solution general linear optimal problem with one control. Journal “Pricladnaya 
Mechanica”, v.4, #4, 1968, pgs. 111-122. Moscow (in Russian). 

2. A.A. Bolonkin, New methods of optimization and their application, Moscow, Technical University 
named Bauman, 1972, pgs.220 (in Russian). 

3. A.A. Bolonkin, “Special Extrema in Optimal Control Problems”, Akademiya Nauk, Izvestia, 
Theknicheskaya Kibernetika, No.2, March-April, 1969, pp.187-198. See also English translation in 
Eng.Cybernetics, n.2, March-April,1969, pp.170-183. 

4. A.A. Bolonkin, “A New Approach to Finding a Global Optimum”, “New Americans Collected 
Scientific Reports”,Vol.1, 1991. the Bnai Zion Sa Scientists Division, New York. 

5. A.A. Bolonkin, N.S. Khot, Optimal Structural Control Design, IAF-94-1.4.206, 45th Congress of the 
International Astronautical Federation, World Space Congress-1994. October 9-
14,1994/Jerusalem, Israel. 

6. V. Boltyanski, A. Poznyak, Linear multi-model time-optimization, Journal “Optimal Control 
Applications and Methods”,Vol.23, Issue 3, 2002, pp.141-161. 

7. Yunying Mao, Zeyi Liu, The optimal feedback control of the linear-quadratic control problem 
with a control inequality constraint, Journal “Optimal Control Applications and Methods”,Vol.22, 
Issue 2, 2001, pp.95-109. 

8. Heping Hua, Numerical solution of optimal control problems, Journal “Optimal Control 
Applications and Methods”,Vol.21, Issue 5, 2000, pp.233-241. 

9. H.Singh, R.H. Broun, D.S. Naidu, Unified approach to linear quadratic regulator with time-scale 
property, Journal “Optimal Control Applications and Methods”,Vol.22, Issue 1, 2001, pp 1-16.. 

10. B.J. Driessen, N. Sadegh, Minimum-time control of systems with Coulomb friction: near global 
via mixed integer linear programming, Journal “Optimal Control Applications and 
Methods”,Vol.22, Issue 2, 2001, pp.51-62. 

Nomenclature 
A is the 2n2n plant matrix in liner problem  

aij  is members of matrix A 

B is 2np control matrix in liner problem   

bjk is members of matrix B 

C is q  2n out matrix 

Ci are weight coefficients 

c is constant 

Fi  is the magnitude of the bounds for each controller 

F0 is function of initial conditions 

f  is the control force vector of dimension  p 
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 f   1 is the control in linear problem 

H is Hamiltonian 

I is the functional (objective function),  

,, EM K  are diagonal square matrices  

P is a 2n-dimensional unknown matrix 

Q is state weighting matrices 

R  is control weighting matrices 

Rx(t) is norm of displacement 

T is final time 

t is time (variable)  

t1, t2, - boundary condition  

u is the vector defines the structural response. 

v is a p-dimensional vector of control forces 

x is a n-dimensional vector of state in general problem,  

x is the state vector of dimension 2n in linear problem.  

x(0) is the initial state vector 

x(T)  is the final state of the system. 

x1, x2 - boundary condition 

  is the vector of modal damping factors 

(t) is a n-dimensional vector unknown coefficient 

 is eigenvalues  of matrix A 

 = (t,x) is special function 

 is the vector of structural frequencies  

 


