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Abstract

Based on the paths of signals emanating from a rotating point body, we find the
equations and properties of the field that they form. Depending on the type of observer
the field differs. The field is not central but varies in orientation and magnitude with
both distance and angular velocity of rotation. The magnitude of the field in some cases
forms a barrier away from the origin, which may be very strong depending on the
angular velocity of rotation. The results apply both to microcosmos (sub-atomic level)
and macrocosmos (cosmic level).

1. Introduction

This paper is a continuation of the paper [1] that studied the relativistic rotation of
frames and the signals emanating from a rotating point body located at the origin. A
field can be viewed as signals that do not cross each other. These signals are received by
a body that is subject to the field and induce it to act in a certain way. We will assume
that these signals behave like light signals and travel the same way. This will allow us to
use the results found for the paths of the signals emanating from a rotating body [1] to
deduce the form and behavior of a field, we call G, due to the mass of the body and its
rotation. We examine two types of rotation: One is called rotation without slippage,
where the angular velocity of the space around the rotating body is constant regardless
of distance from the body and the other is rotation with slippage, when rotation of space
has an exponentially decreasing angular velocity as the distance from the rotating body
increases. In each case we will distinguish between two types of non rotating observers:
One close to the body and one far away. The observers are assumed mass-less and not
affecting or affected by the signals emanating from the rotating body. In the case of
constant angular velocity the far away observer will notice that a cylindrical “barrier”,
(rapid increase of the field and sideway turn of its direction) is formed at radial distance,
in cylindrical coordinates, c/w from the axis of rotation, while for the nearby observer
no such barrier is formed. In the case of exponentially declining angular velocity, the far
away observer will see a “barrier” being formed only when the angular velocity is very
big and in that case, the barrier is formed at a radial distance approximately inverse to
the angular velocity, leading us to the subatomic distances (microcosmos) and
resembling the non slippage case. This barrier is stronger as the angular velocity of
rotation increases. The characteristic of the barrier is, as in the previous case, a rapid
increase in the magnitude of the field and turn of the direction of the field from the
radial direction. Outside this barrier, the field gradually regains its radial direction and
normal magnitude as the effect of rotation of the body on space declines, and returns
back to the normal Newtonian gravitational field. On the other hand, for small angular
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velocity no barrier is formed as is the case for cosmic distances (macrocosmos). Simply
the field direction starts radially (in cylindrical coordinates) from the body and turns
gradually sideways with respect to the radial until it reaches a maximum deflection and
then turns back gradually to the radial direction and again ends up looking like a normal
Newtonian gravity field. The sideways turn is not accompanied by an increase in the
magnitude of the field as in the microcosmos case.
This paper is organized as follows: In section 2 a short review of previous theory is
presented. In section 3 the connection between signals and fields is exposed. In section
4 we find the field, G , for an observer, who does not rotate with the body, when the
angular velocity is constant with respect to the distance from the body (no slippage ). In
section 5 we retain the no slippage assumption but change to the far away observer, and
calculate the field G that he sees. In section 6 we calculate the relativistic mass of the
rotating body. In section 7 we assume that the angular velocity is decreasing
exponentially with the distance from the body (slippage case) and we calculate and
present the graph of the field G that the far away observer sees. It is shown that a
“barrier” is formed at the microcosmos level. In section 8 we continue with the slippage
assumption and shortly discuss the G field for this case. Conclusions follow in section
9.

2 A short review of formulas related to previous theory on
rotating frames and the path of signals emanating from a rotating
body at the origin.

We will summarize the results of the theory [1], on which this paper stands by
presenting the transformation of cylindrical coordinates for each case.

A. Rotation without slippage (the angular velocity w of rotation of signals is
constant with respect to the distance from the rotating body). Precession of the
rotating body is assumed having a very small amplitude and is thus neglected.
A.I Observer O at the origin but not rotating with the body. (The

transformation holds for cz
w
 ).

sin ( , )c I t    (1)
vt   (2)

z z  (3)
t t  (4)

2 2 2 2 2 2( , )
c t c

I tc w c w


  
  

  
  

(5)

v v  (6)
where , , , , ,z t v  are the radial distance in cylindrical coordinates, the angle of
rotation as fraction of a circle (for example degrees), the z direction that coincides with
the axis of rotation, time, the number pi, and the frequency of rotation respectively for
observer O , who is located at the origin and rotates with the body. And where

, , , , ,z t v       are the same quantities for observer O , who is located at the origin
but not rotating with the body. The speed of light is c for both observers.
Further, where,
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0

( , ) cos
t

I t dt   (7)
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2 2 2 2 2 2
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w t c w
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with
2 2

cos z
z







,
2 2

sin
z








, sinct  , cosz ct  where  is the

angle of inclination of the signal with respect to the z axis. Angle  is the angle of
deflection of the signal from the radial as observer O sees it.
From the above we can find the transformation of the angular velocity w using the
formula ( 2w v and 2w v  ) and the angle of rotation  measured in radians
(using 2  and 2     ) as,

w
w




 
 (9)

( )wt 
 




   (10)

Relation (5) is obtained by requiring that the special relativistic Lorentz contraction of
the perimeter holds for all light rays

2 2

22 2 1 w
c


  
 

    (11)

and using the fact that 2w v and 2w v  we find
2 2 2

2 2
2 2 2

w cw
c w





  


. Then we

may express (11) as

2 2 2

c
c w

  


  


(12)

From this (5) is obtained.

Note that when 0z  ( 90   ) (1) becomes, arcsinh( )c w
w c


  

A.II. Observer O is the far away observer outside the cylindrical volume

defined by c
w

  ) for which the transformation below holds.

2 2 2

c
c w

 


 


(13)

vt   (14)
z z  (15)
t t  (16)

   (17)
v v  (18)

wt    (19)
Where the double primed quantities have the same meaning as the single primed above
but refer to observer O . The angle of deflection is   , and is given by

2 2 2tan (1 sin )wt w t    (20)



4

And the angle of inclination of the signal with respect to the z axis is given by
2 2 2 2 2 2

2 2 2 2

1 (1 sin )
tan tan

(1 sin )
w t w t

w t


 


 
 


(21)

B. Rotation with slippage. (The angular velocity of rotation of signals decreases
exponentially with respect to the distance from the rotating body). This case has
more meaning physically than case A above, and we also avoid the unnatural

boundaries that appear at cz
w
 and at c

w
   . The angular velocity is given

by ( ) ( sin cos )
0 0

z ctw w e w e          with 0  , 0  and the frequency of
rotation is ( ) ( sin cos )

0 0
z ctv v e v e          . Precession is assumed to have very

small amplitude and is neglected otherwise  must be replaced by   where

0tan tan cos t   , where  is the angular velocity of precession.

B.I. Observer O at the origin but not rotating.
sin ( , , , )c I t      (22)

( sin cos )
( sin cos ) 0

0
0

(1 )
( sin cos )

t ct
ct v ev e dt

c

   
   

   

 
      

 (23)

z z  (24)
t t  (25)

2 2 2 2( )
0

z

c
c w e  


 

   
 

 
(26)

where

0

( , , , ) cos
t

I t dt     (27)

where  is the angle of deflection of the signal from the radial and
2 2 2 ( sin cos ) 2 2 2 2 2( )
0 0
2 2 2 ( sin cos ) 2 2 2 2 2( )
0 0

1 coscos
1 sin

ct z

ct z

w t e c w z e
w t e c w e

     

     




 

   

   

 
 

 
(28)

w
w




 
 (29)

and using (23) with (26) and the fact that 2   , 2     , we find the
transformation of the rotation angle in radians

( sin cos )
( sin cos ) 0

0
0

(1 )( )
( sin cos )

t ct
ct w ew e dt

c

   
    

  
     

 
          

 (30)

Also assume that
0

1 ce
w
 , the condition needed for cos to be real for all  .

B.II Observer O(the far away not rotating observer)

2 2 2 2( )
0

z

c
c w e  

 
  

 


(31)
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( sin cos )
( sin cos ) 0

0
0

(1 )
( sin cos )

t ct
ct v ev e dt

c

   
   

   

 
      

 (32)

z z  (33)
t t  (34)

   (35)
0 0w w  (36)

( sin cos )
( sin cos ) 0

0
0

(1 )
( sin cos )

t ct
ct w ew e dt

c

   
     

   

 
      

 (37)

The angle of deflection  is given by
2 2

2 22 2 2 2

2 23 2 2

2

1(1 sin )tan
( )1 ( sin cos ) sin 1

w
w zwt w t c

w zc t w c
c





      

  
  

(38)

While the velocity of signals c as observer O sees them will be
2 2 3 2 2 2

2
2 2 2 2 2 2 2

(1 ( sin cos ) sin )cos 1 tan 1
1 sin (1 sin )c

w t c t wc
w t w t

    
  

 
  

     
(39)

The inclination of the path of the signal with respect to the z axis is given by
3 2 2 2

2 2 2 22 2 2

(1 ( sin cos ) sin )tan tan 1
(1 sin )1 sin

wt c t w
w tw t

    
 



   


(40)

So that
cos cosc c    (41)

3 Signals and Fields

Consider a point in a field. At this point the field has a magnitude and direction. Let a
small flat surface a , whose normal is pointing in the same direction as the field. We
will define the field strength n as the number of  signals per unit surface per unit time
falling perpendicular to the surface. Let also, v denote the velocity of the signals. We
will assume that the direction of the field is given by the opposite direction to that of the
velocity of the signals.
Then according to our definition,

ˆn G v (42)
Where G is the vector field and v̂ is the unit vector in the direction of the velocity of
the signals.
Letting now a become infinitesimal da we say that the infinitesimal volume dV
traversed by the signals in time dt is

dV d dt v a (43)
Also the number of signals dN in the infinitesimal volume dV is,

dN n d dt a (44)
dividing we obtain,
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dN n
dV


v
(45)

Substituting n from (45) into (42) we find,
dN
dV

 G v (46)

As an example, let us consider a field (like the Newtonian gravity field) that sends
signals radially from a body of mass m . We assume that the total number of signals
emitted from the body per unit time is proportional to m , say Gk m for some constant

Gk . Since the signals are emitted spherically they will cross the spherical surface at
distance r homogeneously. In order to find the n (number of signals per unit time per
unit surface crossing the surface of a sphere at distance r ) we must divide the total
number of signals per unit time by the surface area,

24
Gk mn

r
 (47)

It follows that this field may be represented using (42) by,

2
ˆ ˆ

4
Gk mn

r
   G v v (48)

where v̂ is the unit vector in the direction of the velocity of the signals, which in this
case coincides with the radius r .

4 The field G created by a rotating body and no slippage
(observer Ocase A.I)

As discussed in [1], the signals emitted by a rotating point body look different to

observer O(case A.II above), who is outside the volume defined by c
w

  (which

describes a cylinder of radius c/w) and to observer O (case A.I) above), who is within
this volume (as O defines it). We will examine the two phenomena separately starting
with O .
How will the field G look to observer O , when the body m rotates with angular
velocity w ? There will be two effects that determine what O observes. One is that the
rotating mass will look bigger due to relativity, (denote it m ). This effect, which
appears if we let the rotating body have dimensions instead of being a point mass, will
be examined in section 6. The second effect is that the signals emanating from this body
will not follow a radial path. Let’s start with the second effect that is the signals that are
emitted from such a body and look at Figure 1.
The signals according to observer O , who rotates with the body, will expand
spherically and the field G will follow equation (48), the classical Newtonian field. The
radially traveling signal OAC for observer O will be mapped to a helical signal shown
as OA'C' for observer O . A small volume dV d dzd   (in cylindrical coordinates
as observer O perceives space) around point such as A or C will be mapped to a small
volume dV d dz d       in (cylindrical contracted coordinates as observer O
perceives space) around point A' or C' respectively. Still both volumes will contain the
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same number of signals dN . It follows, therefore, that O will observe a field G
according to, (46)

dN
dV

  


G v (49)

where v is the velocity vector for signals as seen byO . Using the chain rule of
differentiation (49) can be written as

dN dV
dV dV

  


G v (50)

Assuming that signals travel with the same speed c for our observers c  v v , we
may rewrite (50) as

ˆ ˆ ˆdN dV dN dV dV
dV dV dV dV dV

      
  

G v v v v G v (51)

Figure 1 The signal as observer O , who rotates with the body, sees it is the straight line OCA.
For observer O , OCA is mapped to a helical path shown as O C'A' because of contraction of
radial (in cylindrical coordinates) distance due to rotation.

For the case of the gravitational field using (51) on (48) it becomes,

2
ˆ

4
Gk m dV

r dV


  


G v (52)

where we have replaced m by m to indicate that the mass will look bigger, when it is
rotating.
Using cylindrical coordinates, 2 2 2r z  , we obtain,

 2 2
ˆ

4
Gk m dV

dVz 


  


G v (53)

where ˆ v is the unit vector in the direction of the signals as seen by O .

O

A
A'

C

c
w

c
w


z



B
C'
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What remains now is to calculate dV
dV 

. But dV
dV 

is given by the Jacobian of the

transformation, ( , , )
( , , )

z
z

 
 

  

.

For case A.I equations (1) through (12) apply, which hold for cz
w
 , (equivalently

1
cos

t
w 
 ), the transformation is,

0

sin cos sin ( , )
t

c dt c I t       (54)

z z  (55)

( )wt 
 




   (56)

where
2 2 2( )
w cw

c w





  


and
2 2 2 2 2 2

2 2 2 2 2 2

1 coscos
1 sin

w t c w z
w t c w




 
 

 
 

.

The Jacobian of the above transformation is ( , , )
( , , )

z
z

 
 
  



0

( , , )
( , , )

0 0 1

z z
zJ
z z z

z z z
z

    
  

         
       

 

        
    

                      
        

    
  

(57)

Observe that 0





since from (54)   does not depend on  , which was anyway

expected because of symmetry around the z axis as we take into account all signals
emanating in all directions from the rotating body.
Now

 
 
 



(58)

while from (5)

2 2 2 2 2 2( , )
c t c

I tc w c w


  
  

  
  

(59)

Hence, substituting (58), (59), (54) in (57) it becomes,

 
2 2 2

( , )sin ( , ) sin sin ( , )
sin ( , )

ccI t c I t I t
c I t c w

   
     

        

         
          

(60)
or

2 2 2 2 2

( , )
sin ( , )

I t cJ
I tz c w

   
    

     
    

(61)



9

where we have used
2 2

sin
z









Focus on the term ( , )I t





in (61). and observe that we may write ( , ) *(cos , )I t I t 

since ( , )I t can be regarded as a function of cos instead of  . Hence, we may write,

cos( , ) *(cos , ) *(cos , ) *(cos , )
cos

tI t I t I t I t
t


   

    
     

  
     

(62)

Now calculate terms one by one,

2 2 2 4
4

32 2 2
2 2 2 2 2 20 0 2

1 cos*(cos , ) cos
cos cos 1 sin 1 cos (1 sin )

t tw t tI t dt w dt
w t w t w t


 

  
 

  
  

  
 

 

(63)
and letting

4

3
2 2 2 2 2 20 2

( , )
1 cos (1 sin )

t tU t dt
w t w t


 


 

 (64)

4*(cos , ) cos ( , )
cos

I t w U t  



 


(65)

Also

2 2 2 2

cos sin cosz
z z

  
   

 
  

   
(66)

2

2 2 2 2

cossin
z z

 


   

 
 

   
(67)

sint
c







(68)

Substituting (64), (65), (66), (67), (68) back in (62) and then in (60) we find,
2

4

2 2

( , ) cos sin cos sin( , )I t w U t
cz

    


 


 

 
(69)

where we have used the fact that ( , ) cosI t
t








Finally, substituting in (61) and using (67) it becomes,
4 2 2

2

2 2 2

cos sin ( , ) sin coscos
( , ) ( , )

w U t cJ
I t cI t c w
     


  

 
    

 
(70)

An alternative form for (70) is obtained by recalling that 2 2ct z  ,

2 2
sin

z








,
2 2

cos z
z
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2 4 2 2 2

2 2 2 2 2 2 2 2 2 2

( , ) cos
( ) ( , )( ) ( , )

z w z U t cJ
z I t z cI t z c w

   
     

 
    
     

(71)

By similar manipulations we obtain another form of (70) in terms of  and t
4 2 2 2

2

2 2 2

sin cos ( , ) sin cos 1cos
( , ) ( , ) 1 sin

w U t tJ
I t I t w t

    


  

 
    

 
(72)

Now we may use J  in (53) since 1dV
dV J

 

and find the field,

2 2 2 2 22 2 4
2

2 2 2 2 2

1 ˆ ˆ
4 ( ) cos( , )4

( , )( ) ( , )

G Gk m k m
z J zz w U t cz

I t z cI t c w

     


   

 
     

  
     

G v v

(73)
The formula above expresses G in terms of  , a quantity observed by observer O . If
we wish to express it in terms of what observer O sees, we must substitute  according

to (54). Namely, sin ( , )sin ( , ) ( , )ct I tc I t I t
t t
  

      

The particular case when 0z  implies that

 0 2 2
0

1 1( , ) ( , ) arcsinh arcsinh
2 1

t

z

dt wI t I t wt
w w cw t

 



   


 (74)

Using (74) into (73) and setting 0z  , we find the field at the horizontal plane at the
origin, which forms a disc as the signals at the horizontal plane rotate and expand
outward logarithmically:


2 2 2 2 2 2

3 30

( ) arcsinh ( )
ˆ ˆ

4 4

G G

z

w wk m c w k m c w
c c

cw c w

 
 

  


  

     G v v (75)

where we have used the fact that  0 2 2 2
cos

z

c
c w







The direction of the field G is given by its cylindrical components: coszG    G ,

sin cosG     G , sin sinG     G or the unit vector ˆ v is given by
ˆ ( , , ) (sin cos ,sin sin ,cos )zv v v        v . A plot of the field strength appears in

Figure 2
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Figure 2 G versus   and z . The effect of w is to decrease the scale as it increases keeping
the same general shape .

5 The G field created by a body rotating without slippage
(far away observer O case A.II)

From (13) to (19),which apply for case A.II above, we have,

2 2 2

c
c w

 


 


(76)

z z  (77)
wt    (78)

The angle of deflection is
2 2 2tan (1 sin )wt w t    (79)

And the angle of inclination is
2 2 2 2 2 2

2 2 2 2

1 (1 sin )
tan tan

(1 sin )
w t w t

w t


 


 
 


(80)

Since 1





and

3

3
2 2 2 2( )

c

c w












, the Jacobian is given by

3

3
2 2 2 2( )

cJ
c w

 
 



    
 


(81)

Using the same arguments as in section 4 we may express the G field as in (53)

 2 2
ˆ

4
Gk m dV

dVz 


  


G v (82)

Where 1dV
dV J

 

and m m  . The equality m m  is shown in section 6, where aq

calculation of m is also presented. Note also, that ˆ v is the unit vector in the direction
of the field.
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Then (82) becomes

 

3
2 2 2 2

3 2 2

( ) ˆ
4

Gk m c w
c z


 

   


G v (83)

Now using (76) we find that

2 2 2

c
c w

 





(84)

Substituting this into (83) we express G in terms of   ,
3

2 2 2 2 2 2 2 2 2
ˆ

4 ( ( ) )
km c

c c w z c w   


  

    
G v (85)

Setting 0  in (83) we obtain the field along the z axis which is the simple Newtonian
gravitational field, except for the increased mass m due to rotation.
The direction of the field in cylindrical coordinates is given by the unit vector
ˆ (sin cos ,sin sin ,cos )         v .

At /c w   the field blows to infinity. This corresponds to t and to tan   
or that the field has turned 90 degrees with respect to the radial direction thus a “barrier”
is formed at /c w   .
Figure 3 shows how G looks

Figure 3 The graph of G vs.   on the left appears as a contour plot on the right. We may
imagine the minimum locus of Figure 4 placed on the contour plot as well as the lines at

2
3

c
w

    , where the minimum in the direction of the signal path occurs. The magnitude of

G is decreasing in the   direction until it reaches a minimum and then increases and blows

to infinity. In the z direction it decreases as 21/ z

Now take the derivative
2 2 2 2 2 2 2 2

3 2 2 (3 2 )
4 ( )

Gk m c w w z w c
c z

  
  

     
 

G (86)
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This quantity will be non positive for 2 2 2 2 23 2 0w z w c   or for
2

2 2
2

2 3c z
w

   (87)

and hence G will be minimum for
2

2 2
min 2

2 3c z
w

   (88)

The locus of pairs ( , z ), where the minimum in the  direction occurs represents an
ellipse and the value of the field at a minimum is found by substituting (88) into (83)

2 2 2 2

3min

27
8

Gk m w c w z
c

  G (89)

To see how the minimum looks to observer O we must find the minimum for G

with respect to   . We take 
  
   
   

G G and since 0





the minimums

with respect to  found above, correspond to the minimums with respect to   and
hence substituting (84) into (88) we find that

4
2 2 2 2 2 2 2

2

2
3

cc c z w z
w

     (90)

This equation which is symmetric in , z  represents the locus of pairs of ( , z  ) where
G is minimum in the   direction for each particular z . The locus appears in Figure 4

Figure 4 The shape depicts the pair of points ( , z  ) where G is minimum in the  

direction. The graph is symmetric in , z 

If we are interested in the derivative of G along the path of a signal with inclination  ,
we will take the derivative with respect to t . In this case

3
2 2 2 2 2 2 2 2 2 2 22

3 2 2 2 3( sin ) 1 sin ( sin 2)
4 4

G Gk m k mc w c t w t w t
t t c c t c t

  
 
       

 
G

(91)
and the minimum is reached at

2000 1000 0 1000 2000
2000

1000

0

1000

2000

 

z
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min
2

sin
t

w 
 (92)

This locus (as  varies) is a cylinder of radius 2c
w

  , which corresponds using (76)

to 2
3

c
w

   .

6 The rotating mass

Until now we have considered bodies as point masses. If we allow them to have
dimensions the rotation makes them suffer a relativistic increase in mass. We will here
examine the change in the mass from the rest mass statm to the mass that O (or O)
observes.

Let statdm
dV

  and dm
dV




 


be the density of the mass for observer O and O

respectively. Where V and V  is the volume for the two observers respectively. Also we
will accept that a point mass that is at the distance   and has angular velocity w
according to O , will appear to him as having mass according to the transformation of

special relativity,
2 2 2

2 2

21

statstat m c wmm
cw

c





  
 



and therefore, for a small mass

dm dV that revolves with angular velocity w at distance  from the axis,

2 2 2 2 2 2

cdV cdm dV dm
c w c w



 

 
  

 
. But

V

m dV


    (93)

and substituting for   we obtain,

2 2 2 2 2 2

V V

c w c wdVm dV dV
c dV c

   



   
  (94)

Assume now that the stationary mass has uniform density,
2 2 2

V

m c w dV
c


   (95)

As an example assume that the mass is spherical. Changing to spherical coordinates and
integrating (see Appendix A) we find,

3 2
2 2 2 2

2 3 2 2 2
( ) arcsin( )

2 2 2
r c r wrm c w r

w w c c w r
      


(96)

which is the same as
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2 13 2 5 2 2
2 2 2 2

2
1

4 ( 1)( )
3 2 2 2 1

ii i

i

r w r w rm c w r
c c i c

    



          
 (97)

where r is the stationary radius of statm . We note from (96) that as w , m .

while, from (97) we see that for 0w  ,
34

3 stat
rm m    as expected.

The arguments are similar for observer O :

2 2

21

statmm
w

c


 




(98)

And using (13) we find that m m  .

7 The G field for rotation with slippage (observer O case
B.II )

When the rotation is with slippage the angular velocity of space around the rotating
body decreases exponentially with distance from the body. In fact we assume that the
angular velocity w is given by ( )

0
zw w e    . In this case which is studied in [1] the

signals start radially from the origin , then turn sideways until they reach a maximum of
sideways turn and then gradually return back to the radial direction. Hence, the G field
that is created is different from the no slippage case although it keeps the basic
characteristic of the sideways turn and having a barrier when 0w is big as in the case of
no slippage as we will see. For the far away observer O the field is denoted as G
In this case the transformation is given by case B.II above (recall (31) and following),

2 2 2 2( )
0

z

c
c w e  

 
  

 


(99)

0
0

0

(1 )t ct
ct w ew e dt

c


  




      (100)

z z  (101)
2 2

2 2 2 2

2 23 2 2

2

11 sintan tan
1 sin 1 ( )

w
w t cwt

wc t w z
c




 
   

  
  

(102)

Where sin cos      ,
2 2

tan
w z

c







3 2 2 2

2 2 2 2 2 22 2 2

(1 sin )tan tan 1
(1 sin )1 sin

wt c t w
w t w tw t

 
 



  


(103)

The Jacobian of the transformation is,
( , , )

( , , )
zJ
z

   
   
        

  
(104)
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But 1





, and

2 2 2( )
0

32 2 2 2( )
2 2 2 2( ) 20

0

(1 )

( )

z

z
z

cw ec
c w e c w e

 

 
 

 
  

 

 
 

 
 

  
, which after

some manipulation gives
2 2 3 2( )

0
3

2 2 2 2( ) 2
0

( )

( )

z

z

c c w e

c w e

 

 

 




 

 

 





(105)

Hence,
2 2 3 2( )

0
3

2 2 2 2( ) 2
0

( )

( )

z

z

c c w eJ
c w e

 

 

 



 

 

 


(106)

and
3

2 2 2 2( ) 2
0

2 2 2 2 2 2 3 2( )
0

ˆ ( ) ˆ
4 ( ) 4 ( ) ( )

z
G G

z

k m k m c w e
z J z c c w e

 

 


     

 

 

      
  

vG v (107)

For the direction of the field we need the unit vector in cylindrical coordinates, which as
usual is given by

ˆ ( , , ) (sin cos ,sin sin ,cos )zv v v            v (108)
The minimums and maximums of G are difficult to calculate. However, it is possible
to make the following observations,

7.1  Observations on the extremes of G

(a) Recall that whatever we find for  has a corresponding value for   since by
(105), which is positive for all  , we know that   is monotonically increasing in  .
The derivative of G with respect to  is

3 1
2 2 2 2( ) 2 2 2 2( ) 2 2( )2 2

0 0 0
2 2 2 2 2 3 2( ) 2 2 2 2 3 2( )

0 0

3
2 2 2 2( ) 2 2 2( )2

0 0
2 2

2 ( ) 3( ) (1 )
4 ( ) ( ) ( )( )

( ) (3 2 )
( )

z z z
G

z z

z z

k m c w e c w e w e
c z c w e c z c w e

c w e w e
c z

     

   

   

    
       

  


     

   

   

          

 




G

2 2 3 2( ) 2
0( )zc w e     



 

(109)
Setting it equal to zero and simplifying we obtain,

2 2 2 2( ) 2 2 3 2( ) 2( ) 2 2 2 2 2 3 2( )
0 0 0 0

2( ) 2 2 2 2 2( ) 2 2
0 0

2( )( ) 3 (1 )( )( )
( )(3 2 )( ) 0

z z z z

z z

c w e c w e e w z c w e
e w c w e z

       

   

      
   

       

   

      
    

(110)
The left hand side of the equation tells us that the first term is always negative the

second term starts positive and at 1



 turns negative, the third term starts negative
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and at 3
2




 turns positive. Therefore, for the interval for 1 3
2


 
  , the derivative

is always negative.

(b) The derivative of G with respect to 2
0w will give us more information,

3
2 2 2 2( ) 2 2 3 2( ) 2 2 2 2( ) 2

0 0 0
2 2( )

2 2 2 2 2 3 2( ) 2
0 0

3 ( ) ( )
2

( ) 4 ( ) ( )

z z z

zG
z

c w e c w e c w ek m e
w c z c w e

     

 
 

    


   

     

 
 

    


  
G

(111)
Setting it equal to zero and simplifying we obtain,

2 2 3 2( ) 2 2 2 2( )
0 0

3 ( ) ( ) 0
2

z zc w e c w e             (112)

And solving
2

2
0 3 2( )

32 ( )
2

z

c
w

e  



  


 (113)

For 3 0
2

   the derivative (111) starts at 2
0 0w  with positive value. Therefore, as

we start increasing 2
0w , G is increasing but no maximum is reached as long as

3 0
2

   because (113) is impossible. (A positive left hand side cannot equal to a

negative right hand side) and hence (112) cannot hold and no maximum is reached. In

other words, in the interval 30
2




  , G increases indefinitely as 0w increases

while in the interval 3
2



 a maximum is reached for some value of 2

0w . This means

that by increasing 0w enough I can make
30
2

max [ ]
  

G exceed G for all values of  ,

such that 3
2



 . In short for 0w big enough the maximum of G over  is always in

the interval 30
2




  . Also this maximum is not in the neighbourhood of 0  when

0z  , because at these points G has a finite value independent of 0w .
Combining now this result with our observation (a), (that in  the interval for
1 3

2


 
  , the derivative is always negative), we may restrict this interval even

further so that the maximum of G over  , to be denoted as maxG , is always in the

interval max
10 G


  . Still we have not shown whether there is only one or more local

max in 10 


  . However, the graph of G (see Figure 5a) indicates that there is
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only one internal maximum in the  direction and that it appears for big enough 0w ,
otherwise, when 0w is not big enough, the graph of G is monotonically decreasing in
both  and z (see Figure 5b). In Figure 5 the plot is against   not  but recall that
there is a monotonic relation between   and  and hence the existence and number of
extremes are the same. Only due to the contraction of   the maximum of the field at

maxG  becomes very acute and looks like a wall to observer O .

(a) (b)

(c)
Figure 5 . G versus   and z (a) for big 0w ( 7

0 10w  rad/s ) and (b) for small 0w

 

z

 

z

z

G G

G
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The graph shows the strength of the field, not its direction, which changes according to the
angle of deflection   .When 0w is big (a), the field rises sharply in the radial direction forming
a barrier that diminishes in the z direction. (b) For small enough 0w , the field has no such
interior maximum and drops gradually both in   and z , while cos  does not diminish as
much. In (c) a variation of case (a) appears where by choice of  and  the barrier appears to
widen in the z axis direction.

7.2  Observations on  

From (99) we have,

2 2 2( )
0

21
zw e

c

 




  
 



(114)

It is obvious that    . For large 0w ,   becomes as small as we like and we are
talking about the microcosmos (sub atomic level). On the other hand, small 0w keeps
  at a magnitude comparable to  , which we call the macrocosmos. More formally,

--If 0 zw e
c

   then    and 2 24 ( )
Gk m

z 





G  , which is the usual Newtonian

field. This for example holds for cosmic level (macrocosmos), where 0w is small, while
 is very big.

-- If 0 zw e
c

   (This is achieved for the microcosmos level where 0w is big, while

 remains small), then

2 2 2( )
00

2

z

z

c e
ww e

c

 

 







 
  (115)

In particular, for 1z   we see that

0

c
w

   (116)

at the microcosmos level. It is remarkable that this is also the limit for   for the no
slippage case, where the value of G blows to infinity. It is interesting to note that the
radius in this case is inversely proportional to the angular velocity 0w .The fact that in
(116)   is independent of  means that the signals of the field for a range of values of

 are mapped and concentrated on
0

c
w

and is, therefore, a maximum for G . This is in

very good harmony with plots of G , where indeed the maximum appears at

max
0

G
c

w
   . This is also in agreement with the requirement of section 7.1 that

max
1

G

 since it is implied by the requirement 1z   .
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7.3 The maximum deflection of the direction of G

The maximum of the deflection angle   , is not easy to calculate however, we expect it
to happen very close to the maximum of  or the minimum of cos , in the direction of

the signal path  is found in [1] when we take cos
t





. This occurs at

max
1

sin cos
ct    




(117)

Where  is the angle of inclination of the signal from the z axis. Corresponding to this
maximum are

max
sin

sin cos




   



(118)

And

max
cos

sin cos
z


   



(119)

And the locus of points where the max occurs is a rhombus by revolution which in the
first quadrant follows the equation

max max 1z    (120)
Using (114) we find

max max

max max
max 2( ) 2 2 2 22 2

2 2 2 20 max 00 max
2 222

sin

( )sin cos11
z w e ww e

c ecc

 

 
  



  


    
  

   

 

(121)

--For the macrocosmos case where 0 zw e
c

   or because of (120) 0 maxw
e

c

 , we

may approximate (121) by

max max
sin 1 1

sin cos cot 


 

       
   

 
 (122)

(Recall that also max max
1

G G 


   from section 7.1 but in the case of macrocosmos it

is meaningless since there is no interior maximum for the G field and hence maxG  and

maxG do not exist.) .

--For the microcosmos level where 0 maxw
e

c

 we may approximate (121) by

max
max 2 2

00 max
2 21

ce
ww

c e










 



 (123)

Comparing this with max
0

G
c

w
   , as we discussed in section 7.2, we see that the max

deflection  (which we used to approximate the maximum deflection of   ) of the field



21

occurs at a distance that is further away from the maximum magnitude of the field by a
factor of e .
From (102) we find that

max

0tan
t t

w
ec




  (124)

Since max
1t

c 
 . Thus for big enough 0w , 90   degrees

8 The G field for rotation with slippage (observer O , case
B.I)

This case, where the observer O is affected by the field, is more complicated in the
formulas and we will just present it briefly,
The transformation is

sin ( , , , )c I t      (125)

( sin cos )
0

0

( )
t

ctw e dt   
 


 

    (126)

z z  (127)
Now the Jacobian of the transformation is

2 2

2 2 2 2( ) 2 2 2 2( )
0 0

sin ( , , , )z z

c cJ
c I tc w e c w e   

     
            

        
   

(128)

Then we may find 




proceeding in a manner similar to that for the no slippage case.

We will then find that
2 2

2 2 2 2( )
0

cos ( , )cos coscos
( , , , ) ( , , , ) z

U t cJ
cI t I t c w e  

   


        

     
 

(129)

where
2 2 2 ( sin cos ) 2
0

2 2 2 2 ( sin cos ) 2
00

1 cos( , )
cos 1 sin

t ct

ct

w t eU t dt
w t e

   

   




 

 

 

 
     
 (130)

Finally, as usual

2 2

1
4 ( )

Gk m
z J 


 


G (131)

It is difficult to plot G but from the physics of the problem we expect a maximum to
occur near the locus where the deflection of the signals is maximized. This locus which
has the shape of a rhombus by revolution in the ( , )z space, is studied in [1] and
presented briefly and used above in section 7.

9 Summary of the results

To find the G field (for the nearby observer O ) and G field (for the far away
observer Oand determine their properties, we started by assuming that a field consists
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of signals and that the strength of a field is given by the number of signals per unit
volume. We further assumed that these signals travel with the speed of light or they
behave like light. This allowed us to apply the results for light signals for rotating
frames to the case of gravitational signals emitted by a rotating body of mass m to find
the form and strength of the G and G fields it creates. We also calculated the
relativistic mass mof a rotating body from its stationary non rotating mass statm .
G and G are fields that include a bending and even winding of signals and can

become very strong. Also depending on the value of the angular velocity of rotation w
the field applies to both the microcosmos (subatomic level) and cosmological scale or
macrocosmos.
We examined two cases:

(a) When rotation is without slippage (the angular velocity of rotation is constant
independent of distance from the origin), the G field (of observer O ) exists for

/z c w . The field looks to that observer unbounded in the radial direction and
restricted in the z direction to /z c w . For observer O , however, who is
outside /z c w , the field he perceives is G and is restricted in the radial by

c
w

   .

(b) When rotation is with slippage ( 0
zw w e    ) the G field is not restricted to

within and c
w

   . We may distinguish two cases (i) The macrocosmos level

for which 0 zw e
c

   . This case holds, for example, for small 0w and big  ,

and we have small contraction of space and the field behaves much like the

usual 2

1
r

field, except that there is a sideway component due to the rotation that

makes cos 1  , or the deflection angle become positive, with its maximum

approximated at max
1




  and then gradually return to zero. (ii) The

microcosmos level for which 0 zw e
c

   . Here, there is both a maximum of

the magnitude of the field that rises sharply and can be very strong and occurs at
max 0/G c w   , and a maximum in the angle of deflection that occurs at

approximately max
0

ce
w   . This latter phenomenon we call a “barrier”.

(c) Not much can be said about G , due to the complexity of the formulas.
However, from the study on the signals emitted by the rotating body we expect a
similar behavior to that of G .
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Appendix A
The spinning mass

2 2 2

V

m c w dV
c


   (A.1)

Changing to spherical coordinates

2
2 2 2 2 2

0 0

4 cos cos
r

m r c w r d dr
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  (A.2)

or

2
2 2 2 2 2 2

0 0

4 sin cos
r

m r c w r w r wr d dr
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  (A.3)
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2 2 2
0 0

4 4 ( ) arcsin( )
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(A.4)

The first term is
32

3
r and the second term is

2 2 2 2
1 3 2 2 2

0

arcsin( ) ( )
2

r wrI d c w r
w c c w r


 


 (A.5)

Integrating by parts
2 2 2 2 2 2 2 2

1 3 32 2 2
0

( ) arcsin ( )
2 2

rwrI c w r wc c w r dr
w c w cc w r

 
   


 (A.6)

And finally,
2 3

2 2 2 2
1 3 22 2 2

( ) arcsin
2 2 6

wr c r rI c w r
w c wc w r

  
   


(A.7)

Therefore,
3 2

2 2 2 2
2 3 ( ) arctan

2 2 2
r c r wrm c w r

w w c c
       (A.8)

Using the expansion of
3 5 7

2 2 2

1 1 1arcsin arctan ...
3 5 7

wr wr wr wr wr wr
c c c c cc w r

               
     

(A.9)

which converges for 1 1wr
c

   , we may write mas
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