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Preface

As it was noted in the abstract, the theories of changeable and kinematic changeable sets may
become important not only for mathematics but also for physics, and other branches of science,
which deal with the evolution of complex systems. But, at the present time, the main notions
and results of these theories are scattered in many different papers. This fact makes these
theories difficult for understanding. The purpose of this work is to bring together the different
results of the theories of changeable and kinematic changeable sets and to expose these theories
from a single point of view.

Our main aim is to depict a single picture from the separated puzzles, contained in the
papers [1–16].

Introduction

In spite of huge success of modern theoretical physics and the mightiness of mathematical tools,
applied by it, the foundations of theoretical physics remain unclear. Well-known sixth Hilbert’s
problem of mathematically strict formulation of the foundations of theoretical physics, posed
in 1900 [17], is not completely solved to this day [18, 19]. Some attempts to formalize certain
physical theories were done in many papers (for example see [20–25]). The main defect of
these works is the absence of a single abstract and systematic approach, and, consequently,
insufficiency of flexibility of the mathematical apparatus of these works, excessive its adapt-
ability to the specific physical theories under consideration. Moreover the attempts in [22]
to immediately formalize the maximum number of known physical objects, without creating
a hierarchy of elementary abstract mathematical concepts have led to the not very easy for
analysis mathematical object [22, page. 177, definition 4.1]. In general, it should be noted,
that the main feature of existing mathematically strict models of theoretical physics is that
the investigators try to find intuitively the mathematical tools to describe physical phenomena
under consideration, and only then they try to formalize the description of this phenomena,
identifying physical objects with some constructs, generated by these mathematical tools, for
example, with solutions of some differential equations on some space or manifold. As a result,
quite complicated mathematical structures appear, whereas most elementary physical concepts
and postulates, obtained by a help of experiments, life experience or common sense (which
led to the appearance of these mathematical models), remain not formulated mathematically
strictly. In works [26, 27] it is expressed the view that, in the general case, it is impossible to
solve this problem by means of existing mathematical theories. Also in [26, 27] it is posed the
problem of constructing the theory of “dynamic sets”, that is the theory of new abstract math-
ematical structures for modeling various processes in physical, biological and other complex
systems.

In the present work the foundations of the theory of changeable sets are laid and the basic
properties of these sets are established. The theory of changeable sets can be considered as
attempt to give a solution of the problem, posed in [26,27].

From an intuitive point of view, changeable sets are sets of objects which, unlike the elements
of ordinary (static) sets may be in the process of continuous transformations, and which may
change properties depending on the point of view on them (the area of observation or reference
frame). From the philosophical and imaginative point of view, changeable sets may look like
as “worlds” in which changes obey arbitrary laws.
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Another approach to formalization of physical theories (namely, the theory of relativity)
was developed by the group of Hungarian mathematicians (Hajnal Andreka, Judit Madarasz,
Istvan Nemeti, Gergely Szekely and others) in [28–31] and many other papers of these authors.
This approach is based on using the apparatus of mathematical logic. The mathematical logic
tools allows to avoid quite complex and burdensome mathematical structures and notions in
the fundamentals of the theory. However, on the other hand, this approach results to the ap-
pearance of certain artificial axioms and concepts, which cause some unnecessary reflections
and discussions of “philosophical type”. For example, the Axiom AxPh in [31, page 18] de-
mands the existence of light sphere in every point of Space-time. This axiom is required only
for receiving of Lorentz-Poincare transformations between inertial reference frames. But it is
unnecessary for solving the most of concrete problems, appearing in the framework of Special
Relativity and leads to some excessive philosophical reflections (whether in real World every
point of Space-time is penetrated by photons in all directions?). Thus, we have seen, that the
concrete task of receiving of Lorentz-Poincare transformations between reference frames leads
to appearance of artificial axiom of kind AxPh. And we can do a more general conclusion, that
axiomatic approach leads to necessity of own system of axioms for each physical problem. The
reason for this situation is that, unlike the school course in geometry (where Euclidean plane
or Euclidean space is a repository of all possible geometrical figures), the building of a single
repository for all variants of the evolution of physical systems is the very difficult task. And any
attempt of solving the last task must lead to artificial mathematical an logical constructions. In
view of the above, the proposition to apply for this task the “modal logic framework”, appeared
in [30, page 210] also sems to be not very helpful.

Note, that some attempts to construct the mathematical objects, bit like to the changeable
sets (namely — variable sets) were made in [32, 33]. In comparison with the changeable sets,
more primitive mathematical objects have been proposed in these works. For example, “variable
sets” from [32] may only change their composition over time, but elements of these “variable
sets” can not evolve. The same can be said about the categories Bun(𝑋) (bundles over X) and
Shv(𝑋) (sheaves over X) from [33]. Elements of the category Biv from [33] may evolve but
only by means of “leap” within of two discrete time points. Moreover, the authors of [32, 33]
have not gone further than philosophical considerations and some definitions or axioms.

Thus, we may summarize, that (in our opinion) there are the following main causes of the
lack of productivity of approaches, considered in the papers, analyzed above:

1) the absence of a single abstract and systematic approach;

2) attempts to construct the mathematical theories of physical objects “from zero” using
axiomatic method;

3) involvement the existing mathematical structures and universal classes (such as categories
or bundles) as basic objects.

In the present paper we repepresent a single abstract approach for formalization of physical
theories, based on the theory of changeable sets. For the construction of this theory we don’t
review or complement the axiomatic foundations of classical set theory. Changeable sets are
defined as a new abstract universal class of objects within the framework of classical set theory
(just as are defined groups, rings, fields, lattices, linear spaces, fuzzy sets, etc.). Of course, we
can not guarantee the applicability of changeable set theory for formalizatin of all branches of
theoretical physics (for example for quantum mechanics). But, author hopes, that the apparatus
of the theory of changeable sets will be able to generate the necessary mathematical structures
at least for physics and some other natural sciences in macrocosm.

The main feature of our approach is that more complex mathematical objects are built on the
basis of simpler ones. Part I sets forth the theory of changeable sets. We start our consideration
with the most simple mathematical objects — oriented sets and primitive changeable sets

6



Draft Introduction to Abstract Kinematics. (Ver 2.0)

(Sections 1–5 of Part I). Fundamentals of the theory of primitive changeable sets also have
been presented in [2]. Further we introduce and investigate the more complex objects: base
changeable sets (Sections 6–8 of Part I) and (general) changeable sets (Sections 10–12 of Part
I). Theory of base changeable sets also is contained in [5,9]. General theory of changeable sets
also is located in [4,8]. The main statements of the changeable set theory have been announced
in [1]. Most of main results from the abovementioned papers are collected in the preprint [3].

Part II deals with the kinematic changeable sets. Kinematic changeable sets are the math-
ematical objects, in which changeable sets are equipped by different geometrical or topological
structures, namely metric, topological, linear, Banach, Hilbert and other spaces. Kinematic
changeable sets are designed for mathematical modeling of physical evolution in a spatial envi-
ronment under various kinematic laws. The main results in this direction have been announced
in [11] and expounded in [10,12].

In Part III we consider kinematic changeable sets with given universal coordinate transforms
(universal kinematics). Universal coordinate transforms are coordinate transforms, under which
the geometrically-time provision of an arbitrary material object in any reference frame is deter-
mined by geometrically-time position of this object in a certain, fixed frame, independently of
any internal properties of the object. The main results of Part III were expounded in [14–16].

Kinematic changeable sets and universal kinematics may be interesting for astrophysics,
because there exists the hypothesis, that in the large scale of Universe, physical laws (in par-
ticular, the laws of kinematics) may be different from the laws, acting in the neighborhood of
our solar System. And “subuniverses” with physical laws, different from our, may also exist.
Hence, we hope, that development of the theories of changeable and kinematic changeable sets
may lead to elaboration of mathematical tools, necessary for “construction” of such “worlds”
with physical laws different from our.
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Part I

Abstract Theory of Changeable Sets

1 Oriented Sets and their Properties

When we try to see on any picture of reality (area of reality) from the most abstract point
of view, we can only say that this picture consists at any time of its existence of certain
things (objects). During the investigation of this area of reality, the objects participating in
it can be divided into smaller elementary objects, which we call elementary states. Method
of division of a given area of reality into elementary states depends on our knowledge about
this area, the level of research detailing, required for practice, or the level of physical and/or
mathematical idealization of the analyzed system. Depending on these factors, we can use as
elementary states, for example, the position of a material point (or an elementary particle) at
given time, the value of scalar, vector or tensor field at a given point of space-time, the state
of an individual of a species at given time (in mathematical models of biology) and others. If
the picture of reality does not change with time, then this picture of reality can be described
(in the most abstract form) in the terms of classical set theory, when elementary states are
interpreted as elements of a certain set. However, the reality is changeable. Elementary states
may change their properties in the process of evolution (and thus lose their formal mathematical
self-identity). Also elementary states may born or disappear, decompose into several elementary
states, or, conversely, several elementary states may merge into a single one. But, whenever
it is possible to trace “evolution lines” of the analyzed system, we can give a define answer
to the question whether the elementary state "𝑦" is the result of transformations (ie, is a
"transformation offspring") of the elementary state "𝑥". Therefore, the next definition may be
considered as the simplest (starting) model of a set of changing objects.

Definition 1.1.1. Let, 𝑀 be any non-empty set (𝑀 ̸= ∅).
An arbitrary reflexive binary relation C−− on 𝑀 (that is a relation satisfying ∀𝑥 ∈𝑀 𝑥C−−𝑥)

we name an orientation, and the pair ℳ = (𝑀,C−−) we call an oriented set. In this case
the set 𝑀 is named the basic set or the set of all elementary states of oriented set ℳ
and it is denoted by Bs(ℳ). The relation C−− we name the directing relation of changes
(transformations) ofℳ, and denote it by ←

ℳ
.

In the case where the oriented set ℳ is known in advance, the char ℳ in the denotation
←
ℳ

will be released, and we will use denotation ← instead. For the elements 𝑥, 𝑦 ∈ Bs(ℳ) the

record 𝑦←𝑥 should be understood as “the elementary state 𝑦 is the result of transformations
(or the transformation offspring) of the elementary state 𝑥”

Remark 1.1.1. 1. Some attempts to construct abstract mathematical structures for modeling
physical systems were made in [24,25]. In these works as a basic abstract model it is proposed
to consider a pair of kind (𝑀,≺), where 𝑀 is some set and ≺ is the local sequence relation
(in the sense of [25, page 28]), which satisfies the additional axioms TK1-TK3 [25]. Recall
that, according to [25, page 28], local sequence relation is the relation ≺ on 𝑀 , satisfying the
following conditions:

(Pm1) there not exist 𝑥, 𝑦 ∈𝑀 such, that 𝑥 ≺ 𝑦 and 𝑦 ≺ 𝑥;
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(Pm2) for each 𝑝 ∈𝑀 the relation ≺ is transitive on the sets:

𝑝+ = {𝑥 ∈𝑀 | 𝑝 ≺ 𝑥} , 𝑝− = {𝑥 ∈𝑀 | 𝑥 ≺ 𝑝} . (1.1)

The main deficiency of this approach is, that it is not motivated by abstract philosophical
arguments, while the main motivation is provided by the specific example of order relation,
generated by the “light cone” in Minkowski space-time. Due to these factors, the model, sug-
gested in [24, 25], is not enough flexible. In particular, due to the axioms TK1-TK3 from [25],
this model is unusable for the description of discrete processes. Also, due to the axiom (Pm2)
(weak version of transitivity), this model is not enough comfortable for consideration (at the
abstract level) of complex branched processes, where different “branches” of the process can “in-
tersect” or “merge” during transformations. Moreover the construction of mathematical model
of the special relativity theory, based on the order relation of “light cone” makes impossible the
mathematically strict study of tachyons under this model, while building a formal theory of
tachyons is one of the actual areas of modern theoretical and mathematical physics [34–39].
2. Note, that there is a certain “ideological” difference between our model and the model

proposed in [24, 25] in the sense of way of interpretation. Namely, the directing relation of
changes in Definition 1.1.1 displays only real transformations, of the elementary states which
have appeared in the oriented set, while the the local sequence relation [24, 25] (in particular
“light cone” order relation), display all potentially possible transformations. So, considering an
oriented set or mathematical objects, generated by it, we always mean a specific evolution of
a particular system, but we should not imagine all potentially possible directions of evolution
of a group of systems, satisfying certain conditions. But, from the other hand, models of the
works [24, 25] can be interpreted as partial cases oriented sets specified in Definition 1.1.1.
Indeed, let us consider the following binary relation om 𝑀 :

⪯=≺ ∪{(𝑥, 𝑥) | 𝑥 ∈𝑀} .

Hence for arbitrary 𝑥, 𝑦 ∈ 𝑀 the condition 𝑥 ⪯ 𝑦 holds if and only if 𝑥 ≺ 𝑦 or 𝑥 = 𝑦. Taking
into account the the condition (Pm1) we can see, that the binary relation ≺ can be uniquely
restored by the relation ⪯. Hence, any model (𝑀,≺) from [24,25] is equivalent to the oriented
set (𝑀,⪯). But oriented sets of kind (𝑀,⪯), generated by the models from [24, 25] are only
particular cases of general oriented sets described in Definition 1.1.1.

Letℳ be an oriented set.

Definition 1.1.2. The subset 𝑁 ⊆ Bs(ℳ) will be referred to as transitive in ℳ if for any
𝑥, 𝑦, 𝑧 ∈ 𝑁 such, that 𝑧← 𝑦 and 𝑦←𝑥 we have 𝑧←𝑥.

The transitive subset 𝑁 ⊆ Bs(ℳ) will be called maximum transitive if there not exist
a transitive set 𝑁1 ⊆ Bs(ℳ), such, that 𝑁 ⊂ 𝑁1 (where the symbol ⊂ denotes the strict
inclusion, that is 𝑁 ̸= 𝑁1).

The transitive subset 𝐿 ⊆ Bs(ℳ) will be referred to as chain in ℳ if for any 𝑥, 𝑦 ∈ 𝐿 at
least one of the relations 𝑦←𝑥 or 𝑥← 𝑦 is true. The chain 𝐿 ⊆ Bs(ℳ) we will name by the
maximum chain if there not exist a chain 𝐿1 ⊆ Bs(ℳ), such, that 𝐿 ⊂ 𝐿1.

Assertion 1.1.1. Letℳ be an oriented set.

1. Any non-empty subset 𝑁 ⊆ Bs(ℳ), containing not more than, two elements is transitive.

2. Any non-empty subset 𝐿 = {𝑥, 𝑦} ⊆ Bs(ℳ), containing not more than, two elements is a
chain if and only if 𝑦←𝑥 or 𝑥← 𝑦. In particular, any singleton 𝐿 = {𝑥} ⊆ Bs(ℳ) is a
chain.

The proof of Assertion 1.1.1 is reduced to trivial verification.

Denotation 1.1.1. Further we denote by 2M the set of all subsets of any set M.

9
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Lemma 1.1.1. Letℳ be an oriented set.

1. Union of an arbitrary family of transitive sets of ℳ, linearly ordered by the inclusion
relation, is a transitive set inℳ.

2. Union of an arbitrary family of chains ofℳ, linearly ordered by the inclusion relation, is
a chain inℳ.

Proof. 1. Let N ⊆ 2Bs(ℳ) be a family of transitive sets ofℳ, linearly ordered by the inclusion
relation. Denote:

̃︀𝑁 :=
⋃︁
𝑁∈N

𝑁.

Consider any elementary states 𝑥, 𝑦, 𝑧 ∈ ̃︀𝑁 such, that 𝑧← 𝑦 and 𝑦←𝑥. Since 𝑥, 𝑦, 𝑧 ∈ ̃︀𝑁 =⋃︀
𝑁∈N𝑁 , then there exist 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 ∈ N such, that 𝑥 ∈ 𝑁𝑥, 𝑦 ∈ 𝑁𝑦, 𝑧 ∈ 𝑁𝑧. Since the family

of setsN is linearly ordered by the inclusion relation, then there exists the set𝑁0 ∈ {𝑁𝑥, 𝑁𝑦, 𝑁𝑧}
such, that 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 ⊆ 𝑁0. So, we have 𝑥, 𝑦, 𝑧 ∈ 𝑁0. Since 𝑁0 ∈ {𝑁𝑥, 𝑁𝑦, 𝑁𝑧} ⊆ N, then 𝑁0

is the transitive set. Therefore from conditions 𝑧← 𝑦 and 𝑦←𝑥 it follows, that 𝑧←𝑥. Thus ̃︀𝑁
is the transitive set.

2. Let L ⊆ 2Bs(ℳ) be a family of chains of ℳ, linearly ordered by the inclusion relation.
Denote:

̃︀𝐿 :=
⋃︁
𝐿∈L

𝐿.

By the post 1, ̃︀𝐿 is the transitive set. Consider any elementary states 𝑥, 𝑦 ∈ ̃︀𝐿. Since the
family of sets L is linearly ordered by the inclusion relation, then, similarly as in the post 1,
there exists a chain 𝐿0 ∈ L such, that 𝑥, 𝑦 ∈ 𝐿0. And, because 𝐿0 is chain, at least one of the
relations 𝑦←𝑥 or 𝑥← 𝑦 is true. Thus ̃︀𝐿 is the chain ofℳ.

Using Lemma 1.1.1 and the Zorn’s lemma, we obtain the following assertion.

Assertion 1.1.2.

1. For any transitive set 𝑁 of oriented set ℳ there exists a maximum transitive set 𝑁max

such, that 𝑁 ⊆ 𝑁max.

2. For any chain 𝐿 of oriented setℳ there exists a maximum chain 𝐿max such, that 𝐿 ⊆ 𝐿max.

It should be noted that the second post of Assertion 1.1.2 can be interpreted to as the
generalization of the Hausdorff maximal principle in the framework of oriented set theory.

The following corollaries result from assertions 1.1.2 and 1.1.1.

Corollary 1.1.1. For any two elements 𝑥, 𝑦 ∈ Bs(ℳ) in the oriented set ℳ there exists a
maximum transitive set 𝑁 ⊆ Bs(ℳ) such that 𝑥, 𝑦 ∈ 𝑁 .

Corollary 1.1.2. For any two elements 𝑥, 𝑦 ∈ Bs(ℳ), such that 𝑦←𝑥, there exists a maxi-
mum chain 𝐿 of the oriented setℳ such that 𝑥, 𝑦 ∈ 𝐿.

If we put 𝑥 = 𝑦 ∈ Bs(ℳ) (by Definition 1.1.1 Bs(ℳ) ̸= ∅), we obtain, that maximum
transitive sets and maximum chains must exist in any oriented setℳ.

Main results of this Section were anonced in [1] and published in [2, Section 2].
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2 Definition of the Time. Primitive Changeable Sets

In theoretical physics, scientists tend to think, that the moments of time are real numbers. But
the abstract mathematics deal with objects of an arbitrarily large cardinality. With this in
mind, in the papers of Hajnal Andreka, Judit Madarasz, Istvan Nemeti, Gergely Szekely it is
proposed to consider any ordered field as the scale of time points (see [28–31] and many other
papers of these authors). In our abstract theory we will not be restricted to the moments of
time belonging to the set of real numbers R or some other ordered field. And, as it will be
seen further, we need not any assumptions about algebraic structure on time scale for obtaining
many interesting abstract results. In the next definition, moments of time are elements of any
linearly (totally) ordered set (in the sense of [41, p. 12]). Such definition of time is close to
the philosophical conception of time as some “chronological order”, somehow agreed with the
processes of transformations.

Definition 1.2.1. Let ℳ be an oriented set and T = (T,≤) be a linearly ordered set. A
maping 𝜓 : T ↦→ 2Bs(ℳ) is referred to as time onℳ if the following conditions are satisfied:

1) For any elementary state 𝑥 ∈ Bs(ℳ) there exists an element 𝑡 ∈ T such that 𝑥 ∈ 𝜓(𝑡).
2) If 𝑥1, 𝑥2 ∈ Bs(ℳ), 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2, then there exist elements 𝑡1, 𝑡2 ∈ T such

that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡1 < 𝑡2 (this means that there is a temporal separateness of
successive unequal elementary states).

In this case the elements 𝑡 ∈ T we call the moments of time, the pair

ℋ = (T, 𝜓) = ((T,≤) , 𝜓)

we name by chronologization ofℳ and the triple

𝒫 = (ℳ,T, 𝜓) = (ℳ, (T,≤) , 𝜓)

we call primitive changeable set.

Remark 1.2.1. In [24, 25] linearly ordered sets has been used as time-scales also. But the
conception of time in Definition 1.2.1 is significantly different from [24, 25]. Note, that the
definition of time in [24, 25] is less general, then Definition 1.2.1 due to less generality of
the model, suggested in [24, 25] (recall that according to Remark 1.1.1, the models of the
works [24,25] can be interpreted as partial cases oriented sets specified in Definition 1.1.1).

We say that an oriented setℳ can be chronologized if there exists at least one chronol-
ogization ofℳ. It turns out that any oriented set can be chronologized. To make sure this we
may consider any linearly ordered set T = (T,≤), which contains at least two elements and
put:

𝜓(𝑡) := Bs(ℳ), 𝑡 ∈ T.

The conditions of Definition 1.2.1 for the function 𝜓(·) apparently are satisfied. More non-trivial
methods to chronologize an oriented set we will consider in Section 3.

The following two assertions (1.2.1 and 1.2.2) are trivial consequences of Definition 1.2.1.

Assertion 1.2.1. Letℳ andℳ1 be oriented sets, and while Bs(ℳ) ⊆ Bs (ℳ1) and←
ℳ
⊆ ←
ℳ1

(last inclusion means that for 𝑥, 𝑦 ∈ Bs(ℳ) the condition 𝑦←
ℳ
𝑥 implies 𝑦←

ℳ1

𝑥).

If a mapping 𝜓1 : T ↦→ 2Bs(ℳ1) (where T = (T,≤) is a linearly ordered set) is a time on
ℳ1 then the mapping:

𝜓(𝑡) = 𝜓1(𝑡) ∩Bs(ℳ)

is the time omℳ.

11
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Assertion 1.2.2. Letℳ be an oriented set and and 𝜓 : T : ↦→ 2Bs(ℳ) be a time omℳ.
(1) If T1 ⊆ T, T1 ̸= ∅ and 𝜓(𝑡) = ∅ for 𝑡 ∈ T ∖T1, then the mapping 𝜓1 = 𝜓 � T1, which

is the restriction of 𝜓 on the set T1 also is time onℳ.

(2) If the linearly ordered set (T,≤) is embedded in a linearly ordered set
(︁
T̃,≤1

)︁
(preserving

order) 1, then the mapping 𝜓 : T̃ ↦→ 2Bs(ℳ):

𝜓(𝑡) =

{︃
𝜓(𝑡), 𝑡 ∈ T

∅, 𝑡 ∈ T̃ ∖T

also is time onℳ.

Assertion 1.2.2 affirms, that “moments of full death” may be erased from or added to “chrono-
logical history” of primitive changeable set.

Main results of this Section were anonced in [1] and published in [2, Section 3].

3 One-point and Monotone Time. Chronologization Theorems

Definition 1.3.1. Let (ℳ,T, 𝜓) = (ℳ, (T,≤) , 𝜓) be a primitive changeable set.
1) The time 𝜓 will be called quasi one-point if for any 𝑡 ∈ T the set 𝜓(𝑡) is a singleton.
2) The time 𝜓 will be called one-point if the following conditions are satisfied:
(a) The time 𝜓 is quasi one-point;
(b) If 𝑥1 ∈ 𝜓(𝑡1), 𝑥2 ∈ 𝜓(𝑡2) and 𝑡1 ≤ 𝑡2 then 𝑥2←𝑥1.

3) The time 𝜓 will be called monotone if for any elementary states 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2)
the conditions 𝑥2←𝑥1 and 𝑥1 ̸↚ 𝑥2 imply 𝑡1 < 𝑡2.

In the case, when the time 𝜓 is quasi one-point (one-point/monotone) the chronologization
(T, 𝜓) of the oriented set ℳ will be called quasi one-point (one-point/monotone) correspond-
ingly.

Example 1.3.1. Let us consider an arbitrary mapping 𝑓 : R ↦→ R𝑑 (𝑑 ∈ N), where N is the
set of all natural numbers. This mapping can be interpreted as equation of motion of single

material point in the space R𝑑. This mapping generates the oriented setℳ =
(︁
Bs(ℳ),←

ℳ

)︁
,

where Bs(ℳ) = R(𝑓) = {𝑓(𝑡) | 𝑡 ∈ R} ⊆ R𝑑 and for 𝑥, 𝑦 ∈ Bs(ℳ) the correlation 𝑦←
ℳ
𝑥 is

true if and only if there exist 𝑡1, 𝑡2 ∈ R such, that 𝑥 = 𝑓 (𝑡1), 𝑦 = 𝑓 (𝑡2) and 𝑡1 ≤ 𝑡2. It is easy
to verify, that the mapping:

𝜓(𝑡) = {𝑓(𝑡)} ⊆ Bs(ℳ), 𝑡 ∈ R.
is a one-point time onℳ.

Example 1.3.1 makes clear the definition of one-point time. It is evident, that any one-point
time is quasi one-point and monotone. It turns out that a quasi one-point time need not be
monotone (and thus one-point), and monotone time need not be quasi one-point (and thus
one-point). The next examples prove facts, written above.

Example 1.3.2. Let us consider any two element set 𝑀 = {𝑥1, 𝑥2} (𝑥1 ̸= 𝑥2). We construct

the oriented setℳ =
(︁
Bs(ℳ),←

ℳ

)︁
by the following way:

Bs(ℳ) =𝑀 = {𝑥1, 𝑥2} ;
←
ℳ

= {(𝑥2, 𝑥1) , (𝑥1, 𝑥1) , (𝑥2, 𝑥2)}

1 This means that T ⊆ T̃ and for 𝑥, 𝑦 ∈ T the correlation 𝑥 ≤ 𝑦 holds if and only if 𝑥 ≤1 𝑦.
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(or, in other words, 𝑥2←
ℳ
𝑥1, 𝑥1←

ℳ
𝑥1, 𝑥2←

ℳ
𝑥2). Note that the directing relation of changes

←
ℳ

can be represented in more laconic form: ←
ℳ

= {(𝑥2, 𝑥1)} ∪ diag(𝑀), where diag(𝑀) =

{(𝑥, 𝑥) |𝑥 ∈𝑀}. As a linearly ordered set we take T = (R,≤) (with the usual order on the
real field). On the oriented setℳ we define time by the following way:

𝜓(𝑡) :=

{︃
{𝑥1} , 𝑡 /∈ Q;

{𝑥2} , 𝑡 ∈ Q,

where Q is the field of rational numbers. It is easy to verify, that the mapping 𝜓 really is time
on ℳ in the sense of Definition 1.2.1. Since 𝜓(𝑡) is a singleton for any 𝑡 ∈ R, the time 𝜓 is
quasi one-point. If we put 𝑡1 =

√
2, 𝑡2 = 1, we obtain 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2), 𝑥2←𝑥1, 𝑥1 ̸↚ 𝑥2,

but 𝑡1 > 𝑡2. Thus the time 𝜓 is not monotone.

Example 1.3.3. Let us consider an arbitrary four-element set 𝑀 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} (𝑥𝑖 ̸= 𝑥𝑗

for 𝑖 ̸= 𝑗) and construct the oriented setℳ =
(︁
Bs(ℳ),←

ℳ

)︁
by the following way:

Bs(ℳ) =𝑀 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} ;
←
ℳ

= {(𝑥2, 𝑥1) , (𝑥4, 𝑥3)} ∪ diag(𝑀).

As a linearly ordered set we take T = ({1, 2} ,≤) (with the usual ordering on the real axis).
Time onℳ is defined by the following way:

𝜓(𝑡) :=

{︃
{𝑥1, 𝑥3} , 𝑡 = 1

{𝑥2, 𝑥4} , 𝑡 = 2.

It is not hard to prove, that the mapping 𝜓 is a monotone time onℳ. But this time, obviously,
is not quasi one-point.

Denotation 1.3.1. Futher we denote by 𝑚,𝑛 (where 𝑚,𝑛 ∈ N, 𝑚 ≤ 𝑛) the set: 𝑚,𝑛 =
{𝑚, . . . , 𝑛} ⊆ N.

It appears that quasi one-point and monotone time need not be one-point. This fact is
illustrated by the following example.

Example 1.3.4. Let the oriented setℳ be same as in Example 1.3.3. We consider the ordered
set T = ({1, 2, 3, 4} ,≤) =

(︀
1, 4,≤

)︀
(with the usual natural or real number ordering). Time on

ℳ we define by the following way:

𝜓(𝑡) := {𝑥𝑡} , 𝑡 ∈ 1, 4.

It is not hard to verify, that 𝜓(·) is quasi one-point and monotone time onℳ. Although, if we
put 𝑡1 := 2, 𝑡2 := 3, we receive, 𝑥2 ∈ 𝜓 (𝑡1), 𝑥3 ∈ 𝜓 (𝑡2), 𝑡1 ≤ 𝑡2, but 𝑥3 ̸↚ 𝑥2. Thus, the time 𝜓
is not one-point.

Definition 1.3.2. Oriented set ℳ will be called a chain oriented set if the set Bs(ℳ) is
the chain ofℳ, that is if the relation ← if transitive on Bs(ℳ) and for any 𝑥, 𝑦 ∈ Bs(ℳ) at
least one of the conditions 𝑥← 𝑦 or 𝑦←𝑥 is satisfied.

Oriented set ℳ will be called a cyclic if for any 𝑥, 𝑦 ∈ Bs(ℳ) both of the relations 𝑥← 𝑦
and 𝑦←𝑥 are true.

It is evident, that any cyclic oriented set is a chain.

Lemma 1.3.1. Any cyclic oriented set can be one-point chronologized.
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Proof. Let ℳ be a cyclic oriented set. By definition of oriented set, Bs(ℳ) ̸= ∅. Choose
any two disjoint sets T1,T2 equipotent to the set Bs(ℳ) (T1 ∩ T2 = ∅). (Such sets must
exist, because we can put T1 := Bs(ℳ) and construct the set T2 from the elements of set
T̃ = 2T1 ∖T1, cardinality of which is not smaller than the cardinality of T1.) Let E𝑖 (𝑖 = 1, 2)
be any linear order relation on T𝑖 (by Zermelo’s theorem, such linear order relations necessarily
exist). Denote:

T := T1 ∪T2.

On the set T we construct the relation:

≤=E1 ∪ E2 ∪{(𝑡, 𝜏) | 𝑡 ∈ T1, 𝜏 ∈ T2)} ,

or, in the other words, for 𝑡, 𝜏 ∈ T relation 𝑡 ≤ 𝜏 holds if and only if one of the following
conditions is satisfied:

(O1) 𝑡, 𝜏 ∈ T𝑖 and 𝑡 E𝑖 𝜏 for some 𝑖 ∈ {1, 2};
(O2) 𝑡 ∈ T1, 𝜏 ∈ T2.

The pair (T,≤) is the ordered union of the linearly ordered sets (T1,E1) and (T2,E2). Thus,
by [40, p. 208], (T,≤) is a linear ordered set. Let 𝑓 : T2 ↦→ T1 be any bijection (one-to-one
correspondence) between the (equipotent) sets T1 and T2. And let 𝑔 : T1 ↦→ Bs(ℳ) be any
bijection between the (equipotent) sets T1 and Bs(ℳ).

Let us consider the following mapping 𝜓 : T ↦→ 2Bs(ℳ):

𝜓(𝑡) :=

{︃
{𝑔(𝑡)} , 𝑡 ∈ T1;

{𝑔(𝑓(𝑡))} , 𝑡 ∈ T2.
(1.2)

We are going to prove, that 𝜓 is a time on the oriented setℳ.
1) Let 𝑥 ∈ Bs(ℳ). Since the mapping 𝑔 : T1 ↦→ Bs(ℳ) is bijection between the sets

T1 and Bs(ℳ), there exists the inverse mapping 𝑔[−1] : Bs(ℳ) ↦→ T1. Let us consider the
element 𝑡𝑥 = 𝑔[−1](𝑥) ∈ T1 ⊆ T. According to (1.2):

𝜓(𝑡𝑥) = {𝑔(𝑡𝑥)} =
{︀
𝑔(𝑔[−1](𝑥))

}︀
= {𝑥} .

Therefore, 𝑥 ∈ 𝜓(𝑡𝑥). Thus the first condition of the time Definition 1.2.1 is satisfied.
2) Let 𝑥, 𝑦 ∈ Bs(ℳ) be elements of Bs(ℳ) such, that 𝑦←𝑥 and 𝑥 ̸= 𝑦. Denote:

𝑡𝑥 : = 𝑔[−1](𝑥) ∈ T1;

𝑡𝑦 : = 𝑓 [−1] (︀𝑔[−1](𝑦))︀ ∈ T2.

By (O2), 𝑡𝑥 ≤ 𝑡𝑦. Since T1 ∩T2 = ∅, we have 𝑡𝑥 ̸= 𝑡𝑦. Thus 𝑡𝑥 < 𝑡𝑦. In accordance with (1.2),
we obtain:

𝜓(𝑡𝑥) = {𝑔(𝑡𝑥)} =
{︀
𝑔
(︀
𝑔[−1](𝑥)

)︀}︀
= {𝑥} ;

𝜓(𝑡𝑦) = {𝑔 (𝑓 (𝑡𝑦))} =
{︀
𝑔
(︀
𝑓
(︀
𝑓 [−1] (︀𝑔[−1](𝑦))︀)︀)︀}︀ = {𝑦} .

Consequently, 𝑥 ∈ 𝜓(𝑡𝑥), 𝑦 ∈ 𝜓(𝑡𝑦) and 𝑡𝑥 < 𝑡𝑦. That is the second condition of the time
Definition 1.2.1 also is satisfied.

Thus 𝜓 is a time onℳ. It remains to prove that the time 𝜓 is one-point.
According to (1.2), for any 𝑡 ∈ T the set 𝜓(𝑡) consists of one element (is a singleton). Thus

the condition (a) of the one-point time Definition 1.3.1 is satisfied. Since the oriented setℳ is
a cyclic, the condition (b) of Definition 1.3.1 is also satisfied. Thus time 𝜓 is one-point.

Theorem 1.3.1. Any chain oriented set can be one-point chronologized.
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Proof. Let ℳ be a chain oriented set. Then the set Bs(ℳ) is a chain of oriented set ℳ, ie
the relation ← =←

ℳ
is quasi order 2 on Bs(ℳ).

We will say that elements 𝑥, 𝑦 ∈ Bs(ℳ) are cyclic equivalent (denotation 𝑥
o≡ 𝑦) if 𝑥← 𝑦

and 𝑦←𝑥. In accordance with [41, page 21], relation
o≡ is equivalence relation on Bs(ℳ).

Let 𝐹1 and 𝐹2 be any two classes of equivalence, generated by the relation
o≡. We will denote

𝐹2C−−𝐹1 if for any 𝑥1 ∈ 𝐹1, 𝑥2 ∈ 𝐹2 it is true 𝑥2←𝑥1. According to [41, page 21], the relation

C−− is ordering on the quotient set Bs(ℳ)/
o≡ of all equivalence classes, generated by

o≡. We

aim to prove, that this ordering is linear. Chose any equivalence classes 𝐹1, 𝐹2 ∈ Bs(ℳ)/
o≡.

Because 𝐹1,𝐹2 are equivalence classes, they are nonempty, therefore there exists the elements
𝑥1 ∈ 𝐹1, 𝑥2 ∈ 𝐹2. Since the oriented setℳ is a chain, at least one from the relations 𝑥2←𝑥1
or 𝑥1←𝑥2 is true. But, because any two elements, belonging to the same class of equivalence,
are cyclic equivalent, in the case 𝑥2←𝑥1 we will have 𝐹2C−−𝐹1, and in the case 𝑥1←𝑥2 we

obtain 𝐹1C−−𝐹2. Thus (Bs(ℳ)/
o≡,C−−) is a linearly ordered set.

Any equivalence class 𝐹 ∈ Bs(ℳ)/
o≡ is a cyclic oriented set relatively the relation ←

(restricted to this class). Consequently, by Lemma 1.3.1, any such equivalence class can be
one-point chronologized. Let (T𝐹 , 𝜓𝐹 ) = ((T𝐹 ,≤𝐹 ) , 𝜓𝐹 ) be a one-point chronologization of the

class of equivalence 𝐹 ∈ Bs(ℳ)/
o≡. Without loss of generality we can assume thatT𝐹∩T𝐺 = ∅

for 𝐹 ̸= 𝐺. Indeed, otherwise we may use the sets:

T̃𝐹 = {(𝑡, 𝐹 ) : 𝑡 ∈ T𝐹} , 𝐹 ∈ Bs(ℳ)/
o≡,

with ordering:

(𝑡1, 𝐹 ) .𝐹 (𝑡2, 𝐹 )⇐⇒ 𝑡1 ≤𝐹 𝑡2, 𝑡1, 𝑡2 ∈ T𝐹 (𝐹 ∈ Bs(ℳ)/
o≡)

and times:
𝜓𝐹 ((𝑡, 𝐹 )) = 𝜓𝐹 (𝑡), 𝑡 ∈ T𝐹 (𝐹 ∈ Bs(ℳ)/

o≡),
it is evident, that these times are one-point.

Thus, we will assume that T𝐹 ∩T𝐺 = ∅, 𝐹 ̸= 𝐺. Denote:

T :=
⋃︁

𝐹∈Bs(ℳ)/
o
≡

T𝐹 .

According to this denotation, for any element 𝑡 ∈ T there exists an equivalence class 𝐹 (𝑡) ∈
Bs(ℳ)/

o≡ such, that 𝑡 ∈ T𝐹 (𝑡). Since T𝐹 ∩T𝐺 = ∅, 𝐹 ̸= 𝐺, such equivalence class 𝐹 (𝑡) is for
an element 𝑡 ∈ T unique, ie the following assertion is true:

(F) For any element 𝑡 ∈ T the condition 𝑡 ∈ T𝐹 (𝐹 ∈ Bs(ℳ)/
o≡) results in 𝐹 = 𝐹 (𝑡).

For arbitrary elements 𝑡, 𝜏 ∈ T we will denote 𝑡 ≤ 𝜏 if and only if at least one of the following
conditions is true:

(O1) 𝐹 (𝑡) ̸= 𝐹 (𝜏) and 𝐹 (𝜏)C−−𝐹 (𝑡).
(O2) 𝐹 (𝑡) = 𝐹 (𝜏) and 𝑡 ≤𝐹 (𝑡) 𝜏 .
The pair (T,≤) is the ordered union of the (linearly ordered) family of linearly ordered sets

(T𝐹 )𝐹∈Bs(ℳ)/
o
≡. Thus, by [40, p. 208], ≤ is a linear ordering on T.

Denote:
𝜓(𝑡) := 𝜓𝐹 (𝑡)(𝑡), 𝑡 ∈ T. (1.3)

2 In accordance with [41] any reflexive and transitive binary relation l, defined on the some set X is named by quasi order on
X. That is the l relation on X is quasi order if and only if it satisfies the following conditions:

1) ∀𝑥 ∈ X (𝑥l𝑥); 2) For any 𝑥, 𝑦, 𝑧 ∈ X the correlations 𝑥l𝑦 and 𝑦l𝑧 lead to correlation 𝑥l𝑧.

15



Draft Introduction to Abstract Kinematics. (Ver 2.0) 3. One-point and Monotone Time. Chronologization Theorems

Since 𝜓𝐹 (𝑡)(𝑡) ⊆ 𝐹 (𝑡) ⊆ Bs(ℳ), 𝑡 ∈ T, the mapping 𝜓 reflects T into 2Bs(ℳ). Now we are
going to prove, that 𝜓 is one-point time.

(a) Let 𝑥 ∈ Bs(ℳ). Then there exists an equivalence class Φ ∈ Bs(ℳ)/
o≡, such, that

𝑥 ∈ Φ. Since the mapping 𝜓Φ : TΦ ↦→ 2Φ is a time on the oriented set (Φ,←), there exists a
time moment 𝑡 ∈ TΦ, such, that 𝑥 ∈ 𝜓Φ(𝑡). Since 𝑡 ∈ TΦ, then by virtue of Assertion (F) we
have Φ = 𝐹 (𝑡). Therefore:

𝜓(𝑡) = 𝜓𝐹 (𝑡)(𝑡) = 𝜓Φ(𝑡) ∋ 𝑥.
Thus, the first condition of the time Definition 1.2.1 is satisfied.

(b) Let 𝑥, 𝑦 ∈ Bs(ℳ), 𝑦←𝑥 and 𝑦 ̸= 𝑥. According to the item (a), there exist 𝑡, 𝜏 ∈ T
such, that 𝑥 ∈ 𝜓(𝑡), 𝑦 ∈ 𝜓(𝜏). And, using (1.3), we obtain, 𝑥 ∈ 𝜓(𝑡) = 𝜓𝐹 (𝑡)(𝑡) ⊆ 𝐹 (𝑡),

𝑦 ∈ 𝐹 (𝜏). Hence, since 𝑦←𝑥, for any 𝑥′ ∈ 𝐹 (𝑡), 𝑦′ ∈ 𝐹 (𝜏) (taking into account, that 𝑥′
o≡𝑥,

𝑦′
o≡ 𝑦), we obtain 𝑦′←𝑥′. This means, that 𝐹 (𝜏)C−−𝐹 (𝑡). And, in the case 𝐹 (𝑡) ̸= 𝐹 (𝜏), using

(O1), we obtain, 𝑡 ≤ 𝜏 , so, taking into account, that 𝐹 (𝑡) ̸= 𝐹 (𝜏) causes 𝑡 ̸= 𝜏 , we have 𝑡 < 𝜏 .
Thus it remains to consider the case 𝐹 (𝑡) = 𝐹 (𝜏). In this case we have 𝑥, 𝑦 ∈ 𝐹 (𝑡). And since
𝑦←𝑥, 𝑦 ̸= 𝑥 and 𝜓𝐹 (𝑡) is a time on (𝐹 (𝑡),←), there exist the elements 𝑡′, 𝜏 ′ ∈ T𝐹 (𝑡) such, that
𝑥 ∈ 𝜓𝐹 (𝑡)(𝑡

′), 𝑦 ∈ 𝜓𝐹 (𝑡)(𝜏
′) and 𝑡′ <𝐹 (𝑡) 𝜏

′. Therefore, since 𝑡′, 𝜏 ′ ∈ T𝐹 (𝑡), using Assertion (F),
we obtain 𝑥 ∈ 𝜓𝐹 (𝑡)(𝑡

′) = 𝜓𝐹 (𝑡′)(𝑡
′) = 𝜓(𝑡′) and 𝑦 ∈ 𝜓(𝜏 ′). Hence 𝑥 ∈ 𝜓(𝑡′), 𝑦 ∈ 𝜓(𝜏 ′), where,

𝑡′ <𝐹 (𝑡) 𝜏
′ (that is 𝑡′ ≤𝐹 (𝑡) 𝜏

′ and 𝑡′ ̸= 𝜏 ′). So, by (F) and (O2), we obtain 𝑡′ < 𝜏 ′.
Thus 𝜓 is a time onℳ.
(c) It remains to prove, that the time 𝜓 is one-point. Since for any equivalence class 𝐺 ∈

Bs(ℳ)/
o≡ the mapping 𝜓𝐺 is a one-point time, by (1.3), set 𝜓(𝑡) is a singleton for any 𝑡 ∈ T.

Thus, the first condition of the one-point time definition is satisfied.
Let 𝑥 ∈ 𝜓(𝑡), 𝑦 ∈ 𝜓(𝜏), where 𝑡 ≤ 𝜏 . Then by (1.3) 𝑥 ∈ 𝜓(𝑡) = 𝜓𝐹 (𝑡)(𝑡) ⊆ 𝐹 (𝑡), 𝑦 ∈ 𝐹 (𝜏).

And in the case 𝐹 (𝑡) = 𝐹 (𝜏) the relation 𝑦←𝑥 follows from the relation 𝑥
o≡ 𝑦. Concerning the

case 𝐹 (𝑡) ̸= 𝐹 (𝜏), in this case, by (O1),(O2), we obtain 𝐹 (𝜏)C−−𝐹 (𝑡), which involves 𝑦←𝑥.
Thus, the second condition of the one-point time definition also is satisfied.

Therefore, the time 𝜓 is one-point.

Theorem 1.3.2. Any oriented set can be quasi one-point chronologized.

Proof. 1. Letℳ be an oriented set. Denote by L the set of all maximum chains of theℳ. In
accordance with Theorem 1.3.1, for any chain 𝐿 ∈ L there exists an one-point chronologization
((T𝐿,≤𝐿), 𝜓𝐿) of the oriented set (𝐿,←). Similarly to the proof of the Theorem 1.3.1, without
loss of generality we can assume, that T𝐿 ∩T𝑀 = ∅, 𝐿 ̸=𝑀 . Denote:

T :=
⋃︁
𝐿∈L

T𝐿. (1.4)

Let E be any linear order relation on L (by Zermelo’s theorem, such linear order relation
necessarily exists). By virtue of (1.4), for any element 𝑡 ∈ T chain 𝐿(𝑡) ∈ L exists such, that
𝑡 ∈ T𝐿(𝑡). Since T𝐹 ∩ T𝐺 = ∅ (𝐹 ̸= 𝐺), this chain 𝐿(𝑡) is unique. This means, that the
following assertion is true:

(L) For any element 𝑡 ∈ T the condition 𝑡 ∈ T𝐿 (𝐿 ∈ L) causes 𝐿 = 𝐿(𝑡).

Let 𝑡, 𝜏 ∈ T. We shall put 𝑡 ≤ 𝜏 if and only if one of the following conditions is satisfied:
(O1) 𝐿(𝑡) ̸= 𝐿(𝜏) and 𝐿(𝑡) E 𝐿(𝜏).
(O2) 𝐿(𝑡) = 𝐿(𝜏) and 𝑡 ≤𝐿(𝑡) 𝜏 .
The pair (T,≤) is the ordered union of the (linearly ordrered) family of linearly ordered sets

(T𝐿)𝐿∈L. Thus, by [40, p. 208], (T,≤) is a linearly ordered set. Denote:

𝜓(𝑡) := 𝜓𝐿(𝑡) (𝑡) 𝑡 ∈ T. (1.5)
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Note, that 𝜓(𝑡) = 𝜓𝐿(𝑡) (𝑡) ⊆ 𝐿(𝑡) ⊆ Bs(ℳ), 𝑡 ∈ T.

2. We intend to prove, that the mapping 𝜓 : T ↦→ 2Bs(ℳ) is a time.
2.a) Let 𝑥 ∈ Bs(ℳ). In accordance with Corollary 1.1.2, there exists the maximum chain

𝑁𝑥 ∈ L such, that 𝑥 ∈ 𝑁𝑥. And, since the mapping 𝜓𝑁𝑥 : T𝑁𝑥 ↦→ 2𝑁𝑥 is a time, there exists an
element 𝑡𝑥 ∈ T𝑁𝑥 ⊆ T, such, that 𝑥 ∈ 𝜓𝑁𝑥 (𝑡𝑥). Since 𝑡𝑥 ∈ T𝑁𝑥 , by Assertion (L) (see above)
we have 𝑁𝑥 = 𝐿 (𝑡𝑥). Therefore:

𝜓 (𝑡𝑥) = 𝜓𝐿(𝑡𝑥) (𝑡𝑥) = 𝜓𝑁𝑥 (𝑡𝑥) ∋ 𝑥.

Thus, for any element 𝑥 ∈ Bs(ℳ) always an element 𝑡𝑥 ∈ T exists, such, that 𝑥 ∈ 𝜓 (𝑡𝑥).
2.b) Let 𝑥, 𝑦 ∈ Bs(ℳ), 𝑦←𝑥, 𝑥 ̸= 𝑦. According to Corollary 1.1.2, a maximum chain

𝑁𝑥𝑦 ∈ L exists, such, that 𝑥, 𝑦 ∈ 𝑁𝑥𝑦. Since 𝑦←𝑥, 𝑥 ̸= 𝑦 and mapping 𝜓𝑁𝑥𝑦 : T𝑁𝑥𝑦 ↦→ 2𝑁𝑥𝑦

is a time, there exist elements 𝑡𝑥, 𝑡𝑦 ∈ T𝑁𝑥𝑦 such, that 𝑡𝑥 <𝑁𝑥𝑦 𝑡𝑦 (ie 𝑡𝑥 ≤𝑁𝑥𝑦 𝑡𝑦, 𝑡𝑥 ̸= 𝑡𝑦) and
𝑥 ∈ 𝜓𝑁𝑥𝑦 (𝑡𝑥), 𝑦 ∈ 𝜓𝑁𝑥𝑦 (𝑡𝑦). Since 𝑡𝑥, 𝑡𝑦 ∈ T𝑁𝑥𝑦 , in accordance with Assertion (L), we obtain
𝐿 (𝑡𝑥) = 𝐿 (𝑡𝑦) = 𝑁𝑥𝑦. Therefore:

𝜓 (𝑡𝑥) = 𝜓𝐿(𝑡𝑥) (𝑡𝑥) = 𝜓𝑁𝑥𝑦 (𝑡𝑥) ∋ 𝑥;
𝜓 (𝑡𝑦) = 𝜓𝐿(𝑡𝑦) (𝑡𝑦) = 𝜓𝑁𝑥𝑦 (𝑡𝑦) ∋ 𝑦.

Since 𝐿 (𝑡𝑥) = 𝐿 (𝑡𝑦) = 𝑁𝑥𝑦, 𝑡𝑥 ≤𝑁𝑥𝑦 𝑡𝑦 and 𝑡𝑥 ̸= 𝑡𝑦, by (O2) we obtain 𝑡𝑥 ≤ 𝑡𝑦 and 𝑡𝑥 ̸= 𝑡𝑦, that
is 𝑡𝑥 < 𝑡𝑦.

Consequently for any elements 𝑥, 𝑦 ∈ Bs(ℳ) such, that 𝑦←𝑥, 𝑥 ̸= 𝑦 there exists elements
𝑡𝑥, 𝑡𝑦 ∈ T, such, that 𝑡𝑥 < 𝑡𝑦, 𝑥 ∈ 𝜓(𝑡𝑥), 𝑦 ∈ 𝜓(𝑡𝑦).

Thus, the mapping 𝜓 : T ↦→ 2Bs(ℳ) really is a time onℳ.
3. Since the times {𝜓𝐿|𝐿 ∈ L} are one point, from (1.5) it follows, that for any 𝑡 ∈ T the

set 𝜓(𝑡) is a singleton. Thus, the time 𝜓 is quasi one-point.

It is clear, that any oriented setℳ, containing elementary states 𝑥1, 𝑥2 ∈ Bs(ℳ) such, that
𝑥2 ̸↚ 𝑥1 and 𝑥1 ̸↚ 𝑥2, can not be one-point chronologized. Thus, not any oriented set can be
one-point chronologized. The next assertion shows, that not any oriented set can be monotone
chronologized.

Assertion 1.3.1. If oriented setℳ contains elementary states 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ) such, that
𝑥2←𝑥1, 𝑥1 ̸↚ 𝑥2, 𝑥3←𝑥2, 𝑥2 ̸↚ 𝑥3, 𝑥1←𝑥3, 𝑥1 ̸= 𝑥3, then this oriented set can not be
monotone chronologized.

Proof. Let oriented setℳ contains elementary states 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ), satisfying the con-
ditions of Assertion. Suppose, that the monotone chronologization ((T,≤) , 𝜓) of the oriented
setℳ exists. This means, that the mapping 𝜓 : T : ↦→ 2Bs(ℳ) is a monotone time onℳ. Since
𝑥1←𝑥3 and 𝑥1 ̸= 𝑥3, by time Definition 1.2.1, there exist time points 𝑡1, 𝑡3 ∈ T such, that
𝑥1 ∈ 𝜓(𝑡1), 𝑥3 ∈ 𝜓(𝑡3) and 𝑡3 < 𝑡1. Also, by Time Definition 1.2.1, there exists time point
𝑡2 ∈ T, such, that 𝑥2 ∈ 𝜓(𝑡2). Then, by Definition of monotone time 1.3.1, from conditions
𝑥2←𝑥1, 𝑥1 ̸↚ 𝑥2, 𝑥3←𝑥2, 𝑥2 ̸↚ 𝑥3 it follows, that 𝑡1 < 𝑡2, 𝑡2 < 𝑡3. Hence 𝑡1 < 𝑡3, which
contradicts inequality above (𝑡3 < 𝑡1). Thus, the assumption about the existence of monotone
chronologization ofℳ is wrong.

Problem 1.3.1. Find necessary and sufficient conditions of existence of one-point chronolo-
gization for oriented set.

Problem 1.3.2. Find necessary and sufficient conditions of existence of monotone chronolo-
gization for oriented set.

Main results of this Section were anonced in [1] and published in [2, Section 4].
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4 Time and Simultaneity. Internal Time

Definition 1.4.1. Let (ℳ,T, 𝜓) = (ℳ, (T,≤) , 𝜓) be a primitive changeable set. The set

𝑌𝜓 = {𝜓(𝑡) | 𝑡 ∈ T}
will be referred to as the set of simultaneous states, generated by the time 𝜓.

Directly from the time definition (Definition 1.2.1) it follows the next assertion.

Assertion 1.4.1. Let (ℳ,T, 𝜓) = (ℳ, (T,≤) , 𝜓) be a primitive changeable set, and 𝑌𝜓 be a
set of simultaneous states, generated by the time 𝜓. Then:⋃︁

𝐴∈𝑌𝜓

𝐴 = Bs(ℳ).

Definition 1.4.2. Letℳ be an oriented set. Any family of sets Y ⊆ 2Bs(ℳ), which possesses
the property

⋃︀
𝐴∈Y 𝐴 = Bs(ℳ) we will call the simultaneity onℳ.

According to Assertion 1.4.1, any set of simultaneous states, generated by the time 𝜓 of a
primitive changeable set (ℳ,T, 𝜓) is a simultaneity.

Let Y be a simultaneity on an oriented set ℳ and 𝐴,𝐵 ∈ Y. We will denote 𝐵←𝐴 (or
𝐵←
ℳ
𝐴) if and only if:

𝐴 = 𝐵 = ∅, or ∃𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 (𝑦←𝑥) .

The next lemma is trivial.

Lemma 1.4.1. Let Y be a simultaneity on an oriented setℳ. Then the pair (Y,←) itself is
an oriented set.

Theorem 1.4.1. Let ℳ be an oriented set and Y ⊆ 2Bs(ℳ) be a simultaneity on ℳ. Then
there exists time 𝜓 on the oriented setℳ, such, that:

Y = 𝑌𝜓,

where 𝑌𝜓 is the set of simultaneous states, generated by the time 𝜓.

Proof. Letℳ be an oriented set and Y ⊆ 2Bs(ℳ) be a simultaneity onℳ.
a) First we prove the Theorem in the case, where the simultaneity Y “separates” sequential

unequal elementary states, that is where the following condition holds:

(Rp) For any 𝑥, 𝑦 ∈ Bs(ℳ) such, that 𝑦←𝑥 and 𝑥 ̸= 𝑦 there exists sets 𝐴,𝐵 ∈ Y such, that
𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 and 𝐴 ̸= 𝐵.

By Lemma 1.4.1, (Y,←) is an oriented set. According to Theorem 1.3.2, oriented set (Y,←)
can be quasi one-point chronologized. Let Ψ : T ↦→ 2Y be quasi one-point time on (Y,←). By
Definition 1.3.1 of quasi one-point time, for any 𝑡 ∈ T the set Ψ(𝑡) is a singleton. This means,
that:

∀ 𝑡 ∈ T ∃𝐴𝑡 ∈ Y Ψ(𝑡) = {𝐴𝑡} .
Denote:

𝜓(𝑡) := 𝐴𝑡, 𝑡 ∈ T.

The next aim is to prove, that 𝜓 is time onℳ. Since Ψ is time on (Y,←), then
⋃︀
𝑡∈T Ψ(𝑡) = Y.

And, taking into account, that Ψ(𝑡) = {𝐴𝑡}, 𝑡 ∈ T, we obtain {𝐴𝑡 | 𝑡 ∈ T} = Y. Therefore,
since the family of sets Y is simultaneity onℳ, we have,

⋃︀
𝑡∈T 𝜓(𝑡) =

⋃︀
𝑡∈T 𝐴𝑡 =

⋃︀
𝐴∈Y 𝐴 =

18



Draft Introduction to Abstract Kinematics. (Ver 2.0) 4. Time and Simultaneity. Internal Time

Bs(ℳ). Hence, for any 𝑥 ∈ Bs(ℳ) there exists a time moment 𝑡 ∈ T such, that 𝑥 ∈ 𝜓(𝑡).
Thus, the first condition of time Definition 1.2.1 is satisfied. Now, we are going to prove, that
the second condition of Definition 1.2.1 also is satisfied. Let 𝑥, 𝑦 ∈ 𝑀 , 𝑦←𝑥 and 𝑥 ̸= 𝑦. By
condition (Rp), there exist sets 𝐴,𝐵 ∈ Y, such, that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 and 𝐴 ̸= 𝐵. Taking into
account, that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 and 𝑦←𝑥, we obtain 𝐵←𝐴. Since 𝐵←𝐴, 𝐴 ̸= 𝐵 and Ψ — time
on (Y,←), there exist time moments 𝑡, 𝜏 ∈ T such, that 𝐴 ∈ Ψ(𝑡), 𝐵 ∈ Ψ(𝜏) and 𝑡 < 𝜏 . And,
taking into account Ψ(𝑡) = {𝐴𝑡}, Ψ(𝜏) = {𝐴𝜏}, we obtain 𝐴 = 𝐴𝑡, 𝐵 = 𝐴𝜏 , that is 𝐴 = 𝜓(𝑡),
𝐵 = 𝜓(𝜏). Since 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, then 𝑥 ∈ 𝜓(𝑡), 𝑦 ∈ 𝜓(𝜏), where 𝑡 < 𝜏 .

Thus, 𝜓 is a time onℳ. Moreover, taking into account that it has been proven before, we
get:

𝑌𝜓 = {𝜓(𝑡) | 𝑡 ∈ T} = {𝐴𝑡 | 𝑡 ∈ T} = Y.

Hence, in the case, when (Rp) is true, Theorem is proved.
b) Now we consider the case, when the condition (Rp) is not satisfied. Chose any element

�̃�, such, that 𝑥 /∈ Bs(ℳ). Denote:

�̃� := Bs(ℳ) ∪ {�̃�} .
For elements 𝑥, 𝑦 ∈ �̃� we put 𝑦̃︁←𝑥 if and only if one of the following conditions is satisfied:

(a) 𝑥, 𝑦 ∈ Bs(ℳ) and 𝑦←𝑥; (b) 𝑥 = 𝑦 = �̃�.

That is the relation ̃︁← can be represented by formula ̃︁← =←∪{(�̃�, �̃�)}. Taking into account,
that for 𝑥, 𝑦 ∈ Bs(ℳ) the condition 𝑦̃︁←𝑥 is is equivalent to the condition 𝑦←𝑥, further
for relations ̃︁← and ← we will use the same denotation ←, assuming, that the relation ← is

expanded to the set �̃� . It is obvious, that
(︁
�̃�,←

)︁
is an oriented set. Denote:

Y0 := {𝐵 ∈ Y | ∃𝑥, 𝑦 ∈ 𝐵 : 𝑥 ̸= 𝑦, 𝑦←𝑥} .
Since Condition (Rp) is not satisfied, we have Y0 ̸= ∅. For 𝐵 ∈ Y0 we put:

�̃� := 𝐵 ∪ {�̃�}.
Also we put:

Ỹ0 :=
{︁
�̃� |𝐵 ∈ Y0

}︁
Ỹ := Y ∪ Ỹ0.

Since Y is a simultaneity on ℳ, and �̃� ∈ �̃� for any set �̃� ∈ Ỹ0, then Ỹ is a simultaneity

on
(︁
�̃�,←

)︁
. The simultaneity Ỹ readily satisfies the condition (Rp). Therefore, according to

result, proven in paragraph a), there exists the time 𝜓1 : T ↦→ 2�̃� on
(︁
�̃�,←

)︁
, such, that

𝑌𝜓1 = {𝜓1(𝑡) | 𝑡 ∈ T} = Ỹ. Now, we denote:

𝜓(𝑡) := 𝜓1(𝑡) ∩Bs(ℳ), 𝑡 ∈ T.

In accordance with Assertion 1.2.1, 𝜓 is a time onℳ. Moreover we obtain:

𝑌𝜓 = {𝜓(𝑡) | 𝑡 ∈ T} = {𝜓1(𝑡) ∩Bs(ℳ) | 𝑡 ∈ T} =
{︁
𝐴 ∩Bs(ℳ) | 𝐴 ∈ Ỹ

}︁
=

= {𝐴 ∩Bs(ℳ) | 𝐴 ∈ Y} ∪
{︁
𝐴 ∩Bs(ℳ) | 𝐴 ∈ Ỹ0

}︁
=

= {𝐴 | 𝐴 ∈ Y} ∪
{︁
�̃� ∩Bs(ℳ) |𝐵 ∈ Y0

}︁
= Y ∪ {𝐵 |𝐵 ∈ Y0} =
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= Y ∪Y0 = Y.

Definition 1.4.3. Let Y ⊆ 2Bs(ℳ) be any simultaneity on the oriented setℳ. Time 𝜓 onℳ
will be named the generating time of the simultaneity Y if and only if Y = 𝑌𝜓, where 𝑌𝜓 is
the set of simultaneous states, generated by the time 𝜓.

Thus, Theorem 1.4.1 asserts, that any simultaneity always has it’s own generating time.
Below we consider the question about uniqueness of a generating time for a simultaneity (under
the certain conditions). To ensure the correctness of staging this question, first of all, we need
to introduce the concept of equivalence of two chronologizations.

Definition 1.4.4. Let ℳ be an oriented set and 𝜓1 : T1 ↦→ 2Bs(ℳ), 𝜓2 : T2 ↦→ 2Bs(ℳ) be
some times for ℳ, defined on the linear ordered sets (T1,≤1), (T2,≤2). We say, that the
chronologizations ℋ1 = ((T1,≤1) , 𝜓1) and ℋ2 = ((T2,≤2) , 𝜓2) are equivalent (using the
denotation ℋ1 � ℋ2) if and only if there exist an one-to-one correspondence 𝜉 : T1 ↦→ T2 such,
that:

1) 𝜉 is order isomorphism between the linearly ordered sets (T1,≤1), (T2,≤2), that is for
any 𝑡, 𝜏 ∈ T1 the inequality 𝑡 ≤1 𝜏 is equivalent to the inequality 𝜉 (𝑡) ≤2 𝜉 (𝜏).

2) For any 𝑡 ∈ T1 it is valid the equality 𝜓1(𝑡) = 𝜓2(𝜉(𝑡)).

Assertion 1.4.2. Letℳ be any oriented set and 𝒲 is any set, which consists of chronologiza-
tions ofℳ. Then the relation � is an equivalence relation on 𝒲.

Proof. Throughout in this proof ℋ𝑖 = ((T𝑖,≤𝑖) , 𝜓𝑖) ∈ 𝒲 (𝑖 = 1, 2, 3) mean any three chronol-
ogizations of the oriented setℳ.
1) Reflexivity. Denote 𝜉11(𝑡) := 𝑡, 𝑡 ∈ T1. It is obvious that 𝜉11 is a order isomorphism

between (T1,≤1) and (T1,≤1). Besides we have 𝜓(𝑡) = 𝜓(𝜉(𝑡)), 𝑡 ∈ T. Thus ℋ1 � ℋ1.
2) Symmetry. Let ℋ1 � ℋ2. Then, by Definition 1.4.4, there exist an one-to-one correspon-

dence 𝜉12 : T1 ↦→ T2 such, that:
1) 𝜉12 is order isomorphism between the linearly ordered sets (T1,≤1), (T2,≤2).
2) 𝜓1(𝑡) = 𝜓2(𝜉12(𝑡)), for any 𝑡 ∈ T1.

Since the mapping 𝜉12 is bijection, there exists the inverse mapping 𝜉21(𝑡) := 𝜉
[−1]
12 (𝑡) ∈ T1,

𝑡 ∈ T2. Since 𝜉12 is order isomorphism between the linearly ordered sets (T1,≤1), (T2,≤2),
then 𝜉21 is order isomorphism between (T2,≤2) and (T1,≤1). Moreover, for any 𝑡 ∈ T2 we
obtain:

𝜓2(𝑡) = 𝜓2

(︁
𝜉12

(︁
𝜉
[−1]
12 (𝑡)

)︁)︁
= 𝜓1 (𝜉21(𝑡)) .

Thus, ℋ2 � ℋ1.
3) Transitivity. Letℋ1 � ℋ2, ℋ2 � ℋ3. Then there exist order isomorphisms 𝜉12 : T1 ↦→ T2

and 𝜉23 : T2 ↦→ T3 such, that 𝜓1(𝑡) = 𝜓2 (𝜉12(𝑡)), 𝑡 ∈ T1 and 𝜓2(𝑡) = 𝜓3 (𝜉23(𝑡)), 𝑡 ∈ T2.
Denote, 𝜉13(𝑡) := 𝜉23 (𝜉12(𝑡)), 𝑡 ∈ T1. It is easy to verify, that 𝜉13 is an order isomorphism
between (T1,≤1) and (T3,≤3). Moreover, for any 𝑡 ∈ T1 we obtain:

𝜓1(𝑡) = 𝜓2 (𝜉12(𝑡)) = 𝜓3 (𝜉23 (𝜉12(𝑡))) = 𝜓3 (𝜉13(𝑡)) .

Therefore, ℋ1 � ℋ3.

Now, if we consider the question about uniqueness of a generating time for a simultaneity up
to equivalence of corresponding chronologizations, the answer still is negative. For example we
can consider a linearly ordered sets (T,≤) and (T1,≤) such, that ∅ ≠ T1 ⊂ T (more accurately
linear order relation on T1 is a restriction of order relation on T, and both relations are denoted
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by the same symbol “≤”). If 𝜓1 : T1 ↦→ 2Bs(ℳ) is a time on the oriented setℳ, then for any
fixed element 𝑡1 ∈ T1 we can define the time:

𝜓(𝑡) :=

{︃
𝜓1(𝑡), 𝑡 ∈ T1 ;

𝜓1 (𝑡1) , 𝑡 ∈ T ∖T1

(𝑡 ∈ T) .

This time is such, that 𝑌𝜓 = 𝑌𝜓1 , although, in the case, when the ordered sets (T,≤) and (T1,≤)
are not isomorphic, the chronologizations ((T,≤) , 𝜓) and ((T1,≤) , 𝜓1) are not equivalent.
That is why, to obtain the positive answer for the above question, further we will impose
additional conditions on simultaneity and generating time.

Definition 1.4.5. Letℳ be an oriented set.
1) We will say, that a set 𝐵 ⊆ Bs(ℳ) is monotonously sequential to a set 𝐴 ∈ Bs(ℳ)

in the oriented setℳ if and only if there exist elements 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 such, that 𝑦←
ℳ
𝑥 and

𝑥 ̸↚
ℳ
𝑦. In this case we will use the denotation 𝐵←(m)

ℳ
𝐴.

2) Let 𝒬 ⊆ 2Bs(ℳ) be any system of subsets of Bs(ℳ). We will say, that a set 𝐴 ∈ 𝒬 is
transitively monotonously sequential to a set 𝐵 ∈ 𝒬 relative to the system 𝒬 if and only
if there exist a finite sequence of sets 𝐶0, 𝐶1, · · · , 𝐶𝑛 ∈ 𝒬 (𝑛 ∈ N) such, that 𝐶0 = 𝐴, 𝐶𝑛 = 𝐵

and 𝐶𝑘←(m)
ℳ

𝐶𝑘−1, for any 𝑘 ∈ 1, 𝑛. In this case we will use the denotation 𝐵
𝒬
�(m)
ℳ

𝐴.

In the case where the oriented setℳ is known in advance, the charℳ in the denotations

←(m)
ℳ

and
𝒬
�(m)
ℳ

will be released, and we will use the abbreviated denotations ←(m) and
𝒬
�(m)

(respectively).

Remark 1.4.1. It is easy to prove, that for any system of sets 𝒬 ⊆ 2Bs(ℳ) (in any oriented set

ℳ) the binary relation
𝒬
�(m) is transitive on the set 𝒬.

Assertion 1.4.3. Let ℳ be an oriented set, and S,S′ ⊆ 2Bs(ℳ) be systems of subsets of
Bs(ℳ), moreover S ⊑ S′ (this means, that for any set 𝐴 ∈ S there exist a set 𝐴′ ∈ S′ such,
that 𝐴 ⊆ 𝐴′).

Then for any 𝐴,𝐵 ∈ S and 𝐴′, 𝐵′ ∈ S′ such, that 𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′ correlation 𝐵
S
�(m)𝐴

leads to the correlation 𝐵′
S′

�(m)𝐴′.

Proof. Suppose that the conditions of Assertion are performed. Let 𝐴,𝐵 ∈ S, 𝐴′, 𝐵′ ∈ S′,

𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′ and 𝐵
S
�(m)𝐴. Then, there exists a finite sequence of sets 𝐶0, · · · , 𝐶𝑛 ∈ S

(𝑛 ∈ N) such, that 𝐶0 = 𝐴, 𝐶𝑛 = 𝐵 and 𝐶𝑘←(m)𝐶𝑘−1 (for any 𝑘 ∈ 1, 𝑛). Since S ⊑ S′, there
exist sets 𝐶 ′0, · · · , 𝐶 ′𝑛 ∈ S′ such, that 𝐶𝑘 ⊆ 𝐶 ′𝑘 (𝑘 ∈ 0, 𝑛). Moreover, since 𝐶0 = 𝐴 ⊆ 𝐴′ ∈ S′,
𝐶𝑛 = 𝐵 ⊆ 𝐵′ ∈ S′, we can consider that 𝐶 ′0 = 𝐴′, 𝐶 ′𝑛 = 𝐵′. Taking into account that 𝐶𝑘 ⊆ 𝐶 ′𝑘
(𝑘 ∈ 0, 𝑛), and 𝐶𝑘←(m)𝐶𝑘−1 (𝑘 ∈ 1, 𝑛), by Definition 1.4.5, we obtain 𝐶 ′𝑘←(m)𝐶 ′𝑘−1, 𝑘 ∈ 1, 𝑛

(where 𝐶 ′0 = 𝐴′, 𝐶 ′𝑛 = 𝐵′). Thus 𝐵′
S′

�(m)𝐴′.

Definition 1.4.6. Letℳ be an oriented set.
1) System of sets S ⊆ 2Bs(ℳ) will be referred to as unrepeatable if and only if there not

exist sets 𝐴,𝐵 ∈ S such, that 𝐴
S
�(m)𝐵 and 𝐵

S
�(m)𝐴. In particular, in the case, where

a simultaneity Y ⊆ 2Bs(ℳ) is unrepeatable system of sets, this simultaneity we will call an
unrepeatable simultaneity.

2) Simultaneity Y ⊆ 2Bs(ℳ) will be referred to as precise if and only if for any 𝑥, 𝑦 ∈ Bs(ℳ)
such, that 𝑦←𝑥 and 𝑥 ̸= 𝑦 there exist sets 𝐴,𝐵 ∈ Y such, that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝐴 ̸= 𝐵 and

𝐵
Y
�(m)𝐴 (this means, that this simultaneity “fixes” all changes on the oriented setℳ).
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3) Simultaneity Y will be called precisely-unrepeatable if and only if it is precise and, at
the same time, unrepeatable.

Assertion 1.4.4. Let ℳ be an oriented set and S ⊆ 2Bs(ℳ) is unrepeatable system of sets.
Then:

1) For any 𝐴,𝐵 ∈ S, such, that 𝐵
S
�(m)𝐴 is true 𝐴 ̸= 𝐵.

2) If S1 ⊆ 2Bs(ℳ) and S1 ⊑ S, then S1 also is unrepeatable system of sets.

Proof. 1) Let S ⊆ 2Bs(ℳ) be unrepeatable system of sets. If we suppose, that 𝐵
S
�(m)𝐴 and

𝐴 = 𝐵 (for some 𝐴,𝐵 ∈ S), then we obtain 𝐴
S
�(m)𝐵 and 𝐵

S
�(m)𝐴, which is impossible,

since the system of sets S is unrepeatable.
2) Let S1 ⊑ S. Suppose, that the system of sets S1 is not unrepeatable. Then, there

exists sets 𝐴1, 𝐵1 ∈ S1 such, that 𝐴1

S1

�(m)𝐵1 and 𝐵1

S1

�(m)𝐴1. Since S1 ⊑ S, there exist sets

𝐴,𝐵 ∈ S such, that 𝐴1 ⊆ 𝐴, 𝐵1 ⊆ 𝐵. Hence, by Assertion 1.4.3, we obtain 𝐴
S
�(m)𝐵 and

𝐵
S
�(m)𝐴, which is impossible, since the system of sets S is unrepeatable. Thus, the system of

sets S1 is unrepeatable, because the opposite assumption is wrong.

Remark 1.4.2. From Remark 1.4.1 and Assertion 1.4.4 (item 1) it readily follows, that in the

case, where a simultaneity Y ⊆ 2Bs(ℳ) is unrepeatable, the relation
Y
�(m) is a strict order on

Y (ie
Y
�(m) is anti-reflexive and transitive relation).

Lemma 1.4.2. Let 𝜓 : T ↦→ 2Bs(ℳ) be a monotone time on an oriented set ℳ, and 𝑌𝜓 be a

simultaneity, generated by the time 𝜓. Then for any 𝑡1, 𝑡2 ∈ T the condition 𝜓 (𝑡2)
𝑌𝜓
�(m)𝜓 (𝑡1)

leads to 𝑡1 < 𝑡2.

Proof. 1) First we consider the case, where 𝜓 (𝑡2)←(m)𝜓 (𝑡1). In this case, by Definition 1.4.5,
there exist elements 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) such, that 𝑥2←𝑥1 and 𝑥1 ̸↚ 𝑥2. Hence, since the
time 𝜓 is monotone, we obtain 𝑡1 < 𝑡2 (by Definition 1.3.1).

Now, we consider the general case, 𝜓 (𝑡2)
𝑌𝜓
�(m)𝜓 (𝑡1). In this case, by Definition 1.4.5, there

exist time points 𝜏0, 𝜏1, · · · , 𝜏𝑛 ∈ T such, that 𝜏0 = 𝑡1, 𝜏𝑛 = 𝑡2 and 𝜓 (𝜏𝑘)←(m)𝜓 (𝜏𝑘−1) for any
𝑘 ∈ 1, 𝑛. By statement 1), 𝜏𝑘−1 < 𝜏𝑘, 𝑘 ∈ 1, 𝑛. Thus, 𝑡1 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑛 = 𝑡2.

Definition 1.4.7. We will say, that a simultaneity Y on an oriented set is monotone-
connected if and only if for any sets 𝐴,𝐵 ∈ Y such, that 𝐴 ̸= 𝐵 it holds one of the conditions

𝐴
Y
�(m)𝐵 or 𝐵

Y
�(m)𝐴.

Remark 1.4.3. Directly from Definition 1.4.7 and Remark 1.4.2 it follows, that if a simultaneity

Y ⊆ 2Bs(ℳ) is unrepeatable and monotone-connected, then the relation
Y
�(m) is a strict linear

order on Y.

Definition 1.4.8. Let ℳ be an oriented set and (T,≤) be a linearly ordered set. Time 𝜓 :
T ↦→ 2Bs(ℳ) will be called incessant if and only if there not exist time points 𝑡1, 𝑡2 ∈ T such,
that 𝑡1 < 𝑡2 and for any 𝑡 ∈ T, satisfying 𝑡1 ≤ 𝑡 ≤ 𝑡2 it is true the equality 𝜓(𝑡) = 𝜓 (𝑡1). In the
case, where the time 𝜓 is both monotone and incessant it will be called strictly monotone.

Lemma 1.4.3. Let Y be precisely-unrepeatable and monotone-connected simultaneity on the
oriented setℳ and 𝜓 : T ↦→ 2Bs(ℳ) is the time, generating this simultaneity.

1) If the time 𝜓 is strictly monotone, then it is unrepeatable (this means, that for any
𝑡1, 𝑡2 ∈ T such, that 𝑡1 ̸= 𝑡2 the correlation 𝜓 (𝑡1) ̸= 𝜓 (𝑡2) is valid).

2) The time 𝜓 is strictly monotone if and only if for any 𝑡1, 𝑡2 ∈ T inequality 𝑡1 < 𝑡2 implies

the correlation 𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1).
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3) If the time 𝜓 is strictly monotone, then the strictly linearly ordered sets (T, >) and(︂
Y,

Y
�(m)

)︂
are isomorphic relative the order, and the mapping 𝜓 : T ↦→ Y is the order

isomorphism between them.

Proof. 1) Let, under conditions of the Lemma, time 𝜓 : T ↦→ 2Bs(ℳ) be strictly monotone.
Suppose, there exist time points 𝑡1,𝑡2 ∈ T such, that 𝑡1 < 𝑡2 and 𝜓 (𝑡1) = 𝜓 (𝑡2). Since
the time 𝜓 (being strictly monotone) is incessant, there exists a time point 𝑡3 ∈ T such,
that 𝑡1 < 𝑡3 < 𝑡2 and 𝜓 (𝑡3) ̸= 𝜓 (𝑡1) = 𝜓 (𝑡2). So far as 𝜓 (𝑡3) ̸= 𝜓 (𝑡1) and the simul-

taneity Y is monotone-connected, one of the conditions 𝜓 (𝑡3)
Y
�(m)𝜓 (𝑡1) or 𝜓 (𝑡1)

Y
�(m)𝜓 (𝑡3)

is performed. But since 𝑡1 < 𝑡3 the correlation 𝜓 (𝑡1)
Y
�(m)𝜓 (𝑡3) is impossible by Lemma

1.4.2. Therefore, 𝜓 (𝑡3)
Y
�(m)𝜓 (𝑡1). Similarly, since 𝑡3 < 𝑡2 and 𝜓 (𝑡3) ̸= 𝜓 (𝑡2), we obtain

𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡3). Hence, taking into account, that 𝜓 (𝑡1) = 𝜓 (𝑡2), we have 𝜓 (𝑡3)

Y
�(m)𝜓 (𝑡1)

and 𝜓 (𝑡1)
Y
�(m)𝜓 (𝑡3), which is impossible, because the simultaneity Y = 𝑌𝜓 is unrepeatable.

2.a) Suppose, that the time 𝜓 : T ↦→ 2Bs(ℳ) is strictly monotone. Chose any time
points 𝑡1, 𝑡2 ∈ T such, that 𝑡1 < 𝑡2. By the first statement of this Lemma, 𝜓 (𝑡1) ̸= 𝜓 (𝑡2).

Since the simultaneity Y is monotone-connected, one of the conditions 𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1) or

𝜓 (𝑡1)
Y
�(m)𝜓 (𝑡2) is performed. But, so far as 𝑡1 < 𝑡2, the condition 𝜓 (𝑡1)

Y
�(m)𝜓 (𝑡2) is impos-

sible by Lemma 1.4.2. Thus:

∀𝑡1, 𝑡2 ∈ T 𝑡1 < 𝑡2 ⇒ 𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1) . (1.6)

2.b) Now we suppose, that Condition (1.6) holds. The first aim is to prove, that the time 𝜓 is
monotone. Consider any elementary states 𝑥1, 𝑥2 ∈ Bs(ℳ) such, that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2),
𝑥2←𝑥1 and 𝑥1 ̸↚ 𝑥2 (where 𝑡1, 𝑡2 ∈ T). By Definition 1.4.5, 𝜓 (𝑡2)←(m)𝜓 (𝑡1). Consequently,

𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1) . (1.7)

If we suppose 𝑡1 ≥ 𝑡2, we must obtain:

𝜓 (𝑡1)
Y
�(m)𝜓 (𝑡2) (1.8)

(indeed, in the case 𝑡1 = 𝑡2 the correlation (1.8) follows from (1.7), and in the case 𝑡1 > 𝑡2
the correlation (1.8) is caused by Condition (1.6)). Thus, in the case 𝑡1 ≥ 𝑡2, both of the
conditions (1.7) and (1.8) must be performed, which is impossible (since the simultaneity Y is
unrepeatable). Consequently, only the inequality 𝑡1 < 𝑡2 is possible. This proves that the time
𝜓 is monotone.

Thus, it remains to prove, that the time 𝜓 is incessant. Suppose, there exist time points
𝑡1, 𝑡2 ∈ T such, that 𝑡1 < 𝑡2, and 𝜓(𝑡) = 𝜓 (𝑡1) for any 𝑡 ∈ T, satisfying 𝑡1 ≤ 𝑡 ≤ 𝑡2. Then, in
particular, 𝜓 (𝑡1) = 𝜓 (𝑡2) (where 𝑡1 < 𝑡2). Since 𝑡1 < 𝑡2, by Condition (1.6), correlation (1.7)
must be performed. But since 𝜓 (𝑡1) = 𝜓 (𝑡2), the correlation (1.8) also is performed, which is
impossible (since the simultaneity Y is unrepeatable). Therefore, the time 𝜓 is incessant.

Thus, the time 𝜓 is strictly monotone.
3) Let the time 𝜓 : T ↦→ 2Bs(ℳ) be strictly monotone. According to the first statement

of the Lemma, the mapping 𝜓 : T ↦→ Y = 𝑌𝜓 is one-to-one correspondence between T and
Y = 𝑌𝜓. According to the second statement of the Lemma, for any 𝑡1, 𝑡2 ∈ T the inequality

𝑡2 > 𝑡1 implies the correlation 𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1). Hence, taking into account, that by remark

1.4.3,

(︂
Y,

Y
�(m)

)︂
is a linearly ordered set (with strict order), we conclude, that the mapping
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𝜓 is isomorphism between the strictly linearly ordered sets (T, >) and

(︂
Y,

Y
�(m)

)︂
.

Remark 1.4.4. It turns out, that for any precisely-unrepeatable and monotone-connected simul-
taneity Y ⊆ 2Bs(ℳ) the assertion, inverse to the first statement, of Lemma 1.4.3, in general, is
not true. To demonstrate this we present the following example.

Example 1.4.1. Let us consider the following oriented set:

Bs(ℳ) := {1, 2, 3, 4} ;
←
ℳ

:= {(3, 1), (4, 2)} ∪ diag (Bs(ℳ)) ,

that is, in the other words, 3← 1, 4← 2, 1← 1, 2← 2, 3← 3, 4← 4. In this oriented set we
consider the following simultaneity:

Y := {{1, 2} , {3, 4} , {2, 3}} .

Then, we have {2, 3}←(m) {1, 2}, {3, 4}←(m) {2, 3}, {3, 4}←(m) {1, 2}, and {2, 3} ̸↚(𝑚) {3, 4},
{1, 2} ̸↚(𝑚) {2, 3}, {1, 2} ̸↚(𝑚) {3, 4}, moreover, any set of simultaneityY is not monotonously
sequential by the itself. That is, schematically:

{3, 4} ←(m) {2, 3} ←(m) {1, 2}
↖ < −− ←(m) < −− ↘ ,

and, moreover, the relation “←(m)” on the simultaneity Y is fully generated by the last scheme.
And from this scheme it is evident, that the simultaneity Y is unrepeatable and monotone-
connected. Moreover, it is easy to verify, that this simultaneity is precise.

Also we consider the following linearly ordered set:

T := {1, 2, 3} ,

with the standard linear order relation on the natural numbers (≤). The simultaneity Y can
be generated by the following times:

𝜓1 : 𝜓1(1) := {1, 2} , 𝜓1(2) := {2, 3} , 𝜓1(3) := {3, 4} ;
𝜓2 : 𝜓2(1) := {1, 2} , 𝜓2(2) := {3, 4} , 𝜓2(3) := {2, 3} .

Both of times 𝜓1 and 𝜓2 are, evidently, unrepeatable, but the time 𝜓2 is not monotone, because
of:

2 ∈ 𝜓2(3), 4 ∈ 𝜓2(2),

4← 2, 2 ̸↚ 4, but 3 ̸< 2.

Theorem 1.4.2. For any precisely-unrepeatable and monotone-connected simultaneity Y an
unique up to equivalence of chronologizations strictly monotone time 𝜓 exists, such, that Y =
𝑌𝜓.

It should be noted, that the uniqueness up to equivalence of chronologizations in Theorem
1.4.2 is understood as follows:

“if strictly monotone times 𝜓1 and 𝜓2, defined on linear ordered sets T1 and T2 are such,
that Y = 𝑌𝜓1 = 𝑌𝜓2 , then ℋ1 � ℋ2, where ℋ1 and ℋ2 are corresponding chronologizations
(ℋ𝑖 = (T𝑖, 𝜓𝑖), 𝑖 ∈ {1, 2})”.

Proof. 1. LetY be precisely-unrepeatable and monotone-connected simultaneity on an oriented

setℳ. Then, by Remark 1.4.3,
Y
�(m) is a strict linear order on Y. Hence, the relation

Y
(m)�,

inverse to the relation
Y
�(m), also is a strict linear order on Y. Denote:

T := Y.
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For 𝑡, 𝜏 ∈ T = Y we will assume, that 𝑡 ≤ 𝜏 if and only if:

𝑡 = 𝜏 or 𝑡
Y

(m)� 𝜏.

That is, ≤ is (non-strict) linear order, generated by the strict order
Y

(m)�. Therefore, for
𝑡, 𝜏 ∈ T the following logical equivalence is true:

𝑡 < 𝜏 ⇐⇒ 𝑡
Y

(m)� 𝜏, (1.9)

where “⇐⇒” is the symbol of logical equivalence (“if and only if”) and record 𝑡 < 𝜏 means, that
𝑡 ≤ 𝜏 and 𝑡 ̸= 𝜏 . Thus, (T,≤) is a linearly ordered set. Denote:

𝜓(𝑡) := 𝑡, 𝑡 ∈ T = Y.

Since T = Y, then 𝜓(𝑡) = 𝑡 ∈ Y ⊆ 2Bs(ℳ) for 𝑡 ∈ T .
2. The next aim is to prove, that 𝜓 is a time onℳ.
(a) Since Y is a simultaneity, then for any 𝑥 ∈ Bs(ℳ) there exists set 𝑡𝑥 ∈ Y = T, such,

that 𝑥 ∈ 𝑡𝑥. Therefore, we obtain 𝜓 (𝑡𝑥) = 𝑡𝑥 ∋ 𝑥. Thus, the first condition of the time
Definition 1.2.1 is performed.

(b) Suppose, that 𝑥, 𝑦 ∈ Bs(ℳ), 𝑦←𝑥 and 𝑥 ̸= 𝑦. Since the simultaneity Y is precise,

there exist 𝑡𝑥, 𝑡𝑦 ∈ Y = T such, that 𝑥 ∈ 𝑡𝑥, 𝑦 ∈ 𝑡𝑦 and 𝑡𝑦
Y
�(m) 𝑡𝑥. Then, by (1.9), 𝑡𝑥 < 𝑡𝑦.

Moreover, since 𝜓(𝑡) = 𝑡, 𝑡 ∈ T, we have:

𝑥 ∈ 𝑡𝑥 = 𝜓 (𝑡𝑥) ; 𝑦 ∈ 𝑡𝑦 = 𝜓 (𝑡𝑦) .

Consequently, the second condition of Definition 1.2.1 also is satisfied.
Thus, the mapping 𝜓 is a time.
3. Now we aim to prove, that the time 𝜓 is strictly monotone.
(a) Let 𝑥 ∈ 𝜓 (𝑡𝑥), 𝑦 ∈ 𝜓 (𝑡𝑦), 𝑦←𝑥 and 𝑥 ̸↚ 𝑦. Then 𝑡𝑦 = 𝜓 (𝑡𝑦)←(m)𝜓 (𝑡𝑥) = 𝑡𝑥. Conse-

quently, 𝑡𝑦
Y
�(m) 𝑡𝑥, ie, by (1.9), 𝑡𝑥 < 𝑡𝑦. Thus, the time 𝜓 is monotone.

(b) Suppose, that this time is not incessant. Then there exist 𝑡1, 𝑡2 ∈ T such, that 𝑡1 < 𝑡2
and 𝜓 (𝑡) = 𝜓 (𝑡1) for any 𝑡 ∈ T, satisfying the inequality 𝑡1 ≤ 𝑡 ≤ 𝑡2. In particular this means,
that 𝜓 (𝑡2) = 𝜓 (𝑡1). And, since 𝜓(𝜏) = 𝜏 , 𝜏 ∈ T, we obtain 𝑡2 = 𝑡1, which contradicts the
inequality 𝑡1 < 𝑡2. Therefore, the assumption is wrong, and the time 𝜓 is incessant.

Thus, the time 𝜓 is strictly monotone.
4. It remains to prove, that the time 𝜓 is unique up to equivalence of chronologizations.

Let 𝜓1 : T1 ↦→ 2Bs(ℳ) be an other strictly monotone time such, that 𝑌𝜓1 = Y (where (T1,≤1)
is a linearly ordered set. Then, by Lemma 1.4.3, the linearly ordered (by strict order) sets

(T1, >1) and

(︂
Y,

Y
�(m)

)︂
are isomorphic relative the order, with the mapping 𝜓1 : T1 ↦→ Y

being isomorphism, where >1 is relation, inverse to the relation <1, and <1 is strict order,
generated by non-strict order ≤1. Thus, the ordered sets (T1,≤1) and (Y,≤) = (T,≤) also
are isomorphic with the isomorphism 𝜓1. Moreover, for any 𝑡 ∈ T1, we have:

𝜓1(𝑡) = 𝜓 (𝜓1(𝑡)) ,

ie, by Definition 1.4.4, ((T1,≤1) , 𝜓1) � ((T,≤) , 𝜓).

Definition 1.4.9. Letℳ be an oriented set, and 𝜓 : T ↦→ 2Bs(ℳ) be a time onℳ.

A mapping h : T ↦→ 2Bs(ℳ) will be referred to as chronometric process (for the time 𝜓),
if and only if:

1) h(𝑡) ⊆ 𝜓(𝑡) for any 𝑡 ∈ T.
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2) For arbitrary 𝑡, 𝜏 ∈ T inequality 𝑡 < 𝜏 is valid if and only if h(𝜏)
h(T)

�(m)h(𝑡) and h(𝑡) ̸=
h(𝜏), where h(T) = {h(𝑡) | 𝑡 ∈ T};

The time 𝜓 on ℳ will be referred to as internal if and only if there exists at least one
chronometric process for this time.

Sense of the term “internal time” lies in the fact that in the case, where a time on a primitive
changeable set is internal, this time can be measured within this primitive changeable set, using
the chronometric process as a “clock” and states of this process as “indicators of time points”.
The next aim is to establish the sufficient condition of existence and uniquness of internal time
for given simultaneity.

Lemma 1.4.4. The generating time for precisely-unrepeatable and monotone-connected simul-
taneity is internal if and only if it is strictly monotone.

Proof. Letℳ be an oriented set, Y is precisely-unrepeatable and monotone-connected simul-
taneity and 𝜓 : T ↦→ 2Bs(ℳ) is a time onℳ, which generates Y (ie Y = 𝑌𝜓).
1) Suppose, that the time 𝜓 is internal. Then there exists a chronometric process h : T ↦→

2Bs(ℳ) for the time 𝜓.
1.a) First we are going to prove, that the time 𝜓 is monotone. Let 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2),

𝑥2←𝑥1 and 𝑥1 ̸↚ 𝑥2. Then 𝜓 (𝑡2)←(m)𝜓 (𝑡1), ie 𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1). Hence, since the simultane-

ity Y is unrepeatable, using Assertion 1.4.4, we obtain 𝜓 (𝑡1) ̸= 𝜓 (𝑡2), ie 𝑡1 ̸= 𝑡2. Thus, the
possible cases are 𝑡1 < 𝑡2 or 𝑡2 < 𝑡1. Let us suppose, that 𝑡2 < 𝑡1. Then, since h is chronometric

process, we have, h (𝑡1)
h(T)

�(m)h (𝑡2). From Definition 1.4.9 it follows, that h(T) ⊑ Y (where

h(T) = {h(𝑡) | 𝑡 ∈ T}), consequently, using Assertion 1.4.3, we obtain 𝜓 (𝑡1)
Y
�(m)𝜓 (𝑡2), which

is impossible, because the simultaneity Y is unrepeatable, and, according to the above proved,

𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1). So only possible it remains the inequality 𝑡1 < 𝑡2, which proves, that the

time 𝜓 is monotone.
1.b) Now, we are going to prove, that the time 𝜓 is incessant. Assume the contrary. Then

there exist the time points 𝑡1, 𝑡2 ∈ T such, that 𝑡1 < 𝑡2, and for any 𝑡 ∈ T, satisfying 𝑡1 ≤
𝑡 ≤ 𝑡2, the equality 𝜓 (𝑡) = 𝜓 (𝑡1) is true. Then, in particular, 𝜓 (𝑡2) = 𝜓 (𝑡1). But, since

h is chronometric process, then h (𝑡2)
h(T)

�(m)h (𝑡1), and, by Assertion 1.4.3, 𝜓 (𝑡2)
Y
�(m)𝜓 (𝑡1).

Therefore, by Assertion 1.4.4, 𝜓 (𝑡2) ̸= 𝜓 (𝑡1), which contradicts the above written. Thus, the
time 𝜓 is incessant. And, taking into account that has been proved in Paragraph 1.a), we have,
that time 𝜓 is strictly monotone.
2) Now we suppose, that the time 𝜓 is strictly monotone. Then, by Lemma 1.4.3, the

strictly linearly ordered sets (T, >) and

(︂
Y,

Y
�(m)

)︂
=

(︂
Y,

𝑌𝜓
�(m)

)︂
are isomorphic relative the

order, and the mapping 𝜓 : T ↦→ Y is the order isomorphism between them. That is why,

for any 𝑡1, 𝑡2 ∈ T the conditions 𝑡1 < 𝑡2 and 𝜓 (𝑡2)
𝑌𝜓
�(m)𝜓 (𝑡1) are logically equivalent (where

𝑌𝜓 = Y = 𝜓 (T)). Thus, taking into account statement 1 of Assertion 1.4.4, we conclude, that
the mapping h(𝑡) = 𝜓(𝑡), 𝑡 ∈ T is a chronometric process for the time 𝜓. Consequently, the
time 𝜓 is internal.

The next theorem follows from Lemma 1.4.4 and Theorem 1.4.2.

Theorem 1.4.3. For any precisely-unrepeatable and monotone-connected simultaneity Y an
unique up to equivalence of chronologizations internal time 𝜓 exists, such, that Y = 𝑌𝜓.

Philosophical content of Theorem 1.4.3 is that the originality of pictures of reality, possibility
to see any changes in the sequential simultaneous states, and connectivity of different pictures

26



Draft Introduction to Abstract Kinematics. (Ver 2.0) 5. Systems of Abstract Trajectories and Primitive Ch. Sets

of reality by chains of changes are uniquely generating the course of “internal” time in “our”
world.

Remark 1.4.5. Further we will denote primitive changeable sets by large calligraphic letters.
Let 𝒫 = (ℳ,T, 𝜑) be a primitive changeable set, where T = (T,E) is a linearly ordered set.

We introduce the following denotations:

Bs(𝒫) := Bs(ℳ); ←
𝒫

:=←
ℳ
; Tm(𝒫) := T;

≤𝒫 :=E; 𝜓𝒫 := 𝜑; Tm (𝒫) := (Tm(𝒫),≤𝒫) = (T,E).

Also we will use the records ≥𝒫 ,<𝒫 ,>𝒫 to denote the inverse, strict and strict inverse orders,
generated by the order ≤𝒫 . The setBs(𝒫) we will name the basic set or the set of all elementary
states of the primitive changeable set 𝒫 . Elements of the set Bs(𝒫) will be named elementary
states of 𝒫 . The relation ←

𝒫
we will name the directing relation of changes of 𝒫 . The set

Tm(𝒫) will be named the set of time points of 𝒫 . The relations ≤𝒫 ,<𝒫 ,≥𝒫 ,>𝒫 will be referred
to as the relations of non-strict, strict, non-strict inverse and strict inverse time order on 𝒫 .

In the case, where the primitive changeable set 𝒫 is clear, in the notations ←
𝒫
, ≤𝒫 , <𝒫 , ≥𝒫 ,

>𝒫 , 𝜓𝒫 the symbol 𝒫 will be omitted, and the notations←, ≤, <, ≥, >, 𝜓 will be used instead.

Remark 1.4.6. From definitions of oriented and primitive changeable sets taking into account
the denotations, accepted above, we conclude, that

Bs(𝒫) ̸= ∅

for any primitive changeable set 𝒫 .

Main results of this Section were anonced in [1] and published in [2, Section 5].

5 Systems of Abstract Trajectories and Primitive Changeable Sets,

Generated by them

Definition 1.5.1. Let 𝑀 be an arbitrary set and T = (T,≤) be any linearly ordered set.

1. Any mapping 𝑟 : D(𝑟) ↦→𝑀 , where D(𝑟) ⊆ T, D(𝑟) ̸= ∅ will be referred to as an abstract
trajectory from T to 𝑀 (here D(𝑟) is the domain of the abstract trajectory 𝑟).

2. Any set ℛ, which consists of abstract trajectories from T to 𝑀 and satisfies:⋃︁
𝑟∈ℛ

R (𝑟) =𝑀

will be named by a system of abstract trajectories from T to 𝑀 (here R(𝑟) is the range
of the abstract trajectory 𝑟).

Theorem 1.5.1. Let ℛ be a system of abstract trajectories from T = (T,≤) to 𝑀 . Then there
exists a unique primitive changeable set 𝒫, which satisfies the following conditions:

1) Bs(𝒫) =𝑀 ; Tm (𝒫) = T (that is Tm(𝒫) = T, ≤𝒫=≤).

2) For any 𝑥, 𝑦 ∈ Bs(𝒫) the condition 𝑦←𝑥 is satisfied if and only if there exist an abstract
trajectory 𝑟 = 𝑟𝑥,𝑦 ∈ ℛ and elements 𝑡, 𝜏 ∈ D(𝑟) ⊆ T such, that 𝑥 = 𝑟(𝑡), 𝑦 = 𝑟(𝜏) and
𝑡 ≤ 𝜏 .

3) For arbitrary 𝑥 ∈ Bs(𝒫) and 𝑡 ∈ Tm(𝒫) the condition 𝑥 ∈ 𝜓(𝑡) is satisfied if and only if
there exist an abstract trajectory 𝑟 = 𝑟𝑥 ∈ ℛ such, that 𝑡 ∈ D(𝑟) and 𝑥 = 𝑟(𝑡).
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Proof. Letℛ be any system of abstract trajectories from T = (T,≤) to𝑀 . Define the following
relation:

C−−
ℛ

= {(𝑦, 𝑥) ∈𝑀 ×𝑀 | ∃𝑟 ∈ ℛ∃𝑡, 𝜏 ∈ D(𝑟) : 𝑥 = 𝑟(𝑡), 𝑦 = 𝑟(𝜏), 𝑡 ≤ 𝜏}

on the set 𝑀 (where the symbol × denotes the Cartesian product of sets). Or, in other words,
for 𝑥, 𝑦 ∈ 𝑀 the correlation 𝑦C−−

ℛ
𝑥 is true if and only if there exist an abstract trajectory

𝑟 = 𝑟𝑥,𝑦 ∈ ℛ and elements 𝑡, 𝜏 ∈ D(𝑟) such, that 𝑥 = 𝑟(𝑡), 𝑦 = 𝑟(𝜏) and 𝑡 ≤ 𝜏 . Also we define
the following mapping 𝜙ℛ : T ↦→ 2𝑀 :

𝜙ℛ(𝑡) =
⋃︁

𝑟∈ℛ, 𝑡∈D(𝑟)

{𝑟(𝑡)} = {𝑟(𝑡) | 𝑟 ∈ ℛ, 𝑡 ∈ D(𝑟)} .

In particular, 𝜙ℛ(𝑡) = ∅ in the case, where there not exist a trajectory 𝑟 ∈ ℛ such, that
𝑡 ∈ D(𝑟).

It is not hard to verify, that the pairℳ =

(︂
𝑀,C−−

ℛ

)︂
is an oriented set and the mapping 𝜙ℛ

is a time onℳ. Therefore, the triple:

𝒫 = (ℳ,T, 𝜙ℛ) =
(︂(︂

𝑀,C−−
ℛ

)︂
, (T,≤) , 𝜙ℛ

)︂
is a primitive changeable set. And it is not hard to see, that this primitive changeable set
satisfies the conditions 1),2),3) of this Theorem.

Inversely, if a primitive changeable set 𝒫1 satisfies the conditions 1),2),3) of this Theorem,
then from the first condition it follows, that Bs (𝒫1) = 𝑀 , Tm (𝒫1) = T, ≤𝒫1=≤. And the
second and third conditions imply the equalities ←

𝒫1

= C−−
ℛ
, 𝜓𝒫1 = 𝜙ℛ. Thus,

𝒫1 =

(︂(︂
Bs (𝒫1) ,←

𝒫1

)︂
, (Tm (𝒫1) ,≤𝒫1) , 𝜓𝒫1

)︂
=

(︂(︂
𝑀,C−−

ℛ

)︂
, (T,≤) , 𝜙ℛ

)︂
= 𝒫 .

Definition 1.5.2. Let ℛ be any system of abstract trajectories from T = (T,≤) to 𝑀 . The
primitive changeable set 𝒫, which satisfies the conditions 1),2),3) of Theorem 1.5.1, will be
named by primitive changeable set, generated by the system of abstract trajectories ℛ,
and it will be denoted by 𝒜𝑡𝑝(T,ℛ):

𝒜𝑡𝑝(T,ℛ) := 𝒫 .

Thus, systems of abstract trajectories provide the simple tool for creation of primitive change-
able sets.

Main results of this Section were anonced in [1] and published in [2, Section 6].

6 Elementary-time States and Base Changeable Sets

6.1 Elementary-time States of Primitive Changeable Sets and their Properties

Definition 1.6.1. Let 𝒫 be a primitive changeable set. Any pair of kind (𝑡, 𝑥), where 𝑡 ∈
Tm(𝒫) and 𝑥 ∈ 𝜓(𝑡), will be named by elementary-time state of 𝒫.

The set of all elementary-time states of 𝒫 will be denoted by Bs(𝒫):

Bs(𝒫) := {𝜔 | 𝜔 = (𝑡, 𝑥) , where 𝑡 ∈ Tm(𝒫), 𝑥 ∈ 𝜓(𝑡)} .
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Remark 1.6.1. From definitions 1.1.1 and 1.2.1 it follows that Bs(𝒫) ̸= ∅ for any primitive
changeable set 𝒫 .

By Definition 1.2.1 𝜓(𝑡) ⊆ Bs(𝒫) for all 𝑡 ∈ Tm(𝒫). That is why, we have:

Bs(𝒫) ⊆ Tm(𝒫)×Bs(𝒫)

for any primitive changeable set 𝒫 .
Let T = (T ≤) be any linearly ordered set and 𝒳 be any set. For any ordered pair 𝜔 =

(𝜏, 𝜉) ∈ T×𝒳 we introduce the folliwing denotations:

bs (𝜔) := 𝜉, tm (𝜔) := 𝜏. (1.10)

Hence, for any 𝜔 ∈ T×𝒳 we obtain, 𝜔 = (tm (𝜔) , bs (𝜔)).
In particular, for any elementary-time state 𝜔 = (𝑡, 𝑥) ∈ Bs(𝒫) we have:

bs (𝜔) = 𝑥, tm (𝜔) = 𝑡.

Definition 1.6.2. We say, that an elementary-time state 𝜔2 ∈ Bs(𝒫) is formally sequen-
tial to an elementary-time state 𝜔1 ∈ Bs(𝒫) if and only if 𝜔1 = 𝜔2 or bs (𝜔2)←

𝒫
bs (𝜔1) and

tm (𝜔1) <𝒫 tm (𝜔2). For this case we use the denotation:

𝜔2← (f)
𝒫

𝜔1.

In the case, where the primitive changeable set 𝒫 , in question is known, in the denotation
𝜔2← (f)

𝒫
𝜔1 the symbol 𝒫 will be omitted. In this case we use the abbreviated denotation

𝜔2← (f)𝜔1.

Assertion 1.6.1. 1) If 𝜔1, 𝜔2 ∈ Bs(𝒫) and 𝜔2← (f)𝜔1, then tm (𝜔1) ≤ tm (𝜔2). If, in addition,
𝜔1 ̸= 𝜔2, then tm (𝜔1) < tm (𝜔2).

2) The relation ← (f) = ← (f)
𝒫

is asymmetric on the set Bs(𝒫), that is if 𝜔1, 𝜔2 ∈ Bs(𝒫),
𝜔2← (f)𝜔1 and 𝜔1← (f)𝜔2, then 𝜔1 = 𝜔2.

Proof. The first statement follows by a trivial way from Definition 1.6.2, and the second state-
ment derives from the first.

Definition 1.6.3. The oriented set ℳ is named anti-cyclical if for any 𝑥, 𝑦 ∈ Bs(ℳ) the
conditions 𝑥← 𝑦 and 𝑦←𝑥 cause the equality 𝑥 = 𝑦.

Assertion 1.6.2. Let 𝒫 be a primitive changeable set. Then:

1) The pair 𝒬 =

(︂
Bs(𝒫),← (f)

𝒫

)︂
= (Bs(𝒫),← (f)) is an anti-cyclical oriented set.

2) The mapping:

𝜓(𝑡) = 𝜓𝒫(𝑡) := {𝜔 ∈ Bs(𝒫) | tm (𝜔) = 𝑡} ∈ 2Bs(𝒫), 𝑡 ∈ Tm(𝒫) (1.11)

is a monotone time on 𝒬.
3) For 𝑡1 ̸= 𝑡2 we have 𝜓 (𝑡1) ∩ 𝜓 (𝑡2) = ∅.
4) If, in addition, 𝜓(𝑡) ̸= ∅, 𝑡 ∈ Tm(𝒫), then the time 𝜓 is strictly monotone.

Proof. 1) The first statement of Assertion 1.6.2 follows from Definition 1.6.2 and second state-
ment of Assertion 1.6.1.

2) 2.1) Let 𝜔 ∈ Bs(𝒫). Then, by (1.11), 𝜔 ∈ 𝜓(𝑡), where 𝑡 = tm (𝜔).
2.2) Let 𝜔1, 𝜔2 ∈ Bs(𝒫), 𝜔2← (f)𝜔1 and 𝜔1 ̸= 𝜔2. According to (1.11), for 𝑡1 = tm (𝜔1),

𝑡2 = tm (𝜔2) we obtain:

𝜔1 ∈ 𝜓 (𝑡1) , 𝜔2 ∈ 𝜓 (𝑡2) .
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Since 𝜔2← (f)𝜔1 and 𝜔2 ̸= 𝜔1, then, by Assertion 1.6.1 (statement 1), 𝑡1 < 𝑡2.

From 2.1),2.2) it follows, that 𝜓 is a time on 𝒬.
2.3) Let 𝜔1 ∈ 𝜓 (𝑡1), 𝜔2 ∈ 𝜓 (𝑡2), 𝜔2← (f)𝜔1 and 𝜔1 ̸↚ (f)𝜔2. Then, by definition of time 𝜓

(1.11), tm (𝜔1) = 𝑡1, tm (𝜔2) = 𝑡2. Therefore, by Assertion 1.6.1, statement 1, 𝑡1 < 𝑡2. Thus,

the time 𝜓 is monotone.
3) Let 𝑡1, 𝑡2 ∈ Tm(𝒫). Suppose, that 𝜓 (𝑡1) ∩ 𝜓 (𝑡2) ̸= ∅. Then there exists an elementary-

time state 𝜔 ∈ 𝜓 (𝑡1) ∩ 𝜓 (𝑡2). Hence, by (1.11), we obtain 𝑡1 = tm (𝜔) = 𝑡2.
4) Assume, that, in addition, 𝜓(𝑡) ̸= ∅, 𝑡 ∈ Tm(𝒫). Then for an arbitrary 𝑡 ∈ Tm(𝒫) there

exists an elementary state 𝑥𝑡 ∈ Bs(𝒫) such, that 𝑥𝑡 ∈ 𝜓(𝑡). Consequently, the elementary-

time state 𝜔𝑡 = (𝑡, 𝑥𝑡) ∈ Bs(𝒫) satisfies the condition tm (𝜔𝑡) = 𝑡, that is 𝜔𝑡 ∈ 𝜓(𝑡). Thus,

𝜓(𝑡) ̸= ∅, 𝑡 ∈ Tm(𝒫). Hence, taking into account the statement 3) of this Assertion, we

obtain, 𝜓 (𝑡1) ̸= 𝜓 (𝑡2) for 𝑡1, 𝑡2 ∈ Tm(𝒫), 𝑡1 ̸= 𝑡2. Consequently, the time 𝜓 is incessant, and,

taking into account the statement 2) of this Assertion, we conclude, that the time 𝜓 is strictly
monotone.

6.2 Base of Elementary Processes and Base Changeable Sets

As it had been proved in Assertion 1.6.2, for any primitive changeable set 𝒫 the pair
(Bs(𝒫),← (f)) is an oriented set, in which ← (f) is the directing relation of changes. But, it
turns out, that sometimes the relation ← (f) is not quite fit for description of evolution of
elementary-time states in real systems. And in the reality, this relation may generate such
“transformations” of elementary-time states, which never took place in the real physical sys-
tem. To illustrate this fact, we consider the following example.

Example 1.6.1. Let us consider the system of abstract trajectories, which describes the uniform
linear motion of the system of identical material points, evenly distributed on the straight tra-
jectory of their own motion. The identity of the material points assumes, that all characteristics
of these points in a some time moment can be reduced only to their coordinates. This means,
that a material point, which has a certain coordinates at a some time moment is completely
mathematically identical to the one point that have the same coordinates in another time. This
system of material points can be described by the following system of abstract trajectories from
R to R:

ℛ = {𝑟𝛼 | 𝛼 ∈ R} , where (1.12)

𝑟𝛼(𝑡) := 𝑡+ 𝛼, 𝑡 ∈ R, 𝛼 ∈ R (D (𝑟𝛼) = R, 𝛼 ∈ R).

Denote:
𝒫 := 𝒜𝑡𝑝((R,≤) ,ℛ),

where “≤” is the standard linear order relation on the real numbers. By Definition 1.5.2 and
condition 1) of Theorem 1.5.1, Bs(𝒫) = Tm(𝒫) = R. We aim to prove, that for the elements
𝑥1, 𝑥2 ∈ Bs(𝒫) = R the condition 𝑥2←𝑥1 is equivalent to the inequality 𝑥1 ≤ 𝑥2. Indeed,
in the case 𝑥1 ≤ 𝑥2 for 𝑡1 = 𝑥1, 𝑡2 = 𝑥2 we obtain 𝑥1 = 𝑟0 (𝑡1), 𝑥2 = 𝑟0 (𝑡2), where 𝑡1 ≤ 𝑡2.
Therefore, by the condition 2) of Theorem 1.5.1, we obtain 𝑥2←𝑥1. Inversely, if 𝑥2←𝑥1,
then, by condition 2) of Theorem 1.5.1, there exist numbers 𝛼, 𝑡1, 𝑡2 ∈ R such, that 𝑡1 ≤ 𝑡2,
𝑥1 = 𝑟𝛼 (𝑡1), 𝑥2 = 𝑟𝛼 (𝑡2), that is 𝑥1 = 𝑡1 + 𝛼, 𝑥2 = 𝑡2 + 𝛼, where 𝑡1 ≤ 𝑡2. Hence, 𝑥1 ≤ 𝑥2.

The next aim is to prove, that Bs(𝒫) = R × R. Since Bs(𝒫) = Tm(𝒫) = R, we have
Bs(𝒫) ⊆ R × R. Thus, it remains to prove, the inverse inclusion. Let 𝜔 = (𝜏, 𝑥) ∈ R × R.
Denote 𝛼𝜔 := 𝑥 − 𝜏 . Then 𝑟𝛼𝜔(𝜏) = 𝜏 + (𝑥 − 𝜏) = 𝑥. Therefore, by condition 3) of Theorem
1.5.1, 𝑥 ∈ 𝜓𝒫(𝜏). This means, that 𝜔 = (𝜏, 𝑥) ∈ Bs(𝒫). The equality Bs(𝒫) = R×R has been
proved.

By Definition 1.6.2 of formally sequential elementary-time states, for 𝜔1 = (𝑡1, 𝑥1), 𝜔2 =
(𝑡2, 𝑥2) ∈ Bs(𝒫) the condition 𝜔2← (f)𝜔1 is performed if and only if 𝜔1 = 𝜔2 or 𝑡1 < 𝑡2 and
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𝑥1 ≤ 𝑥2. Hence, if we choose any elementary-time states 𝜔1 = (𝑡1, 𝑥1), 𝜔2 = (𝑡2, 𝑥2) ∈ Bs(𝒫) =
R× R, satisfying 𝑡1 < 𝑡2 and 𝑥1 ≤ 𝑥2, we obtain 𝜔2← (f)𝜔1. But in the case 𝑥1 − 𝑡1 ̸= 𝑥2 − 𝑡2
there not exist an abstract trajectory 𝑟𝛼 ∈ ℛ such, that 𝜔1, 𝜔2 ∈ 𝑟𝛼. This means, that in this
model of real physical process, the elementary-time state 𝜔2 = (𝑡2, 𝑥2) may not be the result of
transformations of the elementary-time state 𝜔1 = (𝑡1, 𝑥1) under condition 𝑥1 − 𝑡1 ̸= 𝑥2 − 𝑡2.
Thus, in this example, the relation ← (f) generates infinitely many “parasitic transformation
relations”, which never took place in the reality.

There is a way of overcoming the above uncomfortable situation by introducing a formal
“signs of non-identity” for material points that move along the specified trajectories. For ex-
ample, instead of (1.12) we may consider the system of trajectories from R to R2 of kind:

ℛ = {𝑟𝛼 | 𝛼 ∈ R} , where

𝑟𝛼(𝑡) := (𝑡+ 𝛼, 𝛼) ∈ R2, 𝑡 ∈ R (𝛼 ∈ R).

Note, that the value 𝛼 in the second coordinate of 𝑟𝛼(𝑡) should not be understood as a space
coordinate, but only as a “number” of the trajectory 𝑟𝛼. However, in the abstract situation, this
approach is not convenient because it could complicate description of different “branched pro-
cesses” when elementary states during the evolution can be “divided” into a few, or, conversely,
several elementary states may be “merged” into one.

Another (more flexible) way of overcoming the above situation is to define the directing
relation of changes not only on the set of elementary states Bs(𝒫), but, also, on the set of
elementary-time states Bs(𝒫) of a primitive changeable set 𝒫 . Indeed, let us consider the
primitive changeable set 𝒫 := 𝒜𝑡𝑝(ℛ) from Example 1.6.1. For 𝜔1, 𝜔2 ∈ Bs(𝒫) we can put
𝜔2C−−𝜔1 if and only if tm (𝜔1) ≤ tm (𝜔2) and there exist an abstract trajectory 𝑟𝛼 ∈ ℛ such,
that 𝜔1, 𝜔2 ∈ 𝑟𝛼 (that is such, that bs (𝜔1) = 𝑟𝛼 (tm (𝜔1)), bs (𝜔2) = 𝑟𝛼 (tm (𝜔2))). Thus, we
obtain the relation “C−−”, which reflects only such transformations of the elementary-time states,
which actually took place in the reality.

Definition 1.6.4. Let 𝒫 be a primitive changeable set.
1. Relation C−− on Bs(𝒫) is named by base of elementary processes if and only if:

(1) ∀𝜔 ∈ Bs(𝒫) 𝜔C−−𝜔.

(2) If 𝜔1, 𝜔2 ∈ Bs(𝒫) and 𝜔2C−−𝜔1, then 𝜔2← (f)𝜔1 (ie C−− ⊆ ← (f)).

(3) For arbitrary 𝑥1, 𝑥2 ∈ Bs(𝒫) such, that 𝑥2←𝑥1 there exist 𝜔1, 𝜔2 ∈ Bs(𝒫) such, that
bs (𝜔1) = 𝑥1, bs (𝜔2) = 𝑥2 and 𝜔2C−−𝜔1.

2. In the case, where C−− is the base of elementary processes on the primitive changeable set
𝒫, the pair:

ℬ = (𝒫 ,C−−)
will be referred to as base changeable set 3.

6.3 Remarks on Denotations

For further, base changeable sets will be denoted by large calligraphy symbols.
Let ℬ = (𝒫 ,C−−) be a base changeable set. We introduce the following denotations:

Bs(ℬ) := Bs(𝒫); Bs(ℬ) := Bs(𝒫); ←
ℬ

:=←
𝒫
;

← (f)
ℬ

:=← (f)
𝒫

;
Bs←
ℬ

:= C−− Tm(ℬ) := Tm(𝒫);

≤ℬ:=≤𝒫 ; Tm(ℬ) := Tm(𝒫) = (Tm(ℬ),≤ℬ) ; <ℬ:=<𝒫 ;
≥ℬ:=≥𝒫 ; >ℬ:=>𝒫 ; 𝜓ℬ := 𝜓𝒫 .

3 Note that in some early works (for example in [3]) the term “basic changeable set” is used instead of the term “base changeable
set”. This situation appeared due due to existence of two variants of translation of this term from Ukrainian language.
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In the case, where the base changeable set ℬ, is clear in the denotations ←
ℬ
, ← (f)

ℬ
,

Bs←
ℬ
≤ℬ,

<ℬ, ≥ℬ, >ℬ, 𝜓ℬ the symbol ℬ will be omitted, and the denotations ←, ← (f),
Bs←, ≤, <, ≥, >,

𝜓 will be used instead.
Also for elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) we may use the denotations 𝜔2←

ℬ
𝜔1 or

𝜔2←𝜔1 instead of the denotations 𝜔2
Bs←
ℬ
𝜔1 or 𝜔2

Bs←𝜔1 (in cases, where this does not lead to

misunderstanding).
The next properties of base changeable sets follow from definitions 1.6.4, 1.6.2 and remarks

1.4.6, 1.6.1.

Properties 1.6.1. Let ℬ be any base changeable set. Then:

1. The pair ℬ0 = (Bs(ℬ),←) =
(︁
Bs(ℬ),←

ℬ

)︁
is an oriented set (that is ← =←

ℬ
is a reflexive

binary relation on Bs(ℬ), so, for any elementary state 𝑥 ∈ Bs(ℬ) the correlation 𝑥←
ℬ
𝑥

is performed).

2. Bs(ℬ) ̸= ∅ and Bs(ℬ) ̸= ∅.

3. ≤ℬ is relation of (not-strict) linear order defined on Tm(ℬ) (i.e. Tm(ℬ) = (Tm(ℬ),≤ℬ)
is linearly ordered set).

4. Bs(ℬ) ⊆ Tm(ℬ)×Bs(ℬ).

5. The mapping 𝜓 = 𝜓ℬ is a time on ℬ0 = (Bs(ℬ),←).

6.
Bs←
ℬ

is reflexive binary relation, defined on Bs(ℬ). Hence, 𝜔←𝜔 for any elementary-time

state 𝜔 ∈ Bs(ℬ).

7. If 𝜔1, 𝜔2 ∈ Bs(ℬ) and 𝜔2←𝜔1, then 𝜔2← (f)𝜔1, and therefore, bs (𝜔2)← bs (𝜔1) and
tm (𝜔1) ≤ tm (𝜔2). If, in addition, 𝜔1 ̸= 𝜔2, then tm (𝜔1) < tm (𝜔2).

8. For arbitrary 𝑥1, 𝑥2 ∈ Bs(ℬ) the condition 𝑥2←𝑥1 holds if and only if there exist
elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) such, that bs (𝜔1) = 𝑥1, bs (𝜔2) = 𝑥2 and 𝜔2←𝜔1.

9. Bs(ℬ) = {bs (𝜔) |𝜔 ∈ Bs(ℬ)}.

6.4 Examples of Base Changeable Sets

Example 1.6.2. Let 𝒫 be any primitive changeable set. Then the relation← (f) =← (f)
𝒫

is base

of elementary processes on 𝒫 . Indeed, the conditions (1) and (2) of Definition 1.6.4 for the
relation ← (f) are fulfilled by a trivial way. To verify the condition (3) we consider arbitrary
𝑥1, 𝑥2 ∈ Bs(𝒫) such, that 𝑥2←𝑥1. In the case 𝑥1 = 𝑥2 by Time Definition 1.2.1, there exist
a time point 𝑡1 ∈ Tm(𝒫) such, that 𝑥1 ∈ 𝜓 (𝑡1). Hence, for 𝜔1 = 𝜔2 = (𝑡1, 𝑥1) ∈ Bs(𝒫) we
obtain bs (𝜔1) = bs (𝜔2) = 𝑥1 = 𝑥2 and 𝜔2← (f)𝜔1. Thus, in the case 𝑥1 = 𝑥2 the condition (3)
of Definition 1.6.4 is satisfied. In the case 𝑥1 ̸= 𝑥2, by Definition 1.2.1, there exist time points
𝑡1, 𝑡2 ∈ Tm(𝒫) such, that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡1 < 𝑡2. Hence, for 𝜔1 = (𝑡1, 𝑥1) , 𝜔2 =
(𝑡1, 𝑥2) ∈ Bs(𝒫), we obtain bs (𝜔1) = 𝑥1, bs (𝜔2) = 𝑥2 and 𝜔2← (f)𝜔1. Thus, in the case 𝑥1 ̸= 𝑥2
the condition (3) of Definition 1.6.4 also is satisfied.

Therefore any primitive changeable set can be interpreted as base changeable set 𝒫(𝑓) =
(𝒫 ,← (f)) in which the relation ← (f) is the base of elementary processes.
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Example 1.6.3. Let ℛ be any system of abstract trajectories from T = (T,≤) to 𝑀 . Denote:

𝒫 := 𝒜𝑡𝑝(T,ℛ).
By Theorem 1.5.1, Bs(𝒫) = 𝑀 , Tm(𝒫) = T. Moreover, by third statement of this Theorem
for (𝑡, 𝑥) ∈ T ×𝑀 the condition (𝑡, 𝑥) ∈ Bs(𝒫) holds if and only if there exist an abstract
trajectory 𝑟 = 𝑟𝑡,𝑥 ∈ ℛ such, that 𝑡 ∈ D(𝑟) and 𝑥 = 𝑟(𝑡), ie such, that 𝜔 = (𝑡, 𝑥) ∈ 𝑟. Thus,

Bs(𝒫) =
⋃︁
𝑟∈ℛ

𝑟. (1.13)

Then, for 𝜔1, 𝜔2 ∈ Bs(𝒫) we put 𝜔2C−−[ℛ]𝜔1 if and only if tm (𝜔1) ≤ tm (𝜔2) and there
exists an abstract trajectory 𝑟 ∈ ℛ such, that 𝜔1, 𝜔2 ∈ ℛ (ie such, that bs (𝜔1) = 𝑟 (tm (𝜔1)),
bs (𝜔2) = 𝑟 (tm (𝜔2))). We are going to prove, that the relation C−−[ℛ] is a base of elementary
processes on 𝒫 .

(a) Let 𝜔 ∈ Bs(𝒫). Then, by (1.13), there exist an abstract trajectory 𝑟 ∈ ℛ such, that
𝜔 ∈ 𝑟. Hence, by definition of the relation “C−−[ℛ]”, we have 𝜔C−−[ℛ]𝜔.

(b) Let 𝜔1 = (𝑡1, 𝑥1), 𝜔2 = (𝑡2, 𝑥2) ∈ Bs(𝒫) and 𝜔2C−−[ℛ]𝜔1. Then, from definition of the
relation “C−−[ℛ]”, it follows, that 𝑡1 ≤ 𝑡2 and there exists an an abstract trajectory 𝑟 ∈ ℛ
such, that 𝜔1, 𝜔2 ∈ ℛ (ie such, that 𝑥1 = 𝑟 (𝑡1), 𝑥2 = 𝑟 (𝑡2)). Consequently, by statement 2) of
Theorem 1.5.1, 𝑥2 ←

𝒜𝑡𝑝(ℛ)
𝑥1. Therefore, in the case 𝑡1 ̸= 𝑡2 we have 𝑡1 < 𝑡2 and 𝑥2←𝑥1, besides

in the case 𝑡1 = 𝑡2 we obtain 𝑥1 = 𝑟 (𝑡1) = 𝑟 (𝑡2) = 𝑥2, that is 𝜔1 = 𝜔2. But, in the both cases
the correlation 𝜔2← (f)𝜔1 is true.

(c) Let 𝑥1, 𝑥2 ∈ Bs(𝒫), 𝑥2←𝑥1 (ie 𝑥2 ←
𝒜𝑡𝑝(ℛ)

𝑥1). Then, by statement 2) of Theorem 1.5.1,

there exists an abstract trajectory 𝑟 ∈ ℛ such, that 𝑥1 = 𝑟 (𝑡1), 𝑥2 = 𝑟 (𝑡2) for some 𝑡1, 𝑡2 ∈
Tm(𝒫) such, that 𝑡1 ≤ 𝑡2. Denote:

𝜔𝑖 := (𝑡𝑖, 𝑥𝑖) , 𝑖 ∈ {1, 2} .
Then, 𝜔1, 𝜔2 ∈ 𝑟 ⊆

⋃︀
𝜌∈ℛ 𝜌 = Bs(𝒫), bs (𝜔𝑖) = 𝑥𝑖 (𝑖 ∈ {1, 2}) and, by definition of the relation

“C−−[ℛ]”, 𝜔2C−−[ℛ]𝜔1.
From the items (a)-(c) it follows, that the relation C−−[ℛ] is base of elementary processes on

𝒫 = 𝒜𝑡𝑝(T,ℛ). Thus, the pair:

𝒜𝑡(T,ℛ) = (𝒫 ,C−−[ℛ] ) = (𝒜𝑡𝑝(T,ℛ),C−−[ℛ] )
is a base changeable set.

From Properties 1.6.1(8,9) 4 it follows, that if for a some base changeable set ℬ we know

Tm(ℬ), ≤ℬ, Bs(ℬ) and base of elementary processes
Bs←
ℬ
, then we can we can recover the set

Bs(ℬ), the directing relation of changes ←
ℬ

and the time 𝜓ℬ(𝑡) (using the formula 𝜓ℬ(𝑡) =

{𝑥 ∈ Bs(ℬ) | (𝑡, 𝑥) ∈ Bs(ℬ)}, 𝑡 ∈ Tm(ℬ)), and thus, we can recover the whole base changable
set ℬ. Hence from the last example it follows the next theorem.

Theorem 1.6.1. Let ℛ be a system of abstract trajectories from T = (T,≤) to 𝑀 . Then there
exists a unique base changeable set ℬ = 𝒜𝑡(T,ℛ), such, that:

1) Tm (𝒜𝑡(T,ℛ)) = T (that is Tm (𝒜𝑡(T,ℛ)) = T, ≤𝒜𝑡(T,ℛ)=≤);

2) Bs(𝒜𝑡(T,ℛ)) =
⋃︀
𝑟∈ℛ 𝑟;

3) For arbitrary 𝜔1, 𝜔2 ∈ Bs(𝒜𝑡(T,ℛ)) the condition 𝜔2 ←
𝒜𝑡(T,ℛ)

𝜔1 is satisfied if and only if

tm (𝜔1) ≤ tm (𝜔2) and there exist an abstract trajectory 𝑟 ∈ ℛ such, that 𝜔1, 𝜔2 ∈ 𝑟.
4 Reference to Properties 1.6.1(8,9) means reference to the items 8 and 9 from the group of properties “Properties 1.6.1”.
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Remark 1.6.2. 1. Since the construction of the base changeable set 𝒜𝑡(T,ℛ) is based on the
primitive changeable set 𝒜𝑡𝑝 (T,ℛ), for any base changeable set of kind ℬ = 𝒜𝑡(T,ℛ) the
statements, formulated in the items 1),2),3) of Theorem 1.5.1 remain true (with replacement
the character 𝒫 by ℬ or by 𝒜𝑡(T,ℛ)).

2. In the case, when the linearly ordered set T is given in advance, we will use the denotation
𝒜𝑡(ℛ) instead of 𝒜𝑡(T,ℛ).

6.5 Another Way to Definition of Base Changeable Sets

The following theorem demonstrates another, more laconic, although more artificial, way for
the definition of the base changeable set concept.

Theorem 1.6.2. Let T = (T,≤) be any linearly ordered set, 𝒳 be any set and C−− be a binary
relation, defined on some set B ⊆ T×𝒳 . Suppose, that the relation C−− satisfies the following
conditions:

1. Relation C−− is reflexive on B;

2. ∀𝜔1, 𝜔2 ∈ B the conditions 𝜔2C−−𝜔1 and 𝜔1 ̸= 𝜔2 lead to tm (𝜔1) < tm (𝜔2).

Then there exists a unique base changeable set ℬ, which satisfies the following conditions:

a) Tm(ℬ) = T;

b) Bs(ℬ) = B;

c)
Bs←
ℬ

= C−−.

Proof. 1. Denote:

𝑟𝜔1,𝜔2 := {𝜔1, 𝜔2} , 𝜔1, 𝜔2 ∈ B

ℛ := {𝑟𝜔1,𝜔2 | 𝜔1, 𝜔2 ∈ B, 𝜔2C−−𝜔1} . (1.14)

We are going to prove, that all elements of the set ℛ are abstract trajectories from T to 𝒳 .
Consider any fixed 𝜔1, 𝜔2 ∈ B such, that 𝜔2C−−𝜔1. Since 𝑟𝜔1,𝜔2 = {𝜔1, 𝜔2} ⊆ B ⊆ T × 𝒳 ,
we conclude, that 𝑟𝜔1,𝜔2 is a binary relation from T to 𝒳 . We shall prove, that this relation
is function. Assume the contrary. Then there exist (𝑡, 𝑥1) , (𝑡, 𝑥2) ∈ 𝑟𝜔1,𝜔2 such, that 𝑥1 ̸= 𝑥2
(and, consequently, (𝑡, 𝑥1) ̸= (𝑡, 𝑥2)). Thus only two cases (𝑡, 𝑥1) = 𝜔1, (𝑡, 𝑥2) = 𝜔2 or (𝑡, 𝑥1) =
𝜔2, (𝑡, 𝑥2) = 𝜔1 are possible. But, since 𝜔2C−−𝜔1, by the condition 2 of this Theorem, in the
both cases we obtain wrong inequality 𝑡 < 𝑡. Hence, the relation 𝑟𝜔1,𝜔2 is function. This means,
that 𝑟𝜔1,𝜔2 is an abstract trajectory from T to 𝒳 . Thus, ℛ is a system of abstract trajectories
from T to

⋃︀
𝑟∈ℛR(𝑟) ⊆ 𝒳 . Denote:

ℬ := 𝒜𝑡 (T,ℛ) .

a) By Theorem 1.6.1 (item 1), Tm(ℬ) = T.
b) By Theorem 1.6.1 (item 2):

Bs(ℬ) =
⋃︁
𝑟∈ℛ

𝑟 =
⋃︁

𝜔1, 𝜔2 ∈ B
𝜔2C−−𝜔1

{𝜔1, 𝜔2} ⊆ B. (1.15)

From the other hand, taking into account, that the relation C−− is reflexive, we obtain the
inverse inclusion:

Bs(ℬ) =
⋃︁

𝜔1, 𝜔2 ∈ B
𝜔2C−−𝜔1

{𝜔1, 𝜔2} ⊇
⋃︁
𝜔∈B

{𝜔} = B. (1.16)
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Thus, Bs(ℬ) = B. Hence, the base changeable set ℬ satisfies the conditions a),b).
c) We aim to prove, that the condition c) for the base changeable set ℬ also is satisfied. It

is necessary to prove, that for any 𝜔1, 𝜔2 ∈ B = Bs(ℬ) the condition 𝜔2C−−𝜔1 is equivalent to

the condition 𝜔2
Bs←
ℬ
𝜔1 (that is to the condition 𝜔2←𝜔1). Since both the relations C−− and

Bs←
ℬ

are reflexive on Bs(ℬ) = B, it is sufficient to prove the last assertion only for the case 𝜔1 ̸= 𝜔2.
Thus, we consider any fixed 𝜔1, 𝜔2 ∈ B = Bs(ℬ) such, that 𝜔1 ̸= 𝜔2.
c.1) Suppose, that 𝜔2←𝜔1. Then, by Theorem 1.6.1 (item 3)

tm (𝜔1) ≤ tm (𝜔2) (1.17)

and there exist a trajectory 𝑟𝑤1,𝑤2 ∈ ℛ (𝑤2C−−𝑤1) such, that 𝜔1, 𝜔2 ∈ 𝑟𝑤1,𝑤2 = {𝑤1, 𝑤2}.
Consequently, since 𝑤2C−−𝑤1 and 𝜔1 ̸= 𝜔2, one of the following conditions:

𝜔2C−−𝜔1 or 𝜔1C−−𝜔2

must be fulfilled. But the case 𝜔1C−−𝜔2 is impossible, because in this case, by the condition 2
of the present theorem we obtain the inequality tm (𝜔2) < tm (𝜔1), which is in a contradiction
to the inequality (1.17). Therefore, 𝜔2C−−𝜔1.
c.2) Conversely, suppose, that 𝜔2C−−𝜔1. Then, by (1.14), 𝑟𝜔1,𝜔2 ∈ ℛ, and, by the condition

2 of this Theorem, tm (𝜔1) < tm (𝜔2). Hence, by Theorem 1.6.1 (item 3) 𝜔2←𝜔1.

The equality
Bs←
ℬ

= C−− have been proven. Thus, the base changeable set ℬ satisfies the

conditions a),b),c).
We need to prove, that the base changeable set ℬ, which satisfies the conditions conditions

a),b),c) is unique. Assume, that a base changeable set ℬ1 also satisfies the conditions a),b),c).
We shall prove, that this base changeable set ℬ1 must satisfy the conditions 1),2),3) of Theorem
1.6.1 for the system of abstract trajectories ℛ, defined in (1.14).

2.1) By the condition a), Tm (ℬ1) = T.
2.2) Using the condition b), and equalities (1.15),(1.16) we obtain:

Bs (ℬ1) = B = Bs(ℬ) =
⋃︁
𝑟∈ℛ

𝑟.

2.3) Since both base changeable sets ℬ and ℬ1 satisfy the condition c), we have:

Bs←
ℬ1

= C−− =
Bs←
ℬ

=
Bs←−−−

𝒜𝑡(T,ℛ)
.

This means, that ℬ1 satisfies the condition 3) of Theorem 1.6.1.
Therefore, the base changeable set ℬ1 satisfies all conditions of Theorem 1.6.1 for the system

of abstract trajectories ℛ. Thus, by Theorem 1.6.1, ℬ1 = 𝒜𝑡(T,ℛ) = ℬ.

Remark 1.6.3. From Properties 1.6.1 and Definition 1.6.1 it follows that for base changeable set
ℬ, which satisfies the conditions a),b),c) of Theorem 1.6.2 the following propositions are true:

1. Bs(ℬ) = bs (B) = {bs (𝜔) | 𝜔 ∈ B};
2. for arbitrary 𝑥1, 𝑥2 ∈ Bs(ℬ) the correlation 𝑥2←𝑥1 holds if and only if there exist

elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) such, that bs (𝜔1) = 𝑥1, bs (𝜔2) = 𝑥2 and 𝜔2C−−𝜔1.
3. 𝜓ℬ(𝑡) = {bs (𝜔) |𝜔 ∈ B, tm (𝜔) = 𝑡}, 𝑡 ∈ Tm(ℬ). In particular, 𝜓ℬ(𝑡) = ∅ in the case,

where there not exist 𝜔 ∈ B such, that tm (𝜔) = 𝑡.

Remark 1.6.4. Let ℬ be any base changeable set. Denote:

T := Tm(ℬ); 𝒳 := Bs(ℬ); B := Bs(ℬ), C−− :=
Bs←
ℬ
.

It is obvious, that conditions 1,2 of Theorem 1.6.2 for T,𝒳 ,B,C−− are satisfied. Moreover, ℬ is
a (unique) base changeable set, which satisfies conditions a),b),c) of the conclusion part of this
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theorem. Thus, using Theorem 1.6.2 we may give the new definition of the base changeable set
notion as a mathematics structure, which consists of linearly ordered set T = (T,≤), set 𝒳 ,
subset B ⊆ T×𝒳 , and binary relation C−−, defined on B, satisfying conditions 1,2 of Theorem
1.6.2. This approach to definition of base changeable sets is implemented in [9].

From Theorem 1.6.2 (taking into account Remark 1.6.4) we obtain the following corollary.

Corollary 1.6.1. If for base changeable sets ℬ1,ℬ2 we have Tm (ℬ1) = Tm (ℬ2) , Bs (ℬ1) =
Bs (ℬ2) ,

Bs←
ℬ1

=
Bs←
ℬ2
, then ℬ1 = ℬ2.

Main results of this Section were anonced in [1] and published in [5, Section 2], while Theo-
rem 1.6.2 is published in [8, Theorem 2.2].

7 Chains in the Set of Elementary-time States. Fate Lines and their

Properties

Using definition of base changeable sets as well as assertions 1.6.2 and 1.6.1 (item 2) we obtain
the following assertion.

Assertion 1.7.1. Let ℬ be a base changeable set. Then:

1) The pair 𝒬ℬ =
(︁
Bs(ℬ), Bs←

ℬ

)︁
= (Bs(ℬ),←) is an anti-cyclical oriented set.

2) The mapping

𝜓(𝑡) = 𝜓ℬ(𝑡) := {𝜔 ∈ Bs(ℬ) | tm (𝜔) = 𝑡} ∈ 2Bs(ℬ), 𝑡 ∈ Tm(ℬ) (1.18)

is a monotone time on 𝒬ℬ.
3) If, in addition, 𝜓(𝑡) ̸= ∅, 𝑡 ∈ Tm(𝒫), then the time 𝜓 is strictly monotone.

According to Assertion 1.7.1, for any base changeable set ℬ the pair 𝒬ℬ = (Bs(ℬ),←) is
(anti-cyclical) oriented set. Therefore we may introduce transitive sets and chains in the ori-
ented set (Bs(ℬ),←). From anti-cyclicity of the oriented set (Bs(ℬ),←) it follows the following
assertion.

Assertion 1.7.2. Let ℬ be a base changeable set.
1) Any transitive subset 𝒩 ⊆ Bs(ℬ) of the oriented set (Bs(ℬ),←) is a (partially) ordered

set (relatively the relation ←).
2) Any chain ℒ ⊆ Bs(ℬ) of the oriented set (Bs(ℬ),←) is a linearly ordered set (relatively

the relation ←).

Denotation 1.7.1. Futher we denote by L𝑙(ℬ) the set of all chains of the oriented set(︁
Bs(ℬ), Bs←

ℬ

)︁
= (Bs(ℬ),←).

Definition 1.7.1. Let ℬ be a base changeable set.

1) Any maximum chain ℒ ⊆ Bs(ℬ) of the oriented set
(︁
Bs(ℬ), Bs←

ℬ

)︁
= (Bs(ℬ),←) will be

named by fate line of ℬ. The set of all fate lines of ℬ will be denoted by L𝑑(ℬ): { 5}

L𝑑(ℬ) = {ℒ ∈ L𝑙(ℬ) | ℒ is a fate line of ℬ} .

2) Any fate line, which contains an elementary-time state 𝜔 ∈ Bs(ℬ) will be named the
(eigen) fate line of elementary-time state 𝜔 (in ℬ).

3) A fate line ℒ ∈ L𝑑(ℬ) will be named the (eigen) fate line of the elementary state 𝑥 ∈
Bs(ℬ) if and only if there exists the elementary-time state 𝜔𝑥 ∈ Bs(ℬ) such, that bs (𝜔𝑥) = 𝑥
and ℒ is eigen fate line of 𝜔𝑥.

5 Ukrainian name of the term “fate line” looks like as “liniya doli” (in English transliteration). This explains the genesis of the
denotation “L𝑑(ℬ)”. Note, that some denotations in this paper are generated by Ukrainian names of corresponding terms in English
transliteration.
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From Definition 1.7.1 it dollows, that

L𝑑(ℬ) ⊆ L𝑙(ℬ)

for any base changeable set ℬ.
It is clear that, in the general case, an elementary (elementary-time) state may have many

eigen fate lines.

Definition 1.7.2. We will say, that elementary (elementary-time) states 𝑥1, 𝑥2 ∈ Bs(ℬ),
(𝜔1, 𝜔2 ∈ Bs(ℬ)) are united by fate if and only if there exist at least one fate line ℒ ∈ L𝑑(ℬ),
which is eigen fate line of both states 𝑥1, 𝑥2 (𝜔1, 𝜔2).

Assertion 1.7.3. 1) Any elementary-time state 𝜔 ∈ Bs(ℬ) must have at least one eigen fate
line.

2) For elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) to be united by fate it is necessary and sufficient
satisfaction one of the following conditions:

𝜔2←𝜔1 or 𝜔1←𝜔2. (1.19)

Proof. 1) The first statement of this Assertion follows from Corollary 1.1.2.
2) 2.a) Suppose, that for the elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) there exist a common

fate line ℒ ∈ L𝑑(ℬ) such that 𝜔1, 𝜔2 ∈ ℒ. Then, by Assertion 1.7.2, item 2, the pair (ℒ,←) is
a linearly ordered set. Thus at least one of the conditions (1.19) must be fulfilled.

2.b) Let, 𝜔1, 𝜔2 ∈ Bs(ℬ) and 𝜔2←𝜔1. Then, by Corollary 1.1.2, there exist a maximum
chain (fate line) ℒ ⊆ Bs(ℬ) (ℒ ∈ L𝑑(ℬ)) such, that 𝜔1, 𝜔2 ∈ ℒ.

Assertion 1.7.4. 1) Any elementary state 𝑥 ∈ Bs(ℬ) must have at least one eigen fate line.
2) For elementary states 𝑥, 𝑦 ∈ Bs(ℬ) to be united by fate it is necessary and sufficient

satisfaction one of the following conditions:

𝑦←𝑥 or 𝑥← 𝑦. (1.20)

Proof. 1) Let 𝑥 ∈ Bs(ℬ). Then, by the definition of time, there exist a time point 𝑡 ∈ Tm(ℬ)
such, that 𝑥 ∈ 𝜓(𝑡). By Assertion 1.7.3, the elementary-time state 𝜔𝑥 = (𝑡, 𝑥) ∈ Bs(ℬ) must
have an eigen fate line ℒ ∈ L𝑑(ℬ). This fate line ℒ must be eigen fate line of elementary state
𝑥.

2) 2.a) Let 𝑥, 𝑦 ∈ Bs(ℬ), 𝑦←𝑥. Then, by Property 1.6.1(8) (see Properties 1.6.1), there
exist elementary-time states 𝜔1,𝜔2 ∈ Bs(ℬ) such, that bs (𝜔1) = 𝑥, bs (𝜔2) = 𝑦 and 𝜔2←𝜔1.
By Assertion 1.7.3, there exist a common fate line ℒ ∈ L𝑑(ℬ) for the elementary-time states
𝜔1,𝜔2 (such, that 𝜔1, 𝜔2 ∈ ℒ). By Definition 1.7.1, this fate line ℒ must be eigen fate line of
both elementary states 𝑥 and 𝑦.

2.b) Suppose, that for the elementary states 𝑥, 𝑦 ∈ Bs(ℬ) there exist a common eigen
fate line ℒ ∈ L𝑑(ℬ). Then, there exist elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ), such, that
bs (𝜔1) = 𝑥, bs (𝜔2) = 𝑦 and 𝜔1, 𝜔2 ∈ ℒ. Hence, by Assertion 1.7.3, statement 2), one of the
conditions 𝜔2←𝜔1 or 𝜔1←𝜔2 must be satisfied. Then, by Property 1.6.1(7), at least one of
the conditions (1.20) must be fulfilled.

As it was shown in Theorem 1.6.1, any system of abstract trajectories, defined on some
linearly ordered set T = (T,≤), generates the base changeable set 𝒜𝑡(T,ℛ). The next aim is
to show, that any base changeable set ℬ can be represented in the form ℬ = 𝒜𝑡(T,ℛ), where
ℛ is some system of abstract trajectories, defined on some linearly ordered set T.

Definition 1.7.3. Let ℛ be a system of abstract trajectories from T = (T,≤) to 𝑀 .

1. Trajectory 𝑟 ∈ ℛ will be named a maximum trajectory (relatively the ℛ) if and only
if there not exist any trajectory 𝜌 ∈ ℛ (𝜌 ̸= 𝑟) such, that D (𝑟) ⊂ D (𝜌) and 𝑟(𝑡) = 𝜌(𝑡)
𝑡 ∈ D (𝑟) (that is such, that 𝑟 ⊂ 𝜌).
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2. The system of abstract trajectories ℛ will be referred to as the system of maximum
trajectories if and only if any trajectory 𝑟 ∈ ℛ is maximum trajectory (relatively the ℛ).

Recall, that in Subsection 6.3 we introduced the following denotation (for any base change-
able set ℬ):

Tm(ℬ) := (Tm(ℬ),≤ℬ) .
Assertion 1.7.5. Let ℬ be a base changeable set. Then:

1) Any chain ℒ ∈ L𝑙(ℬ) is an abstract trajectory from Tm(ℬ) to Bs(ℬ).
2) The set L𝑙(ℬ) is a system of abstract trajectories from Tm(ℬ) to Bs(ℬ).
3) Any fate line ℒ ∈ L𝑑(ℬ) ⊆ L𝑙(ℬ) is a maximum trajectory (relatively the system of

abstract trajectories L𝑙(ℬ)).
4) The set L𝑑(ℬ) is a system of maximum trajectories (from Tm(ℬ) to Bs(ℬ)).

Proof. 1) Let ℒ ⊆ Bs(ℬ) be a chain of the oriented set (Bs(ℬ),←). Since Bs(ℬ) ⊆ Tm(ℬ) ×
Bs(ℬ) and ℒ ⊆ Bs(ℬ), then ℒ is a binary relation from the set Tm(ℬ) to the set Bs(ℬ). Thus,
to make sure that ℒ is an abstract trajectory from Tm(ℬ) to Bs(ℬ), it is sufficient to prove,
that this relation ℒ is a function from Tm(ℬ) to Bs(ℬ). Suppose contrary. Then there exist
elementary-time states 𝜔1, 𝜔2 ∈ ℒ of kind 𝜔1 = (𝑡, 𝑥1), 𝜔2 = (𝑡, 𝑥2), where 𝑥1 ̸= 𝑥2. Since ℒ
is a chain, one of the conditions 𝜔2←𝜔1 or 𝜔1←𝜔2 must be satisfied. Assume, that 𝜔2←𝜔1.
Then, since 𝜔1 ̸= 𝜔2, by Property 1.6.1(7), we obtain 𝑡 < 𝑡, which is impossible. Similarly the
assumption 𝜔1←𝜔2 also leads to contradiction. The obtained contradiction proves that the
chain ℒ is a function. Thus, we have proved item 1).

Taking into account, that, according to item 1), any chain ℒ ∈ L𝑙(ℬ) is an abstract trajec-
tory, we may use the notations D(ℒ) for the domain of ℒ and 𝑥 = ℒ(𝑡) (where 𝑡 ∈ D(ℒ)) to
indicate the fact that (𝑡, 𝑥) ∈ ℒ.

2) Chose any elementary state 𝑥 ∈ Bs(ℬ). By the time definition, there exist a time point 𝑡 ∈
Tm(ℬ) such, that 𝑥 ∈ 𝜓(𝑡). By Assertion 1.1.1, item 2, the singleton set ℒ𝑥 = {(𝑡, 𝑥)} ⊆ Bs(ℬ)
is a chain of the oriented set (Bs(ℬ),←). Besides, R (ℒ𝑥) = {𝑥} ∋ 𝑥. Thus, any elementary
state 𝑥 ∈ Bs(ℬ) is contained in the range of some abstract trajectory ℒ𝑥 ∈ L𝑙(ℬ). Therefore,⋃︀
ℒ∈L𝑙(ℬ) R(ℒ) = Bs(ℬ). Thus, taking into account the statement 1) of this Assertion we

conclude, that L𝑙(ℬ) is the system of abstract trajectories from Tm(ℬ) to Bs(ℬ).
3) Let ℒ ∈ L𝑑(ℬ) be a fate line of ℬ (ie ℒ is a maximum chain of the oriented set (Bs(ℬ),←)).

Then, there not exist any chain (abstract trajectory) ℒ1 ∈ L𝑙(ℬ) such, that ℒ ⊂ ℒ1. Hence, ℒ
is a maximum trajectory (relatively the system of abstract trajectories L𝑙(ℬ)).

4) Now, we are going to prove, that
⋃︀
ℒ∈L𝑑(ℬ)R(ℒ) = Bs(ℬ). Since

⋃︀
ℒ∈L𝑑(ℬ) ℒ ⊆ Bs(ℬ) ⊆

Tm(ℬ) × Bs(ℬ), we have
⋃︀
ℒ∈L𝑑(ℬ) R(ℒ) ⊆ Bs(ℬ). Thus, it remains to prove the inverse

inclusion. Chose any elementary state 𝑥 ∈ Bs(ℬ). By Assertion 1.7.4 (item 1), the elementary
state 𝑥 must have an eigen fate line ℒ𝑥 ∈ L𝑑(ℬ). This (by Definition 1.7.1) means, that there
exist an elementary-time state 𝜔𝑥 = (𝑡, 𝑥) ∈ Bs(ℬ) such, that 𝜔𝑥 ∈ ℒ𝑥. Since (𝑡, 𝑥) ∈ ℒ𝑥, then
ℒ𝑥(𝑡) = 𝑥. Therefore, 𝑥 ∈ R (ℒ𝑥) ⊆

⋃︀
ℒ∈L𝑑(ℬ) R(ℒ). Thus,

⋃︀
ℒ∈L𝑑(ℬ) R(ℒ) = Bs(ℬ). Hence,

L𝑑(ℬ) is a system of abstract trajectories from Tm(ℬ) to Bs(ℬ). Since (by item 3 of this
Assertion) any fate line ℒ ∈ L𝑑(ℬ) ⊆ L𝑙(ℬ) is a maximum trajectory relatively the system
of abstract trajectories L𝑙(ℬ), it is the maximum trajectory relatively the narrower system of
abstract trajectories L𝑑(ℬ).

Assertion 1.7.6. Let ℛ be a system of abstract trajectories from T to 𝑀 . Then

ℛ ⊆ L𝑙 (𝒜𝑡 (T,ℛ)) .
Proof. Let ℛ be a system of abstract trajectories from T = (T,≤) to 𝑀 . Let us consider any
𝑟 ∈ ℛ. According to Theorem 1.6.1, we get 𝑟 ⊆ Bs (𝒜𝑡 (T,ℛ)), moreover, for any 𝜔1, 𝜔2 ∈ 𝑟
the condition 𝜔2 ←

𝒜𝑡(T,ℛ)
𝜔1 holds if and only if tm (𝜔1) ≤ tm (𝜔2). Hence, since (T,≤) is linearly

ordered set, we have, that 𝑟 is a chain of 𝒜𝑡 (T,ℛ).
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The next theorem shows, that any base changeable set can be generated by some system of
maximum trajectories.

Theorem 1.7.1. For any base changeable set ℬ the following equality is true:

𝒜𝑡 (Tm(ℬ), L𝑑(ℬ)) = ℬ.

Proof. Denote: ℛ := L𝑑(ℬ). We need to prove, that 𝒜𝑡(ℛ) = ℬ. { 6}
1) By Assertion 1.7.5, ℛ = L𝑑(ℬ) is the system of abstract trajectories from Tm(ℬ) =

(Tm(ℬ),≤ℬ) to Bs(ℬ). Hence, by the first item of Theorem 1.6.1,

Tm (𝒜𝑡(ℛ)) = Tm(ℬ).

2) By the second item of Theorem 1.6.1:

Bs (𝒜𝑡(ℛ)) =
⋃︁
𝑟∈ℛ

𝑟 =
⋃︁

ℒ∈L𝑑(ℬ)

ℒ ⊆ Bs(ℬ). (1.21)

On the other hand, by Assertion 1.7.3, for any 𝜔 ∈ Bs(ℬ) the fate line ℒ𝜔 ⊆ Bs(ℬ) exists such,
that 𝜔 ∈ ℒ𝜔. Threfore, Bs(ℬ) ⊆

⋃︀
ℒ∈L𝑑(ℬ) ℒ = Bs (𝒜𝑡(ℛ)). And, taking into account (1.21) we

obtain:
Bs (𝒜𝑡(ℛ)) = Bs(ℬ).

3) Let us consider any elementary-time states 𝜔1 = (𝑡1, 𝑥1), 𝜔2 = (𝑡2, 𝑥2) ∈ Bs(ℬ) =
Bs (𝒜𝑡(ℛ)).

3.a) Suppose, that 𝜔2←
ℬ
𝜔1. By Property 1.6.1(7), tm (𝜔1) ≤ tm (𝜔2). Moreover, by Assertion

1.7.3 (item 2) the fate line L ∈ L𝑑(ℬ) exists such, that 𝜔1, 𝜔2 ∈ L. Thus, by Theorem 1.6.1
(item 3), 𝜔2 ←

𝒜𝑡(L𝑑(ℬ))
𝜔1, that is 𝜔2 ←

𝒜𝑡(ℛ)
𝜔1.

3.b) Conversely, suppose, that 𝜔2 ←
𝒜𝑡(ℛ)

𝜔1, scilicet 𝜔2 ←
𝒜𝑡(L𝑑(ℬ))

𝜔1. Then, by Theorem 1.6.1

(item 3), tm (𝜔1) ≤ tm (𝜔2) and there exists the fate line L ∈ L𝑑(ℬ) exists such, that 𝜔1, 𝜔2 ∈ L.
Since the fate line L is a chain, at least one from the correlations 𝜔2←

ℬ
𝜔1 or 𝜔1←

ℬ
𝜔2 must

be true. We shall prove, that 𝜔2←
ℬ
𝜔1. Assume the contrary (𝜔2 ̸↚

ℬ
𝜔1). Then, we have

𝜔1←
ℬ
𝜔2 and 𝜔2 ̸= 𝜔1 (because in the case 𝜔1 = 𝜔2 we have 𝜔2←

ℬ
𝜔1). Hence, by Property

1.6.1(7), tm (𝜔2) < tm (𝜔1). The last inequality is impossible, because we have proved, that
tm (𝜔1) ≤ tm (𝜔2). Therefore, 𝜔2←

ℬ
𝜔1.

From the items 3.a) and 3.b) it follows, that←
ℬ

= ←
𝒜𝑡(ℛ)

(for the bases of elementary processes

on Bs (𝒜𝑡(ℛ)) = Bs(ℬ)).
According to the items 1),2),3) below, we have, that Tm (𝒜𝑡(ℛ)) = Tm(ℬ), Bs (𝒜𝑡(ℛ)) =

Bs(ℬ), ←
𝒜𝑡(ℛ)

=←
ℬ
. Hence, by Corollary 1.6.1, we obtain 𝒜𝑡(ℛ) = ℬ.

The following example shows that the equality L𝑑(𝒜𝑡(ℛ)) = ℛ for any system of maximal
trajectories ℛ, in the general case is not true. Moreover, in general, we can not even assert
about the inclusion of one of these sets to another.

Example 1.7.1. Let 𝑓 : R ↦→ R be the function of kind:

𝑓(𝑡) :=
|𝑡| − 𝑡
2

, 𝑡 ∈ R.

We consider the system of abstract trajectories ℛ = {𝑟𝛼|𝛼 ∈ [0,∞)}, where

𝑟𝛼(𝑡) : = 𝑓(𝑡+ 𝛼), 𝑡 ∈ (−∞, 𝛼] (D (𝑟𝛼) = (−∞, 𝛼]), 𝛼 ∈ (0,∞);

6We use the abbreviated denotation 𝒜𝑡(ℛ) instead of 𝒜𝑡(Tm(ℬ),ℛ).
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𝑟0(𝑡) : = 0, 𝑡 ∈ [0,∞) ( D (𝑟0) = [0,∞)), 𝛼 = 0.

It is easy to verify, that ℛ is the system of maximum trajectories from R to [0,∞). However,
the trajectory 𝑟0 ∈ ℛ is not fate line of base changeable set 𝒜𝑡(ℛ). Thus, 𝑟0 /∈ L𝑑(𝒜𝑡(ℛ)),
and, therefore ℛ ̸⊆ L𝑑(𝒜𝑡(ℛ)). From the other hand, we may consider the trajectory of kind:

𝑟∼0 (𝑡) = 0, 𝑡 ∈ R (D (𝑟∼0 ) = R).

(𝑟∼0 = {(𝑡, 𝑟∼0 (𝑡)) | 𝑡 ∈ R} = {(𝑡, 0) | 𝑡 ∈ R} ⊆
⋃︀
𝑟∈ℛ 𝑟 = Bs (𝒜𝑡(ℛ))). It is easy to verify, that

𝑟∼0 is a fate line of base changeable set 𝒜𝑡(ℛ), although 𝑟∼0 /∈ ℛ. Hence, L𝑑(𝒜𝑡(ℛ)) ̸⊆ ℛ.

Graph of the trajectory 𝑦 = 𝑟𝛼(𝑡) for 𝛼 ∈ (0,∞).

Below it will be described the simplest class of cases, where the equality L𝑑(𝒜𝑡(ℛ)) = ℛ
still takes place.

Definition 1.7.4. System of abstract trajectories ℛ from T = (T,≤) to 𝑀 will be named a
system of individual trajectories if and only if any two different trajectories 𝑟1, 𝑟2 ∈ ℛ are
disjoint (∀𝑟1, 𝑟2 ∈ ℛ (𝑟1 ̸= 𝑟2 =⇒ 𝑟1 ∩ 𝑟2 = ∅)).

It is easy to see, that a system of abstract trajectories ℛ from T = (T,≤) to 𝑀 is a system
of individual trajectories if and only if for any 𝑟1, 𝑟2 ∈ ℛ such, that 𝑟1 ̸= 𝑟2 it is true one of the
following propositions:

D (𝑟1) ∩D (𝑟2) = ∅ or 𝑟1(𝑡) ̸= 𝑟2(𝑡) (∀𝑡 ∈ D (𝑟1) ∩D (𝑟2)).

From here, in particular, it follows, that the trajectory system ℛ in Example 1.6.1 is a
system of individual trajectories.

Theorem 1.7.2. Let ℛ be a system of individual trajectories from T = (T,≤) to 𝑀 . Then:

L𝑑(𝒜𝑡(T,ℛ)) = ℛ.

Proof. Throughout this proof symbol “←” will mean the directing relation of changes or the
base of elementary processes in the base changeable set 𝒜𝑡(ℛ) = 𝒜𝑡(T,ℛ).
1. Let 𝑟 ∈ ℛ. According to Assertion 1.7.6, 𝑟 ∈ L𝑙 (𝒜𝑡(ℛ)), that is the trajectory 𝑟 is a

chain of the oriented set (Bs(𝒜𝑡(ℛ)),←). We aim to prove, that 𝑟 is a fate line of 𝒜𝑡(ℛ))
(that is 𝑟 is a maximum chain in Bs(𝒜𝑡(ℛ))). Suppose opposite. Then there exists a fate line
ℒ ∈ L𝑑 (𝒜𝑡(ℛ)) such, that 𝑟 ⊂ ℒ. Since the inclusion 𝑟 ⊂ ℒ is strict, there exists an elementary-
time state 𝜔 ∈ ℒ such,that 𝜔 /∈ 𝑟. From the other hand, by definition of abstract trajectory
(Definition 1.5.1, item 1), any trajectory of the system ℛ is nonempty. Hence, there exists an
elementary-time state 𝜔0 ∈ 𝑟. Since 𝑟 ⊂ ℒ, we have 𝜔0 ∈ ℒ. Therefore, the elementary-time
states 𝜔 and 𝜔0 are united by fate. Thus, by Assertion 1.7.3, one of the conditions 𝜔←𝜔0

or 𝜔0←𝜔 must be satisfied. But, in the both cases, by Theorem 1.6.1 (item 3), a trajectory
𝑟1 ∈ ℛ must exist such, that 𝜔, 𝜔0 ∈ 𝑟1. Since 𝜔 /∈ 𝑟 and 𝜔 ∈ 𝑟1, we have 𝑟 ̸= 𝑟1. However,
from the other hand, 𝜔0 ∈ 𝑟 ∩ 𝑟1, which is contradicts to the fact, that ℛ is the system of
individual trajectories. This contradiction proves, that 𝑟 is a fate line of 𝒜𝑡(ℛ)). Thus:

ℛ ⊆ L𝑑 (𝒜𝑡(ℛ)) . (1.22)
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2. Let, ℒ ∈ L𝑑 (𝒜𝑡(ℛ)). From Remark 1.6.1 and Corollary 1.1.2 it follows, that any fate line
of any base changeable set is nonempty set. Hence, there exists an elementary-time state 𝜔 ∈ ℒ.
Since 𝜔 ∈ ℒ ⊆ Bs(𝒜𝑡(ℛ)), then, by Theorem 1.6.1 (item 2), there exist a trajectory 𝑟 ∈ ℛ
such, that 𝜔 ∈ 𝑟. Let us consider any elementary-time state 𝜔1 ∈ ℒ. And because 𝜔, 𝜔1 ∈ ℒ,
then the elementary-time states 𝜔 and 𝜔1 — are united by fate. Hence, by Assertion 1.7.3, one
of the conditions 𝜔1←𝜔 or 𝜔←𝜔1 must be satisfied. Therefore, by Theorem 1.6.1 (item 3),
the trajectory 𝑟1 ∈ ℛ such, that 𝜔, 𝜔1 ∈ 𝑟1 must exist. Thus, we have, that, 𝜔 ∈ 𝑟 ∩ 𝑟1. But,
since ℛ is the system of individual trajectories, the last relation is only possible when 𝑟 = 𝑟1.
Hence, any elementary-time state 𝜔1 ∈ ℒ belongs to 𝑟. This means, that ℒ ⊆ 𝑟. But, according
to the item 1 of this proof, the trajectory 𝑟 also is the fate line of 𝒜𝑡(ℛ). Since 𝑟 and ℒ are the
fate lines of 𝒜𝑡(ℛ), the inclusion ℒ ⊆ 𝑟 is possible only by condition ℒ = 𝑟. Thus, ℒ = 𝑟 ∈ ℛ.
Taking into account, that the fate line ℒ ∈ L𝑑 (𝒜𝑡(ℛ)) had been chosen by an arbitrary way,
we obtain the inclusion, inverse to the (1.22).

Example 1.7.2. Let X be a complete metric space. Recall [42, page. 4], that a dynamic system
on X is any pair of kind:

S = (Θ,𝑊 ) , where: (1.23)

∙ Θ ⊆ R is an arbitrary subset of the real axis R;

∙ 𝑊 is an operator-valued function, defined on the set ̃︀Θ = {(𝜏, 𝑡0) ∈ R2| 𝑡0, 𝑡0 + 𝜏 ∈ Θ},
which maps any pair of kind (𝜏, 𝑡0) ∈ ̃︀Θ to the opetrator 𝑊 (𝜏, 𝑡0) : X ↦→ X, and satisfies
the following conditions:

𝑊 (0, 𝑡0)𝑥 = 𝑥, 𝑥 ∈ X, 𝑡0 ∈ Θ; (1.24)

𝑊 (𝑡+ 𝑠, 𝑡0) = 𝑊 (𝑡, 𝑡0 + 𝑠)𝑊 (𝑠, 𝑡0) , 𝑡0, 𝑡0 + 𝑠, 𝑡0 + 𝑡+ 𝑠 ∈ Θ, (1.25)

where the product of operators is defined by the standard way (𝑊 (𝑡, 𝑡0 + 𝑠)𝑊 (𝑠, 𝑡0)𝑥 =
𝑊 (𝑡, 𝑡0 + 𝑠) (𝑊 (𝑠, 𝑡0)𝑥), 𝑥 ∈ X).

(Note, that the operators 𝑊 (𝜏, 𝑡0) ((𝜏, 𝑡0) ∈ ̃︀Θ) may me nonlinear.)

Any dynamic system S of kind (1.23) generates the system of abstract trajectories:

ℛS = {𝑟𝑥,𝑡0 | 𝑥 ∈ X, 𝑡0 ∈ Θ} ,
𝑟𝑥,𝑡0(𝑡) = 𝑊 (𝑡− 𝑡0, 𝑡0)𝑥, 𝑥 ∈ X, 𝑡 ∈ Θ (1.26)

from TΘ = (Θ,≤) to X, where ≤ is the standard linear order relation on the real numbers. From
(1.24),(1.25) it follows, that, any trajectories from the ℛS possess the following properties:

𝑟𝑥,𝑡0 (𝑡0) = 𝑥, 𝑥 ∈ X, 𝑡0 ∈ Θ,

𝑟𝑥,𝑡′0 = 𝑟[︁
𝑟𝑥,𝑡′0

(𝑡0)
]︁
,𝑡0
, 𝑥 ∈ X, 𝑡0, 𝑡

′
0 ∈ Θ.

Thus, for any fixed 𝑡0 ∈ Θ the system of trajectories ℛS can be represented in the form:

ℛS = {𝑟𝑥,𝑡0 | 𝑥 ∈ X} . (1.27)

We are going to prove, that ℛS is the system of individual trajectories. Indeed, consider
any fixed number 𝑡0 ∈ Θ. Using the equality (1.27), we may consider arbitrary trajectories
𝑟𝑥1,𝑡0 , 𝑟𝑥2,𝑡0 ∈ ℛS. Suppose, that for some 𝑡 ∈ Θ we have 𝑟𝑥1,𝑡0(𝑡) = 𝑟𝑥2,𝑡0(𝑡). Then, taking into
account (1.24), (1.25), (1.26), we obtain:

𝑥2 = 𝑊 (0, 𝑡0)𝑥2 = 𝑊 (𝑡0 − 𝑡, 𝑡)𝑊 (𝑡− 𝑡0, 𝑡0)𝑥2 = 𝑊 (𝑡0 − 𝑡, 𝑡) 𝑟𝑥2,𝑡0(𝑡) =
= 𝑊 (𝑡0 − 𝑡, 𝑡) 𝑟𝑥1,𝑡0(𝑡) = 𝑊 (𝑡0 − 𝑡, 𝑡)𝑊 (𝑡− 𝑡0, 𝑡0)𝑥1 = 𝑥1.
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Consequently, 𝑟𝑥1,𝑡0 = 𝑟𝑥2,𝑡0 . This means, that for any trajectories 𝑟𝑥1,𝑡0 , 𝑟𝑥2,𝑡0 ∈ ℛS such, that
𝑟𝑥1,𝑡0 ̸= 𝑟𝑥2,𝑡0 we have 𝑟𝑥1,𝑡0(𝑡) ̸= 𝑟𝑥2,𝑡0(𝑡) (∀𝑡 ∈ Θ). Hence, ℛS is the system of individual
trajectories. In particular, for any 𝑥 ∈ X and 𝑡0 ∈ Θ there exists a unique trajectory 𝜌𝑥,𝑡0 ∈ ℛS
such, that 𝜌𝑥,𝑡0 (𝑡0) = 𝑥 (where 𝜌𝑥,𝑡0 = 𝑟𝑥,𝑡0).

The system of abstract trajectories ℛS generates the base changeable set 𝒜𝑡 (ℛS), moreover,
by Theorem 1.6.1, Tm (𝒜𝑡 (ℛS)) = Θ. From Theorem 1.7.2 it follows, that if we know the base
changeable set 𝒜𝑡 (ℛS), then we can recover the system of trajectories ℛS. From here, we can

uniquely restore the evolution operators
{︁
𝑊 (𝜏, 𝑡0) | (𝜏, 𝑡0) ∈ ̃︀Θ}︁ by the help of formula:

𝑊 (𝜏, 𝑡0)𝑥 = 𝜌𝑥,𝑡0 (𝜏 + 𝑡0) , 𝑥 ∈ X, 𝑡0, 𝑡0 + 𝜏 ∈ Θ,

where 𝜌𝑥,𝑡0 ∈ ℛS is the trajectory, satisfying the condition 𝜌𝑥,𝑡0 (𝑡0) = 𝑥. Thus, the dynamic
system S can be uniquely restored by the base changeable set 𝒜𝑡 (ℛS). Consequently, dynamic
systems of kind (1.23) can be interpreted as particular cases of base changeable sets.

Main results of this Section were anonced in [1] and published in [5, Section 3].

8 Changeable Systems and Processes

Definition 1.8.1. Let ℬ be a base changeable set. Any subset 𝑆 ⊆ Bs(ℬ) we will name a
changeable system of the base changeable set ℬ.

In the mechanics the elementary states can be interpreted as the states or positions of
material point in various moments of time. That is why, the concept of changeable system
may be considered as the abstract generalization of the notion of physical body, which, in the
general case, has not constant composition.

Definition 1.8.2. Let ℬ be a base changeable set. Any mapping 𝑠 : Tm(ℬ) :↦→ 2Bs(ℬ) such,
that 𝑠(𝑡) ⊆ 𝜓(𝑡), 𝑡 ∈ Tm(ℬ) will be referred to as a process of the base changeable set ℬ.

Since primitive changeable sets can be interpreted as base changeable set with the base of
elementary processes ← (f), the chronometric processes, introduced in Definition 1.4.9 can be
considered as the particular cases of processes, introduced in Definition 1.8.2.

Let 𝑆 ⊆ Bs(ℬ) be an arbitrary changeable system of any base changeable set ℬ. Denote:

𝑆∼(𝑡) := {𝑥 ∈ Bs(ℬ) | (𝑡, 𝑥) ∈ 𝑆} , 𝑡 ∈ Tm(ℬ) (1.28)

(in particular 𝑆∼(𝑡) = ∅ in the case, where there do not exist 𝑥 ∈ Bs(ℬ) such, that (𝑡, 𝑥) ∈ 𝑆).
It is easy to see, that 𝑆∼(𝑡) ⊆ 𝜓(𝑡), 𝑡 ∈ Tm(ℬ). Thus, by Definition 1.8.2, 𝑆∼ is a process of
the base changeable set ℬ.

Definition 1.8.3. The process 𝑆∼ will be named the process of transformations of the
changeable system 𝑆.

Assertion 1.8.1. Let ℬ be a base changeable set.
1. For any changeable systems 𝑆1, 𝑆2 ∈ Bs(ℬ) the equality 𝑆∼1 = 𝑆∼2 holds if and only if

𝑆1 = 𝑆2.
2. For an arbitrary process 𝑠 of the base changeable set ℬ a unique changeable system

𝑆 ⊆ Bs(ℬ) exists such, that 𝑠 = 𝑆∼.

Proof. 1. To prove the first statement, it is enough to verify that for any 𝑆1, 𝑆2 ∈ Bs(ℬ) the
equality 𝑆∼1 = 𝑆∼2 implies the equality 𝑆1 = 𝑆2. Hence, suppose, that 𝑆∼1 = 𝑆∼2 . Then for
any 𝑡 ∈ Tm(ℬ) we have 𝑆∼1 (𝑡) = 𝑆∼2 (𝑡). Therefore, by (1.28), for an arbitrary 𝑡 ∈ Tm(ℬ) the
condition (𝑡, 𝑥) ∈ 𝑆1 is equivalent to the condition (𝑡, 𝑥) ∈ 𝑆2. But, this means, that 𝑆1 = 𝑆2.

2. Let 𝑠 be a process of a base changeable set ℬ. Denote:
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𝑆 := {(𝑡, 𝑥) | 𝑡 ∈ Tm(ℬ), 𝑥 ∈ 𝑠(𝑡)} =
⋃︁

𝑡∈Tm(ℬ)

({𝑡} × 𝑠(𝑡)),

where the symbol × denotes Cartesian product of sets. Since for any pair (𝑡, 𝑥) ∈ 𝑆 it is true
𝑥 ∈ 𝑠(𝑡) ⊆ 𝜓(𝑡), we have 𝑆 ⊆ Bs(ℬ). Therefore, 𝑆 is a changeable system of ℬ. Moreover, for
any 𝑡 ∈ Tm(ℬ) we obtain:

𝑆∼(𝑡) = {𝑥 ∈ Bs(ℬ) | (𝑡, 𝑥) ∈ 𝑆} = {𝑥 ∈ Bs(ℬ) | 𝑥 ∈ 𝑠(𝑡)} = 𝑠(𝑡).

Consequently, 𝑆∼ = 𝑠. Suppose, an other changeable system 𝑆1 exists such, that 𝑆∼1 = 𝑠.
Then, 𝑆∼ = 𝑆∼1 , and, by the statement 1, 𝑆 = 𝑆1. Thus, changeable system 𝑆, satisfying
𝑆∼ = 𝑠 is unique.

Therefore, the mapping (·)∼ provides one-to-one correspondence between changeable systems
and processes of any base changeable set. Taking into account this fact, further we will “identify”
changeable systems and processes of any base changeable set, and for denotation of processes
of a base changeable set we will use letters with tilde, keeping in mind, that any process is the
process of transformations of some changeable system.

We say, that a changeable system 𝑈 ⊆ Bs(ℬ) in a base changeable set ℬ is a subsystem of
a changeable system 𝑆 ⊆ Bs(ℬ) if and only if 𝑈 ⊆ 𝑆. The following assertion is true:

Assertion 1.8.2. Changeable system 𝑈 ⊆ Bs(ℬ) is a subsystem of a changeable system 𝑆 ⊆
Bs(ℬ) if and only if:

∀ 𝑡 ∈ Tm(ℬ) 𝑈∼(𝑡) ⊆ 𝑆∼(𝑡).

Proof. 1. Let 𝑆, 𝑈 ⊆ Bs(ℬ) and 𝑈 ⊆ 𝑆. Then, by (1.28), for any 𝑡 ∈ Tm(ℬ) we obtain:

𝑈∼(𝑡) = {𝑥 ∈ Bs(ℬ) | (𝑡, 𝑥) ∈ 𝑈} ⊆ {𝑥 ∈ Bs(ℬ) | (𝑡, 𝑥) ∈ 𝑆} = 𝑆∼(𝑡).

2. Conversely, suppose, that 𝑈∼(𝑡) ⊆ 𝑆∼(𝑡) for any 𝑡 ∈ Tm(ℬ). Denote:

𝑆1 :=
⋃︁

𝑡∈Tm(ℬ)

{𝑡} × 𝑆∼(𝑡); 𝑈1(𝑡) :=
⋃︁

𝑡∈Tm(ℬ)

{𝑡} × 𝑈∼(𝑡).

As it had been shown in the proof of statement 2 of Assertion 1.8.1, 𝑆∼1 = 𝑆∼, 𝑈∼1 = 𝑈∼.
Therefore, by the first item of Assertion 1.8.1, 𝑆1 = 𝑆, 𝑈1 = 𝑈 . Thus:

𝑈 = 𝑈1 =
⋃︁

𝑡∈Tm(ℬ)

{𝑡} × 𝑈∼(𝑡) ⊆
⋃︁

𝑡∈Tm(ℬ)

{𝑡} × 𝑆∼(𝑡) = 𝑆1 = 𝑆.

Definition 1.8.4. We say, that the elementary state 𝑥 ∈ Bs(ℬ) of a base changeable set ℬ
belongs to a changeable system 𝑆 ⊆ Bs(ℬ) in a time point 𝑡 ∈ Tm(ℬ) if and only if 𝑥 ∈ 𝑆∼(𝑡).

The fact, that elementary state 𝑥 ∈ Bs(ℬ) of a base changeable set ℬ belongs to a changeable
system 𝑆 in a time point 𝑡, will be denoted by:

𝑥 ∈[𝑡,ℬ] 𝑆,

and in the case, when the base changeable set is clear, we will use the denotation:

𝑥 ∈[𝑡] 𝑆.

By Assertion 1.8.2, for any changeable systems 𝑈, 𝑆 ⊆ Bs(ℬ) the correlation 𝑈 ⊆ 𝑆 holds if
and only if for any 𝑡 ∈ Tm(ℬ) and 𝑥 ∈ Bs(ℬ) the condition 𝑥 ∈[𝑡] 𝑈 assures 𝑥 ∈[𝑡] 𝑆.
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The last remark indicates that a changeable system of any base changeable set can be
interpreted as analog of the subset notion in the classic set theory, and the relation ∈ [·]
can be interpreted as analog of the belonging relation of the classic set theory. However, the
elementary-time state is not the complete analogue of the notion of element in the classic set
theory, because knowing all the elementary-time states of a base changeable set, we can not
fully recover this base changeable set.

It is evident, that any fate line ℒ ∈ L𝑑(ℬ) of a base changeable set ℬ is the changeable
system of ℬ.

Definition 1.8.5. The process ℒ∼, generated by a fate line ℒ ∈ L𝑑(ℬ) of the base changeable
set ℬ we name by the elementary process of ℬ.

The concept of elementary process can be considered as the complete analogue of the notion
of element in the classic set theory, because knowing all the elementary process of a base
changeable set, we can fully recover this base changeable set, using Theorem 1.7.1.

Main results of this Section were anonced in [1] and published in [5, Section 4].

9 Evolutional Extensions and Analogues of the Operation of Union

for Base Changeable Sets

9.1 Motivation

In physics we often encounter speculations, when the physical system is imaginary incorporated
by additional components, not really existing in it. For example, during deduction of the
formulas of Lorentz Transformations for reference frames with parallel axes it is often used
the method of “light sphere”. Namely, it is supposed, that on the zero time point a light had
flashed in the origin of the frame, and light rays are traveling in all directions from the origin
(for example see [43, page. 25]). This assumption does not imply, that in any evolution model,
connected with the special relativity (SR) the light sphere must exist. But, simply, it is assumed
that the coordinate transform will not be changed under the condition, that we “attach” the
light sphere to any evolution model in the framework of SR, that is if we will consider the
“extended” model, containing the light sphere, instead of the original model.

In the present paper we try to give mathematically strict foundation of the procedure of
incorporation of new, “virtual” evolving components to the original model on the level of the
theory of base changeable sets under the assumption, that incorporation of this components do
not effect on the evolution of the original components of system. For this purpose we introduce
the analogs of the set-theoretic inclusion relation and set-theoretic operation of union for base
changeable sets.

Note that base changeable sets may be treated as the simplest particular cases of general
changeable sets to be introduced further (in Section 10), namely as changeable sets, which have
only one reference frame. Therefore, our consideration in this Section concerns only the case
of single reference frame.

9.2 Definition and Properties of the Evolutional Extension and Evolutional Union

Definition 1.9.1. Base changeable sets ℬ0 and ℬ1 will be named chronologically affined if
and only if Tm (ℬ0) = Tm (ℬ1).

Definition 1.9.2. Base changeable set ℬ1 will be named by evolutional extension of an base
changeable set ℬ0 if and only if:

1. ℬ0 and ℬ1 are chronologically affined;
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2. Bs (ℬ0) ⊆ Bs (ℬ1);

3. For any 𝜔1, 𝜔2 ∈ Bs (ℬ0) the condition 𝜔2←
ℬ0
𝜔1 leads to the correlation 𝜔2←

ℬ1
𝜔1. Or, in

other words, we can write,
Bs←
ℬ0
⊆ Bs←
ℬ1

(where the binary relations
Bs←
ℬ0

and
Bs←
ℬ1

are usually

understood as the sets, in particular
Bs←
ℬ0

= {(𝜔2, 𝜔1) | 𝜔1, 𝜔2 ∈ Bs (ℬ0) , 𝜔2←𝜔1}).

In the case, where the base changeable set ℬ1 is an evolutional extension of the base changeable
set ℬ0, we also will say, that ℬ0 is evolutionarily included in ℬ1, using the denotation ℬ0⊂−→ℬ1
or ℬ1⊃←−ℬ0.

In Section 8 it is explained, that the notion of elementary process (generated by some fate
line) may serve as analog of the notion of element of ordinary (static) set. The last fact
motivates the next definition.

Definition 1.9.3. Base changeable set ℬ1 will be named as super-evolutional extension of
an base changeable set ℬ0 if and only if:

1. ℬ0 and ℬ1 are chronologically affined;

2. L𝑑 (ℬ0) ⊆ L𝑑 (ℬ1), that is any elementary process of ℬ0 is the elementary process of ℬ1.

In the case, where the base changeable set ℬ1 is an super-evolutional extension of the base
changeable set ℬ0, we also say, that ℬ0 is super-evolutionarily included in ℬ1, using the
denotation ℬ0<−→ℬ1 or ℬ1=←−ℬ0.

Assertion 1.9.1. If ℬ0⊂−→ℬ1, then:

1. Bs (ℬ0) ⊆ Bs (ℬ1);

2.
Bs←
ℬ0
⊆ Bs←
ℬ1

(that is for arbitrary 𝑥1, 𝑥2 ∈ Bs (ℬ0) the condition 𝑥2←
ℬ0
𝑥1 leads to the correlation

𝑥2←
ℬ1
𝑥1).

Proof. 1. Since ℬ0⊂−→ℬ1, then, by Definition 1.9.2 (item 2), we have Bs (ℬ0) ⊆ Bs (ℬ1). Hence,
using Property 1.6.1(9), we obtain:

Bs (ℬ0) = {bs (𝜔) | 𝜔 ∈ Bs (ℬ0)} ⊆ {bs (𝜔) | 𝜔 ∈ Bs (ℬ1)} = Bs (ℬ1) .

2. Suppose, that 𝑥1, 𝑥2 ∈ Bs (ℬ0) and 𝑥2←
ℬ0
𝑥1. Then, according to Property 1.6.1(8), there

exist the elementary-time states 𝜔1, 𝜔2 ∈ Bs (ℬ0) such, that bs (𝜔𝑖) = 𝑥𝑖 (𝑖 = 1, 2) and 𝜔2←
ℬ0
𝜔1.

Since ℬ0⊂−→ℬ1, then, by Definition 1.9.2 (items 2,3), 𝜔1, 𝜔2 ∈ Bs (ℬ1) and 𝜔2←
ℬ1
𝜔1. Therefore, we

have bs (𝜔𝑖) = 𝑥𝑖 (𝑖 = 1, 2), where 𝜔1, 𝜔2 ∈ Bs (ℬ1) and 𝜔2←
ℬ1
𝜔1, that is, by Property 1.6.1(8),

𝑥2←
ℬ1
𝑥1.

Assertion 1.9.2. Any super-evolutional extension of arbitrary base changeable set ℬ0 is its
evolutional extension, that is the correlation ℬ0<−→ℬ1, always leads to the correlation ℬ0⊂−→ℬ1.

Proof. 1. According to Theorem 1.7.1, for any base changeable set ℬ we have:

𝒜𝑡 (Tm(ℬ),L𝑑(ℬ)) = ℬ. (1.29)

Hence, by Theorem 1.6.1 (item 2), we obtain the equality:

Bs(ℬ) = Bs (𝒜𝑡 (Tm(ℬ),L𝑑(ℬ))) =
⋃︁

𝐿∈L𝑑(ℬ)

𝐿. (1.30)
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2.1. Suppose, that ℬ0<−→ℬ1. Then, by definition, we have L𝑑 (ℬ0) ⊆ L𝑑 (ℬ1). Hence, using
the equality (1.30), we obtain:

Bs (ℬ0) =
⋃︁

𝐿∈L𝑑(ℬ0)

𝐿 ⊆
⋃︁

𝐿∈L𝑑(ℬ1)

𝐿 = Bs (ℬ1) .

2.2. Let 𝜔1, 𝜔2 ∈ Bs (ℬ0) and 𝜔2←
ℬ0
𝜔1. Then, from (1.29) and Theorem 1.6.1 (item 3), it

follows, that tm (𝜔1) ≤ tm (𝜔2) and there exist the fate line 𝐿 ∈ L𝑑 (ℬ0) such, that 𝜔1, 𝜔2 ∈ 𝐿.
Since ℬ0<−→ℬ1, then, by Definition 1.9.3, we have, L𝑑 (ℬ0) ⊆ L𝑑 (ℬ1). Therefore, we obtain

𝐿 ∈ L𝑑 (ℬ1). Thus, tm (𝜔1) ≤ tm (𝜔2) and 𝜔1, 𝜔2 ∈ 𝐿, where 𝐿 ∈ L𝑑 (ℬ1) (𝐿 ⊆ Bs (ℬ1)).
Hence, in accordance with formula (1.29) and Theorem 1.6.1 (item 3), we get 𝜔2←

ℬ1
𝜔1.

From the items 2.1 and 2.2 it follows, that ℬ0⊂−→ℬ1.

Henceforth we use the denotation𝑀×2 for Cartesian square of the set𝑀 , ie 𝑀×2 =𝑀×𝑀.
The next example shows, that the statement, inverse to Assertion 1.9.2 is not true.

Example 1.9.1. Let, ℛ0 = {𝑟0}, ℛ1 = {𝑟1} be the systems of abstract trajectories from R to
R, with:

D (𝑟0) = [0,∞), 𝑟0(𝑡) = 𝑡, 𝑡 ∈ D (𝑟0) ;

D (𝑟1) = R, 𝑟1(𝑡) = 𝑡, 𝑡 ∈ D (𝑟1) .

Since ℛ0 and ℛ1 are composed of the single trajectory, then ℛ0 and ℛ1 are the systems of
individual trajectories in the sense of Definition 1.7.4. Denote:

ℬ0 := 𝒜𝑡 (R𝑜𝑟𝑑,ℛ0) ; ℬ1 := 𝒜𝑡 (R𝑜𝑟𝑑,ℛ1) ,

where R𝑜𝑟𝑑 = (R,≤) and ≤ is the standard linear order relation on the real numbers.
Since ℛ0 and ℛ1 are systems of individual trajectories, then, by Theorem 1.7.2, we have:

L𝑑 (ℬ0) = ℛ0; L𝑑 (ℬ1) = ℛ1.

And we get L𝑑 (ℬ0) * L𝑑 (ℬ1), because ℛ0 * ℛ1. Hence, according to Definition 1.9.3, ℬ1 can
not be super-evolutional extension of ℬ0, therefore ℬ0 ̸<−→ℬ1.

From the other hand, taking into account the inclusion 𝑟0 ⊆ 𝑟1 and applying Theorem 1.6.1,
we receive:

Tm (ℬ0) = R𝑜𝑟𝑑 = Tm (ℬ1) ;

Bs (ℬ0) =
⋃︁
𝑟∈ℛ0

𝑟 = 𝑟0 ⊆ 𝑟1 =
⋃︁
𝑟∈ℛ1

𝑟 = Bs (ℬ1) ;

Bs←
ℬ0

=
{︀
(𝜔2, 𝜔1) ∈ Bs (ℬ0)×2 | (tm (𝜔1) ≤ tm (𝜔2))∧

∧ (∃𝑟 ∈ ℛ0 (𝜔1, 𝜔2 ∈ 𝑟))} =
=
{︀
(𝜔2, 𝜔1) ∈ Bs (ℬ0)×2 | (tm (𝜔1) ≤ tm (𝜔2)) ∧ (𝜔1, 𝜔2 ∈ 𝑟0)

}︀
⊆

⊆
{︀
(𝜔2, 𝜔1) ∈ Bs (ℬ1)×2 | (tm (𝜔1) ≤ tm (𝜔2)) ∧ (𝜔1, 𝜔2 ∈ 𝑟1)

}︀
=

=
Bs←
ℬ1
,

where the symbol ∧ denotes the logical operation of conjunction.
Hence, we have proved, that Tm (ℬ0) = Tm (ℬ1), Bs (ℬ0) ⊆ Bs (ℬ1) and←

ℬ0
⊆ ←
ℬ1
. Therefore,

by Definition 1.9.2, ℬ0⊂−→ℬ1. Thus, ℬ0 ̸<−→ℬ1, although ℬ0⊂−→ℬ1.

Assertion 1.9.3. The evolutional inclusion possesses the following properties:
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1. ℬ⊂−→ℬ for an arbitrary base changeable set ℬ;

2. If ℬ1⊂−→ℬ2 and ℬ2⊂−→ℬ1 then ℬ1 = ℬ2;

3. If ℬ1⊂−→ℬ2 and ℬ2⊂−→ℬ3 then ℬ1⊂−→ℬ3.

Proof. 1. The correlation ℬ⊂−→ℬ follows by a trivial way from Definition 1.9.2.

2. Suppose, that ℬ1⊂−→ℬ2 and ℬ2⊂−→ℬ1. Then, by Definition 1.9.2:

Tm (ℬ1) = Tm (ℬ2) ; (1.31)

Bs (ℬ1) ⊆ Bs (ℬ2) ;
Bs←
ℬ1
⊆ Bs←
ℬ2
; Bs (ℬ2) ⊆ Bs (ℬ1) ;

Bs←
ℬ2
⊆ Bs←
ℬ1
.

Therefore, we receive:

Bs (ℬ1) = Bs (ℬ2) ;
Bs←
ℬ1

=
Bs←
ℬ2
. (1.32)

Thus, the equality ℬ1 = ℬ2 follows from the equalities (1.31),(1.32), by means of Corollary
1.6.1.
3. Let ℬ1⊂−→ℬ2 and ℬ2⊂−→ℬ3. Then, by Definition 1.9.2, the base changeable sets ℬ1 and ℬ2

as well as ℬ2 and ℬ3 are chronologically affined. Hence, ℬ1 and ℬ3 also are chronologically
affined. According to Definition 1.9.2, the evolutional inclusions ℬ1⊂−→ℬ2 and ℬ2⊂−→ℬ3 lead to

the inclusions:

Bs (ℬ1) ⊆ Bs (ℬ2) ;
Bs←
ℬ1
⊆ Bs←
ℬ2
; Bs (ℬ2) ⊆ Bs (ℬ3) ;

Bs←
ℬ2
⊆ Bs←
ℬ3
.

Thus, Bs (ℬ1) ⊆ Bs (ℬ3) and
Bs←
ℬ1
⊆ Bs←
ℬ3
. Therefore, by Definition 1.9.2, we receive ℬ1⊂−→ℬ3.

In Assertion 1.7.5 (item 2)) it had been proved, that for any base changeable set ℬ, the set
L𝑙(ℬ) is the systems of abstract trajectories from Tm(ℬ) to Bs(ℬ).

Assertion 1.9.4. If for some base changeable set ℬ the correlation ℛ ⊆ L𝑙(ℬ) holds while
ℛ ≠ ∅, then

𝒜𝑡 (Tm(ℬ),ℛ) ⊂−→ℬ.

Proof. Suppose, that the condition of this Assertion is satisfied. Denote:

ℬ1 := 𝒜𝑡 (Tm(ℬ),ℛ) .

Since ℛ ⊆ L𝑙(ℬ) ⊆ 2Bs(ℬ), then, by Theorem 1.6.1:

Bs (ℬ1) =
⋃︁
𝑟∈ℛ

𝑟 ⊆ Bs(ℬ). (1.33)

Now, we consider any two elementary-time states 𝜔1, 𝜔2 ∈ Bs (ℬ1) such, that 𝜔2←
ℬ1
𝜔1. Accord-

ing to Theorem 1.6.1,
tm (𝜔1) ≤ tm (𝜔2) , (1.34)

moreover a trajectory 𝑟 ∈ ℛ must exist such, that 𝜔1, 𝜔2 ∈ ℛ. Since ℛ ⊆ L𝑙(ℬ), we have
𝑟 ∈ L𝑙(ℬ). Hence 𝑟 is a chain of ℬ. Thus, at least one of the conditions 𝜔1←

ℬ
𝜔2 or 𝜔2←

ℬ
𝜔1 must

be satisfied. Now, we assume, that 𝜔2 ̸↚
ℬ
𝜔1. Then, we obtain 𝜔1←

ℬ
𝜔2, moreover, by Property

1.6.1(6), 𝜔1 ̸= 𝜔2. Hence, by Property 1.6.1(7) we receive tm (𝜔2) < tm (𝜔1), which contradicts
to the inequality (1.34). Therefore the assumption, that 𝜔2 ̸↚

ℬ
𝜔1 is wrong. Consequently,

𝜔2←
ℬ
𝜔1. From the last correlation, taking into account the inclusion (1.33), and Definition

1.9.2, we get, that ℬ1⊂−→ℬ.
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Assertion 1.9.5. Let ℛ𝑖 (𝑖 ∈ {1, 2}) be systems of abstract trajectories from T to 𝑀𝑖, and,
besides ℛ1 ⊆ ℛ2. Then

𝒜𝑡 (T,ℛ1) ⊂−→𝒜𝑡 (T,ℛ2) .

Proof. Let ℛ𝑖 (𝑖 ∈ {1, 2}) be systems of abstract trajectories from T to 𝑀𝑖, and ℛ1 ⊆ ℛ2.
Denote:

ℬ𝑖 := 𝒜𝑡 (T,ℛ𝑖) (𝑖 ∈ {1, 2}).
By Theorem 1.6.1 we get:

Bs (ℬ1) =
⋃︁
𝑟∈ℛ1

𝑟 ⊆
⋃︁
𝑟∈ℛ2

𝑟 = Bs (ℬ2) . (1.35)

Now, we chose any 𝜔1, 𝜔2 ∈ Bs (ℬ1) such, that 𝜔2←
ℬ1
𝜔1. In accordance with Theorem 1.6.1, we

have tm (𝜔1) ≤ tm (𝜔2), and, besides, trajectory 𝑟 ∈ ℛ1 must exist such, that 𝜔1, 𝜔2 ∈ 𝑟. Since
ℛ1 ⊆ ℛ2, then we get 𝑟 ∈ ℛ2. Hence, applying Theorem 1.6.1, we get 𝜔2←

ℬ2
𝜔1. And, taking

into account the inclusion (1.35), by Definition 1.9.2, we receive ℬ1⊂−→ℬ2.

Assertion 1.9.6. For arbitrary chronologically affined base changeable sets ℬ1 and ℬ2, the
following statements are equivalent:

1. ℬ1⊂−→ℬ2;

2. L𝑙 (ℬ1) ⊆ L𝑙 (ℬ2);

3. L𝑑 (ℬ1) ⊆ L𝑙 (ℬ2);

Proof. 1. First, we are going to prove the implication 1⇒2. Suppose, that ℬ1⊂−→ℬ2. Chose

any chain 𝐿 ∈ L𝑙 (ℬ1). According to Definition 1.9.2, Bs (ℬ1) ⊆ Bs (ℬ2). Hence 𝐿 ⊆ Bs (ℬ2).
Therefore, we need to prove, that the binary relation

Bs←
ℬ2
, defined on 𝐿, satisfies the following

conditions:

1.
Bs←
ℬ2

is transitive on 𝐿;

2. for any 𝜔1, 𝜔2 ∈ 𝐿 at least one of the correlations 𝜔2←
ℬ2
𝜔1 or 𝜔1←

ℬ2
𝜔2 must be true.

Since 𝐿 ∈ L𝑙 (ℬ1), then the binary relation
Bs←
ℬ1

satisfies the conditions 1,2. By Definition 1.9.2,

for 𝜔1, 𝜔2 ∈ 𝐿 condition 𝜔2←
ℬ1
𝜔1 leads to the correlation 𝜔2←

ℬ2
𝜔1. Thus, the desired result

will be proved if we verify, that for arbitrary 𝜔1, 𝜔2 ∈ 𝐿 the correlation 𝜔2←
ℬ2
𝜔1 leads to the

correlation 𝜔2←
ℬ1
𝜔1.

Suppose, that 𝜔1, 𝜔2 ∈ 𝐿 and 𝜔2←
ℬ2
𝜔1. Since 𝐿 is chain in Bs (ℬ1), at least one of the

correlations 𝜔2←
ℬ1
𝜔1 or 𝜔1←

ℬ1
𝜔2 must be true. Assume, that 𝜔2 ̸↚

ℬ1
𝜔1. Then, since, by Property

1.6.1(6), the binary relation
Bs←
ℬ1

is reflexive, we have 𝜔1 ̸= 𝜔2. Thus, we have got 𝜔1 ̸= 𝜔2 and

𝜔1←
ℬ1
𝜔2. Hence, according to Property 1.6.1(7), we receive tm (𝜔2) < tm (𝜔1). From the other

hand, since 𝜔2←
ℬ2
𝜔1, then, by Property 1.6.1(7), the inequality tm (𝜔1) ≤ tm (𝜔2) must be true.

The obtained contradiction shows, that the assumption 𝜔2 ̸↚
ℬ1
𝜔1 is incorrect. Thus, we have

seen, that 𝜔2←
ℬ1
𝜔1, and that it was necessary to prove.

2. Let, L𝑙 (ℬ1) ⊆ L𝑙 (ℬ2). Taking into account the fact, that any fate line of arbitrary base
changeable set forms its chain, we obtain, L𝑑 (ℬ1) ⊆ L𝑙 (ℬ1) ⊆ L𝑙 (ℬ2).
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3. Now we are going to prove the implication 3⇒1. Suppose, that L𝑑 (ℬ1) ⊆ L𝑙 (ℬ2).
Then, according to Theorem 1.7.1 and Assertion 1.9.4, we get, ℬ1 = 𝒜𝑡 (Tm (ℬ1) ,L𝑑 (ℬ1)) =
𝒜𝑡 (Tm (ℬ2) ,L𝑑 (ℬ1)) ⊂−→ℬ2.

Assertion 1.9.7. The super-evolutional inclusion possesses the following properties:

1. ℬ<−→ℬ for an arbitrary base changeable set ℬ;

2. If ℬ1<−→ℬ2 and ℬ2<−→ℬ1 then ℬ1 = ℬ2;

3. If ℬ1<−→ℬ2 and ℬ2<−→ℬ3 then ℬ1<−→ℬ3.

Proof. First property is trivial. Second property is a consequence of assertions 1.9.2 and 1.9.3.
Now, we are to prove the third property. If ℬ1<−→ℬ2 and ℬ2<−→ℬ3 then, according to Definition

1.9.3, the base changeable sets ℬ1 are ℬ3 chronologically affined. Moreover, by Definition 1.9.3,
L𝑑 (ℬ1) ⊆ L𝑑 (ℬ2) ⊆ L𝑑 (ℬ3). Thus, ℬ1<−→ℬ3.

Definition 1.9.4. Indexed family (ℬ𝛼)𝛼∈𝒜 (𝒜 ̸= ∅) of base changeable sets will be named
chronologically affined if and only if any two base changeable sets ℬ𝛼,ℬ𝛽 (where 𝛼, 𝛽 ∈ 𝒜)
are chronologically affined.

Definition 1.9.5. Let (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) be any indexed family of of base changeable sets. Base
changeable set ℬ will be named by evolutional union of the family (ℬ𝛼)𝛼∈𝒜 if and only if:

(EU1) ℬ𝛼⊂−→ℬ for an arbitrary 𝛼 ∈ 𝒜.

(EU2) If ℬ𝛼⊂−→ℬ
′ for any 𝛼 ∈ 𝒜, then ℬ⊂−→ℬ

′.

Assertion 1.9.8. Any indexed family (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) of base changeable sets may have no
more than one evolutional union.

Proof. Indeed, let ℬ and ̃︀ℬ be the evolutional union of the family (ℬ𝛼)𝛼∈𝒜 of base changeable

sets. Then, by Definition 1.9.5, we have ℬ⊂−→
̃︀ℬ and ̃︀ℬ⊂−→ℬ. Thus, in accordance with Assertion

1.9.3, we receive ℬ = ̃︀ℬ.
Taking into account Assertion 1.9.8 (about the uniqueness of evolutional union), we will

denote the evolutional union ℬ of the family (ℬ𝛼)𝛼∈𝒜 of base changeable sets by the following
way:

ℬ =
←−⋃︁
𝛼∈𝒜

ℬ𝛼.

In particular, in the case 𝒜 = {1, ...𝑛} (𝑛 ∈ N), we use the following denotation:

ℬ1
←
∪ · · ·

←
∪ ℬ𝑛 :=

𝑛←−⋃︁
𝑘=1

ℬ𝑘 :=
←−⋃︁
𝛼∈𝒜

ℬ𝛼.

Remark 1.9.1. From the definitions 1.9.5 and 1.9.2 it follows, that, in the case, where ℬ =←−⋃︀
𝛼∈𝒜
ℬ𝛼, the family (ℬ𝛼)𝛼∈𝒜 of base changeable sets must be chronologically affined, moreover

Tm(ℬ) = Tm (ℬ𝛼) (∀𝛼 ∈ 𝒜).

Let T = (T,≤) be any be any linearly ordered set and 𝒜 be any non-empty family of
indexes. Suppose, that for any index 𝛼 ∈ 𝒜 the system of abstract trajectories ℛ𝛼 from T to
𝑀𝛼 is defined. In this case we name the family (ℛ𝛼)𝛼∈𝒜 of systems of abstract trajectories as
T-chronologically affined . Then, the set

⋃︀
𝛼∈𝒜ℛ𝛼 is the system of abstract trajectories from

T to
⋃︀
𝛼∈𝒜𝑀𝛼. Hence, by Theorem 1.6.1, the base changeable set 𝒜𝑡

(︀
T,
⋃︀
𝛼∈𝒜ℛ𝛼

)︀
must exist.
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Further, according to this Theorem, we have Tm (𝒜𝑡 (T,ℛ𝛼)) = T (for an arbitrary 𝛼 ∈ 𝒜).
Therefore, by definitions 1.9.1 and 1.9.4, the indexed family (𝒜𝑡 (T,ℛ𝛼))𝛼∈𝒜 of base changeable
sets is chronologically affined.

Assertion 1.9.9. Let (ℛ𝛼)𝛼∈𝒜 be T-chronologically affined family of systems of abstract tra-

jectories. Then, there exist the evolutional union
←−⋃︀

𝛼∈𝒜𝒜𝑡 (T,ℛ𝛼), and besides:

←−⋃︁
𝛼∈𝒜

𝒜𝑡 (T,ℛ𝛼) = 𝒜𝑡

(︃
T,
⋃︁
𝛼∈𝒜

ℛ𝛼

)︃
Proof. Let ℛ𝛼 be a system of abstract trajectories from T to 𝑀𝛼 for any index 𝛼 ∈ 𝒜. Denote:

ℬ𝛼 := 𝒜𝑡 (T,ℛ𝛼) (𝛼 ∈ 𝒜), ℬ := 𝒜𝑡

(︃
T,
⋃︁
𝛼∈𝒜

ℛ𝛼

)︃
.

a) Since ℛ𝛼 ⊆
⋃︀
𝛽∈𝒜ℛ𝛽 (for an arbitrary 𝛼 ∈ 𝒜), then, according to Assertion 1.9.5, we

have:
ℬ𝛼⊂−→ℬ (∀𝛼 ∈ 𝒜) .

b) Suppose, that ℬ𝛼⊂−→ℬ
′ (∀𝛼 ∈ 𝒜). Then, using assertions 1.7.6 and 1.9.6, for any index

𝛼 ∈ 𝒜 we obtain:
ℛ𝛼 ⊆ L𝑙 (𝒜𝑡 (T,ℛ𝛼)) = L𝑙 (ℬ𝛼) ⊆ L𝑙 (ℬ′) .

Consequently,
⋃︀
𝛼∈𝒜ℛ𝛼 ⊆ L𝑙 (ℬ′). Hence, in accordance with Assertion 1.9.4, we receive,

ℬ = 𝒜𝑡
(︀
T,
⋃︀
𝛼∈𝒜ℛ𝛼

)︀
⊂−→ℬ

′.

Now, the equality ℬ =
←−⋃︀
𝛼∈𝒜
ℬ𝛼 follows from the items a) and b), by means of Definition

1.9.5.

Corollary 1.9.1. For any chronologically affined family of base changeable sets (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠

∅) the evolutional union
←−⋃︀

𝛼∈𝒜 ℬ𝛼 exists, moreover:

←−⋃︁
𝛼∈𝒜

ℬ𝛼 = 𝒜𝑡

(︃
T,
⋃︁
𝛼∈𝒜

L𝑑 (ℬ𝛼)

)︃
,

where T = Tm (ℬ𝛼) (𝛼 ∈ 𝒜).

Proof. Chose any fixed index 𝛼0 ∈ 𝒜. Denote, T := Tm (ℬ𝛼0). Since (ℬ𝛼)𝛼∈𝒜 is chronolog-
ically affined family of base changeable sets, then Tm (ℬ𝛼) = T (for an arbitrary 𝛼 ∈ 𝒜).
According to Assertion 1.7.5 (item 4)), for an arbitrary 𝛼 ∈ 𝒜 the set L𝑑 (ℬ𝛼) is a sys-
tem of abstract trajectories from T = Tm (ℬ𝛼) to Bs (ℬ𝛼). Therefore, (L𝑑 (ℬ𝛼))𝛼∈𝒜 is T-
chronologically affined family of systems of abstract trajectories. And, according to Theorem
1.7.1, ℬ𝛼 = 𝒜𝑡 (Tm (ℬ𝛼) ,L𝑑 (ℬ𝛼)) = 𝒜𝑡 (T,L𝑑 (ℬ𝛼)) (for any 𝛼 ∈ 𝒜). Hence, by Assertion

1.9.9, the evolutional union
←−⋃︀

𝛼∈𝒜 ℬ𝛼 =
←−⋃︀

𝛼∈𝒜𝒜𝑡 (T,L𝑑 (ℬ𝛼)) must exist, moreover:

←−⋃︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︀
𝛼∈𝒜
𝒜𝑡 (T,L𝑑 (ℬ𝛼)) = 𝒜𝑡

(︃
T,
⋃︁
𝛼∈𝒜

L𝑑 (ℬ𝛼)

)︃
.

Corollary 1.9.2. If ℬ =
←−⋃︀

𝛼∈𝒜 ℬ𝛼 then:

Bs(ℬ) =
⋃︁
𝛼∈𝒜

Bs (ℬ𝛼) ;
Bs←
ℬ

=
⋃︁
𝛼∈𝒜

Bs←
ℬ𝛼
; Bs(ℬ) =

⋃︁
𝛼∈𝒜

Bs (ℬ𝛼) .
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Proof. The desired result follows from Corollary 1.9.1 and Theorem 1.6.1. Note, that for proving
the equality Bs(ℬ) =

⋃︀
𝛼∈𝒜 Bs (ℬ𝛼) it is useful Formula (1.30), which follows from Theorem

1.6.1 and holds for any base changeable set. Next, using the formula Bs(ℬ) =
⋃︀
𝛼∈𝒜 Bs (ℬ𝛼),

and Property 1.6.1(9) we obtain:

Bs(ℬ) = {bs (𝜔) | 𝜔 ∈ Bs(ℬ)} =

=

{︃
bs (𝜔) | 𝜔 ∈

⋃︁
𝛼∈𝒜

Bs (ℬ𝛼)

}︃
=

=
⋃︁
𝛼∈𝒜

{bs (𝜔) | 𝜔 ∈ Bs (ℬ𝛼)} =
⋃︁
𝛼∈𝒜

Bs (ℬ𝛼) .

Denotation 1.9.1. In this paper card (𝒜) means the cardinality of the set 𝒜.

Assertion 1.9.10 (on properties of evolutional union). Let (ℬ𝑖)𝑖∈{1,2,3} and (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅)
be two chronologically affined families of base changeable sets. The operation of evolutional
union possesses the following properties:

1. ℬ1
←
∪ ℬ2 = ℬ2

←
∪ ℬ1.

2. If 𝒜 = {𝛼0}, then
←−⋃︀

𝛼∈𝒜 ℬ𝛼 = ℬ𝛼0.

3. If the set of indexes 𝒜 is divided into disjoint union of non-empty index sets 𝒜𝛾 (𝛾 ∈ 𝒢),
(that is 𝒜 =

⨆︀
𝛾∈𝒢 𝒜𝛾) then

←−⋃︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︁
𝛾∈𝒢

⎛⎝ ←−⋃︁
𝛼∈𝒜𝛾

ℬ𝛼

⎞⎠ .

In particular, in the case card (𝒜) ≥ 2, for an arbitrary 𝛼0 ∈ 𝒜 we have the following
equality:

←−⋃︁
𝛼∈𝒜

ℬ𝛼 = ℬ𝛼0

←
∪

⎛⎝ ←−⋃︁
𝛼∈𝒜∖{𝛼0}

ℬ𝛼

⎞⎠ , (1.36)

and in the case 𝒜 = {1, 2, 3} we obtain the equality:(︁
ℬ1
←
∪ ℬ2

)︁ ←
∪ ℬ3 = ℬ1

←
∪
(︁
ℬ2
←
∪ ℬ3

)︁
= ℬ1

←
∪ ℬ2

←
∪ ℬ3. (1.37)

4. If for some base changeable set ℬ′, we have ℬ𝛼⊂−→ℬ
′ (for any 𝛼 ∈ 𝒜), then

←−⋃︀
𝛼∈𝒜 ℬ𝛼⊂−→ℬ

′.

5. If for some 𝛼0 ∈ 𝒜 the inclusion ℬ𝛼⊂−→ℬ𝛼0 is performed for all 𝛼 ∈ 𝒜, then we have
←−⋃︀

𝛼∈𝒜 ℬ𝛼 = ℬ𝛼0. In particular ℬ
←
∪ ℬ = ℬ for any base changeable set ℬ.

Proof. 1. By definition we have, ℬ1
←
∪ ℬ2 =

←−⋃︀
𝑖∈{1,2} ℬ𝑖 = ℬ2

←
∪ ℬ1.

2. The second property easily follows from Definition 1.9.5.

3. Consider any fixed index 𝛼1 ∈ 𝒜. Denote, T := Tm (ℬ𝛼1). Since (ℬ𝛼)𝛼∈𝒜 is chronologi-
cally affined family of base changeable sets, then we have, Tm (ℬ𝛼) = T (∀𝛼 ∈ 𝒜). According

to Remark 1.9.1, the evolutional unions
←−⋃︀

𝛼∈𝒜 ℬ𝛼,
←−⋃︀

𝛼∈𝒜𝛾 ℬ𝛼 (∀𝛾 ∈ 𝒢) and
←−⋃︀
𝛾∈𝒢

(︃
←−⋃︀
𝛼∈𝒜𝛾

ℬ𝛼

)︃
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are correctly defined. Then, applying Corollary 1.9.1, Assertion 1.9.9 and Theorem 1.7.1, we
receive:

←−⋃︁
𝛼∈𝒜

ℬ𝛼 = 𝒜𝑡

(︃
T,
⋃︁
𝛼∈𝒜

L𝑑 (ℬ𝛼)

)︃
= 𝒜𝑡

⎛⎝T,
⋃︁
𝛾∈𝒢

⋃︁
𝛼∈𝒜𝛾

L𝑑 (ℬ𝛼)

⎞⎠ =

=
←−⋃︁
𝛾∈𝒢

𝒜𝑡

⎛⎝T,
⋃︁
𝛼∈𝒜𝛾

L𝑑 (ℬ𝛼)

⎞⎠ =
←−⋃︁
𝛾∈𝒢

⎛⎝ ←−⋃︁
𝛼∈𝒜𝛾

𝒜𝑡 (T,L𝑑 (ℬ𝛼))

⎞⎠ =

=
←−⋃︁
𝛾∈𝒢

⎛⎝ ←−⋃︁
𝛼∈𝒜𝛾

ℬ𝛼

⎞⎠ .

In particular, in the case card (𝒜) ≥ 2, using item 2 of this Assertion, for any fixed index
𝛼0 ∈ 𝒜, we obtain:

←−⋃︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︁

𝛼∈{𝛼0}⊔(𝒜∖{𝛼0})

ℬ𝛼 =

⎛⎝ ←−⋃︁
𝛼∈{𝛼0}

ℬ𝛼

⎞⎠ ←
∪

←−⋃︁
𝛼∈(𝒜∖{𝛼0})

ℬ𝛼

= ℬ𝛼0

←
∪

⎛⎝ ←−⋃︁
𝛼∈𝒜∖{𝛼0}

ℬ𝛼

⎞⎠ ,

that is, we have got the equality (1.36). The equality (1.37) follows from the equality (1.36)
in particular case 𝒜 = {1, 2, 3}, where the commutativity of the evolutional union operation is
taken into account.

4. The fourth item of this Assertion readily follows from Definition 1.9.5.

5. Let ℬ𝛼⊂−→ℬ𝛼0 (∀𝛼 ∈ 𝒜) for some fixed 𝛼0 ∈ 𝒜. Then, in accordance with the previous item

of this Assertion, we get,
←−⋃︀

𝛼∈𝒜 ℬ𝛼⊂−→ℬ𝛼0 . From the other hand, according to Definition 1.9.5,

we have, ℬ𝛼0⊂−→
←−⋃︀

𝛼∈𝒜 ℬ𝛼. Thus, by Assertion 1.9.3 (item 2), we obtain,
←−⋃︀

𝛼∈𝒜 ℬ𝛼 = ℬ𝛼0 .

Let (ℬ𝛼𝛽)𝛼∈A, 𝛽∈B (A,B ̸= ∅) be any two-parametric indexed family of base changeable

sets. The family (ℬ𝛼𝛽)𝛼∈A, 𝛽∈B will be named as chronologically affined, if and only if base
changeable sets ℬ𝛼1𝛽1 ,ℬ𝛼2𝛽2 are chronologically affined for arbitrary indexes 𝛼1, 𝛼2 ∈ A, 𝛽1, 𝛽2 ∈
B. Let (ℬ𝛼𝛽)𝛼∈A, 𝛽∈B (A,B ̸= ∅) be chronologically affined family of base changeable sets.
Then for arbitrary fixed 𝛼0 ∈ A, 𝛽0 ∈ B, the one-parametric families of base changeable
sets (ℬ𝛼0𝛽)𝛽∈B and (ℬ𝛼𝛽0)𝛼∈A are chronologically affined. Hence according to Corollary 1.9.1,

the evolutional unions 𝒰𝛼0,* =
←−⋃︀

𝛽∈B ℬ𝛼0𝛽 and 𝒰*,𝛽0 =
←−⋃︀

𝛼∈A ℬ𝛼𝛽0 must exist. Besides this,
according to Remark 1.9.1, the base changeable sets 𝒰𝛼0,* and 𝒰*,𝛽0 are chronologically affined
with the base changeable set ℬ𝛼0,𝛽0 . Hence, taking into account the chronological affinity of the
family (ℬ𝛼𝛽)𝛼∈A, 𝛽∈B, we see, that the families of base changeable sets (𝒰𝛼,*)𝛼∈A and (𝒰*,𝛽)𝛽∈B
are chronologically affined also. This means, that we can define the double evolutional unions←−⋃︀

𝛼∈A 𝒰𝛼,* =
←−⋃︀

𝛼∈A
←−⋃︀

𝛽∈B ℬ𝛼𝛽 and
←−⋃︀

𝛽∈B 𝒰*,𝛽 =
←−⋃︀

𝛽∈B
←−⋃︀

𝛼∈A ℬ𝛼𝛽. Now, we aim to prove, that
double evolutional union does not depend on the order of application of evolutional union
operations. Indeed, let us consider any fixed indexes 𝛼0 ∈ A, 𝛽0 ∈ B. Denote, T := Tm (ℬ𝛼0𝛽0).
Then, applying Theorem 1.7.1 and Assertion 1.9.9, we receive:

←−⋃︁
𝛼∈A

←−⋃︁
𝛽∈B

ℬ𝛼𝛽 =
←−⋃︁
𝛼∈A

←−⋃︁
𝛽∈B

𝒜𝑡 (T,L𝑑 (ℬ𝛼𝛽)) = 𝒜𝑡

(︃
T,
⋃︁
𝛼∈A

⋃︁
𝛽∈B

L𝑑 (ℬ𝛼𝛽)

)︃
=
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= 𝒜𝑡

(︃
T,
⋃︁
𝛽∈B

⋃︁
𝛼∈A

L𝑑 (ℬ𝛼𝛽)

)︃
=
←−⋃︁
𝛽∈B

←−⋃︁
𝛼∈A

𝒜𝑡 (T,L𝑑 (ℬ𝛼𝛽)) =

=
←−⋃︁
𝛽∈B

←−⋃︁
𝛼∈A

ℬ𝛼𝛽.

Taking into account the last fact, we will use the following denotations for double evolutional
union: ←−⋃︁

𝛼∈A, 𝛽∈B

ℬ𝛼𝛽 :=
←−⋃︁
𝛼∈A

←−⋃︁
𝛽∈B

ℬ𝛼𝛽 =
←−⋃︁
𝛽∈B

←−⋃︁
𝛼∈A

ℬ𝛼𝛽.

By a similar way the notion of chronological affinity can be introduced for many-parametric
indexed family of base changeable sets (ℬ𝛼1...𝛼𝑛)𝛼1∈A1,...,𝛼𝑛∈A𝑛 , where 𝑛 ∈ N, A𝑖 ̸= ∅, 𝑖 ∈
{1, · · · , 𝑛}. The base changeable set:

←−⋃︁
𝛼1∈A1,...,𝛼𝑛∈A𝑛

ℬ𝛼1...𝛼𝑛 =
←−⋃︁

𝛼1∈A1

· · ·
←−⋃︁

𝛼𝑛∈A𝑛

ℬ𝛼1...𝛼𝑛

will be named by evolutional union of the family (ℬ𝛼1...𝛼𝑛)𝛼1∈A1,...,𝛼𝑛∈A𝑛 . Similarly to the case
of two-parametric family it can be proved, that the result in the right-hand side of the last
equality does not depend of the order of placing of evolutional union signs.

Definition 1.9.6. Let, (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) be any chronologically affined family of base changeable
sets. Base changeable set ℬ will be named by super-evolutional union of the family (ℬ𝛼)𝛼∈𝒜,
if and only if the following conditions are performed:

(sEU1) ℬ𝛼<−→ℬ (∀𝛼 ∈ 𝒜).

(sEU2) If ℬ𝛼<−→ℬ
′ (∀𝛼 ∈ 𝒜), then ℬ⊂−→ℬ

′.

The next Corollary follows from Definition 1.9.6 and Assertion 1.9.3 (item 2).

Corollary 1.9.3. Any indexed family (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) of base changeable sets may have no
more than one super-evolutional union.

Super-evolutional union ℬ of the family (ℬ𝛼)𝛼∈𝒜 of base changeable sets will be denoted by
the following way:

ℬ =
←−⋁︁
𝛼∈𝒜

ℬ𝛼.

In particular, in the case 𝒜 = {1, ...𝑛} (𝑛 ∈ N), we use the denotation
←−⋁︀𝑛

𝑘=1 ℬ𝑘, or or, simply,

ℬ1
←
∨ · · ·

←
∨ ℬ𝑛:

𝑛←−⋁︁
𝑘=1

ℬ𝑘 := ℬ1
←
∨ · · ·

←
∨ ℬ𝑛 :=

←−⋁︁
𝛼∈𝒜

ℬ𝛼.

The next assertion may be interpreted as some analog of the theorem, confirming, that any
bounded set of real numbers always have the least upper bound.

Assertion 1.9.11. Suppose, that for chronologically affined family of base changeable sets
(ℬ𝛼)𝛼∈𝒜 (𝒜 ̸= ∅) there exists the base changeable set ̃︀ℬ, such, that for any index 𝛼 ∈ 𝒜 it

is true the inclusion ℬ𝛼<−→
̃︀ℬ. Then the super-evolutional union

←−⋁︀
𝛼∈𝒜 ℬ𝛼 exists, moreover, the

following equality is true: ←−⋁︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︁
𝛼∈𝒜

ℬ𝛼.
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Proof. Denote:

ℬ :=
←−⋃︁
𝛼∈𝒜

ℬ𝛼.

Now, we aim to prove, that:

∀𝛼 ∈ 𝒜 (L𝑑 (ℬ𝛼) ⊆ L𝑑(ℬ)) . (1.38)

Let us assume the contrary. Then there exist index 𝛽 ∈ 𝒜 and fate line 𝐿 ∈ L𝑑 (ℬ𝛽) such, that
𝐿 /∈ L𝑑(ℬ).

By Definition 1.9.5, we have ℬ𝛽⊂−→
←−⋃︀

𝛼∈𝒜 ℬ𝛼 = ℬ. Hence, according to Assertion 1.9.6, we

get 𝐿 ∈ L𝑙(ℬ). Therefore, since 𝐿 /∈ L𝑑(ℬ), the chain 𝐿1 ∈ L𝑙(ℬ) must exist such, that 𝐿 ⊂ 𝐿1.

Since ℬ𝛼<−→
̃︀ℬ (∀𝛼 ∈ 𝒜), then, by Assertion 1.9.2, for an arbitrary 𝛼 ∈ 𝒜 we have ℬ𝛼⊂−→

̃︀ℬ.
Hence, according to Assertion 1.9.10 (item 4), we get ℬ =

←−⋃︀
𝛼∈𝒜 ℬ𝛼⊂−→

̃︀ℬ. Taking into account,

that ℬ⊂−→
̃︀ℬ and 𝐿1 ∈ L𝑙(ℬ), applying Assertion 1.9.6, we obtain 𝐿1 ∈ L𝑙

(︁ ̃︀ℬ)︁.
Thus, we have proved, that the chain 𝐿1 ∈ L𝑙

(︁ ̃︀ℬ)︁ exists such, that 𝐿 ⊂ 𝐿1. This means,

that 𝐿 /∈ L𝑑
(︁ ̃︀ℬ)︁. From the other hand, since ℬ𝛽<−→

̃︀ℬ and 𝐿 ∈ L𝑑 (ℬ𝛽), then, by Definition

1.9.3, the correlation 𝐿 ∈ L𝑑
(︁ ̃︀ℬ)︁ must be performed.

The obtained contradiction proves the correlation (1.38). By Definition 1.9.3, from the
correlation (1.38) it follows, that

∀𝛼 ∈ 𝒜
(︁
ℬ𝛼<−→ℬ

)︁
.

Hence, the base changeable set ℬ satisfies Condition (sEU1) of Definition 1.9.6.
Therefore, it remains to prove, that Condition (sEU2) of Definition 1.9.6 also is satisfied

for ℬ. Suppose, that for some base changeable set ℬ′ the correlation ℬ𝛼<−→ℬ
′ is true for all

𝛼 ∈ 𝒜. Then, according to Assertion 1.9.2, we have, ℬ𝛼⊂−→ℬ
′ (∀𝛼 ∈ 𝒜). Hence, by Assertion

1.9.10 (item 4), we obtain, ℬ =
←−⋃︀
𝛼∈𝒜
ℬ𝛼⊂−→ℬ

′.

Corollary 1.9.4. If the super-evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists, then it coincides with corre-
sponding evolutional union, that is:

←−⋁︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︁
𝛼∈𝒜

ℬ𝛼.

Proof. Indeed, suppose, that super-evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists for the chronologically

affined family of base changeable sets (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅). Then the base changeable set ̃︀ℬ =
←−⋁︀

𝛼∈𝒜 ℬ𝛼 satisfies the conditions of Assertion 1.9.11.

In the following example it will be shown, that, unlike evolutional union, the super-
evolutional union of chronologically affined family of base changeable sets sometimes may not
exist.

Example 1.9.2. Let the systems of abstract trajectories ℛ0 = {𝑟0}, ℛ1 = {𝑟1} be the same as
in Example 1.9.1. In Example 1.9.1 it had been shown, that, for base changeable sets

ℬ0 := 𝒜𝑡 (R𝑜𝑟𝑑,ℛ0) ; ℬ1 := 𝒜𝑡 (R𝑜𝑟𝑑,ℛ1)
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the evolutional inclusion ℬ0⊂−→ℬ1 holds. Hence, by Assertion 1.9.10, item 5, ℬ0
←
∪ ℬ1 = ℬ1.

From the other hand, the evolutional union ℬ0
←
∨ℬ1 doesn’t exist. Indeed, assume the contrary.

Then, according to Corollary 1.9.4, we have, ℬ0
←
∨ ℬ1 = ℬ0

←
∪ ℬ1 = ℬ1. But, in Example 1.9.1

it had been shown, that ℬ0 ̸<−→ℬ1. Thus, by Definition 1.9.6, ℬ1 can not be super-evolutional

union of ℬ0 and ℬ1. The obtained contradiction proves, that super-evolutional union ℬ0
←
∨ ℬ1

does not exist.

Definition 1.9.7. An chronologically affined family of base changeable sets (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅)
will be named as evolutionarily saturated, if and only if the following inclusion holds:

⋃︁
𝛼∈𝒜

L𝑑 (ℬ𝛼) ⊆ L𝑑

(︃←−⋃︁
𝛼∈𝒜

ℬ𝛼

)︃
. (1.39)

Remark 1.9.2. From definitions 1.9.7 and 1.9.3 it follows, that chronologically affined family of

base changeable sets (ℬ𝛼)𝛼∈𝒜 (𝒜 ̸= ∅) is evolutionarily saturated if and only if ℬ𝛽<−→
←−⋃︀
𝛼∈𝒜
ℬ𝛼

(∀𝛽 ∈ 𝒜).

Assertion 1.9.12. The super-evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 of chronologically affined family of
base changeable sets (ℬ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) exists if and only if this family is evolutionarily saturated.

Proof. Suppose, that the super-evolutional union ℬ =
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists. Then, by Definition
1.9.6, ℬ𝛼<−→ℬ (∀𝛼 ∈ 𝒜). Hence, by Definition 1.9.3, we get L𝑑 (ℬ𝛼) ⊆ L𝑑(ℬ) (∀𝛼 ∈ 𝒜), ie⋃︀
𝛼∈𝒜 L𝑑 (ℬ𝛼) ⊆ L𝑑(ℬ). But, according to Corollary 1.9.4, we have ℬ =

←−⋁︀
𝛼∈𝒜 ℬ𝛼 =

←−⋃︀
𝛼∈𝒜 ℬ𝛼.

Therefore,
⋃︀
𝛼∈𝒜 L𝑑 (ℬ𝛼) ⊆ L𝑑

(︁←−⋃︀
𝛼∈𝒜 ℬ𝛼

)︁
.

Inversely, suppose, that the chronologically affined family of base changeable sets (ℬ𝛼)𝛼∈𝒜
(𝒜 ̸= ∅) is evolutionarily saturated, that is the equality (1.39) holds. Denote, ℬ =

←−⋃︀
𝛼∈𝒜 ℬ𝛼.

According to (1.39), we have, L𝑑 (ℬ𝛼) ⊆ L𝑑(ℬ) (∀𝛼 ∈ 𝒜). Hence, by Definition 1.9.3 we get,
ℬ𝛼<−→ℬ (∀𝛼 ∈ 𝒜). Therefore, in accordance with Assertion 1.9.11, the super-evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists.

Lemma 1.9.1 (on properties of evolutional saturation). Let (ℬ𝛼)𝛼∈𝒜 (𝒜 ̸= ∅) be any chrono-
logically affined indexed family of base changeable sets.

1. If there exists base changeable set ̃︀ℬ, such, that for any index 𝛼 ∈ 𝒜 the inclusion ℬ𝛼<−→
̃︀ℬ,

is performed, then the family (ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated.

2. If ℬ𝛼 = ℬ (∀𝛼 ∈ 𝒜), then the family (ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated.

3. If Bs (ℬ𝛼)∩Bs (ℬ𝛽) = ∅ for ℬ𝛼 ̸= ℬ𝛽, then the family (ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated.

4. If the family (ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated and 𝒜1 ⊆ 𝒜, 𝒜1 ̸= ∅, then the subfamily
(ℬ𝛼)𝛼∈𝒜1

is evolutionarily saturated also.

Proof. 1. Suppose, that ℬ𝛼<−→
̃︀ℬ (∀𝛼 ∈ 𝒜). Then, according to Assertion 1.9.11, the super-

evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists. Hence, in accordance with Assertion 1.9.12, the family
(ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated.

2. If ℬ𝛼 = ℬ (∀𝛼 ∈ 𝒜), then, by Assertion 1.9.7, we have ℬ𝛼<−→ℬ (∀𝛼 ∈ 𝒜). Hence, according
to the previous item, the family (ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated.
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3. Suppose, that Bs (ℬ𝛼) ∩ Bs (ℬ𝛽) = ∅ for ℬ𝛼 ̸= ℬ𝛽. Denote, ℬ :=
←−⋃︀

𝛼∈𝒜 ℬ𝛼. Let us chose
any 𝐿 ∈

⋃︀
𝛼∈𝒜 L𝑑 (ℬ𝛼). Then, there exists the index 𝛼0 ∈ 𝒜 such, that 𝐿 ∈ L𝑑 (ℬ𝛼0). Since,

by Definition 1.9.5, ℬ𝛼0⊂−→
←−⋃︀

𝛼∈𝒜 ℬ𝛼 = ℬ, then, by Assertion 1.9.6, we have 𝐿 ∈ L𝑙(ℬ). Now,

we aim to prove, that 𝐿 ∈ L𝑑(ℬ). Suppose the contrary. Then there exists a chain 𝐿1 ∈ L𝑙(ℬ)
(𝐿1 ⊆ Bs(ℬ)) such, that 𝐿 ⊂ 𝐿1. Let us consider any elementary-time state 𝜔 ∈ 𝐿1. Since
𝐿 is a fate line of ℬ𝛼0 , then, according to Assertion 1.7.3 and Remark 1.6.1, we have 𝐿 ̸= ∅.
Hence at least one elementary-time state 𝜔0 ∈ 𝐿 exists. Since 𝐿 ⊂ 𝐿1, then 𝜔0 ∈ 𝐿1. Since
𝜔, 𝜔0 ∈ 𝐿1, where 𝐿1 is a chain of ℬ, then at least one of the conditions 𝜔0←

ℬ
𝜔 or 𝜔←

ℬ
𝜔0

must be satisfied. Hence, by Corollary 1.9.2, the index 𝛼1 ∈ 𝒜 must exist such, that 𝜔0 ←
ℬ𝛼1

𝜔 or

𝜔 ←
ℬ𝛼1

𝜔0. But, since the relation
Bs←
ℬ𝛼1

is defined on the set Bs (ℬ𝛼1), the both correlations (𝜔0 ←
ℬ𝛼1

𝜔

or 𝜔 ←
ℬ𝛼1

𝜔0), lead to the correlation 𝜔, 𝜔0 ∈ Bs (ℬ𝛼1). Hence, we have, 𝜔0 ∈ Bs (ℬ𝛼0)∩Bs (ℬ𝛼1).

And, taking into account the fact, that Bs (ℬ𝛼) ∩ Bs (ℬ𝛽) = ∅ for ℬ𝛼 ̸= ℬ𝛽, we receive the
equality ℬ𝛼0 = ℬ𝛼1 . Hence, 𝜔, 𝜔0 ∈ Bs (ℬ𝛼0). Thus, any element 𝜔 ∈ 𝐿1 belongs to Bs (ℬ𝛼0).
Consequently, 𝐿1 ⊆ Bs (ℬ𝛼0). Now, we are going to prove, that for arbitrary 𝜔1, 𝜔2 ∈ 𝐿1,
the correlation 𝜔2←

ℬ
𝜔1 holds if and only if 𝜔2 ←

ℬ𝛼0
𝜔1. If 𝜔1, 𝜔2 ∈ 𝐿1 and 𝜔2 ←

ℬ𝛼0
𝜔1, then, by

Corollary 1.9.2, we have 𝜔2←
ℬ
𝜔1. Inversely, suppose, that 𝜔2←

ℬ
𝜔1 (where 𝜔1, 𝜔2 ∈ 𝐿1). Since

ℬ =
←−⋃︀

𝛼∈𝒜 ℬ𝛼, then, by Corollary 1.9.2, an index 𝛼1 ∈ 𝒜 exists such, that 𝜔2 ←
ℬ𝛼1

𝜔1. Since the

relation
Bs←
ℬ𝛼1

is defined on the set Bs (ℬ𝛼1), then 𝜔, 𝜔0 ∈ Bs (ℬ𝛼1). And, taking into account

that the condition Bs (ℬ𝛼) ∩ Bs (ℬ𝛽) = ∅ must hold for ℬ𝛼 ̸= ℬ𝛽, we get ℬ𝛼0 = ℬ𝛼1 . Hence,

we obtain 𝜔2 ←
ℬ𝛼0

𝜔1, which was necessary to prove. Thus, the binary relations
Bs←
ℬ

and
Bs←
ℬ𝛼0

are

coinciding on the set 𝐿1. Hence, since 𝐿1 is the chain in ℬ (with regard to the relation
Bs←
ℬ
),

then 𝐿1 also forms the chain in ℬ𝛼0 (with regard to the relation
Bs←
ℬ𝛼0

). Thus the assumption,

that 𝐿 /∈ L𝑑(ℬ) leads to the existence of chain 𝐿1 ⊆ Bs (ℬ𝛼0) in ℬ𝛼0 such, that 𝐿 ⊂ 𝐿1, which
contradicts to the fact, that 𝐿 ∈ L𝑑 (ℬ𝛼0). Consequently, 𝐿 ∈ L𝑑(ℬ). Therefore, any fate
line 𝐿 ∈

⋃︀
𝛼∈𝒜 L𝑑 (ℬ𝛼) belongs to L𝑑(ℬ). This means, that the family of base changeable sets

(ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated (by Definition 1.9.7).
4. Suppose, that the family (ℬ𝛼)𝛼∈𝒜 is evolutionarily saturated. Then, by Assertion 1.9.12,

the super-evolutional union ℬ =
←−⋁︀

𝛼∈𝒜 ℬ𝛼 must exist. Hence, by Definition 1.9.6, for any index
𝛼 ∈ 𝒜1 ⊆ 𝒜 we have, ℬ𝛼<−→ℬ. Consequently, according to the first item of this Lemma, the

subfamily (ℬ𝛼)𝛼∈𝒜1
is evolutionarily saturated.

From Assertion 1.9.10 and Definition 1.9.6, taking into account Corollary 1.9.4, Assertion
1.9.12 and Lemma 1.9.1, we obtain the following assertion.

Assertion 1.9.13 (on properties of super-evolutional union). Let (ℬ𝑖)𝑖∈{1,2,3} and (ℬ𝛼)𝛼∈𝒜
(𝒜 ̸= ∅) be two evolutionarily saturated families of base changeable sets. The operation of
super-evolutional union possesses the following properties:

1. ℬ1
←
∨ ℬ2 = ℬ2

←
∨ ℬ1.

2. If 𝒜 = {𝛼0}, then
←−⋁︀

𝛼∈𝒜 ℬ𝛼 = ℬ𝛼0.

3. If the set of indexes 𝒜 is divided into disjoint union of non-empty index sets 𝒜𝛾 (𝛾 ∈ 𝒢),
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(that is 𝒜 =
⨆︀
𝛾∈𝒢 𝒜𝛾) then:

←−⋁︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︁
𝛾∈𝒢

⎛⎝ ←−⋁︁
𝛼∈𝒜𝛾

ℬ𝛼

⎞⎠ . (1.40)

In particular, in the case card (𝒜) ≥ 2, for an arbitrary 𝛼0 ∈ 𝒜 we have the following
equality:

←−⋁︁
𝛼∈𝒜

ℬ𝛼 = ℬ𝛼0

←
∪

⎛⎝ ←−⋁︁
𝛼∈𝒜∖{𝛼0}

ℬ𝛼

⎞⎠ , (1.41)

and in the case 𝒜 = {1, 2, 3} we obtain the equality:(︁
ℬ1
←
∨ ℬ2

)︁ ←
∪ ℬ3 = ℬ1

←
∪
(︁
ℬ2
←
∨ ℬ3

)︁
= ℬ1

←
∨ ℬ2

←
∨ ℬ3. (1.42)

4. If for some base changeable set ℬ′, we have ℬ𝛼⊂−→ℬ
′ (for any 𝛼 ∈ 𝒜), then

←−⋁︀
𝛼∈𝒜 ℬ𝛼⊂−→ℬ

′.

5. If for some 𝛼0 ∈ 𝒜 the inclusion ℬ𝛼⊂−→ℬ𝛼0 is performed for all 𝛼 ∈ 𝒜, then we have
←−⋁︀

𝛼∈𝒜 ℬ𝛼 = ℬ𝛼0. In particular ℬ
←
∨ ℬ = ℬ for any base changeable set ℬ.

It turns out, that in Item 3 of Assertion 1.9.13 (more precisely, in the equalities (1.40),(1.41)
and (1.42)) the sign of the evolutional union can not be replaced by the sign of super-evolutional
union. Moreover, in Item 4 the evolutional inclusion can not be replaced by the super-
evolutional inclusion. The next example shows that, despite the fact that any subfamily of
evolutionarily saturated family (ℬ𝛼)𝛼∈𝒜 of base changeable sets itself is evolutionarily saturated,
the family of kind

(︁
ℬ𝛼0 ,

(︁←−⋁︀
𝛼∈𝒜∖{𝛼0} ℬ𝛼

)︁)︁
for 𝛼0 ∈ 𝒜 may be not evolutionarily saturated (that

is in the general case super-evolutional union ℬ𝛼0

←
∨
(︁←−⋁︀

𝛼∈𝒜∖{𝛼0} ℬ𝛼
)︁
may do not exist, while

the super-evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists).

Example 1.9.3. Let us consider the linearly ordered set T = (T,≤), where T = {0, 1, 2, 3} and
≤ is the standard linear order on the set of natural numbers. Now, we define the trajectories
𝑟𝑖 (𝑖 ∈ {1, · · · , 4}) from T to the set 𝑀 = {0, 1, 2} by means of the following tables.

𝑡 𝑟1(𝑡)

0 1
1 0
2 0
3 0

𝑡 𝑟2(𝑡)

0 0
1 1
2 0
3 1

𝑡 𝑟3(𝑡)

0 0
1 0
2 1
3 2

𝑡 𝑟4(𝑡)

0 0
1 0
2 0
3 1

Table 1. Table 2. Table 3. Table 4.

Any singleton set of kind ℛ𝑖 = {𝑟𝑖}, (𝑖 ∈ {1, · · · , 4}) is the system of abstract trajectories
from T to the set 𝑀𝑖, where 𝑀1 =𝑀2 =𝑀4 = {0, 1}, 𝑀3 =𝑀 = {0, 1, 2}. Denote:

ℬ𝑖 := 𝒜𝑡 (T,ℛ𝑖) = 𝒜𝑡 (T, {𝑟𝑖}) (𝑖 ∈ {1, · · · , 4}).

The family (ℬ𝑖)4𝑖=1 of base changeable sets is chronologically affined. And we are going

to prove, that this family is evolutionarily saturated. Denote, ℬ :=
←−⋃︀4

𝑖=1 ℬ𝑖. According to
Assertion 1.9.9, we obtain:

ℬ =

4←−⋃︁
𝑖=1

ℬ𝑖 =
4←−⋃︁
𝑖=1

𝒜𝑡 (T, {𝑟𝑖}) = 𝒜𝑡 (T, {𝑟1, 𝑟2, 𝑟3, 𝑟4}) . (1.43)
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In accordance with Definition 1.9.5 (item (EU1)) we have:

ℬ𝑖⊂−→

4←−⋃︁
𝑗=1

ℬ𝑗 = ℬ (𝑖 ∈ {1, . . . , 4}). (1.44)

Now we need to prove the inclusion:

4⋃︁
𝑖=1

L𝑑 (ℬ𝑖) ⊆ L𝑑 (ℬ) . (1.45)

Since any system of abstract trajectories ℛ𝑖 (𝑖 ∈ {1, . . . , 4}) consists of only one trajectory 𝑟𝑖,
then all ℛ𝑖 (𝑖 ∈ {1, . . . , 4}) are systems of individual trajectories. Hence, by Theorem 1.7.2,

L𝑑 (ℬ𝑖) = L𝑑 (𝒜𝑡 (T,ℛ𝑖)) = ℛ𝑖 = {𝑟𝑖} (𝑖 ∈ {1, . . . , 4}). (1.46)

Taking into account (1.43) and Assertion 1.7.6, we have:

𝑟𝑖 ∈ L𝑙 (𝒜𝑡 (T, {𝑟1, 𝑟2, 𝑟3, 𝑟4})) = L𝑙(ℬ) (𝑖 ∈ {1, . . . , 4}).

Since any trajectory 𝑟𝑖 is defined on all set T = {0, 1, 2, 3}, where according to equality (1.43),
T = Tm(ℬ), then it can not be “expanded” in ℬ by means of including into its domain new
time points 𝑡 ∈ Tm(ℬ). Consequently 𝑟𝑖 ∈ L𝑑(ℬ) (𝑖 ∈ {1, . . . , 4}). Hence,

⋃︀4
𝑖=1 L𝑑 (ℬ𝑖) =⋃︀4

𝑖=1 {𝑟𝑖} ⊆ L𝑑(ℬ), and the inclusion (1.45) has been proved now.

Therefore, by Definition 1.9.7, the family (ℬ𝑖)4𝑖=1 = (𝒜𝑡 (T, {𝑟𝑖}))4𝑖=1 of base changeable sets
is evolutionarily saturated. Consequently, according to Assertion 1.9.12, the super-evolutional

union
←−⋁︀ 4

𝑖=1 ℬ𝑖, exists, moreover by Corollary 1.9.4, we get
←−⋁︀ 4

𝑖=1 ℬ𝑖 =
←−⋃︀ 4

𝑖=1 ℬ𝑖 = ℬ. Hence:

ℬ𝑖<−→ℬ (𝑖 ∈ {1, . . . , 4}). (1.47)

Let us denote:

ℬ0 :=
3←−⋁︁
𝑖=1

ℬ𝑖 = ℬ1
←
∨ ℬ2

←
∨ ℬ3,

and let us prove, that ℬ0 ̸<−→ℬ.
According to Theorem 1.6.1, for an arbitrary 𝑖 ∈ {1, . . . , 4} the following equalities are true:

Bs (ℬ𝑖) = Bs (𝒜𝑡 (T, {𝑟𝑖})) = 𝑟𝑖; (1.48)
Bs←
ℬ𝑖

=
{︀
(𝜔2, 𝜔1) ∈ 𝑟×2𝑖 | (tm (𝜔1) ≤ tm (𝜔2))

}︀
. (1.49)

Denote:

w1 := (0, 0) , w2 := (1, 0) , w3 := (2, 0) , w4 := (3, 0) ,
w5 := (0, 1) , w6 := (1, 1) , w7 := (3, 1) , w8 := (2, 1) ,
w9 := (3, 2) .

W := {w1,w2, . . . ,w9} .

Then, taking into account the equalities (1.48),(1.49), we obtain:

Bs (ℬ1) = 𝑟1 = {w5,w2,w3,w4} ; Bs (ℬ2) = {w1,w6,w3,w7} ;
Bs (ℬ3) = {w1,w2,w8,w9} ; Bs (ℬ4) = {w1,w2,w3,w7} ;

(1.50)
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Bs←
ℬ1

= diag (Bs (ℬ1)) ∪ {(w2,w5) , (w3,w5) , (w3,w2)}∪
∪{(w4,w5) , (w4,w2) , (w4,w3)}

(where diag(K) = {(𝜔, 𝜔) | 𝜔 ∈ K} , for any setK);
Bs←
ℬ2

= diag (Bs (ℬ2)) ∪ {(w6,w1) , (w3,w1) , (w3,w6)}∪
∪{(w7,w1) , (w7,w6) , (w7,w3)} ;

Bs←
ℬ3

= diag (Bs (ℬ3)) ∪ {(w2,w1) , (w8,w1) , (w8,w2)}∪
∪{(w9,w1) , (w9,w2) , (w9,w8)} ;

Bs←
ℬ4

= diag (Bs (ℬ4)) ∪ {(w2,w1) , (w3,w1) , (w3,w2)}∪
∪{(w7,w1) , (w7,w2) , (w7,w3)} .

(1.51)

Consequently, according to Corollary 1.9.4, Corollary 1.9.2 and Property 1.6.1(9), we get:

Bs (ℬ0) = Bs

⎛⎝ 3←−⋃︁
𝑖=1

ℬ𝑖

⎞⎠ =
3⋃︁
𝑖=1

Bs (ℬ𝑖) = {w1, . . . ,w9} = W; (1.52)

Bs (ℬ0) = {bs (𝜔) | 𝜔 ∈ Bs (ℬ0)} = {0, 1, 2} =𝑀 ;

Bs←−−−
ℬ0

=
Bs←−−−
3←−⋃︀
𝑖=1
ℬ𝑖

=
3⋃︁
𝑖=1

(︂
Bs←
ℬ𝑖

)︂
= diag(W)∪

∪{(w2,w5) , (w3,w5) , (w3,w2) , (w4,w5) , (w4,w2) , (w4,w3) ,

(w6,w1) , (w3,w1) , (w3,w6) , (w7,w1) , (w7,w6) , (w7,w3) ,

(w2,w1) , (w8,w1) , (w8,w2) , (w9,w1) , (w9,w2) , (w9,w8)} (1.53)

Now, we consider the set 𝐿0 = {w1,w2,w3} ⊆ Bs (ℬ0). From the correlations (1.53) it
follows, that for w𝑖,w𝑗 ∈ 𝐿0 (𝑖, 𝑗 ∈ {1, 2, 3}) the condition w𝑗←

ℬ0
w𝑖 holds if and only if

𝑖 ≤ 𝑗. Consequently (since ≤ is the standard linear order for natural numbers) the set 𝐿0 =
{w1,w2,w3} is a chain of ℬ0. Our next aim is to prove, that 𝐿0 is a fate line of ℬ0. Assume
the contrary. Then the chain 𝐿1 such, that 𝐿0 ⊂ 𝐿1 must exist in the set Bs (ℬ0). According
to Assertion 1.7.5, 𝐿0 and 𝐿1 are abstract trajectories from Tm (ℬ0) = T = {0, 1, 2, 3} to
Bs (ℬ0) = {0, 1, 2}. Since D (𝐿0) = {0, 1, 2}, the strict inclusion 𝐿0 ⊂ 𝐿1 is possible only under
condition D (𝐿1) = {0, 1, 2, 3} = T. Hence, only the next three cases are possible: 𝐿1(3) = 0,
𝐿1(3) = 1, 𝐿1(3) = 2. But, from the other hand:

Case 1 (𝐿1(3) = 0) is impossible, because in this case w1,w4 ∈ 𝐿1 (w1 ∈ 𝐿0 ⊂ 𝐿1), where,
according to (1.53), w4 ̸↚

ℬ0
w1 and w1 ̸↚

ℬ0
w4.

Case 2 (𝐿1(3) = 1) is impossible, because in this case w2,w7 ∈ 𝐿1 (w2 ∈ 𝐿0 ⊂ 𝐿1), where,
according to (1.53), w2 ̸↚

ℬ0
w7 and w7 ̸↚

ℬ0
w2.

Case 3 (𝐿1(3) = 2) is impossible, because in this case w3,w9 ∈ 𝐿1 (w3 ∈ 𝐿0 ⊂ 𝐿1), where,
according to (1.53), w3 ̸↚

ℬ0
w9 and w9 ̸↚

ℬ0
w3.

Hence, any of considered cases is impossible. Therefore, the assumption, made above, is
wrong. This means, that is 𝐿0 ∈ L𝑑 (ℬ0). But, 𝐿0 /∈ L𝑑(ℬ), because, according to (1.46) and
(1.45), we have 𝑟4 ∈ {𝑟4} = L𝑑 (ℬ4) ⊆ L𝑑(ℬ), while 𝑟4 ⊃ 𝐿0.

Thus, 𝐿0 ∈ L𝑑 (ℬ0) and 𝐿0 /∈ L𝑑(ℬ). This means, that
←−⋁︀ 3

𝑖=1 ℬ𝑖 = ℬ0 ̸<−→ℬ. Hence, in the

item 4 of Assertion 1.9.13, the sign “⊂−→” can not be replaced by the sign “<−→” (because, according
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to (1.47), ℬ𝑖<−→ℬ (𝑖 ∈ {1, 2, 3}), but
←−⋁︀ 3

𝑖=1 ℬ𝑖 ̸<−→ℬ). Besides this, the family

(︂←−⋁︀ 3

𝑖=1 ℬ𝑖, ℬ4
)︂

of

two base changeable sets is not evolutionarily saturated, due to Remark 1.9.2. That is why,

the super-evolutional union

(︂←−⋁︀ 3

𝑖=1 ℬ𝑖
)︂
←
∨ ℬ4 does not exist, while the super-evolutional union

←−⋁︀ 4

𝑖=1 ℬ𝑖, exists. And, in accordance with Assertion 1.9.13, we have,
←−⋁︀ 4

𝑖=1 ℬ𝑖 =
(︂←−⋁︀ 3

𝑖=1 ℬ𝑖
)︂
←
∪ℬ4.

9.3 On Existence of Evolutional Extensions of Base Changeable Sets.

Theorem 1.9.1. Let ℬ be a base changeable set and ℛ be a system of abstract trajectories from
Tm(ℬ) to 𝑀 .

Then the base changeable set ̃︀ℬ = ℬ
←
∪𝒜𝑡 (Tm(ℬ),ℛ) is an evolutional extension of ℬ such,

that ℛ ⊆ L𝑙
(︁ ̃︀ℬ)︁.

Proof. To verify the correctness of this Theorem it is sufficient to use Assertion 1.7.6, Definition
1.9.5 and Assertion 1.9.6.

Definition 1.9.8. System of abstract trajectories ℛ from T to 𝑀 will be named by:

∙ Evolutionarily saturated, if and only if ℛ ⊆ L𝑑 (𝒜𝑡 (T,ℛ)).

∙ Evolutionarily saturated relatively a base changeable set ℬ, if and only if:

1) Tm(ℬ) = T;

2) L𝑑(ℬ) ∪ℛ ⊆ L𝑑
(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
.

Assertion 1.9.14.

1. If the system of abstract trajectories ℛ is evolutionarily saturated relatively a base change-
able set ℬ, then it is evolutionarily saturated.

2. If the system of abstract trajectories ℛ from T to 𝑀 is evolutionarily saturated and, while(︀⋃︀
𝑟∈ℛ 𝑟

)︀
∩ Bs(ℬ) = ∅ where ℬ is the base changeable set such, that Tm(ℬ) = T, then ℛ

is evolutionarily saturated relatively ℬ.

Proof. 1. Let the system of abstract trajectories ℛ from T to 𝑀 be evolutionarily saturated
relatively the base changeable set ℬ. Then, by Definition 1.9.8, we have Tm(ℬ) = T.

According to Assertion 1.7.6, any trajectory 𝑟 ∈ ℛ belongs to L𝑙 (𝒜𝑡 (T,ℛ)). Assume,
that 𝑟 is not fate line of 𝒜𝑡 (T,ℛ). Then there exists a chain 𝐿 ∈ L𝑙 (𝒜𝑡 (T,ℛ)) such, that
𝑟 ⊂ 𝐿. Since, by Definition 1.9.5, 𝒜𝑡 (T,ℛ) ⊂−→ℬ

←
∪ 𝒜𝑡 (T,ℛ), then by Assertion 1.9.6, we get

𝐿 ∈ L𝑙
(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
. Therefore, there exists the chain 𝐿 ∈ L𝑙

(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
such, that

𝑟 ⊂ 𝐿 in the base changeable set ℬ
←
∪ 𝒜𝑡 (T,ℛ). Consequently 𝑟 /∈ L𝑑

(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
. But,

the system of abstract trajectories ℛ is evolutionarily saturated relatively ℬ. Hence, from the

other hand, by Definition 1.9.8, the correlation 𝑟 ∈ L𝑑
(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
must be fulfilled for the

trajectory 𝑟 ∈ ℛ. The contradiction, obtained above, shows, that 𝑟 ∈ L𝑑 (𝒜𝑡 (T,ℛ)) (∀𝑟 ∈ ℛ).
Thus, the system of abstract trajectories ℛ is evolutionarily saturated.
2. Let the system of abstract trajectories ℛ from T to 𝑀 be evolutionarily saturated with

the additional condition
(︀⋃︀

𝑟∈ℛ 𝑟
)︀
∩Bs(ℬ) = ∅, where Tm(ℬ) = T. Then, by Theorem 1.6.1, we

get Bs (𝒜𝑡 (T,ℛ))∩Bs(ℬ) =
(︀⋃︀

𝑟∈ℛ 𝑟
)︀
∩Bs(ℬ) = ∅. Hence, according to Lemma 1.9.1 (item 3),

the family of two base changeable sets (ℬ, 𝒜𝑡 (T,ℛ)) is evolutionarily saturated. Therefore, by
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Definition 1.9.7, L𝑑 (𝒜𝑡 (T,ℛ)) ∪ L𝑑(ℬ) ⊆ L𝑑
(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
. Since, the system of abstract

trajectoriesℛ is evolutionarily saturated, then, by Definition 1.9.8, we haveℛ ⊆ L𝑑 (𝒜𝑡 (T,ℛ)).
Consequently, ℛ∪L𝑑(ℬ) ⊆ L𝑑 (𝒜𝑡 (T,ℛ))∪L𝑑(ℬ) ⊆ L𝑑

(︁
ℬ
←
∪ 𝒜𝑡 (T,ℛ)

)︁
. This, by Definition

1.9.8, means. that the system of abstract trajectories ℛ is evolutionarily saturated relatively
ℬ.

Theorem 1.9.2. Let ℬ be a base changeable set and ℛ be a system of abstract trajectories from
Tm(ℬ) to 𝑀 , evolutionarily saturated relatively ℬ.

Then the base changeable set ̃︀ℬ = ℬ
←
∪ 𝒜𝑡 (Tm(ℬ),ℛ) is a super-evolutional extension of ℬ

such, that ℛ ⊆ L𝑑
(︁ ̃︀ℬ)︁.

Proof. Denote, ̃︀ℬ = ℬ
←
∪ 𝒜𝑡 (Tm(ℬ),ℛ). According to Assertion 1.9.9:

̃︀ℬ =ℬ
←
∪ 𝒜𝑡

(︃
Tm(ℬ),

⋃︁
𝑟∈ℛ

{𝑟}

)︃
= ℬ

←
∪
←−⋃︁
𝑟∈ℛ

ℬ𝑟, (1.54)

where ℬ𝑟 = 𝒜𝑡 (Tm(ℬ), {𝑟}) (𝑟 ∈ ℛ).

Since for an arbitrary 𝑟 ∈ ℛ the one-trajectory system ℛ𝑟 = {𝑟} is the system of individ-
ual trajectories (in the sense of Definition 1.7.4), then, according to Theorem 1.7.2, we have
L𝑑 (ℬ𝑟) = {𝑟} (∀ 𝑟 ∈ ℛ). Hence, taking into account Definition 1.9.8, and Equality (1.54), we
obtain:

L𝑑(ℬ) ∪
⋃︁
𝑟∈ℛ

L𝑑 (ℬ𝑟) = L𝑑(ℬ) ∪
⋃︁
𝑟∈ℛ

{𝑟} = L𝑑(ℬ) ∪ℛ ⊆

⊆ L𝑑
(︁
ℬ
←
∪ 𝒜𝑡 (Tm(ℬ),ℛ)

)︁
= L𝑑

(︁ ̃︀ℬ)︁ = L𝑑

(︃
ℬ
←
∪
←−⋃︁
𝑟∈ℛ

ℬ𝑟

)︃
. (1.55)

That is why, by Assertion 1.9.12, the super-evolutional union
←−⋁︀

𝛼∈𝒜 ℬ𝛼 exists, where 𝒜 =
ℛ
⨆︀
{𝛼0}, ℬ𝛼0 = ℬ and 𝛼0 is any index, satisfying 𝛼0 /∈ ℛ (for example we can chose any index

𝛼0 from the nonempty set 2ℛ ∖ ℛ). According to Corollary 1.9.4 and Equality (1.54) we get:

←−⋁︁
𝛼∈𝒜

ℬ𝛼 =
←−⋃︁
𝛼∈𝒜

ℬ𝛼 = ℬ𝛼0

←
∪
←−⋃︁
𝑟∈ℛ

ℬ𝑟 = ℬ
←
∪
←−⋃︁
𝑟∈ℛ

ℬ𝑟 = ̃︀ℬ.
Consequently, by Definition 1.9.6, we have ℬ = ℬ𝛼0 <−→

̃︀ℬ. Therefore ̃︀ℬ is the super-evolutional

extension of ℬ. Moreover, according to (1.55), we obtain, ℛ ⊆ L𝑑(ℬ) ∪ℛ ⊆ L𝑑
(︁ ̃︀ℬ)︁.

Main results of this Section were published in [9].

10 Multi-figurativeness and Unification of Perception. General Defi-

nition of Changeable Set

10.1 General Definition of Changeable Set

Base changeable sets can be treated as mathematical abstractions of physical processes models
(in macro level) in the case, when the observations are conducted from one, fixed point (one,
fixed frame of reference). But, real, physical nature is multi-figurative, because in physics (in
particular in special relativity theory) “picture of the world” can significantly vary, according to
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the frame of reference. Therefore, we obtain not one but many base changeable sets (connected
with everyone frame of reference of the physical model under consideration). Any of these base
changeable sets can be interpreted as individual image (or area of perception) of the physical
reality. Also it can be naturally assumed, that there is a natural unification between any two
areas of perception (that is frames of reference), this means, that it must be defined some rule,
which specifies how the object or process from one frame of reference must be looked out in
other frame. More precisely, using certain rules, we identify some object or process from one
frame of reference with the other object or process from other frame, saying that it is the same
object, but visible from another frame of reference. In the classical mechanics such “unification
of perception” is defined by the Galilean group of transformations, and in the special relativity
theory (for inertial reference frames) this unification is determined by the group of Lorentz-
Poincare. It should be noted that in the both cases the unification of perception is made not
at the level of objects and processes, but at the level of elementary-time states tied to certain
points in 4-dimensional space-time. This means that in the both cases there is assumed, that
any elementary-time state, “visible” from some frame of reference, is “visible” from another
frames. On author opinion, this assumption is too strong for abstract theory. Moreover in
relativity theory for non-inertial reference frames the last assumption is not true. That is
why, in the definition below, the unification of perception is made on the level of objects and
processes. We recall, that in Section 8 it had been introduced the concept of changeable system
(subset of the set Bs(ℬ), generated by base changeable set ℬ) as an abstract analog of the
notion of physical object or process.

Definition 1.10.1. Let
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) be any indexed family of base changeable sets (where

𝒜 ≠ ∅ is some set of indexes). System of mappings
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) of kind:

U𝛽𝛼 : 2Bs(ℬ𝛼) ↦−→ 2Bs(ℬ𝛽) (𝛼, 𝛽 ∈ 𝒜)

is referred to as unification of perception on
←−
ℬ if and only if the following conditions are

satisfied:

1. U𝛼𝛼𝐴 ≡ 𝐴 for any 𝛼 ∈ 𝒜 and 𝐴 ⊆ Bs (ℬ𝛼).
(Here and further we denote by U𝛽𝛼𝐴 the action of the mapping U𝛽𝛼 to the set 𝐴 ⊆ Bs (ℬ𝛼),
that is U𝛽𝛼𝐴 := U𝛽𝛼(𝐴).)

2. Any mapping U𝛽𝛼 is a monotonous mapping of sets, ie for any 𝛼, 𝛽 ∈ 𝒜 and 𝐴,𝐵 ⊆
Bs (ℬ𝛼) the condition 𝐴 ⊆ 𝐵 assures U𝛽𝛼𝐴 ⊆ U𝛽𝛼𝐵.

3. For any 𝛼, 𝛽, 𝛾 ∈ 𝒜 and 𝐴 ⊆ Bs (ℬ𝛼) the following inclusion holds:

U𝛾𝛽U𝛽𝛼𝐴 ⊆ U𝛾𝛼𝐴. (1.56)

In this case the mappings U𝛽𝛼 (𝛼, 𝛽 ∈ 𝒜) we name by unification mappings, and the triple
of kind:

𝒵 =
(︁
𝒜,
←−
ℬ ,
←−
U
)︁

we name by changeable set.

The first condition of Definition 1.10.1 is quite obvious. The second condition is dictated
by the natural desire “to see” a subsystem of a given changeable system in a given frame of
reference (area of perception) as the subsystem of “the same” changeable system in other frame.
In the case of classical mechanics or special relativity theory for inertial reference frames the
third condition of Definition 1.10.1 may be transformed to the following (stronger) condition:

U𝛾𝛽U𝛽𝛼𝐴 = U𝛾𝛼𝐴 (𝛼, 𝛽, 𝛾 ∈ 𝒜, 𝐴 ⊆ Bs (ℬ𝛼)) (1.57)
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The replacement of the equal sign by the sign inclusion is caused by the permission to “distort
the picture of reality” during “transition” to other frame of reference in the case of the our
abstract theory. We suppose, that during this “transition” some elementary-time states may
turn out to be “invisible” in other frame of reference. Further this idea will be explained more
detailed (see the Section 12, in particular, Theorem 1.12.1).

10.2 Remarks on the Terminology and Denotations

Let 𝒵 =
(︁
𝒜,
←−
ℬ ,
←−
U
)︁
be a changeable set, where

←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) is an indexed family of base

changeable sets and
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) is an unification of perception on

←−
ℬ . Later we will

use the following terms and notations:

1) The set 𝒜 will be named the index set of the changeable set 𝒵, and it will be denoted
by ℐ𝑛𝑑 (𝒵).

2) For any index 𝛼 ∈ ℐ𝑛𝑑 (𝒵) the pair (𝛼,ℬ𝛼) will be named by reference frame 7 of the
changeable set 𝒵.

3) The set of all reference frames of 𝒵 will be denoted by ℒ𝑘 (𝒵): 8

ℒ𝑘 (𝒵) := {(𝛼,ℬ𝛼) | 𝛼 ∈ ℐ𝑛𝑑 (𝒵)} .

Typically, reference frames will be denoted by small Gothic letters (l,m, k, p and so on).
4) For l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (𝒵) we introduce the following denotations:

ind (l) := 𝛼; lˆ := ℬ𝛼.
Thus, for any reference frame l ∈ ℒ𝑘 (𝒵) the object lˆ is a base changeable set.

Further, when it does not cause confusion, for any reference frame l ∈ ℒ𝑘 (𝒵) in denotations:

Bs (lˆ) , Bs (lˆ) , Tm (lˆ) , Tm (lˆ) ≤lˆ, <lˆ,

≥lˆ, >lˆ, 𝜓lˆ, ←
lˆ
,

Bs←
lˆ
, L𝑙 (lˆ) , L𝑑 (lˆ) (1.58)

the symbol “ ˆ” will be omitted, and the following denotations will be used instead:

Bs (l) , Bs (l) , Tm (l) , Tm (l) , ≤l, <l,

≥l, >l, 𝜓l, ←
l
,
Bs←
l
, L𝑙 (l) , L𝑑 (l) . (1.59)

5) For any reference frames l,m ∈ ℒ𝑘 (𝒵) the mapping Uind(m),ind(l) will be denoted by
⟨m← l,𝒵⟩ or by ⟨l→ m,𝒵⟩. Hence:

⟨m← l,𝒵⟩ = ⟨l→ m,𝒵⟩ = Uind(m),ind(l).

In the case, when the base changeable 𝒵 set is known, the symbol 𝒵 in the above notations
will be omitted, and the denotations “⟨m← l⟩, ⟨l→ m⟩” will be used instead. Moreover, in the

case, when it does not cause confusion in the notations “≤l, <l, ≥l, >l, ←
l
,

Bs←
lˆ
, 𝜓l” the symbol

“l” will be omitted, and the denotations “≤, <, ≥, >,←,
Bs←, 𝜓” will be used instead. Moreover,

for elementary-time states 𝜔1, 𝜔2 ∈ Bs(l) we usually use the denotations 𝜔2←𝜔1 or 𝜔2←
l
𝜔1

instead of the denotations 𝜔2
Bs←𝜔1 or 𝜔2

Bs←
l
𝜔1 correspondingly (in the cases, when it does not

cause confusion).
7 Note, that the terms “area of perception” or “lik ” may be considered as synonymous to the term “reference frame”. In order

to standardize terminology, in this paper we use only the term “reference frame”. In earlier papers [1,3,4,8] usually it was used the
term “area of perception” in the case of general changeable sets (the term “reference frame” was used only for the cases of kinematic
changeable sets and universal kinematics).

8 The designation "ℒ𝑘 (𝒵)" originates from the word “lik”, which is synonymous with the term “reference frame” (see footnote 7).
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Remark 1.10.1. From Definition of changeable set (Definition 1.10.1) it directly follows, that
for any reference frame l ∈ ℒ𝑘 (𝒵) of any changeable set 𝒵, Properties 1.6.1 are holding, where
we use all abbreviated variants of notations, described in Subsection 6.3 (but, with replacement
of the symbol “ℬ ” by the symbol “l” and the term “base changeable set” by the term “reference
frame”).

10.3 Elementary Properties of Changeable Sets

Using Definition 1.10.1 and notations, introduced in Subsection 10.2, we can write the following
basic properties of changeable sets.

Properties 1.10.1. In the properties 1-9 symbol 𝒵 denotes any changeable set and l,m, p ∈
ℒ𝑘 (𝒵) are any reference frames of 𝒵.

1. The sets ℒ𝑘 (𝒵) and ℐ𝑛𝑑 (𝒵) always are nonempty, moreover ℐ𝑛𝑑 (𝒵) =
{ind (l) | l ∈ ℒ𝑘 (𝒵)}.

2. The equality l = m holds if and only if ind (l) = ind (m).

3. l = (ind (l) , lˆ).

4. lˆ =
(︁(︁(︁

Bs(𝑙),←
l

)︁
, (Tm(l),≤l) , 𝜓l

)︁
,
Bs←
l

)︁
is a base changeable set.

5. ⟨l← l⟩𝐴 = ⟨l→ l⟩𝐴 = 𝐴, 𝐴 ⊆ Bs(l).

6. For arbitrary l,m ∈ ℒ𝑘 (𝒵) the unification mapping ⟨m← l, 𝒵⟩ is the mapping from 2Bs(l)

into 2Bs(m).

7. ⟨m← l⟩𝐴 = ⟨l→ m⟩𝐴, 𝐴 ⊆ Bs(l).

8. If 𝐴 ⊆ 𝐵 ⊆ Bs(l), then ⟨m← l⟩𝐴 ⊆ ⟨m← l⟩𝐵.

9. ⟨p←m⟩ ⟨m← l⟩𝐴 ⊆ ⟨p← l⟩𝐴, where 𝐴 ⊆ Bs(l).

Usually in future we will use Properties 1.10.1 instead of using Definition 1.10.1 directly.
The following three assertions are elementary corollaries of Properties 1.10.1 and Definition
1.10.1. In these assertions the symbol 𝒵 denotes any changeable set.

Assertion 1.10.1. Let, 𝒵1, 𝒵2 be arbitrary changeable sets, moreover:

1. ℒ𝑘 (𝒵1) = ℒ𝑘 (𝒵2).

2. For arbitrary reference frames l,m ∈ ℒ𝑘 (𝒵1) = ℒ𝑘 (𝒵2) it is true the equality:
⟨m← l,𝒵1⟩ = ⟨m← l,𝒵2⟩.

Then, 𝒵1 = 𝒵2.

Proof. This assertion follows directly from Definition 1.10.1 and denotations, introduced in
Subsection 10.2.

Assertion 1.10.2. For any l,m ∈ ℒ𝑘 (𝒵) the following equality is true:

⟨m← l⟩ ∅ = ∅.

Proof. Denote 𝐵 := ⟨m← l⟩ ∅ ⊆ Bs(m). By Properties 1.10.1 (9 and 5) we obtain:

⟨l←m⟩𝐵 = ⟨l←m⟩ ⟨m← l⟩ ∅ ⊆ ⟨l← l⟩ ∅ = ∅.

Therefore, ⟨l←m⟩𝐵 = ∅. Since ∅ ⊆ 𝐵, then, by Property 1.10.1(8), we get:

⟨l←m⟩ ∅ ⊆ ⟨l←m⟩𝐵 = ∅,
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that is ⟨l←m⟩ ∅ = ∅. Hence, by Properties 1.10.1 (5 and 9), we obtain:

∅ = ⟨m←m⟩ ∅ ⊇ ⟨m← l⟩ ⟨l←m⟩ ∅ = ⟨m← l⟩ ∅ = 𝐵.

Assertion 1.10.3. For any l,m ∈ ℒ𝑘 (𝒵) and any family of changeable systems (𝐴𝛼|𝛼 ∈ 𝒜)
(𝐴𝛼 ⊆ Bs(l) for each 𝛼 ∈ 𝒜) the following inclusions take place:

1) ⟨m← l⟩
(︂ ⋂︀
𝛼∈𝒜

𝐴𝛼

)︂
⊆
⋂︀
𝛼∈𝒜
⟨m← l⟩𝐴𝛼;

2)
⋂︀
𝛼∈𝒜

𝐴𝛼 ⊇ ⟨l←m⟩
(︂ ⋂︀
𝛼∈𝒜
⟨m← l⟩𝐴𝛼

)︂
;

3) ⟨m← l⟩
(︂ ⋃︀
𝛼∈𝒜

𝐴𝛼

)︂
⊇
⋃︀
𝛼∈𝒜
⟨m← l⟩𝐴𝛼.

Note, that the set of indexes 𝒜 in the last assertion is an arbitrary, and, in general, it does
not coincide with the set of indexes in Definition 1.10.1.

Proof. 1) Denote 𝐴 :=
⋂︀
𝛼∈𝒜𝐴𝛼. Taking into account, that 𝐴 ⊆ 𝐴𝛼, 𝛼 ∈ 𝒜 and using Property

1.10.1(8) we obtain:

⟨m← l⟩𝐴 ⊆ ⟨m← l⟩𝐴𝛼, 𝛼 ∈ 𝒜.

Thus, ⟨m← l⟩𝐴 ⊆
⋂︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼.

2) Denote: 𝑄 :=
⋂︀
𝛼∈𝒜
⟨m← l⟩𝐴𝛼. Then 𝑄 ⊆ ⟨m← l⟩𝐴𝛼, 𝛼 ∈ 𝒜. Hence, by Properties

1.10.1(8,9 and 5) we obtain:

⟨l←m⟩𝑄 ⊆ ⟨l←m⟩ ⟨m← l⟩𝐴𝛼 ⊆ ⟨l← l⟩𝐴𝛼 = 𝐴𝛼, 𝛼 ∈ 𝒜.

Hence, ⟨l←m⟩𝑄 ⊆
⋂︀
𝛼∈𝒜𝐴𝛼, that was necessary to prove.

3) Denote: 𝐴 :=
⋃︀
𝛼∈𝒜𝐴𝛼. Taking into account, that 𝐴𝛼 ⊆ 𝐴, 𝛼 ∈ 𝒜 and using Property

1.10.1(8) we obtain

⟨m← l⟩𝐴𝛼 ⊆ ⟨m← l⟩𝐴, 𝛼 ∈ 𝒜.

Hence,
⋃︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼 ⊆ ⟨m← l⟩𝐴.

Main results of this Section were anonced in [1] and published in [8, Section 3].

11 Examples of Changeable Sets

11.1 Precisely Visible Changeable Set, Generated by Systems of Base Changeable
Sets and Mappings

Example 1.11.1. Let
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) be any non-empty (𝒜 ̸= ∅) indexed family of

base changeable sets such, that Bs (ℬ𝛼) and Bs (ℬ𝛽) are equipotent for any 𝛼, 𝛽 ∈ 𝒜,
that is card (Bs (ℬ𝛼)) = card (Bs (ℬ𝛽)) , 𝛼, 𝛽 ∈ 𝒜, where card(𝑀) is the cardinality of
the set 𝑀 . Let us consider any indexed family of bijections (one-to-one correspondences)
←−
𝑊 = (𝑊𝛽𝛼| 𝛼, 𝛽 ∈ 𝒜) of kind𝑊𝛽𝛼 : Bs (ℬ𝛼) ↦→ Bs (ℬ𝛽), satisfying the following “pseudo-group”
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conditions 9 :

𝑊𝛼𝛼(𝜔) = 𝜔, 𝛼 ∈ 𝒜, 𝜔 ∈ Bs (ℬ𝛼) ;
𝑊𝛾𝛽 (𝑊𝛽𝛼(𝜔)) = 𝑊𝛾𝛼(𝜔), 𝛼, 𝛽, 𝛾 ∈ 𝒜, 𝜔 ∈ Bs (ℬ𝛼) .

}︃
(1.60)

Let us put:
U𝛽𝛼𝐴 := 𝑊𝛽𝛼(𝐴) = {𝑊𝛽𝛼(𝜔) | 𝜔 ∈ 𝐴} , 𝐴 ⊆ Bs (ℬ𝛼) .

It is easy to see, that the family of mappings
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) satisfies all conditions

of Definition 1.10.1, moreover, the third condition of this Definition can be replaced by more
strong condition (1.57). Thus the triple:

𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
=
(︁
𝒜,
←−
ℬ ,
←−
U
)︁

is a changeable set. The changeable set 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁

will be named a precisely visible

changeable set , generated by the system of base changeable sets
←−
ℬ and the system of map-

pings
←−
𝑊 .

Using the results of Example 1.11.1 and denotations, introduced in Subsection 10.2, we

obtain the following properties of changeable set of kind 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
.

Properties 1.11.1. Let 𝒵 = 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁

be a precisely visible changeable set, gener-

ated by system of base changeable sets
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) and system of mappings

←−
𝑊 =

(𝑊𝛽𝛼| 𝛼, 𝛽 ∈ 𝒜). Then:

1. ℒ𝑘 (𝒵) = {(𝛼,ℬ𝛼) | 𝛼 ∈ 𝒜};

2. ℐ𝑛𝑑 (𝒵) = 𝒜;

3. For any reference frame l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (𝒵) (𝛼 ∈ 𝒜) the following equalities hold:

Bs(l) = Bs (ℬ𝛼) ;
Tm(l) = Tm (ℬ𝛼) ;
≤l =≤ℬ𝛼 ;
←
l
=←
ℬ𝛼
;

Bs(l) = Bs (ℬ𝛼) ;
Tm(l) = Tm (ℬ𝛼) ;

Bs←
l
=

Bs←
ℬ𝛼
.

4. For any reference frames l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (𝒵), m = (𝛽,ℬ𝛽) ∈ ℒ𝑘 (𝒵) (𝛼, 𝛽 ∈ 𝒜) and any
set 𝐴 ⊆ Bs(l) = Bs (ℬ𝛼) the following equality holds:

⟨m← l,𝒵⟩𝐴 = 𝑊𝛽𝛼(𝐴) = {𝑊𝛽𝛼(𝜔) | 𝜔 ∈ 𝐴} .

11.2 Changeable Sets, Generated by Multi-Image of Base Changeable Set

Multi-images of base changeable sets may be considered as examples of changeable sets. To
construct multi-images of base changeable sets we need introduce some new definitions and
prove theorem on multi-image for changeable sets.

9 The family of bijections, satisfying conditions (1.60) can be easily constructed by the following way.

Since 𝒜 ≠ ∅, we can chose any (fixed) index 𝛼0 ∈ 𝒜. Also chose any family of bijections
←−
𝒲 = (𝒲𝛼 | 𝛼 ∈ 𝒜) of kind 𝒲𝛼 :

Bs (ℬ𝛼) ↦→ Bs (ℬ𝛼0 ) (such family of bijections necessarily must exist, because of card (Bs (ℬ𝛼)) = card
(︀
Bs

(︀
ℬ𝛽

)︀)︀
, 𝛼, 𝛽 ∈ 𝒜).

Denote:
𝑊𝛽𝛼 (𝜔) :=𝒲 [−1]

𝛽 (𝒲𝛼 (𝜔)) , 𝛼, 𝛽 ∈ 𝒜, 𝜔 ∈ Bs (ℬ𝛼) .

where 𝒲 [−1]
𝛽 is the mapping, inverse to 𝒲𝛽 . It is easy to verify, that the family of bijections

(︀
𝑊𝛽𝛼| 𝛼, 𝛽 ∈ 𝒜

)︀
satisfies condi-

tions (1.60).
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Definition 1.11.1. The ordered triple (T,𝒳 , 𝑈) will be referred to as evolution projector for
base changeable set ℬ if and only if:

1. T = (T,≤) is linearly ordered set;
2. 𝒳 is any set;
3. 𝑈 is a mapping from Bs(ℬ) into T×𝒳 (𝑈 : Bs(ℬ) ↦→ T×𝒳 ).

Theorem 1.11.1. Let (T,𝒳 , 𝑈) be any evolution projector for base changeable set ℬ. Then
there exist only one base changeable set 𝑈 [ℬ,T], satisfying the following conditions:

1. Tm (𝑈 [ℬ,T]) = T;
2. Bs(𝑈 [ℬ,T]) = 𝑈(Bs(ℬ)) = {𝑈(𝜔) | 𝜔 ∈ Bs(ℬ)};
3. Let ̃︀𝜔1, ̃︀𝜔2 ∈ Bs(𝑈 [ℬ,T]) and tm (̃︀𝜔1) ̸= tm (̃︀𝜔2). Then ̃︀𝜔1 and ̃︀𝜔2 are united by fate in
𝑈 [ℬ,T] if and only if, there exist united by fate in ℬ elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ)
such, that ̃︀𝜔1 = 𝑈 (𝜔1), ̃︀𝜔2 = 𝑈 (𝜔2).

Proof. Proof of existence.
1. Let (T,𝒳 , 𝑈) be an evolution projector for base changeable set ℬ (where T = (T,≤)).

Let us define the binary relation C−− on the set 𝑈(Bs(ℬ)) = {𝑈(𝜔) | 𝜔 ∈ Bs(ℬ)} ⊆ T × 𝑋.
Namely, for any ̃︀𝜔1, ̃︀𝜔2 ∈ 𝑈(Bs(ℬ)) we consider, that ̃︀𝜔2C−− ̃︀𝜔1 if and only if at least one of the
following conditions is performed:

U[B]1) ̃︀𝜔1 = ̃︀𝜔2;

U[B]2) tm (̃︀𝜔1) < tm (̃︀𝜔2) and there exist united by fate in ℬ elementary-time states 𝜔1, 𝜔2 ∈
Bs(ℬ) such, that ̃︀𝜔𝑖 = 𝑈 (𝜔𝑖) (𝑖 = 1, 2).

From Conditions U[B]1), U[B]2) it follows, that the relation C−− satisfies Conditions 1,2 of
Theorem 1.6.2. Hence, by Theorem 1.6.2, only one base changeable set ℬ1, exists, satisfying
the following conditions:

Tm (ℬ1) = T; Bs (ℬ1) = 𝑈(Bs(ℬ)); Bs←−−−
ℬ1

= C−− . (1.61)

Denote:
𝑈 [ℬ,T] := ℬ1.

From first two conditions (1.61) it follows, that the base changeable set 𝑈 [ℬ,T] satisfies condi-
tions 1,2 of this Theorem. From the third condition (1.61), taking into account Assertion 1.7.3,
we obtain that third condition of this theotem for 𝑈 [ℬ,T] also is satisfied.
Proof of uniqueness.
Suppose, that the base changeable set ℬ2 also satisfies Conditions 1,2,3 of this Theorem,

that is:

1′. Bs (ℬ2) = 𝑈(Bs(ℬ));

2′. Tm (ℬ2) = T;

3′. If ̃︀𝜔1, ̃︀𝜔2 ∈ Bs (ℬ2) and tm (̃︀𝜔1) ̸= tm (̃︀𝜔2), then ̃︀𝜔1 and ̃︀𝜔2 are united by fate in ℬ2 if and
only if, there exist united by fate in ℬ elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) such, that̃︀𝜔1 = 𝑈 (𝜔1), ̃︀𝜔2 = 𝑈 (𝜔2).

Then, according to conditions 1′,2′ and conditions 1,2 of this Theorem for 𝑈 [ℬ,T], we have
Bs (ℬ2) = Bs (𝑈 [ℬ,T]), Tm (ℬ2) = Tm (𝑈 [ℬ,T]). Moreover from Condition 3′ and third
condition of this Theorem, taking into account Property 1.6.1(7) and Assertion 1.7.3, we obtain

the equality
Bs←
ℬ2

=
Bs←−−−

𝑈 [ℬ,T]
. Hence, by Corollary 1.6.1, we obtain, ℬ2 = 𝑈 [ℬ,T].
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Definition 1.11.2. The base changeable set 𝑈 [ℬ,T], which satisfies the conditions 1,2,3 of
Theorem 1.11.1 will be named by the image of the base changeable set ℬ relatively the
transforming mapping 𝑈 and the time scale T.

Remark 1.11.1. According to conditions U[B]1), U[B]2) in the proof of Theorem 1.11.1 for
any elementary-time states ̃︀𝜔1, ̃︀𝜔2 ∈ Bs(𝑈 [ℬ,T]) the relation ̃︀𝜔2←−−−

𝑈 [ℬ,T]
̃︀𝜔1 is true if and only

if ̃︀𝜔1 = ̃︀𝜔2 or tm (̃︀𝜔1) < tm (̃︀𝜔2) and there exists united by fate in ℬ elementary-time states
𝜔1, 𝜔2 ∈ Bs(ℬ) such, that ̃︀𝜔1 = 𝑈 (𝜔1), ̃︀𝜔2 = 𝑈 (𝜔2).

Remark 1.11.2. In the case, when T = Tm(ℬ) we use the denotation 𝑈 [ℬ] instead of the
denotation 𝑈 [ℬ,T]:

𝑈 [ℬ] := 𝑈 [ℬ,Tm(ℬ)] .
Remark 1.11.3. Let ℬ be any base changeable set and IBs(ℬ) : Bs(ℬ) ↦→ Tm(ℬ) × Bs(ℬ)
be the mapping, given by the formula: IBs(ℬ)(𝜔) = 𝜔 (𝜔 ∈ Bs(ℬ)). Then the triple(︀
Tm(ℬ),Bs(ℬ), IBs(ℬ)

)︀
, is, apparently, evolution projector for ℬ. Moreover, if we substitute

Tm(ℬ) and ℬ into Theorem 1.11.1 instead of T and 𝑈 [ℬ,T] (correspondingly), we can see, that
all conditions of this Theorem are satisfied. Hence for the identity mapping IBs(ℬ) (on Bs(ℬ)),
we obtain:

IBs(ℬ) [ℬ] = ℬ.

Definition 1.11.3.

1. The evolution projector (T,𝒳 , 𝑈) (where T = (T,≤)) for base changeable set ℬ will be
named as injective 10 if and only if the mapping 𝑈 is injection from Bs(ℬ) to T×𝒳 (that
is bijection from Bs(ℬ) onto the set R(𝑈) ⊆ T×𝒳 ) 11.

2. Any indexed family P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜) (where 𝒜 ≠ ∅) of injective evolution pro-
jectors for base changeable set we name by evolution multi-projector for ℬ.

Theorem 1.11.2 (on multi-image for changeable sets). Let, P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜) be
evolution multi-projector for base changeable set ℬ. Then only one changeable set 𝒵 exists,
satisfying the following conditions:

1. ℒ𝑘 (𝒵) = {(𝛼, 𝑈𝛼 [ℬ,T𝛼]) | 𝛼 ∈ 𝒜}.

2. For any reference frames l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵), m = (𝛽, 𝑈𝛽 [ℬ,T𝛽]) ∈ ℒ𝑘 (𝒵)
(𝛼, 𝛽 ∈ 𝒜) and any set 𝐴 ⊆ Bs(l) = 𝑈𝛼(Bs(ℬ)) the following equality holds:

⟨m← l,𝒵⟩𝐴 = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝐴)

)︀
=
{︀
𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀
| 𝜔 ∈ 𝐴

}︀
,

where 𝑈
[−1]
𝛼 is the mapping, inverse to 𝑈𝛼.

Remark 1.11.4. Suppose, that a changeable set 𝒵 satisfies condition 1 of Theorem 1.11.2. Then
for any reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵), according to Property 1.10.1(3), we have,
ind (l) = 𝛼, lˆ = 𝑈𝛼 [ℬ,T𝛼], and hence, Bs(l) = Bs (lˆ) = Bs (𝑈𝛼 [ℬ,T𝛼]). Therefore, by
Theorem 1.11.1, Bs(l) = 𝑈𝛼(Bs(ℬ)). Thus, the condition 2 of Theorem 1.11.2 is correctly
formulated.

Proof of Theorem 1.11.2. Let, P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜) be evolution multi-projector for base
changeable set ℬ.

By Definition 1.11.3, for any 𝛼 ∈ 𝒜 the triple (T𝛼,𝒳𝛼, 𝑈𝛼) is an injective evolution projector
for ℬ. In accordance with Theorem 1.11.1, we put:

ℬ𝛼 := 𝑈𝛼 [ℬ,T𝛼] (𝛼 ∈ 𝒜) .
10 In previous works we used the term “bijective evolution projector” instead of “injective...”. But in the present paper we have

made some clarifications in terminology.
11 Here R(𝑈) means the range of (arbitrary) mapping 𝑈 .
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Since (T𝛼,𝒳𝛼, 𝑈𝛼) is an injective evolution projector, then, by Definition 1.11.3, the mapping

𝑈𝛼 is one-to-one correspondence between Bs(ℬ) and R(𝑈). Hence, the inverse mapping 𝑈
[−1]
𝛼

exists (for all 𝛼 ∈ 𝒜).
For any indexes 𝛼, 𝛽 ∈ 𝒜 and any elementary-time state 𝜔 ∈ Bs (ℬ𝛼) we denote:

𝑊𝛽𝛼(𝜔) := 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀
(1.62)

(note, that, by Theorem 1.11.1, Bs (ℬ𝛼) = 𝑈𝛼 (Bs(ℬ))). Hence, 𝑊𝛽𝛼 is the mapping from
Bs (ℬ𝛼) into Bs (ℬ𝛽) = 𝑈𝛽 (Bs(ℬ)).

It is easy to verify, that the family of mappings
←−
𝑊 = (𝑊𝛽𝛼| 𝛼, 𝛽 ∈ 𝒜) possesses the properties

(1.60). Therefore, using results of Subsection 11.1, we may denote:

𝒵 := 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
, where

←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) . (1.63)

Herewith, according to Property 1.11.1(1), we obtain:

ℒ𝑘 (𝒵) = {(𝛼,ℬ𝛼) | 𝛼 ∈ 𝒜} = {(𝛼, 𝑈𝛼 [ℬ,T𝛼]) | 𝛼 ∈ 𝒜} , (1.64)

and for arbitrary reference frames l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵), m = (𝛽, 𝑈𝛽 [ℬ,T𝛽]) ∈ ℒ𝑘 (𝒵)
(where 𝛼, 𝛽 ∈ 𝒜) and for any set 𝐴 ⊆ Bs(l) = Bs (𝑈𝛼 [ℬ,T𝛼]) = 𝑈𝛼(Bs(ℬ)), by Property
1.11.1(4) we obtain:

⟨m← l, 𝒵⟩𝐴 = 𝑊𝛽𝛼(𝐴) = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝐴)

)︀
. (1.65)

From (1.64) and (1.65) it follows, that the changeable set 𝒵 satisfies conditions 1,2 of Theorem
1.11.2.

Suppose, that the changeable set 𝒵1 also satisfies conditions 1,2 of Theorem 1.11.2. Then,
by the condition 1, ℒ𝑘 (𝒵) = ℒ𝑘 (𝒵1). Also, by the condition 2, for arbitrary reference frames
l,m ∈ ℒ𝑘 (𝒵) = ℒ𝑘 (𝒵1) it is true the equality: ⟨m← l,𝒵⟩ = ⟨m← l,𝒵1⟩. Hence, by Assertion
1.10.1, we get 𝒵 = 𝒵1. Thus, changeable set, satisfying the conditions 1,2 of Theorem 1.11.2
is unique.

Definition 1.11.4. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜) be an evolution multi-projector for base
changeable set ℬ. Changeable set 𝒵, satisfying conditions 1,2 of Theorem 1.11.2 will be referred
to as evolution multi-image of base changeable set ℬ relatively the evolution multi-projector
P. This evolution multi-image will be denoted by 𝒵 im [P,ℬ]:

𝒵 im [P,ℬ] := 𝒵.

Remark 1.11.5. From Equality (1.63) in the proof of Theorem 1.11.2 it follows that any change-
able set of kind 𝒵 im [P,ℬ] (P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜)) may be represented in the form:

𝒵 im [P,ℬ] = 𝒵pv
(︁←−
ℬ P,
←−
𝑊P

)︁
, where (1.66)

←−
ℬ P =

(︀
ℬ(P)
𝛼 | 𝛼 ∈ 𝒜

)︀
;
←−
𝑊P =

(︁
𝑊

(P)
𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜

)︁
, and

ℬ(P)
𝛼 = 𝑈𝛼 [ℬ,T𝛼] (𝛼 ∈ 𝒜) ;

𝑊
(P)
𝛽𝛼 (𝜔) = 𝑈𝛽

(︀
𝑈 [−1]
𝛼 (𝜔)

)︀
(𝛼, 𝛽 ∈ 𝒜)

—————————————–

Definition 1.11.5. Let 𝒵 be any changeable set and l ∈ ℒ𝑘 (𝒵) be any reference frame of 𝒵.
We say, that elementary-time states 𝜔1, 𝜔2 ∈ Bs(l) are united by fate in the reference frame
l of changeable set 𝒵, if and only if thay are united by fate in the base changeable set lˆ.
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From theorems 1.11.2 and 1.11.1, taking into account Property 1.6.1(9), Property 1.10.1(1)
and Remark 1.10.1, we immediately deduce the following properties of multi-image for base
changeable set.

Properties 1.11.2. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜), where T𝛼 = (T𝛼,≤𝛼) (𝛼 ∈ 𝒜) be an
evolution multi-projector for base changeable set ℬ and 𝒵 = 𝒵 im [P,ℬ]. Then:

1. ℒ𝑘 (𝒵) = {(𝛼, 𝑈𝛼 [ℬ,T𝛼]) | 𝛼 ∈ 𝒜}.

2. ℐ𝑛𝑑 (𝒵) = 𝒜.

3. For any reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) the following equalities hold:

Bs(l) = 𝑈𝛼 (Bs(ℬ)) = {𝑈𝛼(𝜔) | 𝜔 ∈ Bs(ℬ)} ;
Bs(l) = {bs (𝑈𝛼(𝜔)) | 𝜔 ∈ Bs(ℬ)} ;
Tm(l) = T𝛼; Tm(l) = T𝛼; ≤l=≤𝛼 .

4. Let, l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵), where 𝛼 ∈ 𝒜. Suppose, that ̃︀𝜔1, ̃︀𝜔2 ∈ Bs(l) and
tm (̃︀𝜔1) ̸= tm (̃︀𝜔2). Then ̃︀𝜔1 and ̃︀𝜔2 are united by fate in l if and only if there exist united
by fate in ℬ elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) such, that ̃︀𝜔1 = 𝑈𝛼 (𝜔1), ̃︀𝜔2 = 𝑈𝛼 (𝜔2).

Example 1.11.2. Let ℬ be a base changeable set, and 𝑋 — an arbitrary set such, thatBs(ℬ) ⊆
𝑋. And let U be any set of bijections (one-to-one correspondences) of kind:

𝑈 : Tm(ℬ)×𝑋 ↦−→ Tm(ℬ)×𝑋 (𝑈 ∈ U)

Such set of bijections U is named by transforming set of bijections relatively the base
changeable set ℬ on 𝑋.

By Definition 1.11.1, any mapping 𝑈 ∈ U generates the evolution projector,(︀
Tm(ℬ), 𝑋, 𝑈�Bs(ℬ)

)︀
, where 𝑈�Bs(ℬ) is the restriction of the mapping 𝑈 onto the set Bs(ℬ) ⊆

Tm(ℬ) × 𝑋. Henceforth, where it does not cause confusion, we identify the mapping 𝑈�Bs(ℬ)
with the mapping 𝑈 . Under this identification, we can consider, that

(︀
Tm(ℬ), 𝑋, 𝑈�Bs(ℬ)

)︀
=

(Tm(ℬ), 𝑋, 𝑈)). Hence, the indexed family:

Pℬ [U] = ((Tm(ℬ), 𝑋, 𝑈) | 𝑈 ∈ U)

is evolution multi-projector for ℬ. In this particular case we obtain the changeable set:

𝒵 im (U,ℬ) = 𝒵 im [Pℬ [U] ,ℬ] . (1.67)

Definition 1.11.6. Changeable set 𝒵 im (U,ℬ) will be named multi-figurative image of the
base changeable set ℬ relatively the transforming set of mappins U.

Example 1.11.3. Let ℬ be a base changeable set such, that

Bs(ℬ) ⊆ R3, Tm(ℬ) = R𝑜𝑟𝑑 = (R,≤) ,

where ≤ is the standard linear order relation on the real numbers. Such base changeable set
ℬ must exist, because, for example, we may denote ℬ := 𝒜𝑡 (R𝑜𝑟𝑑,ℛ), where ℛ is a system
of abstract trajectories from R𝑜𝑟𝑑 to the subset 𝑀 ⊆ R3. Let us consider Poincare group
U = 𝑃 (1, 3, 𝑐), defined on the 4-dimensional space-time R4 = R × R3 ⊇ Tm(ℬ) × Bs(ℬ),
that is the group of affine transformations of the space R4, which are satisfying the following
conditions:

1. Any transformation 𝑃 ∈ 𝑃 (1, 3, 𝑐) leaves unchanged values of the Lorentz-Minkowski
pseudo-distance on R4:

M𝑐 (𝑃w1 − 𝑃w2) = M𝑐 (w1 − w2) , (∀w1,w2 ∈ R4), where;
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M𝑐 (w) =
3∑︁
𝑗=1

𝑤2
𝑖 − 𝑐2𝑤2

0 and

w − ̃︀w = (𝑤0 − ̃︀𝑤0, 𝑤1 − ̃︀𝑤1, 𝑤2 − ̃︀𝑤2, 𝑤3 − ̃︀𝑤3)(︀
w = (𝑤0, 𝑤1, 𝑤2, 𝑤3) ∈ R4, ̃︀w = ( ̃︀𝑤0, ̃︀𝑤1, ̃︀𝑤2, ̃︀𝑤3) ∈ R4

)︀
.

Here the number 𝑐 means any fixed positive real constant, which has the physical content
of the speed of light in vacuum.

2. Any transformation 𝑃 ∈ 𝑃 (1, 3, 𝑐) has positive direction of time, that is 𝑃w2 − 𝑃w1 ∈
ℳ𝑐,+ (R3) for any w1,w2 ∈ R4 such, that w2 − w1 ∈ℳ𝑐,+ (R3), where

ℳ𝑐,+

(︀
R3
)︀
=
{︁
w = (𝑤0, 𝑤1, 𝑤2, 𝑤3) ∈ R4 | 𝑤0 > 0, M𝑐 (w) < 0

}︁
(Cf. [46]).

Poincare group U = 𝑃 (1, 3, 𝑐) is transforming set of bijections relatively the base changeable
set ℬ on R3. Hence, we obtain the changeable set 𝒵 im (𝑃 (1, 3),ℬ), which represents a math-
ematically strict model of the cinematics of special relativity theory in the inertial frames of
reference. Note that this model does not formally prohibit the existence of tachyon transfor-
mations, because elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) ⊆ R×R3 may exist such, that 𝜔2←𝜔1

and M𝑐 (𝜔1;𝜔2) > 0.

11.3 Other Examples of Changeable Sets

In all previous examples the unification mappings ⟨m← l⟩ between reference frames l,m ∈
ℒ𝑘 (𝒵) of a changeable set 𝒵 are defined by means of bijections (one-to-one correspondences)
between the sets of elementary-time states Bs(l) and Bs(m) (that is for any 𝐴 ⊆ Bs(l) the
unification mapping ⟨m← l⟩𝐴 can be represented in the form:

⟨m← l⟩𝐴 =
⋃︁
𝜔∈𝐴

{𝒲m,l(𝜔)} ,

where the mapping 𝒲m,l : Bs(l) ↦→ Bs(m) is bijection between Bs(l) and Bs(m)). In all these
examples the third condition of Definition 1.10.1 may be replaced by more strong condition
(1.57). But really the conditions of Definition 1.10.1 are enough general. The last thesis will
be confirmed by the following examples.

Example 1.11.4. Let
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) be any indexed family of base changeable sets. Denote:

U𝛽𝛼𝐴 :=

{︃
𝐴, 𝛼 = 𝛽

∅, 𝛼 ̸= 𝛽
, 𝛼, 𝛽 ∈ 𝒜, 𝐴 ⊆ Bs (ℬ𝛼) .

It is easy to verify, that the family of mappings
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) satisfies all conditions of

Definition 1.10.1. Therefore, the triple

𝒵nv
(︁←−
ℬ
)︁
=
(︁
𝒜,
←−
ℬ ,
←−
U
)︁

is a changeable set.

The changeable set 𝒵nv
(︁←−
ℬ
)︁
will be named the fully invisible changeable set , generated

by the system of base changeable sets
←−
ℬ .

Note, that any base changeable set ℬ can be identified with the changeable set of kind

𝒵nv
(︁←−
ℬ
)︁
, where 𝒜 = {1}, ℬ1 = ℬ and

←−
ℬ = (ℬ𝛼 |𝛼 ∈ 𝒜) = (ℬ1).
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Example 1.11.5. Let,
←−
ℬ = (ℬ1,ℬ2) = (ℬ𝛼 |𝛼 ∈ 𝒜) (where 𝒜 = {1, 2}) be a family of two

base changeable sets. Choose any elementary-time state 𝜔 ∈ Bs (ℬ2). According to Property

1.6.1(2), Bs (ℬ2) ̸= ∅. Therefore elementary-time state 𝜔 ∈ Bs (ℬ2) must exist. Denote:

U11𝐴 := 𝐴, 𝐴 ⊆ Bs (ℬ1) ; U22𝐴 := 𝐴, 𝐴 ⊆ Bs (ℬ2) ;

U21𝐴 :=

⎧⎨⎩∅, 𝐴 ̸= Bs (ℬ1)

{𝜔}, 𝐴 = Bs (ℬ1)
, 𝐴 ⊆ Bs (ℬ1) ;

U12𝐴 :=

⎧⎨⎩∅, 𝜔 /∈ 𝐴

Bs (ℬ1) , 𝜔 ∈ 𝐴
, 𝐴 ⊆ Bs (ℬ2) ;

1. Since U11,U22 are identity mappings of sets, the first condition of Definition 1.10.1 is
performed by a trivial way. For the same reason the second condition of this Definition also is
satisfied in the case 𝛼 = 𝛽.

2. Suppose, that 𝛼, 𝛽 ∈ 𝒜 = {1, 2}, 𝐴,𝐵 ⊆ Bs (ℬ𝛼), 𝐴 ⊆ 𝐵. According to remark, made in
the previous item, it is enough to consider only the case 𝛼 ̸= 𝛽. Thus, we have the next two
subcases.

2.a) 𝛼 = 1, 𝛽 = 2. In the case 𝐴 ̸= Bs (ℬ1) we obtain U𝛽𝛼𝐴 = U21𝐴 = ∅ ⊆ U𝛽𝛼𝐵, and in the
case 𝐴 = Bs (ℬ1), since 𝐴 ⊆ 𝐵 we have 𝐵 = Bs (ℬ1), and, therefore, U𝛽𝛼𝐴 = U𝛽𝛼𝐵.

2.b) 𝛼 = 2, 𝛽 = 1. In the case 𝜔 /∈ 𝐴 we obtain U𝛽𝛼𝐴 = U12𝐴 = ∅ ⊆ U𝛽𝛼𝐵. In the case 𝜔 ∈ 𝐴
from the condition 𝐴 ⊆ 𝐵 it follows, that 𝜔 ∈ 𝐵, so U𝛽𝛼𝐴 = U12𝐴 = Bs (ℬ1) = U12𝐵 = U𝛽𝛼𝐵.

3. Let 𝛼, 𝛽, 𝛾 ∈ 𝒜 = {1, 2}, 𝐴 ⊆ Bs (ℬ𝛼). We consider the following cases.
3.a) 𝛼 = 𝛽. In this case U𝛽𝛼𝐴 = 𝐴. Consequently:

U𝛾𝛽U𝛽𝛼𝐴 = U𝛾𝛽𝐴 = U𝛾𝛼𝐴.

3.b) 𝛽 = 𝛾. In this case U𝛾𝛽𝑆 = 𝑆, 𝑆 ⊆ Bs (ℬ𝛽). Hence:

U𝛾𝛽U𝛽𝛼𝐴 = U𝛽𝛼𝐴 = U𝛾𝛼𝐴.

3.c) 𝛼 ̸= 𝛽 ̸= 𝛾. Since the set 𝒜 is two-element, this case can be divided into the following
two subcases:

3.c.1) Let 𝛼 = 1, 𝛽 = 2, 𝛾 = 1. Then in the case 𝐴 ̸= Bs (ℬ1) we obtain:

U𝛾𝛽U𝛽𝛼𝐴 = U12U21𝐴 = U12∅ = ∅ ⊆ U𝛾𝛼𝐴,

and in the case 𝐴 = Bs (ℬ1) we calculate:

U𝛾𝛽U𝛽𝛼𝐴 = U12U21𝐴 = U12{𝜔} = Bs (ℬ1) = 𝐴 = U𝛾𝛼𝐴.

3.c.2) Let, 𝛼 = 2, 𝛽 = 1, 𝛾 = 2. Then in the case 𝜔 /∈ 𝐴 we have:

U𝛾𝛽U𝛽𝛼𝐴 = U21U12𝐴 = U21∅ = ∅ ⊆ U𝛾𝛼𝐴,

and in the case 𝜔 ∈ 𝐴 we obtain:

U𝛾𝛽U𝛽𝛼𝐴 = U21U12𝐴 = U21Bs (ℬ1) = {𝜔} ⊆ 𝐴 = U𝛾𝛼𝐴.

Consequently, the triple:

𝒵1 =
(︁
𝒜,
←−
ℬ ,
←−
U
)︁
,

where
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) is a changeable set.
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Example 1.11.6. Let 𝒜, ℬ1, ℬ2, 𝜔 be the same as in Example 1.11.5. Also, similarly to previous
Example 1.11.5, U11 and U22 are the identical mappings of the sets. Now, we denote:

U21𝐴 :=

{︃
∅, 𝐴 = ∅
{𝜔}, 𝐴 ̸= ∅

, 𝐴 ⊆ Bs (ℬ1) ;

U12𝐴 := ∅, 𝐴 ⊆ Bs (ℬ2) .

1,2. Since, U11 and U22, are the identical mappings of the sets, the first condition of Definition
1.10.1 is satisfied by a trivial way. The second condition of this Definition also is easy to verify.

3. In the cases 𝛼 = 𝛽 = 𝛾, 𝛼 ̸= 𝛽 = 𝛾, 𝛼 = 𝛽 ̸= 𝛾 verification of the third condition
of Definition 1.10.1 is the same, as in Example 1.11.5. Thus it remains to consider the case
𝛼 ̸= 𝛽 ̸= 𝛾. Like the previous example we divide this case into the following two subcases:

3.1) Let, 𝛼 = 1, 𝛽 = 2, 𝛾 = 1. Then:

U𝛾𝛽U𝛽𝛼𝐴 = U12U21𝐴 = ∅ ⊆ U𝛾𝛼𝐴.

3.2) Let, 𝛼 = 2, 𝛽 = 1, 𝛾 = 2. Then:

U𝛾𝛽U𝛽𝛼𝐴 = U21U12𝐴 = U21∅ = ∅ ⊆ U𝛾𝛼𝐴.

Thus, the triple:

𝒵2 =
(︁
𝒜,
←−
ℬ ,
←−
U
)︁
,

is a changeable set.

Main results of this Section were published in [8, Subsection 3.4]. Theorem 1.11.2 (in the
present form) is published in [14].

12 Visibility in Changeable Sets

12.1 Gradations of Visibility

Definition 1.12.1. Let 𝒵 be any changeable set, and l,m ∈ ℒ𝑘 (𝒵) be any reference frames of
𝒵. We say, that a changeable system 𝐴 ⊆ Bs(l) of the reference frame l is:

1. visible (partially visible) from the reference frame m, if and only if ⟨m← l⟩𝐴 ̸= ∅;

2. normally visible from the reference frame m, if and only if 𝐴 ̸= ∅ and arbitrary nonempty
subsystem 𝐵 ⊆ 𝐴 of the changeable system 𝐴 is visible from m (that is ∀𝐵 : ∅ ≠ 𝐵 ⊆ 𝐴
⟨m← l⟩𝐵 ̸= ∅);

3. precisely visible from m, if and only if:

(a) 𝐴 is normally visible from m;

(b) for any family {𝐴𝛼 |𝛼 ∈ 𝒜} ⊆ 2𝐴 of changeable subsystems 𝐴 such, that
⨆︀
𝛼∈𝒜𝐴𝛼 = 𝐴

the following equality holds

⟨m← l⟩𝐴 =
⨆︁
𝛼∈𝒜

⟨m← l⟩𝐴𝛼,

where
⨆︀
𝛼∈𝒜𝐴𝛼 denotes the disjoint union of the family of sets {𝐴𝛼 |𝛼 ∈ 𝒜}, that is

the union
⋃︀
𝛼∈𝒜𝐴𝛼, with additional condition 𝐴𝛼 ∩ 𝐴𝛽 = ∅, 𝛼 ̸= 𝛽.

4. invisible from the reference frame m, if and only if ⟨m← l⟩𝐴 = ∅;
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Remark 1.12.1. It is apparently, that the precise visibility of the changeable system 𝐴 ⊆ Bs(l)
(l ∈ ℒ𝑘 (𝒵)) from the reference frame m ∈ ℒ𝑘 (𝒵) involves the normal visibility of 𝐴 from m,
and the normal visibility of any changeable system 𝐴 ⊆ Bs(l) from m involves it’s visibility
(partial visibility) from m.

Assertion 1.12.1. For any changeable set 𝒵 the following properties of visibility of changeable
systems are true:

1. Empty changeable system ∅ ⊆ Bs(l) always is invisible from any reference frame m ∈
ℒ𝑘 (𝒵).

2. Any nonempty changeable system 𝐴 ⊆ Bs(l), 𝐴 ̸= ∅ always is precisely visible from its
own reference frame l.

3. If a changeable system 𝐴 ⊆ Bs(l) (where l ∈ ℒ𝑘 (𝒵)) includes a subsystem 𝐵 ⊆ 𝐴, which
is visible from reference frames m ∈ ℒ𝑘 (𝒵), then the changeable system 𝐴 also is visible
from m.

4. If a changeable system 𝐴 ⊆ Bs(l) is normally visible (precisely visible) from reference frame
m, then any nonempty subsystem 𝐵 ⊆ 𝐴, 𝐵 ̸= ∅ of changeable system 𝐴 also is normally
visible (precisely visible) from m.

Proof. Statements 1,2,3 of this Assertion follow from Assertion 1.10.2 and Properties 1.10.1 of
changeable sets. Statement 4 for the case of normal visibility is trivial. Thus, it remains to
prove Statement 4 for the case of precise visibility. Let a changeable system 𝐴 ⊆ Bs(l) be
precisely visible from the reference frame m. Consider any changeable system 𝐵 such, that
∅ ≠ 𝐵 ⊆ 𝐴. Since precise visibility involves the normal visibility, 𝐵 is normally visible from m.
Suppose, that 𝐵 =

⨆︀
𝛼∈𝒜𝐵𝛼. Using the equalities:

𝐴 = 𝐵 ⊔ (𝐴 ∖𝐵) ; 𝐴 =
⨆︁
𝛼∈𝒜

𝐵𝛼 ⊔ (𝐴 ∖𝐵) ,

and taking into account precise visibility of the changeable system 𝐴 from m, we obtain:

⟨m← l⟩𝐴 = ⟨m← l⟩𝐵 ⊔ ⟨m← l⟩ (𝐴 ∖𝐵) ;

⟨m← l⟩𝐴 =
⨆︁
𝛼∈𝒜

⟨m← l⟩𝐵𝛼 ⊔ ⟨m← l⟩ (𝐴 ∖𝐵) .

Consequently, ⟨m← l⟩𝐵 ⊔ ⟨m← l⟩ (𝐴 ∖𝐵) =
⨆︀
𝛼∈𝒜 ⟨m← l⟩𝐵𝛼 ⊔ ⟨m← l⟩ (𝐴 ∖𝐵). Hence:

⟨m← l⟩𝐵 =
⨆︁
𝛼∈𝒜

⟨m← l⟩𝐵𝛼.

Thus, 𝐵 is precisely visible from m.

Definition 1.12.2. We say, that a reference frame l ∈ ℒ𝑘 (𝒵) is:

1. visible (partially visible) from the reference frame m ∈ ℒ𝑘 (𝒵) (denotation is l ≻ m (𝒵)),
if and only if there exists at least one visible from the m changeable system 𝐴 ⊆ Bs(l) (that
is ∃𝐴 ⊆ Bs(l) ⟨m← l⟩𝐴 ̸= ∅).

2. normally visible from the reference frame m ∈ ℒ𝑘 (𝒵) (denotation is l ≻! m (𝒵)), if and
only if any nonempty changeable system 𝐴 ⊆ Bs(l) (𝐴 ̸= ∅) is normally visible from the
m.

3. precisely visible from m (denotation is l ≻!! m(𝒵)), if and only if any nonempty change-
able system 𝐴 ⊆ Bs(l) (𝐴 ̸= ∅) is precisely visible from the reference frame m.
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4. invisible from the reference frame m, if and only if any changeable system 𝐴 ⊆ Bs(l) is
invisible from the m.

In the case, when the changeable set 𝒵 is known in advance in the denotations l ≻ m (𝒵),
l ≻! m (𝒵), l ≻!! m (𝒵) the sequence of symbols “(𝒵)” will be omitted, and the denotations
l ≻ m, l ≻! m, l ≻!! m will be used instead.

Remark 1.12.2. From Remark 1.12.1 it follows, that for the reference frames l,m ∈ ℒ𝑘 (𝒵) the
next propositions are true
∙ if l ≻!! m, then l ≻! m;
∙ if l ≻! m, then l ≻ m.
Thus, precise visibility involves the normal visibility and normal visibility involves visibility

(partial visibility). Example 1.11.5 shows, that visibility does not involve the normal visibility.
Indeed, we may consider the case, when card (Bs (ℬ1)) ≥ 2. In this case for the reference frames
l1 = (1,ℬ1), l2 = (2,ℬ2) we have, that the changeable system Bs (l1) = Bs (ℬ1) is visible from l2,
but it is not normally visible from l2, because any subset 𝐴 ⊂ Bs (l1) = Bs (ℬ1) (𝐴 ̸= Bs (ℬ1))
is invisible from l2. Thus, in the case card (Bs (ℬ1)) ≥ 2 we obtain l1 ≻ l2, but not l1 ≻! l2.

Example 1.11.6 shows, that normal visibility does not involve the precise visibility. In this
Example any nonempty changeable system 𝐴 ⊆ Bs (l1) (l1 = (1,ℬ1)) is normally visible from
the reference frame l2 = (2,ℬ2). But, in the case card (𝐴) ≥ 2 the changeable system 𝐴 is not
precisely visible from l2, because in this case there exist nonempty sets 𝐴1, 𝐴2 ⊆ 𝐴 such, that
𝐴1 ⊔𝐴2 = 𝐴, but the images of these sets (⟨l2← l1⟩𝐴1 = U21𝐴1 = {𝜔}, ⟨l2← l1⟩𝐴2 = U21𝐴2 =
{𝜔}) are not disjoint. Thus, in the case card (Bs (ℬ1)) ≥ 2 we have l1 ≻! l2, but not l1 ≻!! l2.

Further it will be proved that in examples 1.11.1, 1.11.2 and 1.11.3 any reference frame of

the changeable sets 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
and 𝒵 im (U,ℬ) is precisely visible from another frame (see

assertions 1.12.6 and 1.12.7 below).

The next three assertions immediately follow from definitions 1.12.2, 1.12.1 and Assertion
1.12.1.

Assertion 1.12.2. For any changeable set 𝒵 the next propositions are equivalent:

(Vi1) Reference frame l ∈ ℒ𝑘 (𝒵) is visible from reference frame m ∈ ℒ𝑘 (𝒵) (l ≻ m).

(Vi2) The set Bs(l) of all elementary-time states of l is visible from m.

Assertion 1.12.3. For an arbitrary changeable set 𝒵 the following propositions are equivalent:

(nVi1) Reference frame l ∈ ℒ𝑘 (𝒵) is normally visible from reference frame m ∈ ℒ𝑘 (𝒵)
(l ≻! m).

(nVi2) The set Bs(l) of all elementary-time states of l is normally visible from m.

(nVi3) Any nonempty changeable system 𝐴 ⊆ Bs(l) is visible from m (∀ ⊆ Bs(l)
(𝐴 ̸= ∅ ⇒ ⟨m← l⟩𝐴 ̸= ∅)).

Assertion 1.12.4. Let 𝒵 — be an arbitrary changeable set. Then:

1. Any reference frame l ∈ ℒ𝑘 (𝒵) is precisely visible from itself (that is ∀ l ∈
ℒ𝑘 (𝒵) l ≻!! l).

2. The following propositions are equivalent:

(pVi1) Reference frame l ∈ ℒ𝑘 (𝒵) is precisely visible from reference frame m ∈ ℒ𝑘 (𝒵)
(l ≻!! m).

(pVi2) The set Bs(l) of all elementary-time states of l is precisely visible from m.
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Assertion 1.12.5. For any changeable set 𝒵 the binary relation ≻! quasi order 12 on the set
ℒ𝑘 (𝒵) of all reference frames of 𝒵.

Proof. Reflexivity of the relation ≻! follows from the first item of Assertion 1.12.4 and from
Remark 1.12.2. Thus, we only need to prove the transitivity of the relation ≻! .

Suppose, that l ≻! m and m ≻! p, where l,m, p ∈ ℒ𝑘 (𝒵). Then, using Assertion 1.12.3
(equivalence between (nVi1) and (nVi3)), for any nonempty changeable system 𝐴 ⊆ Bs(l) we
obtain, ⟨p← l⟩𝐴 ⊇ ⟨p←m⟩ ⟨m← l⟩𝐴 ̸= ∅, thus, by Assertion 1.12.3, l ≻! p.

Remark 1.12.3. First item of Assertion 1.12.4 together with Remark 1.12.2 also bring about
the reflexivity of relations ≻!! and ≻ on the set ℒ𝑘 (𝒵) (for any changeable set 𝒵). But these
relations, in general, are not transitive. And the next examples explain the last statement.

Example 1.12.1. Let ℬ be any base changeable set. We consider the family
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ N)

of base changeable sets, which is defined as follows:

ℬ𝛼 := ℬ, 𝛼 ∈ N.
For 𝛼, 𝛽 ∈ N we define the mappings U𝛽𝛼 : Bs (ℬ𝛼) ↦→ Bs (ℬ𝛽) by the following way:

U𝛽𝛼𝐴 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴, 𝛽 ∈ {𝛼, 𝛼 + 1} ;
Bs(ℬ), 𝛽 > 𝛼+ 1, 𝐴 ̸= ∅;
∅, 𝛽 > 𝛼 + 1, 𝐴 = ∅;
∅, 𝛽 < 𝛼,

(𝐴 ∈ Bs (ℬ𝛼) = Bs(ℬ), 𝑛 ∈ N) (1.68)

(where the symbols <,> denote the usual order on the set of natural numbers).

We shell prove, that the system of mappings
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ N) is unification of percep-

tion.
The first two conditions of Definition 1.10.1 for the system of mappings

←−
U are performed

by a trivial way. Thus, we need to verify the third condition of this Definition. Let 𝛼, 𝛽, 𝛾 ∈ N
and 𝐴 ⊆ Bs (ℬ𝛼) = Bs(ℬ). Then in the case 𝛼 ≤ 𝛽 ≤ 𝛾, by (1.68), we obtain:

U𝛾𝛽U𝛽𝛼𝐴 =

⎧⎪⎨⎪⎩
∅, 𝐴 = ∅;
𝐴, 𝐴 ̸= ∅, 𝛽 ∈ {𝛼, 𝛼 + 1} , 𝛾 ∈ {𝛽, 𝛽 + 1} ;
Bs(ℬ), 𝐴 ̸= ∅, and (𝛽 > 𝛼 + 1 or 𝛾 > 𝛽 + 1).

(1.69)

Since U𝛾𝛼𝐴 ∈ {𝐴,Bs(ℬ)} for 𝛼 ≤ 𝛾, in the first two cases of the formula (1.69) the inclusion
U𝛾𝛽U𝛽𝛼𝐴 ⊆ U𝛾𝛼𝐴 holds. In the third case of the formula (1.69) we have 𝛾 > 𝛼 + 1, and
hence, U𝛾𝛼𝐴 = Bs(ℬ). Thus, in this case, the last inclusion also is performed. If the condition
𝛼 ≤ 𝛽 ≤ 𝛾 is not satisfied, we have 𝛼 > 𝛽 or 𝛽 > 𝛾. Therefore, by the formula (1.68), we have,
U𝛾𝛽U𝛽𝛼𝐴 = ∅. Consequently, in this case we also have the inclusion U𝛾𝛽U𝛽𝛼𝐴 ⊆ U𝛾𝛼𝐴. Thus,
all conditions of Definition 1.10.1 are satisfied.

Hence, the triple 𝒵 =
(︁
N,
←−
ℬ ,
←−
U
)︁
is a changeable set. According to denotation system,

accepted in Subsection 10.2, for this changeable set 𝒵 we have:

ℒ𝑘 (𝒵) = {l𝑛 | 𝑛 ∈ N} , where
l𝑛 = (𝑛,ℬ𝑛) = (𝑛,ℬ) , 𝑛 ∈ N,

and for l𝑛, l𝑚 ∈ ℒ𝑘 (𝒵) the equality ⟨l𝑛← l𝑚⟩ = U𝑛𝑚 holds. Thus, by (1.68):

⟨l𝑛+1← l𝑛⟩𝐴 = 𝐴, 𝐴 ⊆ Bs (l𝑛) = Bs(ℬ), 𝑛 ∈ N;
12 About quasi order relation see footnote 2.
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⟨l𝑛+2← l𝑛⟩𝐴 =

{︃
Bs(ℬ), 𝐴 ̸= ∅
∅, 𝐴 = ∅

, 𝐴 ⊆ Bs (l𝑛) = Bs(ℬ), 𝑛 ∈ N;

The last equalities show, that l𝑛 ≻!! l𝑛+1 (𝑛 ∈ N). But, in the case card(Bs(ℬ)) ≥ 2, l𝑛 is
normally visible, but not precisely visible from l𝑛+2. Thus, in the case card(Bs(ℬ)) ≥ 2 for
any 𝑛 ∈ N we have l𝑛 ≻!! l𝑛+1, l𝑛+1 ≻!! l𝑛+2, although the correlation l𝑛 ≻!! l𝑛+2 is not true.

Example 1.12.2. Let base changeable set ℬ be such, that the set Bs(ℬ) is infinite. Then there

exists the sequence (𝜔𝑛)
∞
𝑛=1 ⊆ Bs(ℬ) of elementary-time states such, that 𝜔𝑛 ̸= 𝜔𝑚, 𝑚 ̸= 𝑛.

Denote:

ℬ𝛼 := ℬ, 𝛼 ∈ N;
←−
ℬ := (ℬ𝛼 | 𝛼 ∈ N) ;

U𝛽𝛼𝐴 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐴, 𝛽 = 𝛼

{𝜔𝛽} , 𝛽 = 𝛼 + 1, 𝜔𝛽 ∈ 𝐴

∅, 𝛽 = 𝛼 + 1, 𝜔𝛽 /∈ 𝐴

∅, 𝛽 /∈ {𝛼, 𝛼 + 1} .

(𝐴 ⊆ Bs (ℬ𝛼) = Bs(ℬ), 𝑛 ∈ N) (1.70)

We shell prove, that the system of mappings
←−
U = (U𝛽𝛼 | 𝛼, 𝛽 ∈ N) is unification of perception.

The first two conditions of Definition 1.10.1 for the system of mappings
←−
U are performed by

a trivial way. Thus, we need to verify the third condition of this Definition. Let 𝛼, 𝛽, 𝛾 ∈ N.
It should be noted, that from (1.70) it follows, that U𝛽𝛼∅ = ∅ for any 𝛼, 𝛽 ∈ N. Thus,

according to (1.70), if one of the conditions 𝛼 ≤ 𝛽 or 𝛽 ≤ 𝛾 is not performed, then we have

U𝛾𝛽U𝛽𝛼𝐴 = ∅ ⊆ U𝛾𝛼𝐴, 𝐴 ⊆ Bs(ℬ). Hence, we shell consider the case 𝛼 ≤ 𝛽 ≤ 𝛾. In the case,

when 𝛼 = 𝛽 or 𝛽 = 𝛾, similarly to Example 1.11.5 (items 3.a),3.b)), we obtain U𝛾𝛽U𝛽𝛼𝐴 = U𝛾𝛼𝐴.

Thus, it remains to consider only the case 𝛼 < 𝛽 < 𝛾. In the cases 𝛽 > 𝛼+ 1 or 𝛾 > 𝛽 + 1, by

(1.70), we obtain U𝛾𝛽U𝛽𝛼𝐴 = ∅ ⊆ U𝛾𝛼𝐴, 𝐴 ∈ Bs(ℬ). Hence, it remains only the case 𝛽 = 𝛼+1

and 𝛾 = 𝛽+1. If 𝜔𝛽 /∈ 𝐴, then, by (1.70), U𝛽𝛼𝐴 = ∅, and we have, U𝛾𝛽U𝛽𝛼𝐴 = ∅ ⊆ U𝛾𝛼𝐴. And

in the case 𝜔𝛽 ∈ 𝐴, we obtain 𝜔𝛾 = 𝜔𝛽+1 /∈ {𝜔𝛽}. Thus, in this case:

U𝛾𝛽U𝛽𝛼𝐴 = U𝛾𝛽 {𝜔𝛽} = ∅ ⊆ U𝛾𝛼𝐴.

Consequently, the triple 𝒵 =
(︁
N,
←−
ℬ ,
←−
U
)︁
is a changeable set, satisfying:

ℒ𝑘 (𝒵) = {l𝑛 | 𝑛 ∈ N} , where l𝑛 = (𝑛,ℬ𝑛) = (𝑛,ℬ) , 𝑛 ∈ N,
⟨l𝑛← l𝑚⟩ = U𝑛𝑚, 𝑚, 𝑛 ∈ N (l𝑛, l𝑚 ∈ ℒ𝑘 (𝒵)).

From (1.70) it follows, that any 𝑛 ∈ N ⟨l𝑛+2← l𝑛⟩𝐴 = U𝑛+2,𝑛𝐴 = ∅, 𝐴 ⊆ Bs(ℬ) = Bs (l𝑛), but,
under the condition, 𝜔𝑛+1, 𝜔𝑛+2 ∈ 𝐴 we have ⟨l𝑛+1← l𝑛⟩𝐴 = {𝜔𝑛+1} ̸= ∅, ⟨l𝑛+2← l𝑛+1⟩𝐴 =
{𝜔𝑛+2} ̸= ∅. Therefore, l𝑛 ≻ l𝑛+1, l𝑛+1 ≻ l𝑛+2, although the reference frame l𝑛 invisible from
l𝑛+2 (l𝑛 ̸≻ l𝑛+2).

Now we turn to the investigation of visibility of reference frames in the changeable sets of

kind 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
and 𝒵 im [P,ℬ]. We are going to prove, that in these changeable sets any

reference frame is precisely visible from each another.
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Assertion 1.12.6. Let
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) (𝒜 ≠ ∅) be indexed family of base changeable sets

such, that card (Bs (ℬ𝛼)) = card (Bs (ℬ𝛽)) (for any 𝛼, 𝛽 ∈ 𝒜) and
←−
𝑊 = (𝑊𝛽𝛼| 𝛼, 𝛽 ∈ 𝒜) be

indexed family of bijections of kind 𝑊𝛽𝛼 : Bs (ℬ𝛼) ↦→ Bs (ℬ𝛽), satisfying conditions (1.60) and

𝒵 = 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
.

Then the correlation l1 ≻!! l2 is performed for any reference frames l1, l2 ∈ ℒ𝑘 (𝒵).

Proof. Consider any reference frames l1, l2 ∈ ℒ𝑘 (𝒵), where 𝒵 = 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
. According to

Property 1.11.1(1) reference frames l1, l2 can be represented in the form:

l1 = (𝛼,ℬ𝛼) , l2 = (𝛽,ℬ𝛽) ,

where 𝛼, 𝛽 ∈ 𝒜. And, in accordance with Properties 1.11.1(4,3), unification mapping between
l1 and l2 is represented in the form:

⟨l2← l1⟩𝐴 = 𝑊𝛽𝛼(𝐴) = {𝑊𝛽𝛼(𝜔) | 𝜔 ∈ 𝐴} (∀𝐴 ⊆ Bs (l1) = Bs (ℬ𝛼)) ,

where𝑊𝛽𝛼 : Bs (ℬ𝛼) ↦→ Bs (ℬ𝛽) is an bijection between Bs (ℬ𝛼) = Bs (l1) and Bs (ℬ𝛽) = Bs (l2).
Hence, any non-empty changeable system ∀𝐴 ⊆ Bs (l1) is visible from l2. Hence, by Definition
1.12.1 (item 2) Bs (l1) is normally visible from l2. Since the mapping𝑊𝛽𝛼 is an bijection between
Bs (l1) and Bs (l2), for any disjoint system of changeable systems (𝐴𝛽 | 𝛽 ∈ B) (𝐴𝛽 ⊆ Bs (l1),

𝛽 ∈ B and 𝐴𝛽∩𝐴𝛾 = ∅ for 𝛽 ̸= 𝛾), we have ⟨l2← l1⟩

(︃ ⨆︀
𝛽∈B

𝐴𝛽

)︃
=
⨆︀
𝛽∈B

⟨l2← l1⟩𝐴𝛽. Therefore,

by Definition 1.12.1 (item 3), Bs (l1), is precisely visible from l2. Thus, by Assertion 1.12.4,
l1 ≻!! l2.

Assertion 1.12.7. Let P be an evolution multi-projector for base changeable set ℬ and

𝒵 = 𝒵 im [P,ℬ] .

Then the correlation l1 ≻!! l2 is performed for any reference frames l1, l2 ∈ ℒ𝑘 (𝒵).

Proof. Assertion 1.12.7 follows from Assertion 1.12.6 and Equality (1.66) in Remark 1.11.5.

Corollary 1.12.1. Let U be transforming set of bijections relatively the base changeable set ℬ
on 𝑋 and

𝒵 = 𝒵 im (U,ℬ) .
Then the correlation l1 ≻!! l2 is performed for any reference frames l1, l2 ∈ ℒ𝑘 (𝒵).

Proof. Corollary 1.12.1 follows from Assertion 1.12.7 and Equality (1.67).

From Corollary 1.12.1 it follows that in changeable set, considered in Example 1.11.3, any
reference frame is precisely visible from each another.

Definition 1.12.3. We say, that a changeable set 𝒵 is visible (normally visible, precisely
visible) if and only if for any l,m ∈ ℒ𝑘 (𝒵) it satisfied the condition l ≻ m (l ≻! m, l ≻!! m)
correspondingly.

From Remark 1.12.2 it follows, that any normally visible changeable set is visible. Exam-
ple 1.11.5 shows, that the inverse assertion is not true. Indeed, we may consider the case, when
in this Example card (Bs (ℬ1)) ≥ 2. As it has been shown in Remark 1.12.2, in this case for
the reference frames l1 = (1,ℬ1), l2 = (2,ℬ2) we have, l1 ≻ l2, but not l1 ≻! l2. Since in this
Example 𝜔 ∈ Bs (ℬ2), we obtain ⟨l1← l2⟩Bs (ℬ2) = U12Bs (ℬ2) = Bs (ℬ1) ̸= ∅. Hence, l2 ≻ l1.
Thus l1 ≻ l2, l2 ≻ l1, but not l1 ≻! l2. And, taking into account, that ℒ𝑘 (𝒵1) = {l1, l2}, we
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obtain, that the changeable set 𝒵1 in Example 1.11.5 is visible, but not normally visible. In
the subsection 12.2 (Corollary 1.12.5) it will be shown, that the changeable set 𝒵 is precisely
visible if and only if it is normally visible.

Using the notion of precisely visible changeable set, introduced in Definition 1.12.3, we obtain
the following three corollaries from Assertions 1.12.6, 1.12.7 and Corollary 1.12.1.

Corollary 1.12.2. Let
←−
ℬ = (ℬ𝛼 | 𝛼 ∈ 𝒜) (𝒜 ≠ ∅) be indexed family of base changeable sets

such, that card (Bs (ℬ𝛼)) = card (Bs (ℬ𝛽)) (for any 𝛼, 𝛽 ∈ 𝒜) and
←−
𝑊 = (𝑊𝛽𝛼| 𝛼, 𝛽 ∈ 𝒜)

be indexed family of bijections of kind 𝑊𝛽𝛼 : Bs (ℬ𝛼) ↦→ Bs (ℬ𝛽), satisfying conditions (1.60).

Then the changeable set 𝒵 = 𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
is precisely visible.

Corollary 1.12.3. Let P be be an evolution multi-projector for base changeable set ℬ. Then
the changeable set 𝒵 = 𝒵 im [P,ℬ] is precisely visible.

Corollary 1.12.4. Let U be transforming set of bijections relatively the base changeable set ℬ
on 𝑋. Then the changeable set 𝒵 = 𝒵 im (U,ℬ) is precisely visible.

12.2 Visibility Classes

Assertion 1.12.8. For any reference frames l,m ∈ ℒ𝑘 (𝒵) of any changeable set 𝒵 the following
propositions are equivalent:

(I) l ≻! m and m ≻! l;

(II) l ≻!! m and m ≻!! l.

Proof. Since precise visibility always involves normal visibility, it is enough only to prove the
implication (I)⇒(II). Hence, suppose, that l,m ∈ ℒ𝑘 (𝒵), l ≻! m and m ≻! l.

1) First we shall prove, that for any 𝐴,𝐵 ⊆ Bs(l), the equality 𝐴 ∩ 𝐵 = ∅ is true
if and only if ⟨m← l⟩𝐴 ∩ ⟨m← l⟩𝐵 = ∅. Suppose, that 𝐴 ∩ 𝐵 = ∅. Then, according
to second item of Assertion 1.10.3, ∅ = 𝐴 ∩ 𝐵 ⊇ ⟨l←m⟩ (⟨m← l⟩𝐴 ∩ ⟨m← l⟩𝐵). Since
m ≻! l and ⟨l←m⟩ (⟨m← l⟩𝐴 ∩ ⟨m← l⟩𝐵) = ∅, then, by the definition of normal visibility,
⟨m← l⟩𝐴∩⟨m← l⟩𝐵 = ∅, what is necessary to prove. Conversely, let ⟨m← l⟩𝐴∩⟨m← l⟩𝐵 = ∅.
Then, by first item of Assertion 1.10.3, ⟨m← l⟩ (𝐴 ∩𝐵) ⊆ ⟨m← l⟩𝐴 ∩ ⟨m← l⟩𝐵 = ∅. Since
⟨m← l⟩ (𝐴 ∩𝐵) = ∅ and l ≻! m, then, by the definition of normal visibility, 𝐴 ∩𝐵 = ∅.

2) Let, 𝐴 ⊆ Bs(l) and 𝐴 =
⨆︀
𝛼∈𝒜𝐴𝛼 (where 𝐴𝛼 ⊆ 𝐴, 𝛼 ∈ 𝒜; 𝐴𝛼 ∩ 𝐴𝛽 = ∅, 𝛼 ̸= 𝛽). By

Item 3) of Assertion 1.10.3, ⟨m← l⟩𝐴 ⊇
⋃︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼. Since the family of sets (𝐴𝛼 | 𝛼 ∈ 𝒜)

is disjoint, by first item of this proof, the family of sets (⟨m← l⟩𝐴𝛼 | 𝛼 ∈ 𝒜) also is disjoint,
that is ⟨m← l⟩𝐴 ⊇

⨆︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼. Assume, that the last inclusion is strict (ie ⟨m← l⟩𝐴 ̸=⨆︀

𝛼∈𝒜 ⟨m← l⟩𝐴𝛼). Then the set �̃� = (⟨m← l⟩𝐴) ∖
(︀⨆︀

𝛼∈𝒜 ⟨m← l⟩𝐴𝛼
)︀
is nonempty. Hence, by

definition of normal visibility, the set 𝐵 = ⟨l←m⟩ �̃� also is nonempty. Since �̃� ⊆ ⟨m← l⟩𝐴,
by Properties 1.10.1, we have, 𝐵 = ⟨l←m⟩ �̃� ⊆ ⟨l←m⟩ ⟨m← l⟩𝐴 ⊆ ⟨l← l⟩𝐴 = 𝐴. Since
the set �̃� = (⟨m← l⟩𝐴) ∖

(︀⨆︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼

)︀
is disjoint with with any of the sets ⟨m← l⟩𝐴𝛼

(𝛼 ∈ 𝒜), the set ⟨m← l⟩𝐵 = ⟨m← l⟩ ⟨l←m⟩ �̃� ⊆ ⟨m←m⟩ �̃� = �̃� also is disjoint with with
any of ⟨m← l⟩𝐴𝛼 (𝛼 ∈ 𝒜) (ie ⟨m← l⟩𝐵 ∩ ⟨m← l⟩𝐴𝛼 = ∅, 𝛼 ∈ 𝒜). Hence, by the first item
of this proof, 𝐵 ∩ 𝐴𝛼 = ∅, 𝛼 ∈ 𝒜. Thus, we can conclude, that there exist the nonempty set
𝐵 ⊆ 𝐴 such, that 𝐵 ∩𝐴𝛼 = ∅, 𝛼 ∈ 𝒜, which contradicts the equality 𝐴 =

⨆︀
𝛼∈𝒜𝐴𝛼. Thus, the

assumption above is wrong, and, consequently, we obtain ⟨m← l⟩𝐴 =
⨆︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼.

Thus, any set 𝐴 ⊆ Bs(𝑙) is precisely visible from the reference frame m, ie l ≻!! m. Similarly,
we obtain, that m ≻!! l.

The next corollary immediately follows from Assertion 1.12.8.

Corollary 1.12.5. Changeable set 𝒵 is precisely visible if and only if it is normally visible.
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Taking into account Corollary 1.12.5, the notion “normally visible changeable set” will be
not used henceforth.

Definition 1.12.4. We say, that reference frames l,m ∈ ℒ𝑘 (𝒵) are equivalent respectively
the precise visibility (or, abbreviated, precisely-equivalent) if and only if it is satisfied the
condition (II) (or, equivalently, the condition (I)) of Assertion 1.12.8.

The fact, that reference frames l,m ∈ ℒ𝑘 (𝒵) are precisely-equivalent will be denoted by the
following way:

l ≡!m (𝒵).
And in the case, when changeable set 𝒵 known in advance we shall use the denotation l ≡! m
instead.

Assertion 1.12.9. Relation ≡! is relation of equivalence on the set ℒ𝑘 (𝒵).

Proof. For l,m ∈ ℒ𝑘 (𝒵) condition l ≡!m is equivalent to the condition (I) of Assertion 1.12.8.
Thus, since (by Assertion 1.12.5) the relation ≻! is quasi order on ℒ𝑘 (𝒵), the desired result
follows from [41, page. 21].

Definition 1.12.5. Equivalence classes, generated by the relation ≡! will be referred to as
precise visibility classes of the changeable set 𝒵.

Thus, for any changeable set, the set of all its reference frames can be splited on the precise
visibility classes. Within an arbitrary precise visibility class any reference frame is precisely
visible from other. It is evident, that changeable set 𝒵 is precisely visible if and only if ℒ𝑘 (𝒵)
contains only one precise visibility class.

It turns out, that, using the relation of visibility “≻”, we can divide the set ℒ𝑘 (𝒵) by
equivalence classes also.

Definition 1.12.6. Let 𝒵 be a changeable set.

(a) We say, that reference frames l,m ∈ ℒ𝑘 (𝒵) are directly connected by visibility (deno-
tation is l ≺≻ m (𝒵), or l ≺≻ m in the case, when changeable set 𝒵 known in advance) if
and only if at least one of the following conditions is satisfied:

l ≻ m or m ≻ l.

(b) We say, that reference frames l,m ∈ ℒ𝑘 (𝒵) are connected by visibility (denotation is
l̂︀≡m (𝒵), or l̂︀≡m in the case, when changeable set 𝒵 known in advance) if and only if
there exists a sequence l0, l1, · · · , l𝜈 ∈ ℒ𝑘 (𝒵) (𝜈 ∈ N) such, that:

l0 = l, l𝜈 = m, and l𝑖 ≺≻ l𝑖−1 (∀ 𝑖 ∈ 1, 𝜈).

Assertion 1.12.10. Relation ̂︀≡ is relation of equivalence on the set ℒ𝑘 (𝒵).

Proof. Since the relation of visibility, according to Remark 1.12.3, is reflexive, the relation ≺≻
is reflexive and symmetric on ℒ𝑘 (𝒵). The relation ̂︀≡ is transitive closure of the relation ≺≻
in the sense of [44, page 69], [45, page. 32]. Thus, by [44, assertions 5.8, 5.9 and theorem 5.8],̂︀≡ is equivalence relation on ℒ𝑘 (𝒵).

Definition 1.12.7. Equivalence classes in the set ℒ𝑘 (𝒵), generated by the relation ̂︀≡ will be
named by visibility classes of the changeable set 𝒵.

But it may occur, that in the changeable set only one visibility class exist.

Definition 1.12.8. We say, that a changeable set 𝒵 is connected visible if and only if for
any l,m ∈ ℒ𝑘 (𝒵) it is true the correlation l̂︀≡m.
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It is evident, that any visible changeable set is connected visible. Analyzing the examples
1.12.1 and 1.12.2 it is easy to verify that the inverse proposition, in general, is false.

So, we see, that in the case, when a changeable set 𝒵 is not connected visible the set of
all it’s reference frames is splitted by “parallel worlds” (visibility classes) and any visibility
class is “fully invisible” from other visibility classes. As formal example of changeable set with

many visibility classes it can be considered the changeable set 𝒵nv
(︁←−
ℬ
)︁
(see Example 1.11.4)

with card(
←−
ℬ ) ≥ 2. In the changeable set 𝒵nv

(︁←−
ℬ
)︁
any reference frame forms the separated

visibility class.
Precise visibility classes also can be interpreted as “parallel worlds”. But these “parallel

worlds” may be partially visible from other “parallel worlds”.

12.3 Precisely Visible Changeable Sets

In the classical mechanics and special relativity theory (for inertial reference frames) it is sup-
posed, that any elementary-time state (or “physical event”) is visible in any frame of reference.
Hence, the precisely visible changeable sets are to be important for physics. In this subsection
we investigate precisely visible changeable sets in more details. The changeable sets of kind

𝒵pv
(︁←−
ℬ ,
←−
𝑊
)︁
, 𝒵 im [P,ℬ] and 𝒵 im (U,ℬ), introduced in examples 1.11.1,1.11.2, 1.11.3 and Def-

inition 1.11.4, evidently are precisely visible.

Remark 1.12.4. It should be noted, that by Assertion 1.12.8 and definition of the relation ≡! ,
for any changeable set 𝒵 the following propositions are equivalent:

(I) 𝒵 is precisely visible changeable set ;

(II) for any l,m ∈ ℒ𝑘 (𝒵) it is performed the condition l ≻!! m;
(III) for any l,m ∈ ℒ𝑘 (𝒵) it is performed the condition l ≻! m;
(IV) for any l,m ∈ ℒ𝑘 (𝒵) it is performed the condition l ≡!m.

Note also that in the first item of the proof of Assertion 1.12.8 it was proved, the following
lemma.

Lemma 1.12.1. Let 𝒵 be a precisely visible changeable set. Then for any l,m ∈ ℒ𝑘 (𝒵) and
𝐴,𝐵 ⊆ Bs(l) the equality ⟨m← l⟩𝐴 ∩ ⟨m← l⟩𝐵 = ∅ is true if and only if 𝐴 ∩𝐵 = ∅.

Theorem 1.12.1. Changeable set 𝒵 is precisely visible if and only if for any l,m, p ∈ ℒ𝑘 (𝒵)
the followind equality is true:

⟨p←m⟩ ⟨m← l⟩ = ⟨p← l⟩ . (1.71)

Proof. Sufficiency. Suppose, that for any l,m, p ∈ ℒ𝑘 (𝒵) the equality (1.71) holds. Chose
any reference frames l,m ∈ ℒ𝑘 (𝒵) and any changeable system 𝐴 ⊆ Bs(l) such, that 𝐴 ̸= ∅.
Then, by (1.71),

𝐴 = ⟨l← l⟩𝐴 = ⟨l←m⟩ ⟨m← l⟩𝐴.
Therefore, by Assertion 1.10.2, ⟨m← l⟩𝐴 ̸= ∅. Thus, by Assertion 1.12.3, l ≻! m (for any
reference frames l,m ∈ ℒ𝑘 (𝒵)). Hence, by Remark 1.12.4, the changeable set 𝒵 is precisely
visible.
Necessity. Conversely, suppose, that the changeable set 𝒵 is precisely visible. Consider any

reference frames l,m, p ∈ ℒ𝑘 (𝒵) and any changeable system 𝐴 ⊆ Bs(l). By Property 1.10.1(9)
⟨p←m⟩ ⟨m← l⟩𝐴 ⊆ ⟨p← l⟩𝐴. Denote:

𝐵1 := ⟨p← l⟩𝐴 ∖ ⟨p←m⟩ ⟨m← l⟩𝐴.
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Then, 𝐵1 ⊆ ⟨p← l⟩𝐴 and 𝐵1∩⟨p←m⟩ ⟨m← l⟩𝐴 = ∅. Denote 𝐵 := ⟨l←m⟩ ⟨m← p⟩𝐵1. Using
Properties 1.10.1 we obtain:

𝐵 = ⟨l←m⟩ ⟨m← p⟩𝐵1 ⊆ ⟨l←m⟩ ⟨m← p⟩ ⟨p← l⟩𝐴 ⊆
⊆ ⟨l← l⟩𝐴 = 𝐴;

⟨p←m⟩ ⟨m← l⟩𝐵 = ⟨p←m⟩ ⟨m← l⟩ ⟨l←m⟩ ⟨m← p⟩𝐵1 ⊆
⊆ ⟨p← p⟩𝐵1 = 𝐵1.

Hence, since 𝐵1 ∩ ⟨p←m⟩ ⟨m← l⟩𝐴 = ∅, we have ⟨p←m⟩ ⟨m← l⟩𝐵 ∩ ⟨p←m⟩ ⟨m← l⟩𝐴 = ∅.
Consequently, using Lemma 1.12.1, we obtain 𝐵 ∩ 𝐴 = ∅. Since 𝐵 ⊆ 𝐴 and 𝐵 ∩ 𝐴 = ∅,
we obtain 𝐵 = ∅. Thus, ⟨l←m⟩ ⟨m← p⟩𝐵1 = 𝐵 = ∅. Therefore, taking into account, that,
by Remark 1.12.4 p ≻! m and m ≻! l, we obtain (by definition of normal visibility) 𝐵1 = ∅.

Note, that, for the changeable set 𝒵 =
(︁
𝒜,
←−
ℬ ,
←−
U
)︁
from Definition 1.10.1, the condition

(1.71) is equivalent to the condition (1.57).

Assertion 1.12.11. Let 𝒵 be a precisely visible changeable set. Then for any reference frames
l,m ∈ ℒ𝑘 (𝒵), any family of changeable systems (𝐴𝛼|𝛼 ∈ 𝒜) (𝐴𝛼 ⊆ Bs(l), 𝛼 ∈ 𝒜) and any
changeable systems 𝐴,𝐵 ∈ Bs(l) the following assertions are true:

1. ⟨m← l⟩
(︂ ⋂︀
𝛼∈𝒜

𝐴𝛼

)︂
=
⋂︀
𝛼∈𝒜
⟨m← l⟩𝐴𝛼;

2. ⟨m← l⟩ (𝐴 ∖𝐵) = ⟨m← l⟩𝐴 ∖ ⟨m← l⟩𝐵;

3. ⟨m← l⟩Bs(l) = Bs(m);

4. ⟨m← l⟩
(︂ ⋃︀
𝛼∈𝒜

𝐴𝛼

)︂
=
⋃︀
𝛼∈𝒜
⟨m← l⟩𝐴𝛼;

5. If a changeable system 𝐴 ⊆ Bs(l) is a singleton (i.e. card(𝐴) = 1), then the changeable
system ⟨m← l⟩𝐴 also is a singleton.

Proof. 1) Using Assertion 1.10.3, item 2), Properties 1.10.1 and Theorem 1.12.1 (equality (1.71))
we obtain:

⟨m← l⟩

(︃⋂︁
𝛼∈𝒜

𝐴𝛼

)︃
⊇ ⟨m← l⟩ ⟨l←m⟩

(︃⋂︁
𝛼∈𝒜

⟨m← l⟩𝐴𝛼

)︃
=

= ⟨m←m⟩

(︃⋂︁
𝛼∈𝒜

⟨m← l⟩𝐴𝛼

)︃
=
⋂︁
𝛼∈𝒜

⟨m← l⟩𝐴𝛼.

Hence, ⟨m← l⟩
(︀⋂︀

𝛼∈𝒜𝐴𝛼
)︀
⊇
⋂︀
𝛼∈𝒜 ⟨m← l⟩𝐴𝛼. The inverse inclusion is contained in Assertion

1.10.3, item 1).
2) Since 𝐴 ∖𝐵 ⊆ 𝐴, then by Property 1.10.1(8) we have, ⟨m← l⟩ (𝐴 ∖𝐵) ⊆ ⟨m← l⟩𝐴. Since

(𝐴 ∖𝐵) ∩𝐵 = ∅, then, by Lemma 1.12.1, ⟨m← l⟩ (𝐴 ∖𝐵) ∩ ⟨m← l⟩𝐵 = ∅. Hence:

⟨m← l⟩ (𝐴 ∖𝐵) ⊆ ⟨m← l⟩𝐴 ∖ ⟨m← l⟩𝐵. (1.72)

Using the correlation (1.72) to the sets ⟨m← l⟩𝐴, ⟨m← l⟩𝐵, with unification mapping ⟨l←m⟩,
applying the formula (1.71) and Properties 1.10.1 we obtain:

⟨l←m⟩ (⟨m← l⟩𝐴 ∖ ⟨m← l⟩𝐵) ⊆
⊆ ⟨l←m⟩ ⟨m← l⟩𝐴 ∖ ⟨l←m⟩ ⟨m← l⟩𝐵 = ⟨l← l⟩𝐴 ∖ ⟨l← l⟩𝐵 = 𝐴 ∖𝐵.
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Hence, by Property 1.10.1(8) ⟨m← l⟩ ⟨l←m⟩ (⟨m← l⟩𝐴 ∖ ⟨m← l⟩𝐵) ⊆ ⟨m← l⟩ (𝐴 ∖ 𝐵). And
applying the formula (1.71) and Property 1.10.1(5), we obtain the inverse inclusion to (1.72).

3) By definition of unification mapping,

⟨m← l⟩Bs(l) ⊆ Bs(m). (1.73)

Similarly, ⟨l←m⟩Bs(m) ⊆ Bs(l). Applying to the last inclusion unification mapping ⟨m← l⟩,
and using Properties 1.10.1 as well as correlation (1.71) we obtain the inverse inclusion to (1.73).

4) Note, that:
⋃︀
𝛼∈𝒜𝐴𝛼 = Bs(l) ∖

(︀⋂︀
𝛼∈𝒜 (Bs(l) ∖ 𝐴𝛼)

)︀
. Hence, using items 1, 2, and 3 of

this Assertion we obtain:

⟨m← l⟩

(︃⋃︁
𝛼∈𝒜

𝐴𝛼

)︃
= (⟨m← l⟩Bs(l)) ∖

(︃⋂︁
𝛼∈𝒜

(⟨m← l⟩Bs(l) ∖ ⟨m← l⟩𝐴𝛼)

)︃
=

= Bs(m) ∖

(︃⋂︁
𝛼∈𝒜

(Bs(m) ∖ ⟨m← l⟩𝐴𝛼)

)︃
=
⋃︁
𝛼∈𝒜

⟨m← l⟩𝐴𝛼.

5) Let 𝐴 ⊆ Bs(l), and 𝐴 = {𝜔} is a singleton. By Remark 1.12.4, l ≻! m and, since 𝐴 ̸= ∅,
by definition of normal visibility, we have ⟨m← l⟩𝐴 ̸= ∅. Suppose, that the set 𝐵 = ⟨m← l⟩𝐴
contains more, than one element. Then, there exist sets 𝐵1, 𝐵2 ⊆ 𝐵 such, that 𝐵1, 𝐵2 ̸= ∅ and
𝐵 = 𝐵1 ⊔ 𝐵2. Denote: 𝐴1 := ⟨l←m⟩𝐵1, 𝐴2 := ⟨l←m⟩𝐵2. Since 𝐵1, 𝐵2 ̸= ∅, then, by the
definition of normal visibility, 𝐴1, 𝐴2 ̸= ∅. Since 𝐵 = 𝐵1 ⊔𝐵2, then, by the definition of precise
visibility, ⟨l←m⟩𝐵 = ⟨l←m⟩𝐵1 ⊔ ⟨l←m⟩𝐵2 = 𝐴1 ⊔ 𝐴2. Hence, taking into account, that
𝐵 = ⟨m← l⟩𝐴 and using the equality (1.71), we obtain:

𝐴1 ⊔ 𝐴2 = ⟨l←m⟩𝐵 = ⟨l←m⟩ ⟨m← l⟩𝐴 = 𝐴.

Thus, we see, that the set 𝐴 can be divided into two nonempty disjoint sets, which contradicts
the fact, that the set 𝐴 is a singleton. Therefore, the set ⟨m← l⟩𝐴 is nonempty, and it can not
contain more, than one element, hence, it is a singleton.

Definition 1.12.9. Let 𝒵 be a precisely visible changeable set, l,m ∈ ℒ𝑘 (𝒵) and 𝜔 ∈ Bs(l).
Elementary-time state 𝜔′ ∈ Bs(m) such, that {𝜔′} = ⟨m← l⟩ {𝜔} will be referred to as visible
image of elementary-time state 𝜔 ∈ Bs(𝑙) in the reference frame m and it will be denoted by
⟨!m← l⟩𝜔:

𝜔′ = ⟨!m← l⟩𝜔.

By Assertion 1.12.11, item 5, any elementary-time state 𝜔 ∈ Bs(l) always has a visible
image 𝜔′ = ⟨!m← l⟩𝜔 in a precisely visible changeable set. Hence, by Definition 1.12.9, for
any elementary-time state 𝜔 ∈ Bs(l) in the reference frame l ∈ ℒ𝑘 (𝒵) of precisely visible
changeable set 𝒵 the following equality holds:

⟨m← l⟩ {𝜔} = {⟨!m← l⟩𝜔} (m ∈ ℒ𝑘 (𝒵)) (1.74)

Using the equality 𝐴 =
⨆︀

𝜔∈𝐴 {𝜔}, definition of precise visibility and equality (1.74) we obtain
the following theorem.

Theorem 1.12.2. For any nonempty changeable system 𝐴 ⊆ Bs(l) in reference frame l ∈
ℒ𝑘 (𝒵) of precisely visible changeable set 𝒵 the following equality is true:

⟨m← l⟩𝐴 =
⨆︁
𝜔∈𝐴

{⟨!m← l⟩𝜔} = {⟨!m← l⟩𝜔 | 𝜔 ∈ 𝐴} (m ∈ ℒ𝑘 (𝒵)). (1.75)

Corollary 1.12.6. Let 𝒵 be a precisely visible changeable set and l,m ∈ ℒ𝑘 (𝒵) be any its
reference frames.
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Then for any changeable system 𝐴 ⊆ Bs(l) the sets 𝐴 and ⟨m← l⟩𝐴 are equipotent. In the

case 𝐴 ̸= ∅ the mapping:
𝑓(𝜔) = ⟨!m← l⟩𝜔, 𝜔 ∈ Bs(l) (1.76)

is bijection between the sets 𝐴 and ⟨m← l⟩𝐴.
In particular the sets Bs(l) and Bs(m) = ⟨m← l⟩Bs(l) are equipotent and the mapping (1.76)

is bijection between these sets.

Proof. In the case 𝐴 = ∅ the statement of the Corollary follows from Assertion 1.10.2. In the
case 𝐴 ̸= ∅ from Theorem 1.12.2 (pay attention to the sign of disjoint union in equality (1.75))
it follows, that the mapping (1.76) is bijection between the sets 𝐴 and ⟨m← l⟩𝐴. And from
Assertion 1.12.11 (item 3)) it follows, that Bs(m) = ⟨m← l⟩Bs(l) Hence, the sets Bs(l) and
Bs(m) are equipotent and the mapping (1.76) is bijection between these sets.

Using Property 1.10.1(5), as well as theorems 1.12.2 and 1.12.1 we receive the following
properties of precise unification mappings in precisely visible changeable sets.

Properties 1.12.1. Let 𝒵 be any precisely visible changeable set, and l,m, p ∈ ℒ𝑘 (𝒵) be
arbitrary reference frames of 𝒵. Then:

1. ∀ 𝜔 ∈ Bs(l) ⟨! l← l⟩𝜔 = 𝜔;

2. ∀ 𝐴 ⊆ Bs(l) ⟨m← l⟩𝐴 = {⟨!m← l⟩𝜔 | 𝜔 ∈ 𝐴};

3. ∀ 𝜔 ∈ Bs(l) ⟨! p←m⟩ ⟨!m← l⟩𝜔 = ⟨! p← l⟩𝜔.

From corollaries 1.12.3 and 1.12.4 it follows, that the changeable sets of kind 𝒵 im [P,ℬ]
and 𝒵 im (U,ℬ) are precisely visible. Therefore, we deliver the following corollary of Theorem
1.11.2:

Corollary 1.12.7. If 𝒵 = 𝒵 im [P,ℬ], where P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜). Then for any refer-
ence frames l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵), m = (𝛽, 𝑈𝛽 [ℬ,T𝛽]) ∈ ℒ𝑘 (𝒵) (𝛼, 𝛽 ∈ 𝒜) the following
equality is performed:

⟨!m← l, 𝒵⟩𝜔 = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀
(𝜔 ∈ Bs(l) = 𝑈𝛼 (Bs(ℬ))) .

Main results of this Section were published in [4].
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Part II

Kinematic Changeable Sets and their Properties

13 Introduction to Second Part

Due to the OPERA experiments conducted within 2011-2012 years [47], quite a lot physical
works appeared, in which authors are trying to modify the special relativity theory to agree
its conclusions with the hypothesis of existence of objects moving at velocity, greater than
the velocity of light. Despite the fact that the superluminal results of OPERA experiments
(2011-2012) were not confirmed later, the problem of constructing the theory of super-light
movement, posed in the papers [34,35], remains actual within more than 50 last years [36]. At
the present time existence of a few kinematic theories of tachyon motion generates the problem
of construction new mathematical structures, which would allow to simulate the evolution of
physical systems in the framework of different laws of kinematics. Under the lack of experi-
mental verification of conclusions of tachyon kinematics theories, such mathematical structures
may at least guarantee the correctness of receiving these conclusions in accordance with the
postulates of these theories. This part of the paper is devoted to building of these mathemati-
cal structures. Investigations in this direction may be also interesting for astrophysics, because
there exists the hypothesis, that in large scale of the Universe, physical laws (in particular, the
laws of kinematics) may be different from the laws, acting in the neighborhood of our solar
System.

On the physical level, the problem of investigation of kinematics with arbitrary space-time
coordinate transforms for inertial reference frames, was presented in the [48] for the case,
when the space of geometric variables is three-dimensional and Euclidean. The particular
case of coordinate transforms, considered in [48] are the (three-dimensional) classical Lorentz
transforms as well as generalized Lorentz transforms in the sense of E. Recami, V. Olkhovsky
and R. Goldoni [37–39, 51–53] (for reference frames moving at the velocity greater than the
velocity light). In the papers [6, 7] the general definition of linear coordinate transforms and
generalized Lorentz transforms is given for the case, where the space of geometric variables is
any real Hilbert space.

It should be noted, that mathematical apparatus of the papers [6,7,37–39,48] is not based on
the theory of changeable sets, which greatly reduces its generality. In particular, mathematical
apparatus of these papers allows only studying of universal coordinate transforms (that is
coordinate transforms, which are uniquely determined by the geometrically-time position of the
considered object). The present part of the paper is based on the general theory of changeable
sets, developed in the previous part. In this part the definitions of the actual and universal
coordinate transform in kinematic changeable sets are given. We prove, that in the classical
Galilean and Lorentz-Poincare kinematics the universal coordinate transform always exists.
Also we construct the class of kinematics, in which every particle in every time point can have
its own “velocity of light” and prove, that, in these kinematics, universal coordinate transform
does not exist.
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14 Changeable Sets and Kinematics.

14.1 Mathematical Objects for Constructing of Geometric Environments of
Changeable Sets.

This subsection is purely technical in nature. In this subsection we don’t introduce any es-
sentially new notions. But we try to include the most frequently used mathematical spaces,
which at least somehow related to geometry, into single mathematical structure, which will be
convenient for further construction of abstract kinematics.

Definition 2.14.1. The ordered triple L = (K,⊕,⊗) will be named by linear structure over
non-empty set X if and only if:

1. K = (K,+K,×K) is a field.

2. ⊕ : X× X ↦→ X is a binary operation over X;

3. ⊗ : K× X ↦→ X is a binary operation, acting from K× X into X.

4. The ordered triple (X,⊕,⊗) is a linear space over the field K.

In the case, when K ∈ {R,C}, the linear structure L will be named as numerical linear
structure over X.

Let L = (K,⊕,⊗) be a linear structure over X. In this case the linear space over the field
K, generated by L will be denoted by Lp (X,L) (Lp (X,L) = (X,⊕,⊗)).

Next definition is based on the conception, that the majority of the most frequently used
mathematical objects (including functions, relations, algebraic operations, ordered pairs or
compositions) are sets.

Definition 2.14.2. An ordered composition of six sets Q = (X, 𝒯 ,L, 𝜌, ‖·‖ , (·, ·)) will be named
by coordinate space, if and only if the following conditions are satisfied:

1. X ̸= ∅.
2. 𝒯 ∪ L ̸= ∅.
3. If 𝒯 ̸= ∅, then 𝒯 is topology over X.

4. If L ̸= ∅, then L is numerical linear structure over X.

5. If L ̸= ∅ and 𝒯 ≠ ∅, then the pair (Lp (X,L) , 𝒯 ) is a linear topological space.

6. If 𝜌 ̸= ∅, then:

6.1) 𝜌 is the metrics over X;

6.2) 𝒯 ≠ ∅ and the topology 𝒯 is generated by the metrics 𝜌.

7. If ‖·‖ ≠ ∅, then:

7.1) L ̸= ∅ and ‖·‖ is the norm on the linear space Lp (X,L);
7.2) 𝜌 ̸= ∅ and the metrics 𝜌 is generated by the norm ‖·‖.

8. If (·, ·) ̸= ∅, then:

8.1) ‖·‖ ≠ ∅ (and hence, according to 7.1), L ̸= ∅);
8.2) (·, ·) is the inner product on the linear space Lp (X,L);
8.3) the norm ‖·‖ is generated by the inner product (·, ·).
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Notes on denotations. Let Q = (X, 𝒯 ,L, 𝜌, ‖·‖ , (·, ·)) be a coordinate space, where in the
case L ̸= ∅ we have, that L = (K,⊕,⊗) is a numerical linear structure over X. Further we will
use the following denotations:

1. Zk(Q) := X (the set Zk(Q) will be named the set of coordinate values of Q).

2. 𝒯 𝑝(Q) := 𝒯 (𝒯 𝑝(Q) will be referred to as topology of Q).

3. L𝑠(Q) := L (L𝑠(Q) will be named the linear structure of Q).

4. Ps(Q) :=

{︃
K, L𝑠(Q) ̸= ∅
∅, L𝑠(Q) = ∅

(Ps(Q) will be referred to as field of scalars of Q).

5. For the elements 𝑥1, . . . , 𝑥𝑛 ∈ Zk(Q), 𝜆1, . . . , 𝜆𝑛 ∈ Ps(Q) (𝑛 ∈ N) we will use the denota-
tion, (𝜆1𝑥1 + · · ·+ 𝜆𝑛𝑥𝑛)Q := 𝜆1 ⊗ 𝑥1 ⊕ · · · ⊕ 𝜆𝑛 ⊗ 𝑥𝑛.

6. diQ := 𝜌 (diQ will be named the distance on Q).

7. ‖·‖Q := ‖·‖ (‖·‖Q will be named the norm on Q).

8. (·, ·)Q := (·, ·) ((·, ·)Q will be referred to as inner product on Q).

Elements of kind 𝑥 ∈ Zk(Q) will be named as coordinates of the coordinate space Q, also,
in the case L𝑠(Q) ̸= ∅ we will name these elements as vectors (vector coordinates) of Q.
Where it does not cause confusion the symbol “Q” in the denotations (𝜆1𝑥1 + · · ·+ 𝜆𝑛𝑥𝑛)Q, diQ,
‖·‖Q, (·, ·)Q will be released, and we will use the abbreviated denotations 𝜆1𝑥1+ · · ·+𝜆𝑛𝑥𝑛, di,
‖·‖, (·, ·) correspondingly.

14.2 Kinematic Changeable Sets.

Definition 2.14.3. 1. The pair 𝒢0 = (Q, 𝑘) we name by geometric environment of base
changeable set ℬ, if and only if:

a) Q is a coordinate space;

b) 𝑘 : Bs(ℬ) ↦→ Zk(Q) is a mapping from Bs(ℬ) into Zk(Q).

In this case the pair Cb = (ℬ,𝒢0) = (ℬ, (Q, 𝑘)) we name by base kinematic changeable
set, or, abbreviated, by base kinematic set.

2. Let 𝒵 be any changeable set. An indexed family of pairs 𝒢 = ((Ql, 𝑘l) | l ∈ ℒ𝑘 (𝒵)) will
be named by geometric environment of the changeable set 𝒵, if and only if for any
reference frame l ∈ ℒ𝑘 (𝒵) the ordered pair (Ql, 𝑘l) is geometric environment of the base
changeable set lˆ, generated by the reference frame l, i.e. if and only if the pair (lˆ, (Ql, 𝑘l))
is a base kinematic changeable set for an arbitrary l ∈ ℒ𝑘 (𝒵).
In this case we name the pair C = (𝒵,𝒢) by kinematic changeable set, or, abbreviated,
by kinematic set.

Note, that in this paper we consider only kinematic sets with constant (unchanging over
time) geometry. These kinematic sets are sufficient for construction of abstract kinematics in
inertial reference frames. If we make a some modification of Definition 2.14.3, we will be able to
define also kinematic sets with variable (over time) geometry (i.e., in principle, this is, possible
to do).
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14.2.1 System of Denotations for Base Kinematic Sets.

Let, Cb = (ℬ,𝒢0) be any base kinematic set (where 𝒢0 = (Q, 𝑘)). Henceforth we use the
following system of denotations.

a) Denotations, induced from the theory of base changeable sets:

Bs
(︀
Cb
)︀
:= Bs(ℬ); Bs

(︀
Cb
)︀
:= Bs(ℬ); ←

Cb
:=←

ℬ
;

Bs←
Cb

:=
Bs←
ℬ
; L𝑙

(︀
Cb
)︀
:= L𝑙(ℬ); L𝑑

(︀
Cb
)︀
:= L𝑑(ℬ)

Tm
(︀
Cb
)︀
:= Tm(ℬ); Tm

(︀
Cb
)︀
:= Tm(ℬ); ≤Cb := ≤ℬ;

<Cb :=<ℬ; ≥Cb :=≥ℬ; >Cb :=>ℬ .

b) Denotations, induced from the denotations for coordinate spaces:

Zk
(︀
Cb
)︀
:= Zk (Q) ; 𝒯 𝑝

(︀
Cb
)︀
:= 𝒯 𝑝 (Q) ; L𝑠

(︀
Cb
)︀
:= L𝑠 (Q) ;

Ps
(︀
Cb
)︀
:= Ps (Q) ; diCb := diQ; ‖·‖Cb := ‖·‖Q ;

(·, ·) Cb := (·, ·)Q .

Also in the case L𝑠
(︀
Cb
)︀
̸= ∅ for arbitrary 𝑎1, . . . , 𝑎𝑛 ∈ Zk

(︀
Cb
)︀
, 𝜆1, . . . 𝜆𝑛 ∈ Ps

(︀
Cb
)︀
we use

the denotation, (𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)Cb := (𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)𝒬.
c) Own designations for base kinematic sets:

BE
(︀
Cb
)︀
:= ℬ; BG

(︀
Cb
)︀
:= Q; qCb(𝑥) := 𝑘(𝑥)

(︀
𝑥 ∈ Bs

(︀
Cb
)︀)︀
.

Note, that for any elementary state 𝑥 ∈ Bs
(︀
Cb
)︀
the function qCb(·) puts in accordance its

coordinate qCb(𝑥) ∈ Zk
(︀
Cb
)︀
.

d) Abbreviated version of denotations

∙ We use all abbreviated variants of denotations, described in Subsection 6.3 (but, with the
replacement of the symbol “ℬ ” by the symbol “Cb” and the term “base changeable set” by
the term “base kinematic set”.

∙ In the cases, when the base kinematic set Cb is known in advance, we will use the denota-
tions di, ‖·‖, (·, ·), q(𝑥) instead of the denotations diCb , ‖·‖Cb , (·, ·) Cb , qCb(𝑥) (correspond-
ingly).

14.2.2 System of Denotations for Kinematic Sets.

Let, C = (𝒵,𝒢), where 𝒢 = ((Ql, 𝑘l) | l ∈ ℒ𝑘 (𝒵)) be any kinematic set.

a) The changeable set BE (C) := 𝒵 will be named the evolution base of the kinematic set
C.

b) The sets ℐ𝑛𝑑 (C) := ℐ𝑛𝑑 (𝒵) = ℐ𝑛𝑑 (BE (C)) ; ℒ𝑘 (C) := ℒ𝑘 (𝒵) = ℒ𝑘 (BE (C)) will be
named by the set of indexes and the the set of all reference frames of kinematic set C
(correspondingly).

c) For any reference frame l ∈ ℒ𝑘 (C) = ℒ𝑘 (𝒵) we keep all denotations, introduced for reference
frames of changeable sets (it concerns the denotations: ind (l), Bs(l),←

l
, Bs(l), Bs←

l
, Tm(l),

Tm(l), L𝑙 (l), L𝑑 (l), ≤l, <l, ≥l, >l).

d) For arbitrary reference frames l,m ∈ ℒ𝑘 (C) it is induced the denotation for unification
mapping:

⟨m← l, C⟩ := ⟨m← l, 𝒵⟩ .
In particular in the case, when the changeable set 𝒵 is precisely visible (in this case we
say, that the kinematic set C is precisely visible), we introduce the denotation:

⟨!m← l,C⟩ := ⟨!m← l,𝒵⟩ .
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e) For any reference frame l ∈ ℒ𝑘 (C) we introduce the denotation

C � l := (lˆ, (Ql, 𝑘l)) . (2.1)

By Definition 2.14.3, the pair C � l is a base kinematic set (for arbitrary reference frame
l ∈ ℒ𝑘 (C)). The base kinematic set C � l will be named the image of kinematic set
C in the reference frame l.

f) For any reference frame l ∈ ℒ𝑘 (C) we introduce the following denotations:

Zk(l; C) := Zk (C � l) = Zk (Ql) ; L𝑠(l; C) := L𝑠 (C � l) = L𝑠 (Ql) ;
𝒯 𝑝(l; C) := 𝒯 𝑝 (C � l) = 𝒯 𝑝 (Ql) ; Ps(l; C) := Ps (C � l) = Ps (Ql) ;
‖·‖l,C := ‖·‖C�l = ‖·‖Ql

; dil (·; C) := diC�l = diQl
;

(·, ·)l,C := (·, ·)C�l = (·, ·)Ql
; BE(l) := BE(C � l) = lˆ;

BG(l; C) := BG(C � l) = Ql.

Also for reference frames l ∈ ℒ𝑘 (C) such, that L𝑠(l) ̸= ∅ and for arbitrary 𝑎1, . . . , 𝑎𝑛 ∈
Zk(l; C), 𝜆1, . . . 𝜆𝑛 ∈ Ps(l; C) we will use the denotation, (𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)l,C :=

(𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)𝒬𝑙 .

g) For any reference frame l ∈ ℒ𝑘 (C) we use the following denotation:

ql (𝑥; C) := qC�l (𝑥) = 𝑘l(𝑥), 𝑥 ∈ Bs (l) .

h) Abbreviated versions of denotations:

∙ In the cases, when the kinematic set C is known in advance, we will use the denotations
⟨m← l⟩, ⟨!m← l⟩ , Zk(l), L𝑠(l), dil, (·, ·)l, 𝒯 𝑝(l), Ps(l), ‖·‖l, BG(l), ql (𝑥) instead of the de-
notations ⟨m← l, C⟩, ⟨!m← l, C⟩ , Zk(l; C), L𝑠(l; C), dil (·; C), (·, ·)l,C, 𝒯 𝑝(l; C), Ps(l; C),
‖·‖l,C, BG(l; C), ql (𝑥; C) (correspondingly).

∙ In the cases, when the reference frame l ∈ ℒ𝑘 (C) is known in advance, we will use the
denotations di, ‖·‖, (·, ·), q(𝑥), 𝜆1𝑎1+ · · ·+𝜆𝑛𝑎𝑛 instead of the denotations dil, ‖·‖l, (·, ·) l,
ql (𝑥), (𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)l,C (correspondingly). Also we use all abbreviated variants of
denotations, introduced for reference frames of changeable sets and described in Subsection
10.2 (see text under item 5)).

Remark 2.14.1.
I From Remark 1.10.1 as well as from system of denotations, accepted in Sub-subsection

14.2.2, it follows, that for any reference frame l ∈ ℒ𝑘 (C) of any kinematic set C, Properties 1.6.1
are holding (with replacement the symbol “ℬ” by the symbol “l” and the term “base changeable
set” by the term “reference frame”). Here we use all abbreviated variants of notations, described
in Subsection 6.3.
I For the similar reason, Properties 1.10.1 are holding for kinematic sets (with replacement

the symbol “𝒵” by the symbol “C” and the term “changeable set” by the term “kinematic set”).

Assertion 2.14.1. Let C1, C2 be arbitrary kinematic sets, and besides:

1. ℒ𝑘 (C1) = ℒ𝑘 (C2).

2. For any reference frame l ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2) it is true the equality, C1 � l = C2 � l.

3. For arbitrary reference frames l,m ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2) it holds the equality, ⟨m← l,C1⟩ =
⟨m← l,C2⟩.

Then, C1 = C2.
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Proof. Let, C1 = (𝒵1,𝒢1), C2 = (𝒵2,𝒢2), where 𝒢1 =
(︁(︁

Q
(1)
l , 𝑘

(1)
l

)︁
| l ∈ ℒ𝑘 (𝒵1)

)︁
, 𝒢2 =(︁(︁

Q
(2)
l , 𝑘

(2)
l

)︁
| l ∈ ℒ𝑘 (𝒵2)

)︁
be the kinematic sets, satisfying the conditions of Assertion 2.14.1.

Then, under these assumptions, the changeable sets 𝒵1 and 𝒵2 are satisfying the conditions of
Assertion 1.10.1. Hence, 𝒵1 = 𝒵2.

By the condition of Assertion, which we are to prove, for any reference frame l ∈ ℒ𝑘 (𝒵1) =
ℒ𝑘 (𝒵2) it holds the equality C1 � l = C2 � l. Hence, by the denotations, accepted in the

subsection 14.2.2, we have,
(︁
lˆ,
(︁
Q

(1)
l , 𝑘

(1)
l

)︁)︁
= C1 � l = C2 � l =

(︁
lˆ,
(︁
Q

(2)
l , 𝑘

(2)
l

)︁)︁
. Therefore,(︁

Q
(1)
l , 𝑘

(1)
l

)︁
=
(︁
Q

(2)
l , 𝑘

(2)
l

)︁
(∀l ∈ ℒ𝑘 (𝒵1) = ℒ𝑘 (𝒵2)). Consequently:

𝒢1 =
(︁(︁

Q
(1)
l , 𝑘

(1)
l

)︁
| l ∈ ℒ𝑘 (𝒵1)

)︁
=
(︁(︁

Q
(2)
l , 𝑘

(2)
l

)︁
| l ∈ ℒ𝑘 (𝒵2)

)︁
= 𝒢2.

Thus, C1 = (𝒵1,𝒢1) = (𝒵2,𝒢2) = C2.

Corollary 2.14.1. Let C1, C2 be arbitrary kinematic sets, and besides:

1. ℒ𝑘 (C1) = ℒ𝑘 (C2).

2. For any reference frame l ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2) they hold the equalities:

BG (l; C1) = BG (l; C2)

ql (𝑥, C1) = ql (𝑥, C2) (∀𝑥 ∈ Bs(l)) .

3. For arbitrary reference frames l,m ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2) it is true the equality, ⟨m← l,C1⟩ =
⟨m← l,C2⟩.

Then, C1 = C2.

Proof. Let, C1 and C2 be the kinematic sets, satisfying the conditions of the Corollary. Then,
by the system of denotations, accepted in the subsection 14.2.2, for any reference frame l ∈
ℒ𝑘 (C1) = ℒ𝑘 (C2), we obtain:

C1 � l = (BE(l), (BG (l,C1) , ql (·; C1))) =

= (BE(l), (BG (l,C2) , ql (·; C2))) = C2 � l.

Thus, by Assertion 2.14.1, we have, C1 = C2.

Remark 2.14.2. From the system of denotations, accepted in the subsection 14.2, it follows,
that for any kinematic set C, Properties 1.10.1 and Corollary 1.12.6 are kept to be true, and in
the case, when the kinematic set C is precisely visible, Properties 1.12.1 also remain true (but
everywhere in these properties we should replace the symbol 𝒵 by the symbol C and the term
“changeable set” by the term “kinematic set”).

Main results of this Section were anonced in [11] and published in [10, sections 3,4,5].

15 Coordinate Transforms in Kinematic Sets.

Let , Cb be any base kinematic set. Introduce the following denotations.

M𝑘
(︀
Cb
)︀
:= Tm

(︀
Cb
)︀
× Zk

(︀
Cb
)︀
;

Q⟨Cb⟩(𝜔) := (tm (𝜔) , qCb(bs (𝜔))) , 𝜔 ∈ Bs
(︀
Cb
)︀
. (2.2)
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The set M𝑘
(︀
Cb
)︀
we name by the Minkowski set of the base kinematic set Cb. For an

elementary-time state 𝜔 ∈ Bs
(︀
Cb
)︀
the value Q⟨Cb⟩(𝜔) will be named by the Minkowski

coordinates of 𝜔.

Let, C be any kinematic set. For any reference frame l ∈ ℒ𝑘 (C) we introduce the following
denotations:

M𝑘(l;C) := Tm(l)× Zk(l).

Q⟨l⟩(𝜔;C) := (tm (𝜔) , ql(bs (𝜔))) ∈M𝑘(l;C), 𝜔 ∈ Bs(l). (2.3)

The set M𝑘(l;C) we name by the Minkowski set of reference frame l in kinematic set C. The
value Q⟨l⟩(𝜔;C) will be named by the Minkowski coordinates of the elementary-time state
𝜔 ∈ Bs (l) in the reference frame l.

In the cases, when the kinematic set C is known in advance, we use the denotations M𝑘(l),
Q⟨l⟩(𝜔) instead of the denotations M𝑘(l;C), Q⟨l⟩(𝜔;C) (correspondingly).

Definition 2.15.1. Let C be any precisely visible kinematic set and l,m ∈ ℒ𝑘 (C) be arbitrary
reference frames of C.

1. The mapping Q⟨m← l⟩ ( · ;C) : Bs(l) ↦→M𝑘(m), represented by the formula:

Q⟨m← l⟩(𝜔;C) = Q⟨m⟩(⟨!m← l⟩𝜔), 𝜔 ∈ Bs(l)

we name actual coordinate transform from l to m.
Hence, for any 𝜔 ∈ Bs (l) the value Q⟨m← l⟩(𝜔;C) coincides with Minkowski coordinates of
the elementary-time state 𝜔 in the (another) reference frame m ∈ ℒ𝑘 (C).

2. We name the mapping ̃︀𝑄 : M𝑘(l) ↦→M𝑘(m) by universal coordinate transform from l
to m if and only if:

∙ ̃︀𝑄 is bijection (one-to-one mapping) between M𝑘(l) and M𝑘(m).

∙ For any elementary-time state 𝜔 ∈ Bs(l) the following equality is performed:

Q⟨m← l⟩(𝜔;C) = ̃︀𝑄 (︀Q⟨l⟩(𝜔))︀ .
3. We say, that reference frames l,m ∈ ℒ𝑘 (C) allow universal coordinate transform, if

and only if at least one universal coordinate transform ̃︀𝑄 : M𝑘(l) ↦→ M𝑘(m) from l to m
exists.
In the case, where reference frames l,m ∈ ℒ𝑘 (C) allow universal coordinate transform, we
use the denotation:

l�
C
m,

In the case, when the kinematic set C is known in advance, we use the abbreviated deno-
tation l�m.

4. Indexed family of mappings
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

is named by universal coordinate transform

for the kinematic set C if and only if:

∙ For arbitrary l,m ∈ ℒ𝑘 (C) the mapping ̃︀𝑄m,l is universal coordinate transform from l
to m.

∙ For any l,m, p ∈ ℒ𝑘 (C) and w ∈M𝑘(l) the following equalities are true:

̃︀𝑄l,l(w) = w; ̃︀𝑄p,m

(︁ ̃︀𝑄m,l(w)
)︁
= ̃︀𝑄p,l(w). (2.4)
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5. We say, that the kinematic set C allows universal coordinate transform, if and only

if there exists at least one universal coordinate transform
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

for C.

Remark 2.15.1. In the cases, when the kinematic set C is known in advance, we use the abbre-
viated denotation Q⟨m← l⟩(𝜔) instead of the denotation Q⟨m← l⟩(𝜔;C).

Assertion 2.15.1. Let C be any precisely visible kinematic set. Then:

1. For an arbitrary l ∈ ℒ𝑘 (C) the identity mapping on M𝑘(l):

I[l](w) := w, w ∈M𝑘(l)

is universal coordinate transform from l to l.

2. If ̃︀𝑄 is universal coordinate transform from l to m (l,m ∈ ℒ𝑘 (C)), then ̃︀𝑄[−1] is univer-

sal coordinate transform from m to l (the mapping ̃︀𝑄[−1], inverse to ̃︀𝑄, exists, because,
according to Definition 2.15.1 (item 2), ̃︀𝑄 is bijection from M𝑘(l) onto M𝑘(m)).

3. If ̃︀𝑄(m,l) is universal coordinate transform from l to m, and ̃︀𝑄(p,m) is universal coordinate
transform from m to p (l,m, p ∈ ℒ𝑘 (C)), then the composition of the mappings ̃︀𝑄(p,m) and̃︀𝑄(m,l), that is the mapping:

̃︀𝑄(p,l)(w) = ̃︀𝑄(p,m)
(︁ ̃︀𝑄(m,l)(w)

)︁
, w ∈M𝑘(l).

is universal coordinate transform from l to p.

4. The binary relation � is equivalence relation on the set ℒ𝑘 (C) of all reference frames
of C.

Proof. 1. Consider any l ∈ ℒ𝑘 (C). It is evident, that I[l] is bijection fromM𝑘(l) toM𝑘(l). Using
Definition 2.15.1 (item 1) and Property 1.12.1(1), for any elementary-time state 𝜔 ∈ Bs(l) we
obtain:

Q⟨l← l⟩(𝜔) = Q⟨l⟩(⟨! l← l⟩𝜔) =
= Q⟨l⟩(𝜔) = I[l]

(︀
Q⟨l⟩(𝜔)

)︀
.

Therefore, by Definition 2.15.1 (item 2), I[l] is universal coordinate transform from l to l.

2. Let ̃︀𝑄 be universal coordinate transform from l to m (l,m ∈ ℒ𝑘 (C)). Then, for any
𝜔 ∈ Bs(l), according to Definition 2.15.1 (items 1 and 2), we have:

Q⟨m⟩ (⟨!m← l⟩𝜔) = Q⟨m← l⟩(𝜔) =

= ̃︀𝑄 (︀Q⟨l⟩(𝜔))︀ .
Hence:

Q⟨l⟩(𝜔) = ̃︀𝑄[−1] (︀Q⟨m⟩ (⟨!m← l⟩𝜔)
)︀
.

Therefore, for any 𝜔1 ∈ Bs(m) (⟨! l←m⟩𝜔1 ∈ Bs(l)), in accordance with Properties 1.12.1(1,3)
we obtain:

Q⟨l⟩ (⟨! l←m⟩𝜔1) =

= ̃︀𝑄[−1] (︀Q⟨m⟩ (⟨!m← l⟩ ⟨! l←m⟩𝜔1)
)︀
=

= ̃︀𝑄[−1] (︀Q⟨m⟩ (⟨!m←m⟩𝜔1)
)︀
=

= ̃︀𝑄[−1] (︀Q⟨m⟩ (𝜔1)
)︀
.
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That is, by Definition 2.15.1 (item 1):

Q⟨l←m⟩ (𝜔1) = ̃︀𝑄[−1] (︀Q⟨m⟩ (𝜔1)
)︀

(∀𝜔1 ∈ Bs(m)) .

Thus, by Definition 2.15.1 (item 2), ̃︀𝑄[−1] is universal coordinate transform from m to l.

3. Let ̃︀𝑄(m,l) be universal coordinate transform from l to m, and ̃︀𝑄(p,m) be universal coordinate

transform from m to p (l,m, p ∈ ℒ𝑘 (C)). Denote: ̃︀𝑄(p,l)(w) := ̃︀𝑄(p,m)
(︁ ̃︀𝑄(m,l)(w)

)︁
, w ∈ M𝑘(l).

It is clear, that the mapping ̃︀𝑄(p,l) is bijection between M𝑘(l) and M𝑘(p). At the same time,
using Definition 2.15.1 (items 1,2) and applying Properties 1.12.1, for any 𝜔 ∈ Bs(l) we deduce:

Q⟨p← l⟩(𝜔) = Q⟨p⟩ (⟨! p← l⟩𝜔) =
= Q⟨p⟩ (⟨! p←m⟩ ⟨!m← l⟩𝜔) =
= Q⟨p←m⟩ (⟨!m← l⟩𝜔) =
= ̃︀𝑄(p,m)

(︀
Q⟨m⟩ (⟨!m← l⟩𝜔)

)︀
=

= ̃︀𝑄(p,m)
(︀
Q⟨m← l⟩(𝜔)

)︀
=

= ̃︀𝑄(p,m)
(︁ ̃︀𝑄(m,l)

(︀
Q⟨l⟩(𝜔)

)︀)︁
= ̃︀𝑄(p,l)

(︀
Q⟨l⟩(𝜔)

)︀
.

Consequently, by Definition 2.15.1 (item 2), ̃︀𝑄(p,l) is universal coordinate transform from l to p.
4. Item 4 of Assertion 2.15.1 immediately follows from the items 1,2 and 3.

Assertion 2.15.2. For an arbitrary precisely visible kinematic set C the following propositions
are equivalent:

1. C allows universal coordinate transform.

2. For arbitrary reference frames l,m ∈ ℒ𝑘 (C) it is true the correlation l�m (that is arbi-
trary two reference frames l,m ∈ ℒ𝑘 (C) allow universal coordinate transform).

3. There exists a reference frame l ∈ ℒ𝑘 (C) such, that for any reference frame m ∈ ℒ𝑘 (C) it
is true the correlation l�m.

Proof. 1. The implication 1 =⇒ 2 follows from Definition 2.15.1 (items 3 and 4).
2. According to Property 1.10.1(1), the set ℒ𝑘 (C) is nonempty. Therefore, to verify the

truth of the implication 2 =⇒ 3 it is sufficient to chose any reference frame l ∈ ℒ𝑘 (C).
3. Consequently, it remains to prove the implication 3 =⇒ 1. Suppose, there exists a

reference frame l ∈ ℒ𝑘 (C) such, that for any reference frame m ∈ ℒ𝑘 (C) the correlation l�m
is performed. Hence, for any reference frame m ∈ ℒ𝑘 (C), there exists an universal coordinate
transform 𝑄(m,l) : M𝑘(l) ↦→M𝑘(m). For arbitrary reference frames m, p ∈ ℒ𝑘 (C) we denote:

̃︀𝑄p,m(w) := 𝑄(p,l)
(︁(︀
𝑄(m,l)

)︀[−1]
(w)
)︁
, (2.5)

w ∈M𝑘(m).

In accordance with Assertion 2.15.1 (items 2 and 3), the mapping ̃︀𝑄p,m : M𝑘(m) ↦→ M𝑘(p) is
universal coordinate transform from m to p (for arbitrary m, p ∈ ℒ𝑘 (C)). Moreover, by the
equality (2.5), for arbitrary m, p, k ∈ ℒ𝑘 (C) and w ∈M𝑘(m) we obtain:

̃︀𝑄m,m(w) = 𝑄(m,l)
(︁(︀
𝑄(m,l)

)︀[−1]
(w)
)︁
= w;

̃︀𝑄k,p

(︁ ̃︀𝑄p,m(w)
)︁
= 𝑄(k,l)

(︁(︀
𝑄(p,l)

)︀[−1] (︁
𝑄(p,l)

(︁(︀
𝑄(m,l)

)︀[−1]
(w)
)︁)︁)︁

=
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= 𝑄(k,l)
(︁(︀
𝑄(m,l)

)︀[−1]
(w)
)︁
= ̃︀𝑄k,m(w).

Thus, according to Definition 2.15.1 (item 4), the family of mappings
(︁ ̃︀𝑄p,m

)︁
m,p∈ℒ𝑘(C)

is universal

coordinate transform for the kinematic set C. Hence, by Definition 2.15.1 (item 5), kinematic
set C allows universal coordinate transform.

Examples of kinematic sets, which allow universal coordinate transform will be presented
in Section 19. In Section 20 it will be proved the existence of kinematic sets, which do not
allow universal coordinate transform. Therefore (by Assertion 2.15.2) there exist kinematic set
C, in which some reference frames l,m ∈ ℒ𝑘 (C) do not allow universal coordinate transform.
The next aim is to prove necessary and sufficient condition for existence of universal coordinate
transform between reference frames of precisely visible kinematic set. Below we introduce the
necessary notions to do this.

Let, Cb be any base kinematic set. For any subset 𝐴 ⊆ Bs
(︀
Cb
)︀
we introduce the denotations:

trjCb [𝐴] : = Q⟨Cb⟩(𝐴) =

=
{︁
Q⟨Cb⟩(𝜔) | 𝜔 ∈ 𝐴

}︁
⊆M𝑘

(︀
Cb
)︀
. (2.6)

The set trjCb [𝐴] will be named by the trajectory of the subset 𝐴 ⊆ Bs
(︀
Cb
)︀
. For any base

kinematic set Cb we denote:

Trj
(︀
Cb
)︀
:= trjCb

[︀
Bs
(︀
Cb
)︀]︀

=

=
{︁
Q⟨Cb⟩(𝜔) | 𝜔 ∈ Bs

(︀
Cb
)︀}︁
⊆M𝑘

(︀
Cb
)︀
,

Trj
(︀
Cb
)︀
:= M𝑘

(︀
Cb
)︀
∖ Trj

(︀
Cb
)︀
.

The set Trj
(︀
Cb
)︀
will be named by the (general) trajectory of base kinematic set Cb, and

the set Trj
(︀
Cb
)︀
will be named as complement of (general) trajectory of Cb. Respectively,

for any reference frame l ∈ ℒ𝑘 (C) of any kinematic set C we can define the trajectory of any
subset 𝐴 ⊆ Bs(l), as well as (general) trajectory and complement of (general) trajectory for
the reference frame l:

trjl [𝐴; C] := trjC�l [𝐴] =
{︀
Q⟨l⟩(𝜔) | 𝜔 ∈ 𝐴

}︀
;

Trj(l; C) := Trj(C � l) =
=
{︀
Q⟨l⟩(𝜔) | 𝜔 ∈ Bs(l)

}︀
;

Trj(l; C) := Trj(C � l) = M𝑘(l) ∖ Trj(l; C)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.7)

(In the cases, when the kinematic set C is known in advance, we use the abbreviated deno-
tations trjl [𝐴], Trj(l), Trj(l) instead of the denotations trjl [𝐴; C], Trj(l; C), Trj(l; C) (corre-
spondingly).)

The set Trj(l) will be named by the (general) trajectory for the reference frame l, and
the set Trj(l) will be named by complement of (general) trajectory of the reference frame
l in the kinematic set C.

Theorem 2.15.1. Let C be a precisely visible kinematic set and l,m ∈ ℒ𝑘 (C) be any fixed
reference frames of C.

The reference frames l,m allow universal coordinate transform (i.e. l�m) if and only if the
following conditions are satisfied:

1. card
(︀
Trj(l)

)︀
= card

(︀
Trj(m)

)︀
, where card(ℳ) means the cardinality of a setℳ.
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2. For arbitrary elementary-time states 𝜔1, 𝜔2 ∈ Bs(l) the equality Q⟨m← l⟩ (𝜔1) = Q⟨m← l⟩ (𝜔2)
is performed if and only if Q⟨l⟩ (𝜔1) = Q⟨l⟩ (𝜔2).

Proof. 1. Suppose, that l,m ∈ ℒ𝑘 (C) and l�m. Then, by Definition 2.15.1, there exists the

bijection ̃︀𝑄 : M𝑘(l) ↦→M𝑘(m) such, that for any elementary-time state 𝜔 ∈ Bs(l) the following
equality holds:

Q⟨m← l⟩(𝜔) = ̃︀𝑄 (︀Q⟨l⟩(𝜔))︀ . (2.8)

1.a) Using the definition of general trajectory for reference frame (see (2.7)), Proper-
ties 1.12.1(1,3), Definition 2.15.1 (item 1) and equality (2.8), we deduce:

Trj(m) =
{︀
Q⟨m⟩(𝜔) | 𝜔 ∈ Bs(m)

}︀
=

=
{︀
Q⟨m⟩ (⟨!m← l⟩⟨! l←m⟩𝜔) | 𝜔 ∈ Bs(m)

}︀
=

=
{︀
Q⟨m⟩ (⟨!m← l⟩𝜔1) | 𝜔1 ∈ Bs(l)

}︀
=

=
{︀
Q⟨m← l⟩ (𝜔1) | 𝜔1 ∈ Bs(l)

}︀
=

=
{︁ ̃︀𝑄 (︀Q⟨l⟩ (𝜔1)

)︀
| 𝜔1 ∈ Bs(l)

}︁
= ̃︀𝑄(Trj(l)).

According to the equalities (2.7), taking into account, that ̃︀𝑄 is bijection between M𝑘(l) and
M𝑘(m), we obtain:

Trj(m) = M𝑘(m) ∖ Trj(m) =

= ̃︀𝑄(M𝑘(l)) ∖ ̃︀𝑄(Trj(l)) =
= ̃︀𝑄(M𝑘(l) ∖ Trj(l)) = ̃︀𝑄(Trj(l)).

Since ̃︀𝑄 is bijection, we have proved, that card
(︀
Trj(m)

)︀
= card

(︀
Trj(l)

)︀
.

1.b) Let, 𝜔1, 𝜔2 ∈ Bs(l) and Q⟨l⟩ (𝜔1) = Q⟨l⟩ (𝜔2). Then, according to (2.8):

Q⟨m← l⟩ (𝜔1) = ̃︀𝑄 (︀Q⟨l⟩ (𝜔1)
)︀
=

= ̃︀𝑄 (︀Q⟨l⟩ (𝜔2)
)︀
= Q⟨m← l⟩ (𝜔2) .

Inversely, if we suppose, that Q⟨m← l⟩ (𝜔1) = Q⟨m← l⟩ (𝜔2), then, by (2.8), ̃︀𝑄 (︀Q⟨l⟩ (𝜔1)
)︀

=̃︀𝑄 (︀Q⟨l⟩ (𝜔2)
)︀
, and since ̃︀𝑄 is bijection, we have, Q⟨l⟩ (𝜔1) = Q⟨l⟩ (𝜔2).

2. Conversely: suppose, that for reference frames l,m ∈ ℒ𝑘 (C) the conditions 1,2 of this
Theorem are satisfied. For w = Q⟨l⟩ (𝜔) ∈ Trj(l), where 𝜔 ∈ Bs(l) we put:

̃︀𝑄0(w) := Q⟨m← l⟩(𝜔). (2.9)

From the definition of general trajectory for reference frame (2.7) and the second condition of

this Theorem it follows, that the formula (2.9) defines the mapping ̃︀𝑄0 : Trj(l) ↦→ M𝑘(m) by
a correct way. We aim to prove, that this mapping is bijection between Trj(l) and Trj(m).
According to Definition 2.15.1 (item 1) and equalities (2.7), for arbitrary w = Q⟨l⟩ (𝜔) ∈ Trj(l)
(𝜔 ∈ Bs(l)), we receive:

̃︀𝑄0(w) = Q⟨m← l⟩(𝜔) =

= Q⟨m⟩ (⟨!m← l⟩𝜔) ∈ Trj(m). (2.10)

Moreover, using Properties 1.12.1, for any w1 = Q⟨m⟩ (𝜔1) ∈ Trj(m) (𝜔1 ∈ Bs(m)) we get:

w1 = Q⟨m⟩ (𝜔1) =

= Q⟨m⟩ (⟨!m← l⟩ ⟨! l←m⟩𝜔1) =
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= Q⟨m← l⟩ (⟨! l←m⟩𝜔1) = ̃︀𝑄0

(︀
Q⟨l⟩ (⟨! l←m⟩𝜔1)

)︀
, (2.11)

where Q⟨l⟩ (⟨! l←m⟩𝜔1) ∈ Trj(l).

From the correlations (2.10) and (2.11) it follows, that ̃︀𝑄0 is the mapping from Trj(l) on Trj(m).
From the second condition of this Theorem we obtain, that for arbitrary w,w′ ∈ Trj(l) such,
that w ̸= w′ it is true the correlation ̃︀𝑄0(w) ̸= ̃︀𝑄0(w

′). Hence, the mapping ̃︀𝑄0 is a bijection
between Trj(l) and Trj(m).

By the conditions of Theorem, the sets Trj(l) and Trj(m) are equipotent. Thus, there exists

a bijection ̃︀𝑄1 : Trj(l) ↦→ Trj(m) between Trj(l) and Trj(m). According to the definition of
general trajectory for reference frame (see (2.7)), we have, Trj(l) ⊔ Trj(l) = M𝑘(l) (where the
symbol “⊔” denotes disjoint union of sets). Hence for 𝜔 ∈M𝑘(l) we can put:

̃︀𝑄(w) := {︃̃︀𝑄0(w), w ∈ Trj(l)̃︀𝑄1(w), w ∈ Trj(l).
(2.12)

Since (in accordance with the statements, proved above) ̃︀𝑄0 is bijection between Trj(l) and
Trj(m) as well as ̃︀𝑄1 is bijection between Trj(l) and Trj(m), we must conclude, that ̃︀𝑄 is
bijection between M𝑘(l) = Trj(l) ⊔ Trj(l) and M𝑘(m) = Trj(m) ⊔ Trj(m). Moreover, for any

𝜔 ∈ Bs(l), by definitions of the mappings ̃︀𝑄 and ̃︀𝑄0, we get:̃︀𝑄 (︀Q⟨l⟩ (𝜔))︀ = ̃︀𝑄0

(︀
Q⟨l⟩ (𝜔)

)︀
= Q⟨m← l⟩(𝜔).

Thus, by the Definition 2.15.1 (item 2), ̃︀𝑄 is universal coordinate transform from l to m.

Remark 2.15.2. Universal coordinate transform between two reference frames of kinematic set
(if it exists) is not uniquely defined for the general case. Indeed, suppose, that two reference
frames l,m ∈ ℒ𝑘 (C) of kinematic set C satisfy the following conditions:

l�m and card
(︀
Trj (l)

)︀
= card

(︀
Trj (m)

)︀
≥ 2.

Then there exist many bijections between Trj (l) and Trj (m). So universal coordinate transform
in (2.12) is not uniquely defined.

Main results of this Section are published in [10, Section 6].

In the next three sections (16, 17, 18) we prove Theorem on multi-image for kinematic sets as
well as we introduce and investigate generalized Lorentz-Poincare transformations (in the sense
of E. Recami, V. Olkhovsky and R. Goldoni), which are necessary to build mathematically
strict model of kinematics of special relativity and its extension to the tachyon kinematics,
which allows super-light motion for inertial reference frames.

16 Theorem on Multi-image for Kinematic Sets

Definition 2.16.1.

1. The ordered composition of five sets (T,𝒳 , 𝑈,Q, 𝑘) is named by kinematic projector for
base changeable set ℬ if and only if:

1.1. (T,𝒳 , 𝑈) is evolution projector for ℬ.
1.2. Q is a coordinate space.

1.3. 𝑘 is a mapping from 𝒳 into Zk(Q).

II In the case, where (T,𝒳 , 𝑈) is injective evolution projector for ℬ, the kinematic pro-
jector (T,𝒳 , 𝑈,Q, 𝑘) is named by injective.
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2. Any indexed family P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) | 𝛼 ∈ 𝒜) (where 𝒜 ≠ ∅) of injective kine-
matic projectors for base changeable set ℬ we name by kinematic multi-projector for
ℬ.

Remark 2.16.1. Henceforward we will consider only injective kinematic projectors. That is why
we will use the term “kinematic projector” instead of the term “injective kinematic projector”.

Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) | 𝛼 ∈ 𝒜) be any kinematic multi-projector for ℬ. Denote:

P[𝑒] := ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜) .

By the definitions 2.16.1 and 1.11.3, P[𝑒] is (injective) evolution multi-projector for ℬ.

Theorem 2.16.1. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) | 𝛼 ∈ 𝒜) be a kinematic multi-projector for a
base changeable set ℬ. Then:
A) Only one kinematic set C exists, satisfying the following conditions:

1. BE (C) = 𝒵 im
[︀
P[𝑒],ℬ

]︀
.

2. For any reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (C) (where 𝛼 ∈ 𝒜) the following equalities
are performed:

2.1) BG(l) = Q𝛼; 2.2) ql(𝑥) = 𝑘𝛼(𝑥) (𝑥 ∈ Bs(l)).

B) Kinematic set C, satisfying the conditions 1,2 is precisely visible.

Proof. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) | 𝛼 ∈ 𝒜) (where T𝛼 = (T𝛼,≤𝛼), 𝛼 ∈ 𝒜) be a kinematic
multi-projector for ℬ.
A) Put:

𝒵 := 𝒵 im
[︀
P[𝑒],ℬ

]︀
.

Then, according to Theorem 1.11.2:

ℒ𝑘 (𝒵) = {(𝛼, 𝑈𝛼 [ℬ,T𝛼]) | 𝛼 ∈ 𝒜} .

Consider any fixed reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵) (where 𝛼 ∈ 𝒜). Denote:

Q(l) := Q𝛼.

The ordered five-elements composition (T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) is a kinematic projector. Hence,
by Definition 2.16.1, the triple (T𝛼,𝒳𝛼, 𝑈𝛼) = ((T𝛼,≤𝛼) ,𝒳𝛼, 𝑈𝛼) is evolution projector for ℬ.
Consequently, by the definition of evolution projector (Definition 1.11.1), 𝑈𝛼 is the mapping of
kind 𝑈𝛼 : Bs(ℬ) ↦→ T𝛼 ×𝒳𝛼. Therefore, by Property 1.11.2(3), we obtain:

Bs(l) = {bs (𝑈𝛼(𝜔)) | 𝜔 ∈ Bs(ℬ)} ⊆ 𝒳𝛼.

For an arbitrary 𝑥 ∈ Bs(l) we denote:

𝑘(l)(𝑥) := 𝑘𝛼(𝑥).

According to the definition of a kinematic projector (Definition 2.16.1) 𝑘𝛼 is the mapping from
𝒳𝛼 into Zk (Q𝛼) = Zk

(︀
Q(l)

)︀
. Hence, 𝑘(l) is the mapping from Bs(l) into Zk

(︀
Q(l)

)︀
.

Hence, by the Definition 2.14.3 (item 2), the pair

C =
(︀
𝒵,
(︀(︀
Q(l), 𝑘(l)

)︀
| l ∈ ℒ𝑘 (𝒵)

)︀)︀
(2.13)

is a kinematic set. Herewith, taking into account the system of denotations, accepted in the
subsection 14.2.2, we get:

BE(C) = 𝒵 = 𝒵 im
[︀
P[𝑒],ℬ

]︀
,
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and for any reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (C), where 𝛼 ∈ 𝒜 we have:

BG(l) = Q(l) = Q𝛼;

ql(𝑥) = 𝑘(l)(𝑥) = 𝑘𝛼(𝑥) (𝑥 ∈ Bs(l)).

Thus, the kinematic set C satisfies conditions 1,2 of the item A) of Theorem 2.16.1.
Now, we are going to prove, that kinematic set C, satisfying conditions 1,2 of the item A) of

Theorem 2.16.1 is unique. Assume, that the kinematic set C1 also satisfies the conditions 1,2
of the item A) of Theorem 2.16.1. Then, by Condition 1 of the item A) of Theorem 2.16.1,
BE (C) = 𝒵 = BE (C1). Hence,

ℒ𝑘 (C) = ℒ𝑘 (𝒵) = ℒ𝑘 (C1) ,

moreover, for any reference frames l,m ∈ ℒ𝑘 (C) = ℒ𝑘 (C1) we have:

⟨m← l,C⟩ = ⟨m← l,𝒵⟩ = ⟨m← l,C1⟩ .

Further, by Condition 2 of the item A) of Theorem 2.16.1, for any reference frame l =
(𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (C) = ℒ𝑘 (C1) we deliver:

BG (l; C) = Q𝛼 = BG (l; C1) ; ql (𝑥, C) = 𝑘𝛼(𝑥) = ql (𝑥, C1) (𝑥 ∈ Bs(l)) .

Therefore, by Corollary 2.14.1, C = C1.
B) Recall, that the notion of precise visibility, for kinematic sets is introduced in item d) of

the subsection 14.2.2. So, since the changeable set 𝒵 is precisely visible (according to Corollary
1.12.3), then the kinematic set C, represented, by the formula (2.13), also is precisely visible.

Definition 2.16.2. Let, P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) | 𝛼 ∈ 𝒜) be a kinematic multi-projector for
a base changeable set ℬ. The kinematic set C, satisfying conditions 1,2 of Theorem 2.16.1
will be named by kinematic multi-image of base changeable set ℬ relatively the kinematic
multi-projector P. This kinematic set will be denoted via Kim [P,ℬ]:

Kim [P,ℬ] := C.

Applying Properties 1.11.2, Corollary 1.12.7 and Theorem 2.16.1, we obtain the following
properties for kinematic multi-image of base changeable set.

Properties 2.16.1. Let, P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼, 𝑘𝛼) | 𝛼 ∈ 𝒜) be a kinematic multi-projector for
ℬ (where T𝛼 = (T𝛼,≤𝛼), 𝛼 ∈ 𝒜). Suppose, that C = Kim [P,ℬ]. Then:
1. ℒ𝑘 (C) = {(𝛼, 𝑈𝛼 [ℬ,T𝛼]) | 𝛼 ∈ 𝒜}.

2. ℐ𝑛𝑑 (C) = 𝒜.

3. For any reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) the following equalities hold:

Bs(l) = 𝑈𝛼 (Bs(ℬ)) = {𝑈𝛼(𝜔) | 𝜔 ∈ Bs(ℬ)} ;
Bs(l) = {bs (𝑈𝛼(𝜔)) | 𝜔 ∈ Bs(ℬ)} ;
Tm(l) = T𝛼; Tm(l) = T𝛼;

Zk(l) = Zk (BG(l)) = Zk (Q𝛼) ;

M𝑘(l) = Tm(l)× Zk(l) = T𝛼 × Zk (Q𝛼) ;

ql(𝑥) = 𝑘𝛼(𝑥) (𝑥 ∈ Bs(l));

Q⟨l⟩(𝜔) = (tm (𝜔) , ql(bs (𝜔))) = (tm (𝜔) , 𝑘𝛼(bs (𝜔))) (𝜔 ∈ Bs(l)) .

4. Let, l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (C), where 𝛼 ∈ 𝒜. Suppose, that ̃︀𝜔1, ̃︀𝜔2 ∈ Bs(l) and
tm (̃︀𝜔1) ̸= tm (̃︀𝜔2). Then ̃︀𝜔1 and ̃︀𝜔2 are united by fate in l if and only if there exist united
by fate in ℬ elementary-time states 𝜔1, 𝜔2 ∈ Bs(ℬ) such, that ̃︀𝜔1 = 𝑈𝛼 (𝜔1), ̃︀𝜔2 = 𝑈𝛼 (𝜔2).

98



Draft Introduction to Abstract Kinematics. (Ver 2.0) 17. Generalized Lorentz Transformations for Hilbert Space

5. For any reference frames l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (C), m = (𝛽, 𝑈𝛽 [ℬ,T𝛽]) ∈ ℒ𝑘 (C)
(𝛼, 𝛽 ∈ 𝒜) the following equality holds:

⟨!m← l, C⟩𝜔 = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀
(𝜔 ∈ Bs(l) = 𝑈𝛼 (Bs(ℬ))) .

Let, Q be a coordinate space, ℬ be a base changeable set such, that Bs(ℬ) ⊆ Zk(Q) (such
base changeable set ℬ exists, because, for example, we may put ℬ := 𝒜𝑡 (T,ℛ), where ℛ is a
system of abstract trajectories from the linear ordered set T to a set M ⊆ Zk(Q), where the
definition of 𝒜𝑡 (T,ℛ) can be found in Example 1.6.3 (see also Theorem 1.6.1)). Let U be any
transforming set of bijections relatively the ℬ on Zk(Q) (in the sense of Example 1.11.2). Then,
any mapping U ∈ U is the mapping of kind, U : Tm(ℬ)×Zk(Q)←→ Tm(ℬ)×Zk(Q), where
Bs(ℬ) ⊆ Tm(ℬ) × Bs(ℬ) ⊆ Tm(ℬ) × Zk(Q). Hence, the set of bijections U generates the

kinematic multi-projector ̂︀U :=
(︀(︀
Tm(ℬ),Zk(Q),U,Q, IZk(Q)

)︀
|U ∈ U

)︀
for ℬ, where IZk(Q) is

the identity mapping on Zk(Q). Denote:

Kim (U,ℬ,Q) := Kim
[︁̂︀U,ℬ]︁ . (2.14)

Theorem 2.16.2. The kinematic set C = Kim (U,ℬ,Q) allows universal coordinate transform.

Moreover, ℒ𝑘 (C) = ((U,U [ℬ]) |U ∈ U), and the system of mappings
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

:

̃︀𝑄m,l(w) = V
(︀
U[−1](w)

)︀
, w ∈M𝑘(l) = Tm(ℬ)× Zk(Q) (2.15)

( l = (U,U [ℬ]) ∈ ℒ𝑘 (C) , m = (V,V [ℬ]) ∈ ℒ𝑘 (C) )

is universal coordinate transform for C.

Proof. Let, Q be a coordinate space and U be transforming set of bijections relatively the
base changeable set ℬ (Bs(ℬ) ⊆ Zk(Q)) on Zk(Q). Denote C := Kim (U,ℬ,Q). Then, C =

Kim
[︁̂︀U,ℬ]︁, where ̂︀U =

(︀(︀
Tm(ℬ),Zk(Q),U,Q, IZk(Q)

)︀
|U ∈ U

)︀
. Hence, according to Prop-

erty 2.16.1(1), ℒ𝑘 (C) = {(U,U [ℬ]) |U ∈ U}. And, by Property 2.16.1(3), for an arbitrary
reference frame l = (U,U [ℬ]) ∈ ℒ𝑘 (C) we have: Bs(l) = {bs (U(𝜔)) | 𝜔 ∈ Bs(ℬ)} ⊆ Zk(Q).
Herewith, by Theorem 2.16.1, ql (𝑥, C) = 𝑥 (∀𝑥 ∈ Bs(l)). Hence:

Q⟨l⟩(𝜔;C) = (tm (𝜔) , ql(bs (𝜔))) = (tm (𝜔) , bs (𝜔)) = 𝜔 (l ∈ ℒ𝑘 (C) , 𝜔 ∈ Bs(l)) .

Using the last equality and Property 2.16.1(5), for arbitrary reference frames l = (U,U [ℬ]) ∈
ℒ𝑘 (C), m = (V,V [ℬ]) ∈ ℒ𝑘 (C) (U,V ∈ U) we obtain:

Q⟨m← l⟩(𝜔;C) = Q⟨m⟩(⟨!m← l⟩𝜔) = ⟨!m← l⟩𝜔 =

= V
(︀
U[−1](𝜔)

)︀
= V

(︀
U[−1] (︀Q⟨l⟩(𝜔))︀)︀ = ̃︀𝑄m,l

(︀
Q⟨l⟩(𝜔)

)︀
.

It is not hard to verify, that the system of mappings
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

satisfies conditions (2.4).

Therefore, by Definition 2.15.1 (item 4), we see, that
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

is universal coordinate

transform for C.

Main results of this Section were anonced in [11] and published in [14, Subsection 6.3].

17 Generalized Lorentz Transformations in the Sense of E. Recami,

V. Olkhovsky and R. Goldoni for Hilbert Space

The fact that the existence of superlight motions is consistent with the kinematics of Ein-
stein’s special theory of relativity at the present time may be considered as generally known.
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In [49,50] this fact is proved by means of mathematical logic. It is interesting, that the last fact
also can be proved by another way. In Example 1.11.3 the kinematics, which permits superlight
transformations, was built explicitly using the theory of changeable sets (this example was also
published in [4, p. 128, example 2.3] and [3, p. 41, example 10.3]). Although the existence
of tachyons can not be considered as experimentally verified fact, the theory of tachyons and
superluminal motions is intensively developing more than 50 years [34–36], and it is very actual
in our time. In first studies for this direction the theory of tachyons was considered in the frame-
work of classical Lorentz transformations, and superluminal motion for the frames of reference
was forbidden. Then, in the papers of E. Recami, V.S. Olkhovsky and R. Goldoni [51–53], the
extended Lorentz transformations for reference frames moving with the velocity, greater, then
the velocity of light 𝑐 were proposed (see also [37]). The ideas of E. Recami, V.S. Olkhovsky
and R. Goldoni are still relevant in our time. In particular B. Cox and J. Hill in the paper [39]
have rediscovered the formulas of Recami-Olkhovsky-Goldoni’s extended Lorentz transforma-
tions and published a new and elegant way to deduce of them (the fact, that extended Lorentz
transforms, obtained in [39] are not new is noted in the comment [54]). Note that formulas
of Recami-Olkhovsky-Goldoni’s extended Lorentz transformations also had been rediscovered
in [55]. Recami-Olkhovsky-Goldoni’s extended Lorentz transformations are investigated in the
paper [38]. Application of the Recami-Olkhovsky-Goldoni’s extended Lorentz transformations
to the problem of spinless tachyon localization can be found in [56]. It should be emphasized
that in the papers [37–39, 51–53, 55] extended Lorentz transformations are examined only in
the case, when two inertial frames are moving along the common 𝑥-axis. In the paper [6] the
Recami-Olkhovsky-Goldoni’s extended Lorentz transformations are obtained for arbitrary ori-
entation of axes in the case, where the space of geometrical coordinates may be any real Hilbert
space of any dimension, including infinity. In the paper [7] we investigated algebraic properties
of these extended Lorentz transformations (introduced in [6]). Also some properties of these
transformations were established in [8, 14].

This section contains results, connected with extended Lorentz transformations in the sense
of E. Recami, V. Olkhovsky and R. Goldoni, which are necessary to build mathematically strict
model of kinematics of special relativity and its tachyon extensions. Main results of this Section
were published in [6, 8, 14].

17.1 Abstract Coordinate Transforms in Minkowski Space Time over Hilbert
Space and their Properties

Let (H, ‖·‖ , ⟨·, ·⟩) be a real Hilbert space, where ‖·‖ is the norm and ⟨·, ·⟩ is the inner product
over the space H. Further we assume automatically the condition dim (H) > 0. Under this
condition, the space H contains at least one nonzero vector. Denote by ℳ (H) the Hilbert
space

ℳ (H) := R× H = {(𝑡, 𝑥) | 𝑡 ∈ R, 𝑥 ∈ H} ,
equipped by the following inner product and norm:

⟨w1,w2⟩ℳ(H) = 𝑡1𝑡2 + ⟨𝑥1, 𝑥2⟩ ;
‖w1‖ℳ(H) = 𝑡21 + ‖𝑥1‖

2 (w𝑖 = (𝑡𝑖, 𝑥𝑖) ∈ℳ (H) , 𝑖 ∈ {1, 2}) .

The spaceℳ (H) we name by the Minkowski space over the Hilbert space H. In the space
ℳ (H) we select the subspaces

H0 = {(𝑡,0) | 𝑡 ∈ R}
H1 = {(0, 𝑥) |𝑥 ∈ H} ,

}︂
(2.16)

with 0 being zero vector. Then
ℳ (H) = H0 ⊕ H1,
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where ⊕ means the orthogonal sum of the subspaces. The space H0 is isomorphic to the real
field R and the space H1 is isomorphic to the space H. Hence, the space H may be identified
with the subspace H1 of the space ℳ (H), and ℳ (H) may be considered as the extension of
the space H. That is why, futher we will use the same denotations for inner product and norm
in the spaces H andℳ (H) (that is ‖·‖, ⟨·, ·⟩, without the index “ℳ (H)” in subscript).

Denote by e0 the vector
e0 = (1,0) ∈ℳ (H) .

We introduce the following orthogonal projectors by the subspaces H0 and H1:̂︀Tw = 𝑡e0 = (𝑡,0) ∈ H0, w = (𝑡, 𝑥) ∈ℳ (H) ;

Xw = (0, 𝑥) ∈ H1, w = (𝑡, 𝑥) ∈ℳ (H)

}︃
(2.17)

(recall, that an operator 𝑃 ∈ ℒ (H) is named orthogonal projector if 𝑃 2 = 𝑃 * = 𝑃 , where 𝑃 *

is the adjoint operator to the operator 𝑃 ). Also we denote by 𝒯 the following linear operator

𝒯 (w) = 𝑡 = tm (w) , w = (𝑡, 𝑥) ∈ℳ (H)

fromℳ (H) to R. Then the following equality apparently holds:

̂︀Tw = 𝒯 (w) e0, w ∈ℳ (H) . (2.18)

And any vector w ∈ℳ (H) can be uniquely represented as

w = 𝑡e0 + 𝑥 = 𝒯 (w) e0 +Xw, (2.19)

where 𝑥 = Xw ∈ H1, 𝑡 = 𝒯 (w) ∈ R.
Denote by ℒ (H) the space of linear continuous operators over the space H.

Definition 2.17.1. The operator 𝑆 ∈ ℒ (ℳ (H)) is referred to as linear coordinate trans-
form operator if and only if there exist the continuous inverse operator 𝑆−1 ∈ ℒ (ℳ (H)) {13}.

It is clear, that product (composition) of any two linear coordinate transform operators is a
linear coordinate transform operator and the operator, inverse to linear coordinate transform
operator again is a linear coordinate transform operator. Thus the set of all linear coordinate
transform operators is the group of operators over the space ℳ (H).

Definition 2.17.2. The linear coordinate transform operator 𝑆 ∈ ℒ (ℳ (H)) is called v-
determined if and only if 𝒯 (𝑆−1e0) ̸= 0. The vector

𝒱 (𝑆) = X𝑆−1e0
𝒯 (𝑆−1e0)

∈ H1

is named the velocity of the v-determined linear coordinate transform operator 𝑆.

Definition 2.17.2 is consistent with the physical understanding of the speed of reference frame.
Indeed suppose, that the v-determined linear coordinate transform operator 𝑆 ∈ ℒ (ℳ (H))
maps the coordinates of any point in the fixed frame of reference l to coordinates of this
point in another frame l′, moving with constant velocity relative to the frame l. Consider any
stationary relative the frame l′ point w′𝑡 = 𝑥0 + 𝑡e0 (where 𝑥0 ∈ H1 is fixed vector, and variable
𝑡 runs over all real axis R). Then the point w′𝑡 in the frame l will look like as w𝑡 = 𝑆−1w′𝑡, and
using (2.19) we obtain:

w𝑡 = 𝑆−1𝑥0 + 𝑡𝑆−1e0 = 𝒯
(︀
𝑆−1𝑥0

)︀
e0 +X𝑆−1𝑥0 + 𝑡

(︀
𝒯
(︀
𝑆−1e0

)︀
e0 +X𝑆−1e0

)︀
=

13 In the case, where the mapping 𝑆 is linear (or aphine) operator, acting in some linear space, we use the conventional denotation
𝑆−1 instead of 𝑆[−1] for inverce mapping.
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= 𝒯
(︀
𝑆−1 (𝑥0 + 𝑡e0)

)︀
e0 +X𝑆−1 (𝑥0 + 𝑡e0) .

Thus, for any 𝑡1, 𝑡2 ∈ R such, that 𝑡1 ̸= 𝑡2 we deliver:

Xw𝑡2 −Xw𝑡1

𝒯 (w𝑡2)− 𝒯 (w𝑡1)
=

X𝑆−1 (𝑥0 + 𝑡2e0 − (𝑥0 + 𝑡1e0))

𝒯 (𝑆−1 (𝑥0 + 𝑡2e0)− 𝑆−1 (𝑥0 + 𝑡1e0))
= 𝒱 (𝑆) .

Thus, any stationary relative the frame l′ point is moving relative the frame l with constant
velocity 𝒱 (𝑆).

For any vector 𝑉 ∈ H1 we introduce the following subspaces:

H1 [𝑉 ] = span {𝑉 } ;
H1⊥ [𝑉 ] = H1 ⊖ H1 [𝑉 ] = {𝑥 ∈ H1 | ⟨𝑥, 𝑉 ⟩ = 0} ,

where span𝑀 denotes the linear span of the set 𝑀 ⊆ ℳ (H). The orthogonal projectors for
the subspaces H1 [𝑉 ] and H1⊥ [𝑉 ] will be denoted by X1 [𝑉 ], X⊥1 [𝑉 ]:

X1 [𝑉 ] w =

{︃
⟨𝑉,w⟩
‖𝑉 ‖2 𝑉, 𝑉 ̸= 0

0, 𝑉 = 0
, w ∈ℳ (H) ;

X⊥1 [𝑉 ] = X−X1 [𝑉 ] .

(2.20)

It is not hard to verify, that for an arbitrary 𝑉 ∈ H1 the following equalities are performed:̂︀T+X = I;̂︀T+X1 [𝑉 ] +X⊥1 [𝑉 ] = I;̂︀TX = X̂︀T = O;̂︀TX1 [𝑉 ] = X1 [𝑉 ] ̂︀T = O;
XX1 [𝑉 ] = X1 [𝑉 ]X = X1 [𝑉 ] ;

X1 [𝜆𝑉 ] = X1 [𝑉 ] ;

X1 [𝑉 ] +X⊥1 [𝑉 ] = X;

X1 [𝑉 ]X⊥1 [𝑉 ] = X⊥1 [𝑉 ]X1 [𝑉 ] = O;̂︀TX⊥1 [𝑉 ] = X⊥1 [𝑉 ] ̂︀T = O;
XX⊥1 [𝑉 ] = X⊥1 [𝑉 ]X = X⊥1 [𝑉 ] ,

X⊥1 [𝜆𝑉 ] = X⊥1 [𝑉 ] (∀𝜆 ∈ R ∖ {0}),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.21)

where I = Iℳ(H) and O are identity and zero operators in the space ℒ (ℳ (H)) correspondingly:

Iw = Iℳ(H)w = w; Ow = 0 (∀w ∈ℳ (H)) .

Lemma 2.17.1. Let 𝑆 ∈ ℒ (ℳ (H)) be a linear coordinate transform operator such, that the
both operators 𝑆 ans 𝑆−1 are v-determined. Then 𝑆 is bijection between the subspaces H0 ⊕
H1 [𝒱 (𝑆)] and H0 ⊕ H1 [𝒱 (𝑆−1)]. Moreover for any w = 𝑡e0 + 𝜆𝒱 (𝑆) ∈ H0 ⊕ H1 [𝒱 (𝑆)] the
following equality is true:

𝑆 (𝑡e0 + 𝜆𝒱 (𝑆)) = 𝛼𝑆
(︀
(𝑡− 𝜆𝛽𝑆) e0 + (𝑡− 𝜆)𝒱

(︀
𝑆−1

)︀)︀
(∀𝑡, 𝜆 ∈ R),

where

𝛼𝑆 = 𝒯 (𝑆e0) , 𝛽𝑆 = 1− 1

𝒯 (𝑆e0) 𝒯 (𝑆−1e0)
= 1− 1

𝛼𝑆𝛼𝑆−1

.

Proof. Let 𝑆, 𝑆−1 be v-determined linear coordinate transform operators. Then, by definition
2.17.2 and equalities (2.18), (2.21), for any 𝑡, 𝜆 ∈ R we obtain:

𝑆 (𝑡e0 + 𝜆𝒱 (𝑆)) = 𝑡𝑆e0 + 𝜆𝑆𝒱 (𝑆) = 𝑡𝑆e0 + 𝜆𝑆
X𝑆−1e0
𝒯 (𝑆−1e0)

=

= 𝑡𝑆e0 +
𝜆

𝒯 (𝑆−1e0)
𝑆
(︁
𝑆−1e0 − ̂︀T𝑆−1e0)︁ =
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= 𝑡𝑆e0 +
𝜆

𝒯 (𝑆−1e0)
𝑆
(︀
𝑆−1e0 − 𝒯

(︀
𝑆−1e0

)︀
e0
)︀
=

= 𝑡𝑆e0 +
𝜆

𝒯 (𝑆−1e0)

(︀
e0 − 𝒯

(︀
𝑆−1e0

)︀
𝑆e0
)︀
=

= (𝑡− 𝜆)𝑆e0 +
𝜆

𝒯 (𝑆−1e0)
e0 =

= (𝑡− 𝜆)
(︁̂︀T𝑆e0 +X𝑆e0

)︁
+

𝜆

𝒯 (𝑆−1e0)
e0 =

= (𝑡− 𝜆) (𝒯 (𝑆e0) e0 +X𝑆e0) +
𝜆

𝒯 (𝑆−1e0)
e0 =

= (𝑡− 𝜆) 𝒯 (𝑆e0)

(︂
e0 +

X𝑆e0
𝒯 (𝑆e0)

)︂
+

𝜆

𝒯 (𝑆−1e0)
e0 =

= (𝑡− 𝜆) 𝒯 (𝑆e0)
(︀
e0 + 𝒱

(︀
𝑆−1

)︀)︀
+

𝜆

𝒯 (𝑆−1e0)
e0 =

= 𝒯 (𝑆e0)

(︂(︂
𝑡− 𝜆

(︂
1− 1

𝒯 (𝑆e0) 𝒯 (𝑆−1e0)

)︂)︂
e0 + (𝑡− 𝜆)𝒱

(︀
𝑆−1

)︀)︂
=

= 𝛼𝑆
(︀
(𝑡− 𝜆𝛽𝑆) e0 + (𝑡− 𝜆)𝒱

(︀
𝑆−1

)︀)︀
.

Hence, the operator 𝑆 maps the subspace H0 ⊕ H1 [𝒱 (𝑆)] into the subspace H0 ⊕ H1 [𝒱 (𝑆−1)].
In the case 𝒱 (𝑆) ̸= 0 the subspace H0⊕H1 [𝒱 (𝑆)] is two-dimensional (dim (H0 ⊕ H1 [𝒱 (𝑆)]) =
2). And since 𝑆 is bijection on ℳ (H), dimension of the image 𝑆 (H0 ⊕ H1 [𝒱 (𝑆)]) ⊆ H0 ⊕
H1 [𝒱 (𝑆−1)] also must be equal 2. And since dim (H0 ⊕ H1 [𝒱 (𝑆−1)]) ≤ 2, we have, that
𝑆 (H0 ⊕ H1 [𝒱 (𝑆)]) = H0 ⊕ H1 [𝒱 (𝑆−1)] and dim (H0 ⊕ H1 [𝒱 (𝑆−1)]) = 2. Thus, in the case
𝒱 (𝑆) ̸= 0, the lemma is proved.

Above we have proved, that if 𝒱 (𝑆) ̸= 0, then dim (H0 ⊕ H1 [𝒱 (𝑆−1)]) = 2, and, con-

sequently, 𝒱 (𝑆−1) ̸= 0. And, conversely, if 𝒱 (𝑆−1) ̸= 0, then 𝒱 (𝑆) = 𝒱
(︁
(𝑆−1)

−1
)︁
̸= 0.

Thus, in the case 𝒱 (𝑆) = 0, we have 𝒱 (𝑆−1) = 0. Therefore, in this case H0 ⊕ H1 [𝒱 (𝑆)] =
H0 ⊕ H1 [𝒱 (𝑆−1)] = H0, and, consequently, one-dimensional subspace H0 is invariant subspace
of the operator 𝑆. And, since 𝑆 is one-to-one mapping, we deliver that 𝑆 (H0) = H0, and,
hence, 𝑆 (H0 ⊕ H1 [𝒱 (𝑆)]) = H0 ⊕ H1 [𝒱 (𝑆−1)]. Thus, in the case 𝒱 (𝑆) = 0, the lemma also is
proved.

17.2 General Lorentz Group in Hilbert Space

Everywhere in this paper 𝑐 will be a fixed positive real constant, which has the physical content
of the speed of light in vacuum. Denote by M𝑐 (·) Lorentz-Minkowski pseudo-metric on the
spaceℳ (H):

M𝑐 (w) = ‖Xw‖2 − 𝑐2𝒯 2 (w) , w ∈ℳ (H) . (2.22)

Pseudo-metric (2.22) is generated by the quasi-inner product:

⟨⟨w1,w2⟩⟩𝑐 = ⟨Xw1,Xw2⟩ − 𝑐2𝒯 (w1) 𝒯 (w2) , w1,w2 ∈ℳ (H) (2.23)

M𝑐 (w) = ⟨⟨w,w⟩⟩𝑐 , w ∈ℳ (H) . (2.24)

It is clear, that quasi-inner product ⟨⟨w1,w2⟩⟩𝑐 (w1,w2 ∈ℳ (H)) is bilinear form relatively the
variables w1,w2. Hence (by (2.24)), for any w1,w2 ∈ℳ (H) it holds the equality:

⟨⟨w1,w2⟩⟩𝑐 =
1

2
(M𝑐 (w1 + w2)−M𝑐 (w1)−M𝑐 (w2)) . (2.25)
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Denotation 2.17.1. Denote by O (H, 𝑐) the set of all linear coordinate transform operators
over ℳ (H), leaving unchanged values of the functional (2.22), that is the set of all linear
coordinate transform operators 𝐿 ∈ ℒ (ℳ (H)) such, that:

M𝑐 (𝐿w) = M𝑐 (w) (∀w ∈ℳ (H)) . (2.26)

Using the equality (2.25) it is easy to verify, that any operator 𝐿 ∈ O (H, 𝑐) leaves unchanged
the values of the quasi-inner product (2.23):

⟨⟨𝐿w1, 𝐿w2⟩⟩𝑐 = ⟨⟨w1,w2⟩⟩𝑐 , w1,w2 ∈ℳ (H) (2.27)

It is not hard to see, that product of any two operators from O (H, 𝑐) belongs to O (H, 𝑐)
and the mapping, inverse to any operator from O (H, 𝑐) also belongs to the set O (H, 𝑐). Hence:

Assertion 2.17.1. The set O (H, 𝑐) is the group of operators over the spaceℳ (H).

According to [46] we name this group by the general Lorentz group over the spaceℳ (H).
Note, that generalization of the classical Lorentz group for the case of real Hilbert space was also
investigated in [58–60]. In these papers a somewhat different (but logically equivalent) approach
to the definition of Lorentz group over Hilbert space is proposed. Namely, in these papers the
“time” dimension is not “attached” to the given Hilbert space H (by means of construction the
spaceℳ (H)), but this dimension is selected in the space H by an arbitrary way. So, the last
construction is correct only in the case dim (H) ≥ 2. In our approach, we, apparently, need not
this restriction.

Assertion 2.17.2. Any general Lorentz transform operator 𝐿 ∈ O (H, 𝑐) is v-determined and
‖𝒱 (𝐿)‖ < 𝑐.

Proof. Indeed,
M𝑐 (e0) = ‖Xe0‖2 − 𝑐2𝒯 2 (e0) = 0− 𝑐2 · 1 = −𝑐2.

As it was mentioned above, 𝐿−1 ∈ O (H, 𝑐) for 𝐿 ∈ O (H, 𝑐). Therefore, by (2.26),

M𝑐

(︀
𝐿−1e0

)︀
=
⃦⃦
X𝐿−1e0

⃦⃦2 − 𝑐2𝒯 2
(︀
𝐿−1e0

)︀
= −𝑐2.

Hence, |𝒯 (𝐿−1e0)| = 1
𝑐

√︁
‖X𝐿−1e0‖2 + 𝑐2 > 0. Thus the linear coordinate transform operator

𝐿 is v-determined, moreover:

‖𝒱 (𝐿)‖ = ‖X𝐿
−1e0‖

|𝒯 (𝐿−1e0)|
= 𝑐

‖X𝐿−1e0‖√︁
‖X𝐿−1e0‖2 + 𝑐2

< 𝑐. (2.28)

The aim of the next assertion is to emphasize some characteristic properties of the general
Lorentz transforms, which may serve as a basis for another definition of the general Lorentz
group. And these properties also will become the motivation for definition of the set of extended
Lorentz transforms, which allow superlight speed of reference frames.

Assertion 2.17.3. Any linear coordinate transform operator 𝐿 ∈ ℒ (ℳ (H)) belongs to O (H, 𝑐)
if and only if the following conditions are satisfied:

1. Both linear coordinate transform operators 𝐿 and 𝐿−1 are v-determined;

2. M𝑐 (𝐿w) = M𝑐 (w) (∀w ∈ H0 ⊕ H1 [𝒱 (𝐿)]);

3. if ̂︀Tw = X1 [𝒱 (𝐿)] w = 0, then ̂︀T𝐿w = X1 [𝒱 (𝐿−1)]𝐿w = 0 (∀w ∈ℳ (H));

4.
⃦⃦
X⊥1 [𝒱 (𝐿)] w

⃦⃦
=
⃦⃦
X⊥1 [𝒱 (𝐿−1)]𝐿w

⃦⃦
, (∀w ∈ℳ (H)).
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Proof. 1. Let 𝐿 ∈ O (H, 𝑐).
1.1. By Assertion 2.17.2, 𝐿 is v-determined. Since O (H, 𝑐) is the group of operators,

𝐿−1 ∈ O (H, 𝑐), and so 𝐿−1 also is v-determined.
1.2. Performance of the second condition follows from the equality (2.26).

1.3. Suppose, that w ∈ ℳ (H) and ̂︀Tw = X1 [𝒱 (𝐿)] w = 0. Then, for any vector 𝑤𝑡,𝜆 =
𝑡e0 + 𝜆𝒱 (𝐿) ∈ H0 ⊕ H1 [𝒱 (𝐿)] we obtain:

⟨⟨𝑤𝑡,𝜆,w⟩⟩𝑐 = ⟨X𝑤𝑡,𝜆,Xw⟩ − 𝑐2𝒯 (𝑤𝑡,𝜆) 𝒯 (w) = 𝜆 ⟨𝒱 (𝐿) ,Xw⟩ − 𝑐2𝑡
⟨̂︀Tw, e0

⟩
=

= 𝜆 ⟨𝒱 (𝐿) ,Xw⟩ = 𝜆 ⟨X𝒱 (𝐿) ,w⟩ = 𝜆 ⟨𝒱 (𝐿) ,w⟩ = 0

Consequently, by the equality (2.27):

⟨⟨𝐿𝑤𝑡,𝜆, 𝐿w⟩⟩𝑐 = 0 (∀𝑡, 𝜆 ∈ R) .

Hence, using the lemma 2.17.1, we deliver:⟨︀⟨︀
𝛼𝐿
(︀
(𝑡− 𝜆𝛽𝐿) e0 + (𝑡− 𝜆)𝒱

(︀
𝐿−1

)︀)︀
, 𝐿w

⟩︀⟩︀
𝑐
= 0 (∀𝑡, 𝜆 ∈ R) ,

where (because 𝐿,𝐿−1 are v-determined), 𝛼𝐿 = 𝒯 (𝐿e0) ̸= 0, 𝛼𝐿−1 ̸= 0, 𝛽𝐿 = 1 − 1
𝛼𝐿𝛼𝐿−1

̸= 1.

Since 𝛽𝐿 ̸= 1, the set of pairs {(𝑡− 𝜆𝛽𝐿, 𝑡− 𝜆) | 𝑡, 𝜆 ∈ R} coincides with R2. Thus, since
𝛼𝐿 ̸= 0, we obtain: ⟨︀⟨︀

𝑡e0 + 𝜆𝒱
(︀
𝐿−1

)︀
, 𝐿w

⟩︀⟩︀
𝑐
= 0 (∀𝑡, 𝜆 ∈ R) .

In particular for 𝑡1 = − 1
𝑐2
, 𝜆1 = 0 and 𝑡2 = 0, 𝜆2 = 1 we have:

0 =

⟨⟨
− 1

𝑐2
e0, 𝐿w

⟩⟩
𝑐

= −𝑐2𝒯
(︂
− 1

𝑐2
e0

)︂
𝒯 (𝐿w) = 𝒯 (𝐿w) ;

̂︀T𝐿w = 𝒯 (𝐿w) e0 = 0; (2.29)

0 =
⟨︀⟨︀
𝒱
(︀
𝐿−1

)︀
, 𝐿w

⟩︀⟩︀
𝑐
=
⟨︀
𝒱
(︀
𝐿−1

)︀
, 𝐿w

⟩︀
;

X1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w =

{︃⟨𝒱(𝐿−1),𝐿w⟩
‖𝒱(𝐿−1)‖2 𝒱 (𝐿

−1) , 𝒱 (𝐿−1) ̸= 0

0, 𝒱 (𝐿−1) = 0

}︃
= 0. (2.30)

Thus, by (2.29), (2.30), ̂︀T𝐿w = X1 [𝒱 (𝐿−1)]𝐿w = 0.
1.4. Let w ∈ℳ (H). Then, by (2.27) and (2.21):⃦⃦

X⊥1 [𝒱 (𝐿)] w
⃦⃦2

=
⟨︀⟨︀
X⊥1 [𝒱 (𝐿)] w, X⊥1 [𝒱 (𝐿)] w

⟩︀⟩︀
𝑐
=

=
⟨︀⟨︀
𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩︀⟩︀
𝑐
=

=
⟨⟨(︁̂︀T+X1

[︀
𝒱
(︀
𝐿−1

)︀]︀
+X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀)︁
𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩⟩
𝑐
=

=
⟨⟨̂︀T𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩⟩
𝑐
+

+
⟨︀⟨︀
X1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩︀⟩︀
𝑐
+

+
⟨︀⟨︀
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩︀⟩︀
𝑐
. (2.31)

By (2.21), ̂︀TX⊥1 [𝒱 (𝐿)] w = X1 [𝒱 (𝐿)]X⊥1 [𝒱 (𝐿)] w = 0. So using the previous item, we

conclude, that ̂︀T𝐿X⊥1 [𝒱 (𝐿)] w = X1 [𝒱 (𝐿−1)]𝐿X⊥1 [𝒱 (𝐿)] w = 0. Hence, from (2.31) it follows,
that: ⃦⃦

X⊥1 [𝒱 (𝐿)] w
⃦⃦2

=
⟨︀⟨︀
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩︀⟩︀
𝑐
=

=
⟨︀
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w, 𝐿X⊥1 [𝒱 (𝐿)] w

⟩︀
=
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=
⟨︀
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w, X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w

⟩︀
=

=
⃦⃦
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿X⊥1 [𝒱 (𝐿)] w

⃦⃦2
. (2.32)

Note, that by (2.21), 𝐿X⊥1 [𝒱 (𝐿)] w = 𝐿
(︁
w − ̂︀Tw −X1 [𝒱 (𝐿)] w

)︁
= 𝐿w − 𝐿𝑤, where

𝑤 = ̂︀Tw + X1 [𝒱 (𝐿)] w ∈ H0 ⊕ H1 [𝒱 (𝐿)]. By lemma 2.17.1, 𝐿𝑤 ∈ H0 ⊕ H1 [𝒱 (𝐿−1)].
Therefore, by (2.21), X⊥1 [𝒱 (𝐿−1)]𝐿𝑤 = X⊥1 [𝒱 (𝐿−1)]

(︁̂︀T+X1 [𝒱 (𝐿−1)]
)︁
𝐿𝑤 = 0, and

X⊥1 [𝒱 (𝐿−1)]𝐿X⊥1 [𝒱 (𝐿)] w = X⊥1 [𝒱 (𝐿−1)] (𝐿w − 𝐿𝑤) = X⊥1 [𝒱 (𝐿−1)]𝐿w. Hence, by (2.32):⃦⃦
X⊥1 [𝒱 (𝐿)] w

⃦⃦2
=
⃦⃦
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w
⃦⃦2
, w ∈ℳ (H) .

Thus, all conditions 1-4 for any linear coordinate transform operator 𝐿 ∈ O (H, 𝑐) are satis-
fied.
2. Suppose, that linear coordinate transform operator 𝐿 ∈ ℒ (ℳ (H)) satisfies the conditions

1-4. Chose any w ∈ℳ (H). Vector w can be represented in the form

w = w1 + w2, where

w1 = 𝒯 (w) e0 +X1 [𝒱 (𝐿)] w ∈ H0 ⊕ H1 [𝒱 (𝐿)] , w2 = X⊥1 [𝒱 (𝐿)] w ∈ H1⊥ [𝒱 (𝐿)] . (2.33)

Note, that by (2.33) and (2.21), ̂︀Tw2 = X1 [𝒱 (𝐿)] w2 = 0. Therefore, by the condition 3:

̂︀T𝐿w2 = X1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w2 = 0. (2.34)

So:

M𝑐 (𝐿w) = M𝑐 (𝐿w1 + 𝐿w2) = ‖X𝐿w1 +X𝐿w2‖2 − 𝑐2 (𝒯 (𝐿w1) + 𝒯 (𝐿w2))
2 =

=
⃦⃦⃦
X𝐿w1 +X𝐿w2 + ̂︀T𝐿w2

⃦⃦⃦2
− 𝑐2 (𝒯 (𝐿w1) + 0)2 =

= ‖X𝐿w1 + 𝐿w2‖2 − 𝑐2𝒯 2 (𝐿w1) . (2.35)

Since w1 ∈ H0 ⊕ H1 [𝒱 (𝐿)], by lemma 2.17.1, 𝐿w1 ∈ H0 ⊕ H1 [𝒱 (𝐿−1)]. Hence, by (2.34),

⟨X𝐿w1, 𝐿w2⟩ = ⟨𝐿w1,X𝐿w2⟩ =
⟨
𝐿w1,

(︁̂︀T+X
)︁
𝐿w2

⟩
= ⟨𝐿w1, 𝐿w2⟩ =

=
⟨(︁̂︀T+X1

[︀
𝒱
(︀
𝐿−1

)︀]︀)︁
𝐿w1, 𝐿w2

⟩
=
⟨
𝐿w1,

(︁̂︀T+X1

[︀
𝒱
(︀
𝐿−1

)︀]︀)︁
𝐿w2

⟩
= 0.

Thus, ‖X𝐿w1 + 𝐿w2‖2 = ‖X𝐿w1‖2+‖𝐿w2‖2. And using the equalities (2.35),(2.34), conditions
2,4, taking into account, that w1 ∈ H0 ⊕ H1 [𝒱 (𝐿)] we obtain:

M𝑐 (𝐿w) = M𝑐 (𝐿w1) + ‖𝐿w2‖2 = M𝑐 (𝐿w1) +
⃦⃦
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w2

⃦⃦2
=

= M𝑐 (w1) +
⃦⃦
X⊥1 [𝒱 (𝐿)] w2

⃦⃦2
= M𝑐 (𝒯 (w) e0 +X1 [𝒱 (𝐿)] w) +

⃦⃦⃦(︀
X⊥1 [𝒱 (𝐿)]

)︀2
w
⃦⃦⃦2

=

= ‖X1 [𝒱 (𝐿)] w‖2 − 𝑐2𝒯 2 (w) +
⃦⃦
X⊥1 [𝒱 (𝐿)] w

⃦⃦2
= M𝑐 (w) (∀w ∈ℳ (H)) .

Consequently, 𝐿 ∈ O (H, 𝑐).

17.3 Generalized Lorentz Transforms for Finite Speeds

Denotation 2.17.2. Denote by OTf in (H, 𝑐) the set of all linear coordinate transform operators
𝐿 ∈ ℒ (ℳ (H)), satisfying conditions:

1′. Both linear coordinate transform operators 𝐿 and 𝐿−1 are v-determined;
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2′. (M𝑐 (𝐿w))
2 = (M𝑐 (w))

2 (∀w ∈ H0 ⊕ H1 [𝒱 (𝐿)]);

3′. if ̂︀Tw = X1 [𝒱 (𝐿)] w = 0, then ̂︀T𝐿w = X1 [𝒱 (𝐿−1)]𝐿w = 0 (∀w ∈ℳ (H));

4′.
⃦⃦
X⊥1 [𝒱 (𝐿)] w

⃦⃦
=
⃦⃦
X⊥1 [𝒱 (𝐿−1)]𝐿w

⃦⃦
, (∀w ∈ℳ (H)).

In comparison with conditions 1-4 of Assertion 2.17.3, only Condition 2 is modified. It is
evidently, that the Condition 2 of Assertion 2.17.3 implies Condition 2′. Thus:

O (H, 𝑐) ⊆ OTf in (H, 𝑐) . (2.36)

And, as it will be proved below, in Theorem 2.17.1, this small modification of the second
condition leads to permission of superlight speed for reference frames (that is to the possibility
of ‖𝒱 (𝐿)‖ > 𝑐 for 𝐿 ∈ OTf in (H, 𝑐)). This, means, that the inclusion, inverse to (2.36) can not
be true.

From condition 3′ it follows, that for any operator 𝐿 ∈ OTf in (H, 𝑐)

𝐿 (H1⊥ [𝒱 (𝐿)]) ⊆ H1⊥
[︀
𝒱
(︀
𝐿−1

)︀]︀
. (2.37)

Indeed, for any w ∈ H1⊥ [𝒱 (𝐿)] we have, ̂︀Tw = X1 [𝒱 (𝐿)] w = 0. Thus, by condition 3′, ̂︀T𝐿w =

X1 [𝒱 (𝐿−1)]𝐿w = 0, and, by equalities (2.21), 𝐿w =
(︁̂︀T+X1 [𝒱 (𝐿−1)] +X⊥1 [𝒱 (𝐿−1)]

)︁
𝐿w =

X⊥1 [𝒱 (𝐿−1)]𝐿w ∈ H1⊥ [𝒱 (𝐿−1)].
Denote by U (H1) the set of all unitary operators over the space H1. That is the set of all

linear operators 𝐽 : H1 ↦→ H1 (𝐽 ∈ ℒ (H1)), such, that:

‖𝐽𝑥‖ = ‖𝑥‖ (∀𝑥 ∈ H1) and 𝐽H1 = H1.

For any operator 𝐽 ∈ U (H1) we introduce the operator ̃︀𝐽 ∈ ℒ (ℳ (H)):̃︀𝐽w := ̂︀Tw + 𝐽Xw = 𝒯 (w) e0 + 𝐽Xw, w ∈ℳ (H) . (2.38)

From (2.38) it follows, that:

∀𝐽 ∈ U (H1) ̃︀𝐽 ∈ U (ℳ (H)) , (2.39)

where U (ℳ (H)) is the set of all unitary operators over the spaceℳ (H).

Theorem 2.17.1. Operator 𝐿 ∈ ℒ (ℳ (H)) belongs to the class OTf in (H, 𝑐) if and only if there
exist number 𝑠 ∈ {−1, 1}, vector 𝑉 ∈ H1, ‖𝑉 ‖ ≠ 𝑐 and operator 𝐽 ∈ U (H1) such, that for any
w ∈ℳ (H) vector 𝐿w can be represented by the formula:

𝐿w =
𝑠
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 + 𝐽

⎛⎜⎜⎝𝑠 (𝒯 (w)𝑉 −X1 [𝑉 ] w)√︂⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ +X⊥1 [𝑉 ] w

⎞⎟⎟⎠ , (2.40)

moreover,
𝒱 (𝐿) = 𝑉.

Note, that in the case 14 H = R3, ℳ (H) = R × R3 = R4, 𝑉 = (0, 𝑣, 0, 0) (where 𝑣 ∈ R,
|𝑣| > 𝑐), and

𝐽 (0, 𝑥, 𝑦, 𝑧) = (0,−𝑥, 𝑦, 𝑧) , 𝑥, 𝑦, 𝑧 ∈ R
we obtain transforms [37, formula (43)], [38, formula (12)] and [39, formulas (3.17)–(3.18)]
as particular cases of the formula (2.40) from Therem 2.17.1. Under the additional conditions

14We consider R𝑑 (𝑑 ∈ N) as a Hilbert space with the inner product ⟨𝑥,𝑦⟩ =
∑︀𝑑
𝑗=1 𝑥𝑗𝑦𝑗 (𝑥 = (𝑥1, · · · , 𝑥𝑑) ∈ R𝑑, 𝑦 =

(𝑦1, · · · , 𝑦𝑑) ∈ R𝑑)
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‖𝑉 ‖ < 𝑐, dim (H) = 3, 𝑠 = 1 the formula (2.40) is equivalent to the formula (28b) from [57, page
43]. That is why, in this case we obtain the classical Lorentz transforms for inertial reference
frame in the most general form (with arbitrary orientation of axes).

To prove Theorem 2.17.1 we need the following lemma.

Lemma 2.17.2. If for operator 𝐿 ∈ ℒ (ℳ (H)) there exist number 𝑠 ∈ {−1, 1}, vector 𝑉 ∈ H1,
‖𝑉 ‖ ≠ 𝑐 and operator 𝐽 ∈ U (H1) such, that for any w ∈ ℳ (H) vector 𝐿w can be represented
by the formula (2.40), then 𝐿 is a linear coordinate transform operator, moreover

𝐿−1 = L0 [sign (𝑐− ‖𝑉 ‖) 𝑠, 𝑉 ]̃︂𝐽−1, where

L0 [𝑠, 𝑉 ] w =
𝑠
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 +
𝑠 (𝒯 (w)𝑉 −X1 [𝑉 ] w)√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ +X⊥1 [𝑉 ] w (2.41)

and operator ̃︂𝐽−1 is determined by formula (2.38).

Proof. Let the operator 𝐿 ∈ ℒ (ℳ (H)) satisfy the conditions of the lemma. We need to prove,
that the operator 𝐿 have the inverse 𝐿−1. By (2.40), operator 𝐿 can be represented in the form:

𝐿 = ̃︀𝐽L0 [𝑠, 𝑉 ] .

Since ̃︀𝐽 is unitary operator overℳ (H), it is sufficient to prove that the inverse operator exist
for the operator L0 [𝑠, 𝑉 ]. It is obvious that̃︀𝐽−1 = ̃︂𝐽−1. (2.42)

Hence, the lemma will be fully proved, if we will be be able to verify the equality:

L0 [𝑠, 𝑉 ]L0 [sign (𝑐− ‖𝑉 ‖) 𝑠, 𝑉 ] = I (2.43)

(then the equallity L0 [sign (𝑐− ‖𝑉 ‖) 𝑠, 𝑉 ]L0 [𝑠, 𝑉 ] = I will be follow by applying the equality
(2.43) to the operator L0 [𝑠

′, 𝑉 ], where 𝑠′ = sign (𝑐− ‖𝑉 ‖) 𝑠).
In the case 𝑉 = 0, using (2.41) and (2.20), we obtain:

L0 [𝑠, 𝑉 ] w = 𝑠𝒯 (w) e0 +X⊥1 [𝑉 ] w = 𝑠𝒯 (w) e0 + (X−X1 [𝑉 ]) w = 𝑠𝒯 (w) e0 +Xw.

Thus, in this case equality (2.43) is clear.
So, one can be restricted by the case 𝑉 ̸= 0. Applying equalities (2.41) and (2.20) we deliver:

L0 [𝑠, 𝑉 ] w =
𝑠
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 +
𝑠
(︁
𝒯 (w)− ⟨𝑉,w⟩‖𝑉 ‖2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ 𝑉 +X⊥1 [𝑉 ] w, w ∈ℳ (H) (2.44)

Denote 𝑠′ := sign (𝑐− ‖𝑉 ‖) 𝑠. Then for an arbitrary w ∈ℳ (H) we have.

L0 [𝑠, 𝑉 ]L0 [sign (𝑐− ‖𝑉 ‖) 𝑠, 𝑉 ] w = L0 [𝑠, 𝑉 ] ̃︀w, where ̃︀w = L0 [𝑠
′, 𝑉 ] w. (2.45)

By (2.44), we obtain:

𝒯 (̃︀w) = 𝒯 (L0 [𝑠
′, 𝑉 ] w) =

𝑠′
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ ;

⟨𝑉, ̃︀w⟩ = 𝑠′
(︀
𝒯 (w) ‖𝑉 ‖2 − ⟨𝑉,w⟩

)︀√︂⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ ;

X⊥1 [𝑉 ] ̃︀w = X⊥1 [𝑉 ] w.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.46)
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Applying equality (2.44) for vector ̃︀w and using (2.46), we deduce:

L0 [𝑠, 𝑉 ] ̃︀w =
𝑠
(︁
𝒯 (̃︀w)− ⟨𝑉,̃︀w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 +
𝑠
(︁
𝒯 (̃︀w)− ⟨𝑉,̃︀w⟩‖𝑉 ‖2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ 𝑉 +X⊥1 [𝑉 ] ̃︀w =

=
𝑠
(︁
𝑠′
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
− 𝑠′

(︁
𝒯 (w) ‖𝑉 ‖

2

𝑐2
− ⟨𝑉,w⟩

𝑐2

)︁)︁
⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ e0+

+
𝑠
(︁
𝑠′
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
− 𝑠′

(︁
𝒯 (w)− ⟨𝑉,w⟩‖𝑉 ‖2

)︁)︁
⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ 𝑉 +X⊥1 [𝑉 ] w =

= 𝑠𝑠′
𝒯 (w)

(︁
1− ‖𝑉 ‖

2

𝑐2

)︁
⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ e0 + 𝑠𝑠′
⟨𝑉,w⟩
‖𝑉 ‖2

(︁
1− ‖𝑉 ‖

2

𝑐2

)︁
⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ 𝑉 +X⊥1 [𝑉 ] w =

=

(︂
𝒯 (w) e0 +

⟨𝑉,w⟩
‖𝑉 ‖2

𝑉

)︂
+X⊥1 [𝑉 ] w = w.

Thus, using (2.45), we obtain (2.43).

Proof of Theorem 2.17.1. I. Suppose, that 𝐿 ∈ OTf in (H, 𝑐). Then, 𝐿 is linear coordinate
transform operator, which satisfies the conditions 1′–4′. Denote:

𝑉 := 𝒱 (𝐿) . (2.47)

First we prove the formula (2.40) in the case 𝑉 ̸= 0. By equalities (2.21),(2.18) and (2.20), for
any w ∈ℳ (H) we have:

𝐿w = 𝐿
(︁̂︀T+X1 [𝑉 ] +X⊥1 [𝑉 ]

)︁
w = 𝐿 (𝒯 (w) e0 +X1 [𝑉 ] w) + 𝐿X⊥1 [𝑉 ] w =

= 𝐿

(︂
𝒯 (w) e0 +

⟨𝑉,w⟩
‖𝑉 ‖2

𝑉

)︂
+ 𝐿X⊥1 [𝑉 ] w.

Hence, by lemma 2.17.1

𝐿w = 𝛼𝐿

(︂(︂
𝒯 (w)− ⟨𝑉,w⟩

‖𝑉 ‖2
𝛽𝐿

)︂
e0 +

(︂
𝒯 (w)− ⟨𝑉,w⟩

‖𝑉 ‖2

)︂
𝒱
(︀
𝐿−1

)︀)︂
+

+ 𝐿X⊥1 [𝑉 ] w (w ∈ℳ (H)) (2.48)

Now, introduce the linear operator 𝐽1 on the subspace H1⊥ [𝑉 ] = H1⊥ [𝒱 (𝐿)]. Denote:

𝐽1𝑥 := 𝐿𝑥, 𝑥 ∈ H1⊥ [𝑉 ] . (2.49)

According to the formula (2.37), operator 𝐽1 maps the subspace H1⊥ [𝑉 ] into the subspace
H1⊥ [𝒱 (𝐿−1)]. By the formula (2.37) and condition 4′, for any 𝑥 ∈ H1⊥ [𝑉 ] we obtain:

‖𝐽1𝑥‖ = ‖𝐿𝑥‖ =
⃦⃦
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿𝑥
⃦⃦
=
⃦⃦
X⊥1 [𝒱 (𝐿)]𝑥

⃦⃦
=
⃦⃦
X⊥1 [𝑉 ]𝑥

⃦⃦
= ‖𝑥‖ . (2.50)

Hence, 𝐽1 is isometric operator from the subspace H1⊥ [𝑉 ] to H1⊥ [𝒱 (𝐿−1)]. Now the aim is to
prove, that operator 𝐽1 is unitary operator from H1⊥ [𝑉 ] to H1⊥ [𝒱 (𝐿−1)], that is

𝐽1H1⊥ [𝑉 ] = H1⊥
[︀
𝒱
(︀
𝐿−1

)︀]︀
. (2.51)
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Let us consider any vector 𝑦 ∈ H1⊥ [𝒱 (𝐿−1)]. Since 𝐿 is linear coordinate transform operator,
there exist vector 𝑥 = 𝐿−1𝑦. By equalities (2.21) vector 𝑥 can be represented as:

𝑥 =
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥+X⊥1 [𝑉 ]𝑥, (2.52)

where
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥 ∈ H1 ⊕ H1 [𝑉 ] = H1 ⊕ H1 [𝒱 (𝐿)], X⊥1 [𝑉 ]𝑥 ∈ H1⊥ [𝑉 ]. Therefore, 𝐿𝑥 =

𝐿
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥+ 𝐿X⊥1 [𝑉 ]𝑥. Hence:

𝐿
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥+ 𝐿X⊥1 [𝑉 ]𝑥 = 𝐿𝑥 = 𝐿𝐿−1𝑦 = 𝑦 ∈ H1⊥

[︀
𝒱
(︀
𝐿−1

)︀]︀
. (2.53)

where, by lemma 2.17.1 and formula (2.37)

𝐿
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥 ∈ H0 ⊕ H1

[︀
𝒱
(︀
𝐿−1

)︀]︀
;

𝐿X⊥1 [𝑉 ]𝑥 ∈ H1⊥
[︀
𝒱
(︀
𝐿−1

)︀]︀
. (2.54)

Since H0⊕H1 [𝒱 (𝐿−1)]⊕H1⊥ [𝒱 (𝐿−1)] =ℳ (H), from the equalities (2.53),(2.54) we conclude,
that

𝐿X⊥1 [𝑉 ]𝑥 = 𝑦, and 𝐿
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥 = 0.

Since 𝐿 is linear coordinate transform operator, from the equality 𝐿
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥 = 0 it

follows, that
(︁̂︀T+X1 [𝑉 ]

)︁
𝑥 = 0. Hence, by (2.52), 𝑥 = X⊥1 [𝑉 ]𝑥 ∈ H1⊥ [𝑉 ], and, by definition

of the operator 𝐽1, we deliver:
𝐽1𝑥 = 𝐿𝑥 = 𝑦.

Thus, we have proved, that for any 𝑦 ∈ H1⊥ [𝒱 (𝐿−1)] there exists the element 𝑥 ∈ H1⊥ [𝑉 ] such,
that 𝐽1𝑥 = 𝑦. This means, that the operator 𝐽1 : H1⊥ [𝑉 ] ↦→ H1⊥ [𝒱 (𝐿−1)] truly is unitary.
Applying the operator 𝐽1 we can write:

𝐿X⊥1 [𝑉 ] w = 𝐽1X
⊥
1 [𝑉 ] w, w ∈ℳ (H) . (2.55)

Next, using the lemma 2.17.1, for any 𝑡, 𝜆 ∈ R we obtain:

𝐿 (𝑡e0 + 𝜆𝒱 (𝐿)) = 𝛼𝐿
(︀
(𝑡− 𝜆𝛽𝐿) e0 + (𝑡− 𝜆)𝒱

(︀
𝐿−1

)︀)︀
. (2.56)

Using the formuals (2.22) and (2.56) we deliver:

M𝑐 (𝑡e0 + 𝜆𝒱 (𝐿)) = 𝜆2 ‖𝒱 (𝐿)‖2 − 𝑐2𝑡2 = 𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2;
M𝑐 (𝐿 (𝑡e0 + 𝜆𝒱 (𝐿))) = 𝛼2

𝐿M𝑐

(︀
(𝑡− 𝜆𝛽𝐿) e0 + (𝑡− 𝜆)𝒱

(︀
𝐿−1

)︀)︀
=

= 𝛼2
𝐿

(︁
(𝑡− 𝜆)2

⃦⃦
𝒱
(︀
𝐿−1

)︀⃦⃦2 − 𝑐2 (𝑡− 𝜆𝛽𝐿)2)︁ = 𝛼2
𝐿

(︀
(𝑡− 𝜆)2 𝛾𝐿 − 𝑐2 (𝑡− 𝜆𝛽𝐿)2

)︀
,

where 𝛾𝐿 = ‖𝒱 (𝐿−1)‖2. Since 𝑡e0 + 𝜆𝒱 (𝐿) ∈ H0 ⊕ H1 [𝒱 (𝐿)], by the condition 2′,
(M𝑐 (𝐿 (𝑡e0 + 𝜆𝒱 (𝐿))))2 = (M𝑐 (𝑡e0 + 𝜆𝒱 (𝐿)))2, 𝑡, 𝜆 ∈ R. Thus:(︀

𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2
)︀2

=
(︀
𝛼2
𝐿

(︀
(𝑡− 𝜆)2 𝛾𝐿 − 𝑐2 (𝑡− 𝜆𝛽𝐿)2

)︀)︀2
, hence:

𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2 = ±𝛼2
𝐿

(︀
(𝑡− 𝜆)2 𝛾𝐿 − 𝑐2 (𝑡− 𝜆𝛽𝐿)2

)︀
(𝑡, 𝜆 ∈ R).

And after simple transformations the last formula takes the form:

𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2 = ±𝛼2
𝐿

(︀
𝑡2
(︀
𝛾𝐿 − 𝑐2

)︀
− 2𝑡𝜆

(︀
𝛾𝐿 − 𝑐2𝛽𝐿

)︀
+ 𝜆2

(︀
𝛾𝐿 − 𝑐2𝛽2

𝐿

)︀)︀
(∀ 𝑡, 𝜆 ∈ R).
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Equating coefficients near the same powers of 𝜆, we obtain two systems of equations:⎧⎪⎨⎪⎩
𝛼2
𝐿 (𝛾𝐿 − 𝑐2) = −𝑐2

𝛾𝐿 − 𝑐2𝛽𝐿 = 0

𝛼2
𝐿 (𝛾𝐿 − 𝑐2𝛽2

𝐿) = ‖𝑉 ‖
2

⎧⎪⎨⎪⎩
𝛼2
𝐿 (𝛾𝐿 − 𝑐2) = 𝑐2

𝛾𝐿 − 𝑐2𝛽𝐿 = 0

𝛼2
𝐿 (𝛾𝐿 − 𝑐2𝛽2

𝐿) = −‖𝑉 ‖
2 .

By means of simple transformations, these two systems can be reduced to the form:⎧⎪⎪⎨⎪⎪⎩
𝛼2
𝐿

(︁
1− ‖𝑉 ‖

2

𝑐2

)︁
= 1

𝛾𝐿 = ‖𝑉 ‖2

𝛽𝐿 = ‖𝑉 ‖2
𝑐2

⎧⎪⎪⎨⎪⎪⎩
𝛼2
𝐿

(︁
1− ‖𝑉 ‖

2

𝑐2

)︁
= −1

𝛾𝐿 = ‖𝑉 ‖2

𝛽𝐿 = ‖𝑉 ‖2
𝑐2
.

The first system has (real) solutions only for ‖𝑉 ‖ < 𝑐, and the second system has solutions
only for ‖𝑉 ‖ > 𝑐. Thus, the solutions exist only for ‖𝑉 ‖ ≠ 𝑐. Solving the last systems and

taking into account, that 𝛾𝐿 = ‖𝒱 (𝐿−1)‖2, in the both cases we obtain:

𝛼𝐿 =
𝑠√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ ; 𝛽𝐿 =
‖𝑉 ‖2

𝑐2
;
⃦⃦
𝒱
(︀
𝐿−1

)︀⃦⃦2
= ‖𝑉 ‖2 (‖𝑉 ‖ ≠ 𝑐), (2.57)

where 𝑠 ∈ {−1, 1}.
Substituting the values of 𝐿X⊥1 [𝑉 ] w from the formula (2.55) and the values of 𝛼𝐿,𝛽𝐿 from

the formula (2.57) into (2.48), we deliver:

𝐿w =
𝑠√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒
(︃(︃
𝒯 (w)− ⟨𝑉,w⟩

‖𝑉 ‖2
‖𝑉 ‖2

𝑐2

)︃
e0 +

(︂
𝒯 (w)− ⟨𝑉,w⟩

‖𝑉 ‖2

)︂
𝒱
(︀
𝐿−1

)︀)︃
+

+𝐽1X
⊥
1 [𝑉 ] w =

=
𝑠
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 +
𝑠
(︁
𝒯 (w)𝒱 (𝐿−1)− ⟨𝑉,w⟩‖𝑉 ‖2 𝒱 (𝐿

−1)
)︁

√︂⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ + 𝐽1X
⊥
1 [𝑉 ] w. (2.58)

Introduce the following operator on the subspace H1:

𝐽𝑥 :=
⟨𝑉, 𝑥⟩
‖𝑉 ‖2

𝒱
(︀
𝐿−1

)︀
+ 𝐽1X

⊥
1 [𝑉 ]𝑥, 𝑥 ∈ H1. (2.59)

Since 𝐽1 maps subspace H1⊥ [𝒱 (𝐿)] to subspace H1⊥ [𝒱 (𝐿−1)], we have,⟨︀
𝒱 (𝐿−1) , 𝐽1X⊥1 [𝑉 ]𝑥

⟩︀
= 0. Hence, using (2.50),(2.57) and (2.20), for 𝑥 ∈ H1 we ob-

tain:

‖𝐽𝑥‖2 =
(︂
⟨𝑉, 𝑥⟩
‖𝑉 ‖2

⃦⃦
𝒱
(︀
𝐿−1

)︀⃦⃦)︂2

+
⃦⃦
𝐽1X

⊥
1 [𝑉 ]𝑥

⃦⃦2
=

(︂
⟨𝑉, 𝑥⟩
‖𝑉 ‖

)︂2

+
⃦⃦
X⊥1 [𝑉 ]𝑥

⃦⃦2
=

=

⃦⃦⃦⃦
⟨𝑉, 𝑥⟩
‖𝑉 ‖2

𝑉

⃦⃦⃦⃦2
+
⃦⃦
X⊥1 [𝑉 ]𝑥

⃦⃦2
= ‖X1 [𝑉 ]𝑥‖2 +

⃦⃦
X⊥1 [𝑉 ]𝑥

⃦⃦2
= ‖𝑥‖2 .

Thus, operator 𝐽 is isometric on H1.
For 𝑥 = 𝜆𝑉 ∈ H1 [𝑉 ] by (2.59) we have 𝐽(𝜆𝑉 ) = 𝜆𝒱 (𝐿−1). Hence:

𝐽H1 [𝑉 ] = H1

[︀
𝒱
(︀
𝐿−1

)︀]︀
. (2.60)
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And for 𝑥 ∈ H1⊥ [𝑉 ] according to (2.59) we obtain:

𝐽𝑥 = 𝐽1X
⊥
1 [𝑉 ]𝑥 = 𝐽1𝑥 (𝑥 ∈ H1⊥ [𝑉 ]). (2.61)

Hence, by (2.51):
𝐽H1⊥ [𝑉 ] = 𝐽1H1⊥ [𝑉 ] = H1⊥

[︀
𝒱
(︀
𝐿−1

)︀]︀
. (2.62)

From (2.60) and (2.62) it follows, that

𝐽H1 = 𝐽 (H1 [𝑉 ]⊕ H1⊥ [𝑉 ]) ⊇ H1

[︀
𝒱
(︀
𝐿−1

)︀]︀
⊕ H1⊥

[︀
𝒱
(︀
𝐿−1

)︀]︀
= H1.

Thus, 𝐽H1 = H1. And so operator 𝐽 is unitary on H1, that is

𝐽 ∈ U (H1) .

In accordance with (2.59), 𝐽𝑉 = 𝒱 (𝐿−1). Hence, using (2.58), (2.61) and (2.20), we deliver
the formula (2.40). So, for the case 𝑉 ̸= 0 formula (2.40) is proved.

Now consider the case 𝑉 = 0, that is 𝒱 (𝐿) = 0. In this case, by the formula (2.20):

X1 [𝑉 ] = X1 [0] = O, X⊥1 [𝑉 ] = X. (2.63)

Since, by condition 1′, transforms 𝐿 and 𝐿−1 are v-determined, by lemma 2.17.1, the following
equality must hold:

𝑡𝐿e0 = 𝐿 (𝑡e0 + 𝜆𝒱 (𝐿)) = 𝛼𝐿
(︀
(𝑡− 𝜆𝛽𝐿) e0 + (𝑡− 𝜆)𝒱

(︀
𝐿−1

)︀)︀
(∀𝑡, 𝜆 ∈ R), (2.64)

with 𝛼𝐿 = 𝒯 (𝐿e0) ̸= 0, 𝛽𝐿 = 1 − 1
𝛼𝐿𝛼𝐿−1

̸= 1. Since the left-hand side of the equality (2.64)

does not depend of 𝜆, the coefficient of the variable 𝜆 in the right-hand side of the equality
must be zero. Hence, 𝛽𝐿e0 + 𝒱 (𝐿−1) = 0, and so

𝛽𝐿 = 0, 𝒱
(︀
𝐿−1

)︀
= 0. (2.65)

Thus, the formula (2.64) takes the form 𝐿e0 = 𝛼𝐿e0. And, applying the condition 2′ to the
vector e0 ∈ H0 ⊕ H1 [𝒱 (𝐿)], we obtain 𝛼𝐿 = 𝑠, where 𝑠 ∈ {−1, 1}. Consequently:

𝐿e0 = 𝑠e0, where 𝑠 ∈ {−1, 1} . (2.66)

Using (2.63),(2.66) for any vector w ∈ℳ (H) we obtain:

𝐿w = 𝐿 (𝒯 (w) e0 +Xw) = 𝑠𝒯 (w) e0 + 𝐿Xw = 𝑠𝒯 (w) e0 + 𝐽X⊥1 [𝑉 ] w, (2.67)

where
𝐽𝑥 = 𝐿𝑥, 𝑥 ∈ H1 = Xℳ (H) = X⊥1 [𝑉 ]ℳ (H) = H1⊥ [𝑉 ] . (2.68)

By condition 3′ and formula (2.63), the subspace H1 =
{︁
w ∈ℳ (H) | ̂︀Tw = 0

}︁
is invariant for

the operator 𝐿. Hence, the operator 𝐽 from (2.68) maps the subspace H1 into the subspace H1.
According to the formula (2.65), 𝒱 (𝐿−1) = 0. Consequently, by the formula (2.63) X⊥1 [𝑉 ] =

X⊥1 [𝒱 (𝐿)] = X⊥1 [𝒱 (𝐿−1)] = X. So, by the condition 4′ operator 𝐽 is isometric on the subspace
H1. Now, we have to prove, that operator 𝐽 is unitary. Consider any vector 𝑦 ∈ H1. Denote
𝑥 := 𝐿−1𝑦. Then, by (2.67), 𝐿𝑥 = 𝑠𝒯 (𝑥) e0 + 𝐽X𝑥 = 𝑦 ∈ H1. Hence, 𝒯 (𝑥) = 0 and 𝐽X𝑥 = 𝑦.
This means, that 𝑦 ∈ 𝐽H1. Therefore, we have seen, that 𝐽H1 = H1, and the operator 𝐽 really
is unitary on the H1 = H1⊥ [𝑉 ]. Thus for the case 𝑉 = 0 the formula (2.40) also is proved.
II. Inversely, suppose, that the operarot 𝐿 ∈ ℒ (ℳ (H)) can be represented in the form

(2.40). Then, by the lemma 2.17.2, 𝐿 is a linear coordinate transform operator.
1. By the formula (2.40) we deliver:

𝐿e0 = 𝜒𝑉 (e0 + 𝐽𝑉 ) , where 𝜒𝑉 =
𝑠√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ ̸= 0;
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𝐿 (e0 + 𝑉 ) =
𝑠
(︁
1− ‖𝑉 ‖

2

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 = sign (𝑐− ‖𝑉 ‖)
𝜒𝑉

e0;

𝐿−1e0 =
𝜒𝑉 (e0 + 𝑉 )

sign (𝑐− ‖𝑉 ‖)
.

Hence 𝒯 (𝐿e0) = 𝜒𝑉 ̸= 0, 𝒯 (𝐿−1e0) = 𝜒𝑉
sign (𝑐−‖𝑉 ‖) ̸= 0. Thus, linear coordinate transform

operators 𝐿 and 𝐿−1 are v-determined, moreover:

𝒱 (𝐿) = X𝐿−1e0
𝒯 (𝐿−1e0)

= 𝑉 ; 𝒱
(︀
𝐿−1

)︀
=

X𝐿e0
𝒯 (𝐿e0)

= 𝐽𝑉. (2.69)

2. In accordance with (2.40), for w = 𝑡e0 + 𝜆𝑉 ∈ H0 ⊕ H1 [𝑉 ] = H0 ⊕ H1 [𝒱 (𝐿)], we obtain:

𝐿w =
𝑠
(︁
𝑡− 𝜆‖𝑉 ‖

2

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 + 𝑠 (𝑡− 𝜆) 𝐽𝑉√︂⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒ .
Hence, since 𝐽 is isometric operator, we obtain:

(M𝑐 (𝐿w))
2 =

⎛⎜⎜⎝
⃦⃦⃦⃦
⃦⃦⃦⃦ 𝑠 (𝑡− 𝜆) 𝐽𝑉√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒
⃦⃦⃦⃦
⃦⃦⃦⃦
2

− 𝑐2

⎛⎜⎜⎝𝑠
(︁
𝑡− 𝜆‖𝑉 ‖

2

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒
⎞⎟⎟⎠

2⎞⎟⎟⎠
2

=

=

⎛⎝ 1⃒⃒⃒
1− ‖𝑉 ‖

2

𝑐2

⃒⃒⃒
⎛⎝(𝑡− 𝜆)2 ‖𝐽𝑉 ‖2 − 𝑐2

(︃
𝑡− 𝜆‖𝑉 ‖

2

𝑐2

)︃2
⎞⎠⎞⎠2

=

=

⎛⎝ 1

1− ‖𝑉 ‖
2

𝑐2

⎛⎝(𝑡− 𝜆)2 ‖𝑉 ‖2 − 𝑐2
(︃
𝑡− 𝜆‖𝑉 ‖

2

𝑐2

)︃2
⎞⎠⎞⎠2

=

=

(︃
1

1− ‖𝑉 ‖
2

𝑐2

(︃(︀
𝑡2 − 2𝑡𝜆+ 𝜆2

)︀
‖𝑉 ‖2 − 𝑐2

(︃
𝑡2 − 2𝑡𝜆

‖𝑉 ‖2

𝑐2
+ 𝜆2

‖𝑉 ‖4

𝑐4

)︃)︃)︃2

=

=

(︃
1

1− ‖𝑉 ‖
2

𝑐2

(︃
‖𝑉 ‖2 𝑡2 − 2𝑡𝜆 ‖𝑉 ‖2 + 𝜆2 ‖𝑉 ‖2 −

(︃
𝑐2𝑡2 − 2𝑡𝜆 ‖𝑉 ‖2 + 𝜆2

‖𝑉 ‖4

𝑐2

)︃)︃)︃2

=

=

(︃
1

1− ‖𝑉 ‖
2

𝑐2

(︃
‖𝑉 ‖2 𝑡2 − 2𝑡𝜆 ‖𝑉 ‖2 + 𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2 + 2𝑡𝜆 ‖𝑉 ‖2 − 𝜆2‖𝑉 ‖

4

𝑐2

)︃)︃2

=

=

(︃
1

1− ‖𝑉 ‖
2

𝑐2

(︃
‖𝑉 ‖2 𝑡2 + 𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2 − 𝜆2‖𝑉 ‖

4

𝑐2

)︃)︃2

=

=

(︃
1

1− ‖𝑉 ‖
2

𝑐2

(︃
𝜆2 ‖𝑉 ‖2

(︃
1− ‖𝑉 ‖

2

𝑐2

)︃
−

(︃
1− ‖𝑉 ‖

2

𝑐2

)︃
𝑐2𝑡2

)︃)︃2

=

=
(︀
𝜆2 ‖𝑉 ‖2 − 𝑐2𝑡2

)︀2
= (M𝑐 (w))

2 .

Thus, the condition 2′ for the operator 𝐿 also is satisfied.
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3. Suppose, that w ∈ ℳ (H), ̂︀Tw = X1 [𝒱 (𝐿)] w = 0. Then, 𝒯 (w) = 0, and (since
𝒱 (𝐿) = 𝑉 , by (2.69)), we have, ⟨𝑉,w⟩ = 0, X⊥1 [𝑉 ] w = (X−X1 [𝒱 (𝐿)]) w = Xw = w. So, by
(2.40):

𝐿w = 𝐽X⊥1 [𝑉 ] w = 𝐽w.

And, taking into account, that 𝐽 is unitary operator on H1, using (2.69) and (2.20) we obtain:

̂︀T𝐿w = ̂︀T𝐽w = 0;

X1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w = X1 [𝐽𝑉 ] 𝐽w =

{︃
⟨𝐽𝑉,𝐽w⟩
‖𝑉 ‖2 𝐽𝑉, 𝐽𝑉 ̸= 0

0, 𝐽𝑉 = 0
=

= 𝐽

{︃
⟨𝑉,w⟩
‖𝑉 ‖2 𝑉, 𝑉 ̸= 0

0, 𝑉 = 0

}︃
= 𝐽X1 [𝑉 ] w = 0.

Hence, we have checked the condition 3′ for the operator 𝐿.
4. Using the unitarity of the operator 𝐽 (⟨𝐽𝑥, 𝐽𝑦⟩ = ⟨𝑥, 𝑦⟩, 𝑥, 𝑦 ∈ H1) and equalities

(2.20),(2.21) one obtains the following:

𝐽X1 [𝑉 ] w =

{︃
⟨𝑉,w⟩
‖𝑉 ‖2 𝐽𝑉, 𝑉 ̸= 0

0, 𝑉 = 0
=

{︃
⟨X𝑉,w⟩
‖𝑉 ‖2 𝐽𝑉, 𝑉 ̸= 0

0, 𝑉 = 0
=

=

{︃
⟨𝑉,Xw⟩
‖𝑉 ‖2 𝐽𝑉, 𝑉 ̸= 0

0, 𝑉 = 0
=

{︃
⟨𝐽𝑉,𝐽Xw⟩
‖𝐽𝑉 ‖2 𝐽𝑉, 𝐽𝑉 ̸= 0

0, 𝐽𝑉 = 0

}︃
= X1 [𝐽𝑉 ] 𝐽Xw;

𝐽X⊥1 [𝑉 ] w = 𝐽 (X−X1 [𝑉 ]) w = 𝐽Xw −X1 [𝐽𝑉 ] 𝐽Xw =

= X𝐽Xw −X1 [𝐽𝑉 ] 𝐽Xw = X⊥1 [𝐽𝑉 ] 𝐽Xw.

So, by the formula (2.40) for any w ∈ℳ (H) we deliver:

X⊥1
[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w = X⊥1 [𝐽𝑉 ]𝐿w =

= X⊥1 [𝐽𝑉 ]

⎛⎜⎜⎝𝑠
(︁
𝒯 (w)− ⟨𝑉,w⟩

𝑐2

)︁
√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ e0 +
𝑠 (𝒯 (w) 𝐽𝑉 −X1 [𝐽𝑉 ] 𝐽Xw)√︂⃒⃒⃒

1− ‖𝑉 ‖
2

𝑐2

⃒⃒⃒ + 𝐽X⊥1 [𝑉 ] w

⎞⎟⎟⎠ =

= X⊥1 [𝐽𝑉 ] 𝐽X⊥1 [𝑉 ] w = X⊥1 [𝐽𝑉 ] X⊥1 [𝐽𝑉 ] 𝐽Xw =

= X⊥1 [𝐽𝑉 ] 𝐽Xw = 𝐽X⊥1 [𝑉 ] w;⃦⃦
X⊥1

[︀
𝒱
(︀
𝐿−1

)︀]︀
𝐿w
⃦⃦
=
⃦⃦
𝐽X⊥1 [𝑉 ] w

⃦⃦
=
⃦⃦
X⊥1 [𝑉 ] w

⃦⃦
.

Thus, all conditions 1′-4′ for the linear coordinate transform operator 𝐿 are satisfied. Hence
𝐿 ∈ OTf in (H, 𝑐).

17.4 Generalized Lorentz Transforms for Infinite Speeds

Now we investigate the behavior of coordinate transform operatos from the class OTf in (H, 𝑐),
when the norm of the rate of reference frame (‖𝑉 ‖) tends to infinity. For this purpose we
denote by B1 (H1) the set:

B1 (H1) = {𝑥 ∈ H1 | ‖𝑥‖ = 1}
and substitute:

𝑉 = 𝜆𝑠n, where 𝜆 > 0, 𝜆 ̸= 𝑐; n ∈ B1 (H1) (2.70)
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into the formula (2.40). Then we are going to take the limit while 𝜆→∞.
Note, that, by two lower equalities of (2.21), we have:

X1 [𝜆𝑠n] = X1 [n] ; X⊥1 [𝜆𝑠n] = X⊥1 [n] . (2.71)

Hence, substitution the velocity (2.70) to the formula (2.40) lead us to the following represen-
tation for operators 𝐿 ∈ OTf in (H, 𝑐) (with 𝒱 (𝐿) ̸= 0):

𝐿w = W𝜆,𝑐 [𝑠,n, 𝐽 ] w :=

=

(︀
𝑠𝒯 (w)− 𝜆

𝑐2
⟨n,w⟩

)︀√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ e0 + 𝐽

⎛⎝𝜆𝒯 (w)n− 𝑠X1 [n] w√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ +X⊥1 [n] w

⎞⎠ , w ∈ℳ (H) , (2.72)

where 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1), 𝜆 > 0.
Taking in (2.72) limit while 𝜆 → ∞, we get the following linear operators in the space

ℳ (H):

W∞,𝑐 [n, 𝐽 ] w = lim
𝜆→+∞

W𝜆 [𝑠,n, 𝐽 ] w =

= −⟨n,w⟩
𝑐

e0 + 𝐽
(︀
𝑐𝒯 (w)n+X⊥1 [n] w

)︀
(w ∈ℳ (H)) , (2.73)

where limit exists in the sense of norm of the spaceℳ (H). Note, that limit in (2.73) does not
depend of the number 𝑠. It is not hard to verify, that W∞,𝑐 [n, 𝐽 ] ∈ ℒ (ℳ (H)).

Now we introduce the following class of linear bounded operators in the spaceℳ (H):

OT∞ (H, 𝑐) := {W∞,𝑐 [n, 𝐽 ] | n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.74)

Lemma 2.17.3. For any n ∈ B1 (H1) and 𝐽 ∈ U (H1) the following equalities holds:̃︀𝐽W∞,𝑐 [n, I1] = W∞,𝑐 [n, 𝐽 ] ; W∞,𝑐 [n, I1] ̃︀𝐽 = W∞,𝑐
[︀
𝐽−1n, 𝐽

]︀
, (2.75)

where the operator ̃︀𝐽 is defined in (2.38), and I1 = IH1 denotes the identity operator on the
subspace H1.

Proof. The first equality (2.75) immediately follows from (2.38) and (2.73). Hence, we prove
only the second equality (2.75). Using (2.38) and (2.73) we obtain for any w ∈ℳ (H):

W∞,𝑐 [n, I1] ̃︀𝐽w = W∞,𝑐 [n, I1] (𝒯 (w) e0 + 𝐽Xw) = −⟨n, 𝒯 (w) e0 + 𝐽Xw⟩
𝑐

e0+

+ 𝑐𝒯 (𝒯 (w) e0 + 𝐽Xw)n+X⊥1 [n] (𝒯 (w) e0 + 𝐽Xw) =

= −⟨n, 𝐽Xw⟩
𝑐

e0 + 𝑐𝒯 (w)n+X⊥1 [n] 𝐽Xw =

= −⟨𝐽
−1n,w⟩
𝑐

e0 + 𝑐𝒯 (w)n+X⊥1 [n] 𝐽Xw. (2.76)

Note, that, by definition of class OT∞ (H, 𝑐), n ̸= 0. So, applying (2.20),(2.21), and using the
fact that the operator 𝐽 maps H1 into H1, we obtain:

X⊥1 [n] 𝐽Xw = (X−X1 [n]) 𝐽Xw = X𝐽Xw − ⟨n, 𝐽Xw⟩n =

= X𝐽Xw −
⟨︀
X𝐽−1n,w

⟩︀
n = 𝐽Xw −

⟨︀
𝐽−1n,w

⟩︀
n =

= 𝐽
(︀
Xw −

⟨︀
𝐽−1n,w

⟩︀
𝐽−1n

)︀
= 𝐽

(︀
X−X1

[︀
𝐽−1n

]︀)︀
w = 𝐽X⊥1

[︀
𝐽−1n

]︀
w.

Thus, according to (2.76), we deduce:
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W∞,𝑐 [n, I1] ̃︀𝐽w = −⟨𝐽
−1n,w⟩
𝑐

e0 + 𝑐𝒯 (w)n+ 𝐽X⊥1
[︀
𝐽−1n

]︀
w =

= −⟨𝐽
−1n,w⟩
𝑐

e0 + 𝐽
(︀
𝑐𝒯 (w) 𝐽−1n+X⊥1

[︀
𝐽−1n

]︀
w
)︀
= W∞,𝑐

[︀
𝐽−1n, 𝐽

]︀
w.

Lemma 2.17.4. For any vector n ∈ B1 (H1) it is true the following equality:

W∞,𝑐 [n, I1]W∞,𝑐 [−n, I1] = I.

Proof. Consider an arbitrary vector n ∈ B1 (H1). For vector w ∈ ℳ (H), using (2.73), (2.71),
(2.21), we get:

W∞,𝑐 [n, I1]W∞,𝑐 [−n, I1] w = W∞,𝑐 [n, I1]
(︂
−⟨−n,w⟩

𝑐
e0 − 𝑐𝒯 (w)n+X⊥1 [−n] w

)︂
=

= W∞,𝑐 [n, I1]
(︂
⟨n,w⟩
𝑐

e0 − 𝑐𝒯 (w)n+X⊥1 [n] w

)︂
=

= −

⟨
n,
(︁
⟨n,w⟩
𝑐

e0 − 𝑐𝒯 (w)n+X⊥1 [n] w
)︁⟩

𝑐
e0+

+ 𝑐𝒯
(︂
⟨n,w⟩
𝑐

e0 − 𝑐𝒯 (w)n+X⊥1 [n] w

)︂
n+

+X⊥1 [n]

(︂
⟨n,w⟩
𝑐

e0 − 𝑐𝒯 (w)n+X⊥1 [n] w

)︂
=

=
𝑐𝒯 (w) e0

𝑐
+ 𝑐
⟨n,w⟩
𝑐

n + X⊥1 [n]X⊥1 [n] w = w.

From lemmas 2.17.4, 2.17.3 and formula (2.42), we deduce the following theorem.

Theorem 2.17.2. Any operator W∞,𝑐 [n, 𝐽 ] ∈ OT∞ (H, 𝑐) is a linear coordinate transform
operator, moreover:

(W∞,𝑐 [n, 𝐽 ])
−1 = W∞,𝑐

[︀
−𝐽n, 𝐽−1

]︀
.

Proof. For any operator W∞,𝑐 [n, 𝐽 ] ∈ OT∞ (H, 𝑐) (where n ∈ B1 (H1) , 𝐽 ∈ U (H1)) using
lemmas 2.17.4, 2.17.3 and formula (2.42), we obtain:

(W∞,𝑐 [n, 𝐽 ])
−1 =

(︁ ̃︀𝐽W∞,𝑐 [n, I1]
)︁−1

= (W∞,𝑐 [n, I1])−1̃︂𝐽−1 = W∞,𝑐 [−n, I1]̃︂𝐽−1 =
= W∞,𝑐

[︁(︀
𝐽−1
)︀−1

(−n) , 𝐽−1
]︁
= W∞,𝑐

[︀
−𝐽n, 𝐽−1

]︀
Operators, which belong to the classOT∞ (H, 𝑐) will be named generalized Lorentz trans-

forms for infinite speeds of reference frames.

Remark 2.17.1. Note, that any generalized Lorentz transform operator W∞,𝑐 [n, 𝐽 ] ∈
OT∞ (H, 𝑐) (with infinite speed) is not v-determined, because, by (2.73), 𝒯 (W∞,𝑐 [n, 𝐽 ] e0) = 0.

Denotation 2.17.3. Denote:

OT (H, 𝑐) := OTf in (H, 𝑐) ∪OT∞ (H, 𝑐) .

Coordinate transforms, which belong to the class OT (H, 𝑐) will be named generalized tachyon
Lorentz transforms (in the Sense of E. Recami, V. Olkhovsky and R. Goldoni) for
Hilbert Space H.
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17.5 General Representation for Tachyon Lorentz Transforms

The aim of this subsection is to give general representation for operators, from the class
OT (H, 𝑐), which would be true for finite as well as for infinite velocities of reference frames.

Since any velocity vector 𝑉 ∈ H1, ‖𝑉 ‖ /∈ {0, 𝑐} can be represented by the form (2.70), where

n = 𝑠
𝑉

‖𝑉 ‖
, 𝜆 = ‖𝑉 ‖ (n ∈ B1 (H1) , 𝜆 > 0)

the formula (2.72) may be considered as general representation for operators from OTf in (H, 𝑐),
with nonzero velocity, that is any operator 𝐿 ∈ OTf in (H, 𝑐), such, that 𝒱 (𝐿) ̸= 0 can be
represented in the form (2.72).

Now we consider the case 𝒱 (𝐿) = 0. By the formula (2.40), we have, that any operator
𝐿 ∈ OTf in (H, 𝑐) with zero velocity 𝒱 (𝐿) can be represented in the form:

𝐿w = 𝑠𝒯 (w) e0 + 𝐽
(︀
X⊥1 [0] w

)︀
= 𝑠𝒯 (w) e0 + 𝐽 (Xw) (w ∈ℳ (H)) (2.77)

From the other hand, substituting 𝜆 = 0 (𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1)) into the
formula (2.72), we can define the following operators:

W0 [𝑠,n, 𝐽 ] w := 𝑠𝒯 (w) e0 + 𝐽
(︀
−𝑠X1 [n] w +X⊥1 [n] w

)︀
=

= 𝑠𝒯 (w) e0 + 𝐽 (−𝑠 I1,−𝑠 [n])Xw (w ∈ℳ (H)), (2.78)

where I1,𝜎 [n]𝑥 = X1 [n]𝑥+ 𝜎X⊥1 [n]𝑥, 𝑥 ∈ H1, 𝜎 ∈ {−1, 1} .

Since, −𝑠I1,−𝑠 [n] ∈ U (H1), the set of operators, which can be defined by the formula (2.78)
coincides with the set of operators, which can be defined by the formula (2.77).

Hence, we have seen, that (in the both cases 𝒱 (𝐿) ̸= 0 and 𝒱 (𝐿) = 0) it is true the following
assertion:

Assertion 2.17.4. Operator 𝐿 ∈ ℒ (ℳ (H)) belongs to the class OTf in (H, 𝑐) if and only if it
can be represented by the formula:

𝐿 = W𝜆,𝑐 [𝑠,n, 𝐽 ] ,

where 𝜆 ≥ 0, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1) and operator W𝜆,𝑐 [𝑠,n, 𝐽 ] is defined in
(2.72). Velocity of the linear coordinate transform operator 𝐿 is determined by the formula
𝒱 (𝐿) = 𝜆𝑠n.

Note, that we can extend the definition of operator-valued function W𝜆,𝑐 [𝑠,n, 𝐽 ], which
appears in the representation (2.72) for 𝜆 ∈ [0,∞]∖{𝑐}. Indeed, let 𝜆 ∈ [0,∞]∖{𝑐}, 𝑠 ∈ {−1, 1},
𝐽 ∈ U (H1), n ∈ B1 (H1). Denote:

W𝜆,𝑐 [𝑠,n, 𝐽 ] w =

⎧⎪⎪⎨⎪⎪⎩
(𝑠𝒯 (w)− 𝜆

𝑐2
⟨n,w⟩)√︂⃒⃒⃒

1−𝜆2
𝑐2

⃒⃒⃒ e0 + 𝐽

⎛⎝𝜆𝒯 (w)n−𝑠X1[n]w√︂⃒⃒⃒
1−𝜆2

𝑐2

⃒⃒⃒ +X⊥1 [n] w

⎞⎠ , 𝜆 <∞

W∞,𝑐 [n, 𝐽 ] = − ⟨n,w⟩𝑐 e0 + 𝐽
(︀
𝑐𝒯 (w)n+X⊥1 [n] w

)︀
, 𝜆 =∞.

(2.79)

Using Assertion 2.17.4, formulas (2.74), (2.73) and denotation 2.17.3, we obtain the following
assertion.

Assertion 2.17.5. Operator 𝐿 ∈ ℒ (ℳ (H)) belongs to the class OT (H, 𝑐) if and only if there
exist numbers 𝑠 ∈ {−1, 1}, 𝜆 ∈ [0,∞] ∖ {𝑐} vector n ∈ B1 (H1) and operator 𝐽 ∈ U (H1) such,
that operator 𝐿 can be represented by the form:

𝐿 = W𝜆,𝑐 [𝑠,n, 𝐽 ] .

Operator W𝜆,𝑐 [𝑠,n, 𝐽 ] is v-determined if and only if 𝜆 <∞, and in this case

𝒱 (𝐿) = 𝜆𝑠n.
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At first glans Assertion 2.17.5 gives general representation for operators, from the class
OT (H, 𝑐) for finite as well as for infinite velocities of reference frames. But, in reality, the
definition of operator W𝜆,𝑐 [𝑠,n, 𝐽 ] in (2.79) is different for the cases 𝜆 < ∞ and 𝜆 = ∞. So,
our aim is not reached yet.

Now we introduce the new parameter:

𝜃 :=
1− 𝜆

𝑐√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ . (2.80)

Using simple calculations formula (2.80) can be reduced to the form:

𝜃 = −sign

(︃
1− 2

1 + 𝜆
𝑐

)︃⎯⎸⎸⎷⃒⃒⃒⃒⃒1− 2

1 + 𝜆
𝑐

⃒⃒⃒⃒
⃒. (2.81)

Since function 𝑓(𝜆) = −sign
(︁
1− 2

1+𝜆
𝑐

)︁√︂⃒⃒⃒
1− 2

1+𝜆
𝑐

⃒⃒⃒
, is decreasing on [0,+∞), it maps the

interval [0,∞) into the interval = (−1, 1], and any value 𝜆 ≥ 0 can be uniquely determined by
the parameter 𝜃 ∈ (−1, 1]. Using simple calculation, one can ensure, that parameter 𝜆 can be
determined by the parameter 𝜃 by means of the formula:

𝜆 = 𝑐
1− 𝜃 |𝜃|
1 + 𝜃 |𝜃|

, 𝜃 ∈ (−1, 1], (2.82)

and the case 𝜆 = 𝑐 corresponds the case 𝜃 = 0.
By means of substitution the value of parameter 𝜆 from the formula (2.82) to the correlation

(2.72), we obtain the following representation of the operators 𝐿 ∈ OTf in (H, 𝑐):

𝐿w = W
𝑐
1−𝜃|𝜃|
1+𝜃|𝜃| ,𝑐

[𝑠,n, 𝐽 ] w =

=

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨n,w⟩
𝑐

)︂
e0+

+ 𝐽
(︀
𝑐𝜙1 (𝜃) 𝒯 (w)n− 𝑠𝜙0 (𝜃)X1 [n] w +X⊥1 [n] w

)︀
, (2.83)

(w ∈ℳ (H) , 𝑠 ∈ {−1, 1} , 𝐽 ∈ U (H1) , n ∈ B1 (H1) , 𝜃 ∈ (−1, 1] ∖ {0}) ,
where

𝜙0 (𝜃) =
1 + 𝜃 |𝜃|
2 |𝜃|

; 𝜙1 (𝜃) =
1− 𝜃 |𝜃|
2 |𝜃|

(𝜃 ∈ R, 𝜃 ̸= 0). (2.84)

Note, that the case 𝜃 = 0 must be excluded, because in this case we have 𝜆 = 𝑐, and the norm of
velocity 𝒱 (𝐿) is equal to the speed of light 𝑐 (note, that in the case ‖𝒱 (𝐿)‖ = 𝑐 the transforms
(2.40), and, hence, (2.83) are undefined). From the equality (2.82) it follows, that in the case
𝜃 ∈ (0, 1) we have, 𝜆 = ‖𝒱 (𝐿)‖ ∈ (0, 𝑐). So, in this case, the norm of the velocity of reference
frame ‖𝒱 (𝐿)‖ frame is less then the speed of light 𝑐. Similarly, in the case 𝜃 ∈ (−1, 0), we have
𝜆 ∈ (𝑐,+∞). Hence, in this case the norm of frame velocity is greater, then 𝑐.

It is easy to verify, that for any 𝜃 ∈ R ∖ {0} the following equalities are true:

𝜙0 (𝜃)𝜙1 (𝜃) = −
1

4

(︂
𝜃2 − 1

𝜃2

)︂
; 𝑐

𝜙1 (𝜃)

𝜙0 (𝜃)
= 𝜆 = 𝑐

1− 𝜃 |𝜃|
1 + 𝜃 |𝜃|

;

𝜙0 (𝜃) + 𝜙1 (𝜃) =
1

|𝜃|
; 𝜙0 (𝜃)− 𝜙1 (𝜃) = 𝜃;

𝜙0 (𝜃)
2 − 𝜙1 (𝜃)

2 = sign 𝜃;

𝜙0 (−𝜃) = 𝜙1 (𝜃) ; 𝜙1 (−𝜃) = 𝜙0 (𝜃) ;
𝜙0 (𝜃

−1) = sign 𝜃 𝜙0 (𝜃) ; 𝜙1 (𝜃
−1) = −sign 𝜃 𝜙1 (𝜃) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.85)
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Denote:

U𝜃,𝑐 [𝑠,n, 𝐽 ] := W
𝑐
1−𝜃|𝜃|
1+𝜃|𝜃| ,𝑐

[𝑠,n, 𝐽 ] ,

𝑠 ∈ {−1, 1} , n ∈ B1 (H1) , 𝐽 ∈ U (H1) , 𝜃 ∈ (−1, 1], 𝜃 ̸= 0. (2.86)

From (2.84) it follows, that for 𝜃 = −1 the functions 𝜙0 (𝜃) and 𝜙1 (𝜃) also are defined:

𝜙0 (−1) = 0, 𝜙1 (−1) = 1.

And substitution 𝜃 = −1 to the formula (2.83) leads us to the following linear operators:

U−1,𝑐 [𝑠,n, 𝐽 ] := W∞,𝑐 [𝑠,n, 𝐽 ] = W∞,𝑐 [n, 𝐽 ] , (2.87)

which do not depend on the number 𝑠 ∈ {−1, 1}, because terms, which contain variable 𝑠 are
zero (where the operators W∞,𝑐 [n, 𝐽 ] are defined in (2.73)).

Hence, for 𝜃 = −1 we obtain the generalized Lorentz transforms for infinite speeds
W∞,𝑐 [n, 𝐽 ], which, by remark 2.17.1, are not v-determined.

Thus, above we have proved the following theorem.

Theorem 2.17.3. Operator 𝐿 ∈ ℒ (ℳ (H)) belongs to the class OT (H, 𝑐) if and only if there
exist numbers 𝑠 ∈ {−1, 1}, 𝜃 ∈ [−1, 1] ∖ {0}, vector n ∈ B1 (H1) and operator 𝐽 ∈ U (H1) such,
that for any w ∈ℳ (H) vector 𝐿w can be represented by the formula:

𝐿w = U𝜃,𝑐 [𝑠,n, 𝐽 ] w =

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨n,w⟩
𝑐

)︂
e0+

+ 𝐽
(︀
𝑐𝜙1 (𝜃) 𝒯 (w)n− 𝑠𝜙0 (𝜃)X1 [n] w +X⊥1 [n] w

)︀
. (2.88)

Linear coordinate transform operator 𝐿 = U𝜃,𝑐 [𝑠,n, 𝐽 ] is v-determined if and only if 𝜃 ̸= −1,
and in this case:

𝒱 (𝐿) = 𝑐𝑠
1− 𝜃 |𝜃|
1 + 𝜃 |𝜃|

n.

Now, we are going to reformulate Theorem 2.17.3 in more convenient (for some further
considerations) form.

Note, that, paremeter 𝜃 in Theorem 2.17.3 belongs to the set [−1, 1]∖{0}, while the functions
𝜙0 (𝜃) and 𝜙1 (𝜃), are defined in formula (2.84) for any 𝜃 ∈ R ∖ {0}. So we can extend the
definition of operator family {U𝜃,𝑐 [𝑠,n, 𝐽 ]}, presented in formulas (2.86) or (2.88) for the values
of parameter 𝜃 benonging to the set R ∖ {0}:

U𝜃,𝑐 [𝑠,n, 𝐽 ] w : =

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨n,w⟩
𝑐

)︂
e0+

+ 𝐽
(︀
𝑐𝜙1 (𝜃) 𝒯 (w)n− 𝑠𝜙0 (𝜃)X1 [n] w +X⊥1 [n] w

)︀
(2.89)

(𝜃 ∈ R ∖ {0} , 𝑠 ∈ {−1, 1} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)) .

Hence, applying two lower equalities of (2.85) and two lower equalities of (2.21), we deliver:

U𝜃,𝑐 [𝑠,n, 𝐽 ] w =

(︂
𝑠 sign 𝜃 𝜙0

(︀
𝜃−1
)︀
𝒯 (w)−

(︀
−sign 𝜃 𝜙1

(︀
𝜃−1
)︀)︀ ⟨n,w⟩

𝑐

)︂
e0+

+ 𝐽
(︀
𝑐
(︀
−sign 𝜃 𝜙1

(︀
𝜃−1
)︀)︀
𝒯 (w)n− 𝑠 sign 𝜃 𝜙0

(︀
𝜃−1
)︀
X1 [n] w +X⊥1 [n] w

)︀
=

=

(︂
(𝑠 sign 𝜃)𝜙0

(︀
𝜃−1
)︀
𝒯 (w)− 𝜙1

(︀
𝜃−1
)︀ ⟨(−sign 𝜃 n) ,w⟩

𝑐

)︂
e0+ =
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+ 𝐽
(︀
𝑐𝜙1

(︀
𝜃−1
)︀
𝒯 (w) (−sign 𝜃 n)− (𝑠 sign 𝜃) 𝜙0

(︀
𝜃−1
)︀
X1 [n] w +X⊥1 [n] w

)︀
=

= U𝜃−1, 𝑐 [𝑠 sign 𝜃,−sign 𝜃 n, 𝐽 ] .

Thus:

U𝜃,𝑐 [𝑠,n, 𝐽 ] = U𝜃−1, 𝑐 [𝑠 sign 𝜃,−sign 𝜃 n, 𝐽 ] (2.90)

(𝑠 ∈ {−1, 1} , 𝜃 ∈ R ∖ {0} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)) .

For |𝜃| > 1 we have 0 < |𝜃−1| < 1. Hence, taking into account the formula (2.90), we see, that
substitution the values |𝜃| > 1 does not lead outside of the class of transformations, defined
by the formula (2.88) for 𝜃 ∈ [−1, 1] ∖ {0}. Besides this, for |𝜃| > 1, according to the formula
(2.90) and theorem 2.17.3, we receive:

𝒱 (U𝜃,𝑐 [𝑠,n, 𝐽 ]) = 𝒱 (U𝜃−1,𝑐 [𝑠 sign 𝜃,−sign 𝜃 n, 𝐽 ]) =

= 𝑐𝑠 sign 𝜃
1− 𝜃−1 |𝜃−1|
1 + 𝜃−1 |𝜃−1|

(−sign 𝜃 n) = 𝑐𝑠
1− 𝜃 |𝜃|
1 + 𝜃 |𝜃|

n.

Thus, we obtain the following corollary of Theorem 2.17.3:

Corollary 2.17.1. Operator 𝐿 ∈ ℒ (ℳ (H)) belongs to the class OT (H, 𝑐) if and only if there
exist numbers 𝑠 ∈ {−1, 1}, 𝜃 ∈ R ∖ {0}, vector n ∈ B1 (H1) and operator 𝐽 ∈ U (H1) such, that
for any w ∈ℳ (H) vector 𝐿w can be represented by the formula:

𝐿w = U𝜃,𝑐 [𝑠,n, 𝐽 ] w =

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨n,w⟩
𝑐

)︂
e0+

+ 𝐽
(︀
𝑐𝜙1 (𝜃) 𝒯 (w)n− 𝑠𝜙0 (𝜃)X1 [n] w +X⊥1 [n] w

)︀
.

Linear coordinate transform operator 𝐿 = U𝜃,𝑐 [𝑠,n, 𝐽 ] is v-determined if and only if 𝜃 ̸= −1,
and in this case:

𝒱 (U𝜃,𝑐 [𝑠,n, 𝐽 ]) = 𝑐𝑠
1− 𝜃 |𝜃|
1 + 𝜃 |𝜃|

n.

17.6 Representations of Some Subclasses of Generalized Lorentz Transforms

From Assertion 2.17.5 and Corollary 2.17.1 we obtain the following two equivalent representa-
tions of the class of operators OT (H, 𝑐):

OT (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ] | 𝑠 ∈ {−1, 1} , 𝜆 ∈ [0,∞] ∖ {𝑐} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} ; (2.91)

OT (H, 𝑐) = {U𝜃,𝑐 [𝑠,n, 𝐽 ] | 𝑠 ∈ {−1, 1} , 𝜃 ∈ R ∖ {0} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.92)

Recall, that in Subsection 17.2 we have introduced the class of operators O (H, 𝑐), and in
Subsection 17.3 (see (2.36)) we have seen that O (H, 𝑐) ⊆ OTf in (H, 𝑐). Hence, class of operators
O (H, 𝑐) is a subclass of OT (H, 𝑐). The next aim is give the representation of the class O (H, 𝑐),
similar to (2.91), (2.92). First of all, for this aim we should prove the following lemma.

Lemma 2.17.5. Operator 𝐿 ∈ ℒ (ℳ (H)) belongs to the class O (H, 𝑐) if and only if the fol-
lowing two conditions are satisfied:

1. 𝐿 ∈ OT (H, 𝑐);

2. 𝐿 is v-determined and ‖𝒱 (𝐿)‖ < 𝑐.

Proof. 1) Let 𝐿 ∈ O (H, 𝑐). Then, according to (2.36), 𝐿 ∈ OTf in (H, 𝑐). And, according
to denotation 2.17.3, 𝐿 ∈ OT (H, 𝑐). Moreover, by Assertion 2.17.2, 𝐿 is v-determined and
‖𝒱 (𝐿)‖ < 𝑐.
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2) Inversely, suppose, that 𝐿 ∈ OT (H, 𝑐) and 𝐿 is v-determined with

‖𝒱 (𝐿)‖ < 𝑐. (2.93)

Then, in accordance with Remark 2.17.1, 𝐿 /∈ OT∞ (H, 𝑐). Hence, 𝐿 ∈ OTf in (H, 𝑐). So,
according to Theorem 2.17.1, there exist the number 𝑠 ∈ {−1, 1} vector 𝑉 ∈ H1 and operator
𝐽 ∈ U (H1) such, that for any vector w ∈ ℳ (H) the action of the operator 𝐿 in regard
to the vector w can be represented in the form (2.40), where 𝑉 = 𝒱 (𝐿), and, according to
(2.93), ‖𝑉 ‖ < 𝑐. Since ‖𝑉 ‖ < 𝑐, then, by the formula (2.40) for any vector w = 𝑡e0 + 𝜇𝑉 =
𝑡e0 + 𝜇𝒱 (𝐿) ∈ H0 ⊕ H1 [𝒱 (𝐿)] we obtain:

𝐿w =
𝑠√︁

1− ‖𝑉 ‖
2

𝑐2

(︃(︃
𝑡− 𝜇‖𝑉 ‖

2

𝑐2

)︃
e0 + (𝑡− 𝜇)𝐽𝑉

)︃
.

Because 𝐽 is unitary operator, we have ‖𝐽𝑉 ‖ = ‖𝑉 ‖. Hence:

M𝑐 (𝐿w) = ‖X𝐿w‖2 − 𝑐2𝒯 2 (𝐿w) =

=
1

1− ‖𝑉 ‖
2

𝑐2

⎛⎝(𝑡− 𝜇)2 ‖𝑉 ‖2 − 𝑐2
(︃
𝑡− 𝜇‖𝑉 ‖

2

𝑐2

)︃2
⎞⎠ =

= 𝜇2 ‖𝑉 ‖2 − 𝑐2𝑡2 = ‖Xw‖2 − 𝑐2𝒯 2 (w) = M𝑐 (w) ,

where w is arbitrary vector from the subspace H0 ⊕ H1 [𝒱 (𝐿)]. And, since 𝐿 ∈ OTf in (H, 𝑐),
according to Assertion 2.17.3, and Denotation 2.17.2, we have 𝐿 ∈ O (H, 𝑐).

Applying Lemma 2.17.5 and equality (2.91) we obtain the following equality:

O (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 0 ≤ 𝜆 < 𝑐} =
= {W𝜆,𝑐 [𝑠,n, 𝐽 ] | 𝑠 ∈ {−1, 1} , 𝜆 ∈ [0, 𝑐) , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} , (2.94)

which gives the representation of the class of operators O (H, 𝑐). Using Lemma 2.17.5 and
Theorem 2.17.3 we obtain the following equivalent representation of O (H, 𝑐):

O (H, 𝑐) = {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 0 < 𝜃 ≤ 1} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] | 𝑠 ∈ {−1, 1} , 𝜃 ∈ (0, 1], n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.95)

And Lemma 2.17.5 together with equality (2.92) gives the following representation of O (H, 𝑐):

O (H, 𝑐) = {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 0 < 𝜃 <∞} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] | 𝑠 ∈ {−1, 1} , 𝜃 ∈ (0,∞), n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.96)

According to Denotation 2.17.3, we have OT (H, 𝑐) := OTf in (H, 𝑐) ∪ OT∞ (H, 𝑐). Union
in the last equality is disjoint, since, by Denotation 2.17.2, any linear coordinate transform
operator 𝐿 ∈ OTf in (H, 𝑐) is v-determined, while any linear coordinate transform operator
𝐿1 ∈ OT∞ (H, 𝑐) must be not v-determined (in accordance with Remark 2.17.1). So:

OTf in (H, 𝑐) ∩OT∞ (H, 𝑐) = ∅. (2.97)

Hence, using Assertion 2.17.5 and Theorem 2.17.3, we obtain the following equalities:

OTf in (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) : 𝜆 <∞} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝜃 ̸= −1} ; (2.98)

OT∞ (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) : 𝜆 =∞} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝜃 = −1} . (2.99)
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For the case H = R3 in the paper [46] apart from General Lorentz Group, it is introduced the
full Lorentz group. According to [46], full Lorentz group is a subgroup of the general General
Lorentz Group, which consists of general Lorentz transforms with positive direction of time
(that is such Lorentz transforms, which leave invariant the class of positive time-like vectors).
By analogy with [46], we can introduce the full Lorentz group in the general situation of real
Hilbert space.

Definition 2.17.3. Let H be a real Hilbert space. Vector w ∈ℳ (H) we name by:

∙ positive, if and only if 𝒯 (w) > 0;

∙ 𝑐-timelike, if and only if M𝑐 (w) < 0.

Denote byℳ𝑐,+(H) the set of all positive 𝑐-timelike vectors of the spaceℳ (H):

ℳ𝑐,+(H) := {w ∈ℳ (H) | 𝒯 (w) > 0, M𝑐 (w) < 0} . (2.100)

Introduce the following class of operators:

O+ (H, 𝑐) = {𝐿 ∈ O (H, 𝑐) | 𝐿w ∈ℳ𝑐,+(H) (∀w ∈ℳ𝑐,+(H))} . (2.101)

Assertion 2.17.6. O+ (H, 𝑐) is a group of operators over the Minkowski spaceℳ (H) over the
Hilbert space H.

Proof. 1. Let 𝐿1, 𝐿2 ∈ O+ (H, 𝑐) and 𝐿 = 𝐿1𝐿2. Then, according to (2.101) and Assertion
2.17.1, 𝐿 ∈ O (H, 𝑐) and 𝐿w ∈ℳ𝑐,+(H) (∀w ∈ℳ𝑐,+(H)). So, by (2.101), 𝐿 ∈ O+ (H, 𝑐).
2. Suppose, that 𝐿 ∈ O+ (H, 𝑐). Since (by Assertion 2.17.1)O (H, 𝑐) is the group of operators

over the spaceℳ (H) and O+ (H, 𝑐) ⊆ O (H, 𝑐), we have 𝐿−1 ∈ O (H, 𝑐). Consider any vector
w ∈ℳ𝑐,+(H). By definition ofℳ𝑐,+(H) (see (2.100)), we have:

𝒯 (w) > 0, M𝑐 (w) < 0.

SinceM𝑐 (w) < 0 and 𝐿−1 ∈ O (H, 𝑐), then according to Denotation 2.17.1, we haveM𝑐 (𝐿
−1w) <

0. Hence:

𝒯
(︀
𝐿−1w

)︀
= ±𝑐−1

√︁
−M𝑐 (𝐿−1w) + ‖X𝐿−1w‖2 ̸= 0.

So, one and only one of the inequalities 𝒯 (𝐿−1w) > 0 or 𝒯 (𝐿−1w) < 0 is performed. Assume,
that 𝒯 (𝐿−1w) < 0. Then the vector ̃︀w = −𝐿−1w will belong to ℳ𝑐,+(H), while 𝒯 (𝐿̃︀w) =
𝒯 (−w) = −𝒯 (w) < 0. Thus ̃︀w ∈ ℳ𝑐,+(H), while 𝐿̃︀w /∈ ℳ𝑐,+(H), which is impossible,
because 𝐿 ∈ O+ (H, 𝑐). This contradiction proves, that 𝒯 (𝐿−1w) > 0. Hence, we have proved,
that M𝑐 (𝐿

−1w) < 0 and 𝒯 (𝐿−1w) > 0. Thus, by (2.100), 𝐿−1w ∈ ℳ𝑐,+(H) (for any vector
w ∈ℳ𝑐,+(H)). So, according to (2.101), 𝐿−1 ∈ O+ (H, 𝑐) (for any operator 𝐿 ∈ O+ (H, 𝑐)).

Thus, we have proved, that 𝐿1𝐿2 ∈ O+ (H, 𝑐) and 𝐿−1 ∈ O+ (H, 𝑐) (for any 𝐿,𝐿1, 𝐿2 ∈
O+ (H, 𝑐)), what was needed to prove.

It is not hard to verify, that in the case H = R3 group O+ (H, 𝑐) coincides with the full
Lorentz group, introduced in [46].

The next assertion gives the representation of the class O+ (H, 𝑐) in the terms of operators
of kind W𝜆,𝑐 [𝑠,n, 𝐽 ].

Assertion 2.17.7. The following equality is true:

O+ (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ O (H, 𝑐) | 𝑠 = 1} =
= {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = 1, 0 ≤ 𝜆 < 𝑐} =
= {W𝜆,𝑐 [1,n, 𝐽 ] | 𝜆 ∈ [0, 𝑐) , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.102)
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Proof. It is sufficient to prove only the equality:

O+ (H, 𝑐) = {W𝜆,𝑐 [1,n, 𝐽 ] | 𝜆 ∈ [0, 𝑐) , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} , (2.103)

because other parts of the equality (2.102) follow from equality (2.103) and equalities (2.91),
(2.94).

1. Suppose, that operator 𝐿 can be represented by the form:

𝐿 = W𝜆,𝑐 [1,n, 𝐽 ] ,

where 𝜆 ∈ [0, 𝑐), n ∈ B1 (H1), 𝐽 ∈ U (H1). Chose any vector w ∈ℳ𝑐,+(H). Then, according to
(2.100), we have:

𝒯 (w) > 0, M𝑐 (w) < 0. (2.104)

Since 𝜆 ∈ [0, 𝑐), then, according to (2.94), 𝐿 = W𝜆,𝑐 [1,n, 𝐽 ] ∈ O (H, 𝑐). So, using (2.104) in
accordance with Denotation 2.17.1, we obtain:

M𝑐 (𝐿w) = M𝑐 (w) < 0. (2.105)

Next, applying (2.104) and (2.79), we get:

𝒯 (𝐿w) = 𝒯 (W𝜆,𝑐 [1,n, 𝐽 ] w) =
𝒯 (w)− 𝜆

𝑐2
⟨n,w⟩√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ =

=
𝒯 (w)√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ − 𝜆
𝑐2√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ ⟨Xn,w⟩ = 𝒯 (w)√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ − 𝜆
𝑐2√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ ⟨n,Xw⟩ ≥

≥ 𝒯 (w)√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ − 𝜆
𝑐2√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ ‖Xw‖ =
(︀
1− 𝜆

𝑐

)︀
𝒯 (w)√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ − 𝜆
𝑐2√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ (‖Xw‖ − 𝑐𝒯 (w)) =

=

(︀
1− 𝜆

𝑐

)︀
𝒯 (w)√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ − 𝜆
𝑐2√︁⃒⃒

1− 𝜆2

𝑐2

⃒⃒ M𝑐 (w)

‖Xw‖+ 𝑐𝒯 (w)
> 0. (2.106)

From (2.105) and (2.106) it follows that 𝐿w ∈ℳ𝑐,+(H) (for any vector w ∈ℳ𝑐,+(H)). There-
fore, according to (2.101), we obtain 𝐿 ∈ O+ (H, 𝑐).

2. Inversely, assume, that 𝐿 ∈ O+ (H, 𝑐). Then, in accordance with (2.101), 𝐿 ∈ O (H, 𝑐)
and:

∀w ∈ℳ𝑐,+(H) (𝐿w ∈ℳ𝑐,+(H)) . (2.107)

Since 𝐿 ∈ O (H, 𝑐), then, by (2.94), operator 𝐿 can be represented in the form:

𝐿 = W𝜆,𝑐 [𝑠,n, 𝐽 ] , (2.108)

where 𝑠 ∈ {−1, 1}, 𝜆 ∈ [0, 𝑐), n ∈ B1 (H1) and 𝐽 ∈ U (H1). It is easy to see, that e0 ∈ℳ𝑐,+(H).
Hence, According to (2.107), 𝐿e0 ∈ ℳ𝑐,+(H). Therefore, by (2.100), 𝒯 (𝐿e0) > 0. So, in
accordance with (2.79), we obtain:

0 < 𝒯 (𝐿e0) = 𝒯 (W𝜆,𝑐 [𝑠,n, 𝐽 ] e0) =

= 𝒯

⎛⎝(︀𝑠𝒯 (e0)− 𝜆
𝑐2
⟨n, e0⟩

)︀√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ e0 + 𝐽

⎛⎝𝜆𝒯 (e0)n− 𝑠X1 [n] e0√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ +X⊥1 [n] e0

⎞⎠⎞⎠ =

= 𝒯

⎛⎝ 𝑠√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒e0 + 𝐽

⎛⎝ 𝜆n√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒
⎞⎠⎞⎠ =

𝑠√︁⃒⃒
1− 𝜆2

𝑐2

⃒⃒ .
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Last inequality proves, that 𝑠 > 0. So, since 𝑠 ∈ {−1, 1}, we conclude, that 𝑠 = 1. And,
according to (2.108), 𝐿 = W𝜆,𝑐 [1,n, 𝐽 ] (where 𝜆 ∈ [0, 𝑐), n ∈ B1 (H1) and 𝐽 ∈ U (H1)).

Thus equality (2.103) is completely proved.

Let 𝜆 ∈ [0, 𝑐), n ∈ B1 (H1), and 𝐽 ∈ U (H1). Then, according to (2.86), operatorW𝜆,𝑐 [1,n, 𝐽 ]
can be represented in the form:

W𝜆,𝑐 [1,n, 𝐽 ] = U𝜃′
(𝜆)
,𝑐 [1,n, 𝐽 ] , where 𝜃′(𝜆) =

1− 𝜆
𝑐√︁

1− 𝜆2

𝑐2

, 𝜃′(𝜆) ∈ (0, 1] .

Inversely, any operator of kind U𝜃,𝑐 [1,n, 𝐽 ], where 𝜃 ∈ (0, 1], n ∈ B1 (H1), and 𝐽 ∈ U (H1),
according to (2.86), may be represented in the form:

U𝜃,𝑐 [1,n, 𝐽 ] = W𝜆′
(𝜃)
,𝑐 [1,n, 𝐽 ] , where 𝜆′(𝜃) = 𝑐

1− 𝜃2

1 + 𝜃2
, 𝜆′(𝜃) ∈ [0, 𝑐) .

Hence, the following equality is true:

{W𝜆,𝑐 [1,n, 𝐽 ] | 𝜆 ∈ [0, 𝑐) , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} =
= {U𝜃,𝑐 [1,n, 𝐽 ] | 𝜃 ∈ (0, 1] , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} .

Using the last equality together with equalities (2.102) and (2.95), we obtain the following
representation of the class O+ (H, 𝑐) in the terms of operators of kind U𝜃,𝑐 [𝑠,n, 𝐽 ]:

O+ (H, 𝑐) = {U𝜃,𝑐 [1,n, 𝐽 ] | 𝜃 ∈ (0, 1] , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = 1, 0 < 𝜃 ≤ 1} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ O (H, 𝑐) | 𝑠 = 1} . (2.109)

From the equality (2.90) it follows, that U𝜃,𝑐 [1,n, 𝐽 ] = U𝜃−1,𝑐 [1,−n, 𝐽 ] for any 𝜃 ∈ (0,∞),
n ∈ B1 (H1), and 𝐽 ∈ U (H1). So, we can replace condition 𝜃 ∈ (0, 1] in the formula (2.109) by
the condition 𝜃 ∈ (0,∞). Hence, we obtain the following equality:

O+ (H, 𝑐) = {U𝜃,𝑐 [1,n, 𝐽 ] | 𝜃 ∈ (0,∞) , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} =
= {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = 1, 𝜃 > 0} . (2.110)

Formula (2.102) serves as motivation for introduction of the following subclass of operators
from OT (H, 𝑐):

OT+ (H, 𝑐) := {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = 1} =
= {W𝜆,𝑐 [1,n, 𝐽 ] | 𝜆 ∈ [0,∞] ∖ {𝑐} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.111)

Using (2.86), (2.87) and (2.90), we can obtain the following representation of the class
OT+ (H, 𝑐) in the terms of operators of kind U𝜃,𝑐 [𝑠,n, 𝐽 ]:

OT+ (H, 𝑐) := {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = 1, |𝜃| ≤ 1} =
= {U𝜃,𝑐 [1,n, 𝐽 ] | 𝜃 ∈ [−1, 1] ∖ {0} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} =
=
{︀
U𝜃,𝑐

[︀
sgn+ (𝜃 + 1) ,n, 𝐽

]︀
| 𝜃 ∈ R ∖ {0} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)

}︀
, (2.112)

where sgn+ (𝜉) =

{︃
sign (𝜉) , 𝜉 ̸= 0

1, 𝜉 = 0
(𝜉 ∈ R).

As a contraposition to the class OT+ (H, 𝑐), we may introduse the following class:

OT− (H, 𝑐) := {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = −1} =
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= {W𝜆,𝑐 [−1,n, 𝐽 ] | 𝜆 ∈ [0,∞] ∖ {𝑐} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} . (2.113)

Using (2.86), (2.87) and (2.90), we can obtain the following representation of the class
OT− (H, 𝑐) in the terms of operators of kind U𝜃,𝑐 [𝑠,n, 𝐽 ]:

OT− (H, 𝑐) := {U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) | 𝑠 = −1, |𝜃| ≤ 1} =
= {U𝜃,𝑐 [−1,n, 𝐽 ] | 𝜃 ∈ [−1, 1] ∖ {0} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)} =
=
{︀
U𝜃,𝑐

[︀
−sgn+ (𝜃 + 1) ,n, 𝐽

]︀
| 𝜃 ∈ R ∖ {0} , n ∈ B1 (H1) , 𝐽 ∈ U (H1)

}︀
. (2.114)

Assertion 2.17.8. The following equality is true:

OT+ (H, 𝑐) ∩OT− (H, 𝑐) = OT∞ (H, 𝑐) .

Proof. Let 𝐿 ∈ OT+ (H, 𝑐) ∩ OT− (H, 𝑐). Then, according to (2.112) and (2.114), operator 𝐿
may be represented in the form 𝐿 = U𝜃,𝑐 [1,n, 𝐽 ] = U𝜃1,𝑐 [−1,n1, 𝐽1], where 𝜃, 𝜃1 ∈ [−1, 1]∖{0},
n,n1 ∈ B1 (H1), 𝐽, 𝐽1 ∈ U (H1). Therefore, according to (2.89), we have:

𝐿e0 =

(︂
𝜙0 (𝜃) 𝒯 (e0)− 𝜙1 (𝜃)

⟨n, e0⟩
𝑐

)︂
e0

+ 𝐽
(︀
𝑐𝜙1 (𝜃) 𝒯 (e0)n− 𝜙0 (𝜃)X1 [n] e0 +X⊥1 [n] e0

)︀
=

= 𝜙0 (𝜃) e0 + 𝑐𝜙1 (𝜃) 𝐽 (n) ;

𝐿e0 =

(︂
−𝜙0 (𝜃1) 𝒯 (e0)− 𝜙1 (𝜃1)

⟨n1, e0⟩
𝑐

)︂
e0+

+ 𝐽
(︀
𝑐𝜙1 (𝜃1) 𝒯 (e0)n1 + 𝜙0 (𝜃1)X1 [n1] e0 +X⊥1 [n1] e0

)︀
=

= −𝜙0 (𝜃1) e0 + 𝑐𝜙1 (𝜃1) 𝐽 (n1) .

From the last two equalities it follows, that:

𝜙0 (𝜃) = 𝒯 (𝐿e0) = −𝜙0 (𝜃1) .

And, since 𝜙0 (𝜗) ≥ 0 (∀𝜗 ∈ [−1, 1] ∖ {0}), we obtain 𝜙0 (𝜃) = 𝜙0 (𝜃1) = 0. The last equality is
possible only if 𝜃 = −1. So, according to (2.99), we have:

𝐿 = U𝜃,𝑐 [1,n, 𝐽 ] = U−1,𝑐 [1,n, 𝐽 ] ∈ OT∞ (H, 𝑐) .

Thus, OT+ (H, 𝑐) ∩OT− (H, 𝑐) ⊆ OT∞ (H, 𝑐).
From the other hand, if 𝐿 ∈ OT∞ (H, 𝑐), then, according to (2.99) and (2.92), 𝐿 can be
represented in the form 𝐿 = U−1,𝑐 [𝑠,n, 𝐽 ], where 𝑠 ∈ {−1, 1}, n ∈ B1 (H1), 𝐽 ∈ U (H1). And,
according to (2.89), 𝐿 = U−1,𝑐 [𝑠,n, 𝐽 ] = U−1,𝑐 [1,n, 𝐽 ] = U−1,𝑐 [−1,n, 𝐽 ]. Thus, in accordance
with (2.112) and (2.114), we have, 𝐿 ∈ OT+ (H, 𝑐) ∩OT− (H, 𝑐). Hence, we obtain the inverse
inclusion OT∞ (H, 𝑐) ⊆ OT+ (H, 𝑐) ∩OT− (H, 𝑐).

Main results of this Section were published in [6, 8, 14].

18 Algebraic Properties of Tachyon Lorentz Transforms

The aim of this section is to investigate some algebraic properties of introduced in previous
section classes of generalized Lorentz transforms OT+ (H, 𝑐) and OT (H, 𝑐) over real Hilbert
space H. Namely, we investigate the group properties of these classes.

Let us introduce the denotation:

E𝜃,𝑐 [𝑠,n] := U𝜃,𝑐 [𝑠,n, I1] (n ∈ B1 (H1) , 𝜃 ∈ R ∖ {0} , 𝑠 ∈ {−1, 1}), (2.115)
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where I1 := IH1 is the identity operator on the space H1. The operators of kind E𝜃,𝑐 [𝑠,n] will
be named by elementary generalized Lorentz transforms.

Let H be a real Hilbert space, and let H1 be introduced in (2.16) subspace of the Minkowski
spaceℳ (H), isomorphic to H. Recall, that in (2.38) we had introduced the unitary operator̃︀𝐽 ∈ U (ℳ (H)) for any unitary on subspace H1 operator 𝐽 ∈ U (H1):̃︀𝐽w = ̂︀Tw + 𝐽Xw = 𝒯 (w) e0 + 𝐽Xw, w ∈ℳ (H) (2.38: dubl)

It is easy to see, that for any operators 𝐽, 𝐽1 ∈ U (H1) the following equalities are performed:

̃︂𝐽𝐽1 = ̃︀𝐽 ̃︀𝐽1; ̃︀𝐽−1 = (̃𝐽−1). (2.116)

Recall that, according to (2.92), any generalized Lorentz transform 𝐿 ∈ OT (H, 𝑐) can be
represented in the form 𝐿 = U𝜃,𝑐 [𝑠,n, 𝐽 ], where 𝑠 ∈ {−1, 1}, 𝜃 ∈ R ∖ {0}, n ∈ B1 (H1),
𝐽 ∈ U (H1).

Lemma 2.18.1. For arbitrary generalized Lorentz transform U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) (𝑠 ∈
{−1, 1}, 𝜃 ∈ R ∖ {0}, n ∈ B1 (H1), 𝐽 ∈ U (H1)) the following equalities are true:̃︀𝐽E𝜃,𝑐 [𝑠,n] = U𝜃,𝑐 [𝑠,n, 𝐽 ] ; E𝜃,𝑐 [𝑠,n] ̃︀𝐽 = U𝜃,𝑐

[︀
𝑠, 𝐽−1n, 𝐽

]︀
. (2.117)

Proof. The first equality (2.117) follows from (2.89), (2.115) and (2.38). Hence, we are going
to prove the second one. For any, w ∈ℳ (H) we put:

w′ := ̃︀𝐽w = 𝒯 (w) e0 + 𝐽Xw.

Applying (2.89) and (2.115) we obtain:

E𝜃,𝑐 [𝑠,n] ̃︀𝐽w = E𝜃,𝑐 [𝑠,n] w
′ =

(︂
𝑠𝜙0 (𝜃) 𝒯 (w′)− 𝜙1 (𝜃)

⟨n,w′⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃) 𝒯 (w′)n− 𝑠𝜙0 (𝜃)X1 [n] w
′ +X⊥1 [n] w′ =

=

(︂
𝑠𝜙0 (𝜃) 𝒯 (𝒯 (w) e0 + 𝐽Xw)− 𝜙1 (𝜃)

⟨n, 𝒯 (w) e0 + 𝐽Xw⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃) 𝒯 (𝒯 (w) e0 + 𝐽Xw)n− 𝑠𝜙0 (𝜃)X1 [n] (𝒯 (w) e0 + 𝐽Xw)+

+X⊥1 [n] (𝒯 (w) e0 + 𝐽Xw) =

=

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨n, 𝐽Xw⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃) 𝒯 (w)n− 𝑠𝜙0 (𝜃)X1 [n] 𝐽Xw +X⊥1 [n] 𝐽Xw. (2.118)

Since 𝐽 is unitary operator, mapping H1 into H1, we get:

⟨n, 𝐽Xw⟩ =
⟨︀
𝐽−1n,Xw

⟩︀
=
⟨︀
X𝐽−1n,w

⟩︀
=
⟨︀
𝐽−1n,w

⟩︀
. (2.119)

Further, using (2.20),(2.21), (2.119), we deliver:

X1 [n] 𝐽Xw = ⟨n, 𝐽Xw⟩n,=
⟨︀
𝐽−1n,w

⟩︀
n =

= 𝐽
⟨︀
𝐽−1n,w

⟩︀
𝐽−1n = 𝐽X1

[︀
𝐽−1n

]︀
w; (2.120)

X⊥1 [n] 𝐽Xw = (X−X1 [n]) 𝐽Xw = X𝐽Xw − 𝐽X1

[︀
𝐽−1n

]︀
w =

= 𝐽
(︀
Xw −X1

[︀
𝐽−1n

]︀
w
)︀
= 𝐽X⊥1

[︀
𝐽−1n

]︀
w. (2.121)

Substituting the right-hand sides of the equalities (2.119), (2.120), (2.121) into the equality
(2.118) instead of the expressions ⟨n, 𝐽Xw⟩, X1 [n] 𝐽Xw, X⊥1 [n] 𝐽Xw and applying the equality
(2.89), we deduce:
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E𝜃,𝑐 [𝑠,n] ̃︀𝐽w =

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨𝐽−1n,w⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃) 𝒯 (w)n− 𝑠𝜙0 (𝜃) 𝐽X1

[︀
𝐽−1n

]︀
w + 𝐽X⊥1

[︀
𝐽−1n

]︀
w =

=

(︂
𝑠𝜙0 (𝜃) 𝒯 (w)− 𝜙1 (𝜃)

⟨𝐽−1n,w⟩
𝑐

)︂
e0+

+ 𝐽
(︀
𝑐𝜙1 (𝜃) 𝒯 (w) 𝐽−1n− 𝑠𝜙0 (𝜃)X1

[︀
𝐽−1n

]︀
w +X⊥1

[︀
𝐽−1n

]︀
w
)︀
=

= U𝜃,𝑐

[︀
𝑠, 𝐽−1n, 𝐽

]︀
w (∀w ∈ℳ (H)) .

Corollary 2.18.1. Let U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) (𝑠 ∈ {−1, 1}, 𝜃 ∈ R ∖ {0}, n ∈ B1 (H1),
𝐽 ∈ U (H1)) and 𝐽1 ∈ U (H1).

Then ̃︀𝐽1U𝜃,𝑐 [𝑠,n, 𝐽 ] ,U𝜃,𝑐 [𝑠,n, 𝐽 ] ̃︀𝐽1 ∈ OT (H, 𝑐), and besides:

̃︀𝐽1U𝜃,𝑐 [𝑠,n, 𝐽 ] = U𝜃,𝑐 [𝑠,n, 𝐽1𝐽 ] ; (2.122)

U𝜃,𝑐 [𝑠,n, 𝐽 ] ̃︀𝐽1 = U𝜃,𝑐

[︀
𝑠, 𝐽−11 n, 𝐽𝐽1

]︀
. (2.123)

Proof. The equality (2.122) follows from (2.116) and Lemma 2.18.1. So, we are to prove the
equality (2.123). Applying Lemma 2.18.1 and equality (2.122) we obtain:

U𝜃,𝑐 [𝑠,n, 𝐽 ] ̃︀𝐽1 = ̃︀𝐽E𝜃,𝑐 [𝑠,n] ̃︀𝐽1 = ̃︀𝐽U𝜃,𝑐

[︀
𝑠, 𝐽−11 n, 𝐽1

]︀
= U𝜃,𝑐

[︀
𝑠, 𝐽−11 n, 𝐽𝐽1

]︀
.

From Lemma 2.18.1 and Corollary 2.18.1 we can conclude, that the question about belong-
ing of product (composition) of arbitrary generalized Lorentz transforms into the initial class
OT (H, 𝑐) can be can be reduced to the question about belonging into the initial class OT (H, 𝑐)
of product of elementary generalized Lorentz transforms. In the next sections we are going to
study just the last question.

18.1 Composition of Generalized Lorentz Transforms with Parallel Directions of
Motion

At first, we aim to investigate composition of elementary generalized Lorentz transforms with
the same directing vectors.

Let us introduce the following denotations:

S (𝜉, 𝜂) : =
1

2
(sign 𝜉 + 1) (sign 𝜂 + 1)− 1

=

{︃
1, 𝜉, 𝜂 > 0

−1, 𝜉 < 0 or 𝜂 < 0
, 𝜉, 𝜂 ∈ R ∖ {0} ; (2.124)

I𝜎,𝜇 [n] 𝑥 := 𝜎X1 [n]𝑥+ 𝜇X⊥1 [n]𝑥 = 𝜎 ⟨n, 𝑥⟩n+ 𝜇X⊥1 [n]𝑥, 𝑥 ∈ H1

(n ∈ B1 (H1) , 𝜎, 𝜇 ∈ {−1, 1}). (2.125)

It is apparently, that I𝜎,𝜇 [n] ∈ U (H1) (for arbitrary n ∈ B1 (H1) and 𝜎, 𝜇 ∈ {−1, 1}).

Lemma 2.18.2. Let E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1,n] (n ∈ B1 (H1) , 𝜃, 𝜃1 ∈ R ∖ {0} , 𝑠, 𝑠1 ∈ {−1, 1}) be
any elementary generalized Lorentz transforms with the same directing vector n. Then:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n] = U
𝜃𝜃
−𝑠𝑠1
1 , 𝑐

[𝑠′,−𝑠𝑠′n, I−1,1 [n]] , where 𝑠′ = S (𝑠𝑠1, 𝜃1) .

Proof. Consider any fixed vector w ∈ℳ (H). Denote:

w′ := E𝜃1,𝑐 [𝑠1,n] w.
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Applying formulas (2.89),(2.115) and equalities (2.21) we obtain:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n] w = E𝜃,𝑐 [𝑠,n] w
′ =

=

(︂
𝑠𝜙0 (𝜃) 𝒯 (w′)− 𝜙1 (𝜃)

⟨n,w′⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃) 𝒯 (w′)n− 𝑠𝜙0 (𝜃)X1 [n] w
′ +X⊥1 [n] w′; (2.126)

w′ =

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n,w⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃1) 𝒯 (w)n− 𝑠1𝜙0 (𝜃1)X1 [n] w +X⊥1 [n] w;

𝒯 (w′) = 𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)
⟨n,w⟩
𝑐

; (2.127)

X1 [n] w
′ = 𝑐𝜙1 (𝜃1) 𝒯 (w)n− 𝑠1𝜙0 (𝜃1)X1 [n] w; (2.128)

⟨n,w′⟩ = ⟨X1 [n]n,w
′⟩ = ⟨n,X1 [n] w

′⟩ =
= ⟨n, 𝑐𝜙1 (𝜃1) 𝒯 (w)n− 𝑠1𝜙0 (𝜃1)X1 [n] w⟩ =
= 𝑐𝜙1 (𝜃1) 𝒯 (w) ⟨n,n⟩ − 𝑠1𝜙0 (𝜃1) ⟨X1 [n]n,w⟩ =
= 𝑐𝜙1 (𝜃1) 𝒯 (w)− 𝑠1𝜙0 (𝜃1) ⟨n,w⟩ ; (2.129)

X⊥1 [n] w′ = X⊥1 [n] w. (2.130)

Substitution the values 𝒯 (w′), X1 [n] w
′, ⟨n,w′⟩, X⊥1 [n] w′ from (2.127),(2.128),(2.129) and

(2.130) into (2.126) gives:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n] w =

(︃
𝑠𝜙0 (𝜃)

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n,w⟩
𝑐

)︂
−

− 𝜙1 (𝜃)
𝑐𝜙1 (𝜃1) 𝒯 (w)− 𝑠1𝜙0 (𝜃1) ⟨n,w⟩

𝑐

)︃
e0+

+ 𝑐𝜙1 (𝜃)

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n,w⟩
𝑐

)︂
n−

− 𝑠𝜙0 (𝜃) (𝑐𝜙1 (𝜃1) 𝒯 (w)n− 𝑠1𝜙0 (𝜃1)X1 [n] w) +X⊥1 [n] w =

=

(︃
(𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1)− 𝜙1 (𝜃)𝜙1 (𝜃1)) 𝒯 (w)+

+ 𝑠 (𝑠𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)− 𝜙0 (𝜃)𝜙1 (𝜃1))
⟨n,w⟩
𝑐

)︃
e0+

+ 𝑐𝑠 (𝑠𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)− 𝜙0 (𝜃)𝜙1 (𝜃1)) 𝒯 (w)n+

+ (𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1)− 𝜙1 (𝜃)𝜙1 (𝜃1))X1 [n] w +X⊥1 [n] w. (2.131)

Using the definitions of the functions 𝜙0 (·), 𝜙1 (·) (see formula (2.84)) we get:

𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1)− 𝜙1 (𝜃)𝜙1 (𝜃1) =

= 𝑠𝑠1
1

2

(︂
1

|𝜃|
+ 𝜃

)︂
1

2

(︂
1

|𝜃1|
+ 𝜃1

)︂
− 1

2

(︂
1

|𝜃|
− 𝜃
)︂

1

2

(︂
1

|𝜃1|
− 𝜃1

)︂
=

=
1

4

(︂
𝑠𝑠1

(︂
1

|𝜃|
1

|𝜃1|
+ 𝜃

1

|𝜃1|
+

1

|𝜃|
𝜃1 + 𝜃𝜃1

)︂
−
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−
(︂

1

|𝜃|
1

|𝜃1|
− 𝜃 1

|𝜃1|
− 1

|𝜃|
𝜃1 + 𝜃𝜃1

)︂)︂
=

=

⎧⎨⎩
1
2

(︁
𝜃
|𝜃1| +

𝜃1
|𝜃|

)︁
, 𝑠𝑠1 = 1

−1
2

(︁
1
|𝜃𝜃1| + 𝜃𝜃1

)︁
, 𝑠𝑠1 = −1

=

⎧⎪⎪⎨⎪⎪⎩
𝜙0

(︁
𝜃
𝜃1

)︁
, 𝑠𝑠1 = 1, 𝜃1 > 0

−𝜙0

(︁
𝜃
𝜃1

)︁
, 𝑠𝑠1 = 1, 𝜃1 < 0

−𝜙0 (𝜃𝜃1) , 𝑠𝑠1 = −1

=

= S (𝑠𝑠1, 𝜃1)𝜙0

(︀
𝜃𝜃−𝑠𝑠11

)︀
= 𝑠′𝜙0 (𝜃

′) , (2.132)

where 𝑠′ = S (𝑠𝑠1, 𝜃1); 𝜃
′ = 𝜃𝜃−𝑠𝑠11 . Similarly we obtain:

𝑠𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)− 𝜙0 (𝜃)𝜙1 (𝜃1) = 𝑠′𝜙1 (𝜃
′) . (2.133)

Substituting the right-hand sides of the equalities (2.132),(2.133) instead of the correspond-
ing expressions in the formula (2.131), we conclude:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝜎𝑠1,n] w =

(︂
𝑠′𝜙0 (𝜃

′) 𝒯 (w) + 𝑠𝑠′𝜙1 (𝜃
′)
⟨n,w⟩
𝑐

)︂
e0+

+ 𝑐𝑠𝑠′𝜙1 (𝜃
′) 𝒯 (w)n+ 𝑠′𝜙0 (𝜃

′)X1 [n] w +X⊥1 [n] w.

Taking into account formula (2.21), we can rewrite the last equality in the form:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝜎𝑠1,n] w =

(︂
𝑠′𝜙0 (𝜃

′) 𝒯 (w) + 𝜙1 (𝜃
′)
⟨𝑠𝑠′n,w⟩

𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃
′) 𝒯 (w) (𝑠𝑠′n) + 𝑠′𝜙0 (𝜃

′)X1 [𝑠𝑠
′n] w +X⊥1 [𝑠𝑠′n] w =

= U
𝜃𝜃
−𝑠𝑠1
1 ,𝑐

[𝑠′,−𝑠𝑠′n, I−1,1 [n]] w.

Now we consider the composition of elementary generalized Lorentz transforms E𝜃,𝑐 [𝑠,n] and
E𝜃1,𝑐 [𝑠1,n1] with the parallel direction vectors n ‖ n1 (that is under the condition n = 𝜎n1,
where 𝜎 ∈ {−1, 1}).

Lemma 2.18.3. Let E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1, 𝜎n] (n ∈ B1 (H1) , 𝜃, 𝜃1 ∈ R∖{0} , 𝜎, 𝑠, 𝑠1 ∈ {−1, 1})
be elementary generalized Lorentz transforms with parallel directions of motion. Then the fol-
lowing equality holds:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1, 𝜎n] = U
𝜃𝜃
−𝜎𝑠𝑠1
1 ,𝑐

[𝜎𝑠′,−𝜎𝑠𝑠′n, I−1,1 [n]] ,

where 𝑠′ = S (𝜎𝑠𝑠1, 𝜃1).

Proof. Consider any elementary generalized Lorentz transforms with parallel directions of mo-
tion, E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1, 𝜎n] ∈ OT (H, 𝑐). Applying the formulas (2.89),(2.115) and equalities
(2.21) we obtain:

E𝜃1,𝑐 [𝑠1, 𝜎n] w =

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨𝜎n,w⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃1) 𝒯 (w)𝜎n− 𝑠1𝜙0 (𝜃1)X1 [𝜎n] w +X⊥1 [𝜎n] w =

=

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨𝜎n,w⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃1) 𝒯 (w)𝜎n− 𝑠1𝜙0 (𝜃1)X1 [n] w +X⊥1 [n] w =

= 𝜎

(︂
𝜎𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n,w⟩
𝑐

)︂
e0+

+ 𝜎
(︀
𝑐𝜙1 (𝜃1) 𝒯 (w)n− 𝜎𝑠1𝜙0 (𝜃1)X1 [n] w + 𝜎X⊥1 [n] w

)︀
=
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= 𝜎U𝜃1,𝑐 [𝜎𝑠1,n, I1,𝜎 [n]] w (w ∈ℳ (H)) .

Taking into account, that (I1,𝜎 [n])−1 n = n, and using Lemma 2.18.1, we get:

E𝜃1,𝑐 [𝑠1, 𝜎n] = 𝜎U𝜃1,𝑐 [𝜎𝑠1,n, I1,𝜎 [n]] = 𝜎E𝜃1,𝑐 [𝜎𝑠1,n]
̃︁I1,𝜎 [n]

(n ∈ B1 (H1) , 𝜃1 ∈ R ∖ {0} , 𝜎, 𝑠1 ∈ {−1, 1}). (2.134)

Therefore, applying Lemma 2.18.2 and Lemma 2.18.1, we deduce:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1, 𝜎n] = 𝜎E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝜎𝑠1,n]
̃︁I1,𝜎 [n] =

= 𝜎U
𝜃𝜃
−𝜎𝑠𝑠1
1 ,𝑐

[𝑠′,−𝑠𝑠′n, I−1,1 [n]] ̃︁I1,𝜎 [n] =
= ̃︂I−1,1 [n](︁𝜎E𝜃𝜃

−𝜎𝑠𝑠1
1 ,𝑐

[𝑠′,−𝑠𝑠′n] ̃︁I1,𝜎 [n])︁ , where 𝑠′ = S (𝜎𝑠𝑠1, 𝜃1) .

(2.135)

According to the equalities (2.125) and (2.21), I1,𝜎 [n] = I1,𝜎 [−𝑠𝑠′n], hence, the equality (2.135)
may be rewritten in the form:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1, 𝜎n] =
̃︂I−1,1 [n](︁𝜎E𝜃𝜃

−𝜎𝑠𝑠1
1 ,𝑐

[𝜎(𝜎𝑠′),−𝑠𝑠′n] ̃︁I1,𝜎 [−𝑠𝑠′n])︁ .
And, using the equality (2.134), we obtain:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1, 𝜎n] =
̃︂I−1,1 [n](︁E𝜃𝜃

−𝜎𝑠𝑠1
1 ,𝑐

[𝜎𝑠′,−𝜎𝑠𝑠′n]
)︁
=

= U
𝜃𝜃
−𝜎𝑠𝑠1
1 ,𝑐

[𝜎𝑠′,−𝜎𝑠𝑠′n, I−1,1 [n]] .

The next assertion shows, that composition of any generalized Lorentz transforms with
parallel directions of motion always is generalized Lorentz transform.

Assertion 2.18.1. Suppose, that, U𝜃,𝑐 [𝑠,n, 𝐽 ] ,U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1] ∈ OT (H, 𝑐).
Then U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐), and besides:

U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝑠1𝑠′n, 𝐽1𝐽I−1,1 [n]] ,

where 𝑠′ = S (𝜎𝑠1𝑠, 𝜃).

Proof. In accordance with Lemma 2.18.1:

U𝜃,𝑐 [𝑠,n, 𝐽 ] = E𝜃,𝑐 [𝑠, 𝐽n] ̃︀𝐽
U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1] = ̃︀𝐽1E𝜃1,𝑐 [𝑠1, 𝜎𝐽n] .

Hence, using Lemma 2.18.3, we get:

U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = ̃︀𝐽1E𝜃1,𝑐 [𝑠1, 𝜎𝐽n]E𝜃,𝑐 [𝑠, 𝐽n] ̃︀𝐽 =

= ̃︀𝐽1U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝜎𝑠1𝑠′(𝜎𝐽n), I−1,1 [𝜎𝐽n]] ̃︀𝐽 =

= ̃︀𝐽1U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝑠1𝑠′𝐽n, I−1,1 [𝐽n]] ̃︀𝐽,

where 𝑠′ = S (𝜎𝑠1𝑠, 𝜃). Applying Corollary 2.18.1 to the right-hand side of last formula, we
obtain:

U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = ̃︀𝐽1U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝑠1𝑠′n, I−1,1 [𝐽n] 𝐽 ] =

= U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝑠1𝑠′n, 𝐽1I−1,1 [𝐽n] 𝐽 ] . (2.136)
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Using equality (2.125) and unitarity of the operator 𝐽 , for all 𝑥 ∈ H1 we get:

I−1,1 [𝐽n] 𝐽𝑥 = −X1 [𝐽n] 𝐽𝑥+X⊥1 [𝐽n] 𝐽𝑥 =

= −X1 [𝐽n] 𝐽𝑥+ (X−X1 [𝐽n]) 𝐽𝑥 =

= −⟨𝐽n, 𝐽𝑥⟩ 𝐽n+X𝐽𝑥− ⟨𝐽n, 𝐽𝑥⟩ 𝐽n =

= −⟨n, 𝑥⟩ 𝐽n+ 𝐽𝑥− ⟨n, 𝑥⟩ 𝐽n =

= 𝐽 (−⟨n, 𝑥⟩n+X𝑥− ⟨n, 𝑥⟩n) =
= 𝐽 (−X1 [n]𝑥+ (X−X1 [n])𝑥) = 𝐽I−1,1 [n]𝑥.

Consequently, according to (2.136), we have:

U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝑠1𝑠′n, 𝐽1𝐽I−1,1 [n]] .

Remark 2.18.1. Coordinate transform operatorsU𝜃,𝑐 [𝑠,n, 𝐽 ] andU𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1] in Assertion
2.18.1 indeed have parallel directions of motion. To explain the last statement, let us consider,
for example, the case 𝜃 ̸= −1. Then, by Theorem 2.17.3, the coordinate transform U𝜃,𝑐 [𝑠,n, 𝐽 ]

is v-determined, and besides 𝒱 (U𝜃,𝑐 [𝑠,n, 𝐽 ]) = 𝑐𝑠1−𝜃|𝜃|
1+𝜃|𝜃|n. Hence, according to formula (2.69)

coordinate transform operator (U𝜃,𝑐 [𝑠,n, 𝐽 ])
−1 also is v-determined with 𝒱

(︀
(U𝜃,𝑐 [𝑠,n, 𝐽 ])

−1)︀ =
𝐽𝒱 (U𝜃,𝑐 [𝑠,n, 𝐽 ]) = 𝑐𝑠1−𝜃|𝜃|

1+𝜃|𝜃|𝐽n. Suppose, that (v-determined) coordinate transform operator

U𝜃,𝑐 [𝑠,n, 𝐽 ] maps coordinates of any point in fixed reference frame 15 𝑙 into coordinates of
this point in other reference frame 𝑙′, moving relatively the frame 𝑙 with a constant velocity
𝒱 (U𝜃,𝑐 [𝑠,n, 𝐽 ]) = 𝑐𝑠1−𝜃|𝜃|

1+𝜃|𝜃|n. Then the frame 𝑙 moves relatively the frame 𝑙′ with velocity

𝒱
(︀
(U𝜃,𝑐 [𝑠,n, 𝐽 ])

−1)︀ = 𝑐𝑠1−𝜃|𝜃|
1+𝜃|𝜃|𝐽n. Hence, the directing vector of motion of the reference frame

𝑙 relatively the frame 𝑙′ is parallel to the vector 𝐽n. Thus, the reference frame 𝑙′′, connected
with the coordinate transform U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1] has directing vector of motion 𝜎𝐽n, which is
parallel to the vector 𝐽n.

Corollary 2.18.2. Let H be a real Hilbert space such, that dim (H) = 1. Then for any operators
𝐿,𝐿1 ∈ OT (H, 𝑐) we have 𝐿1𝐿 ∈ OT (H, 𝑐).

Proof. Suppose, that 𝐿,𝐿1 ∈ OT (H, 𝑐), where H is a real Hilbert space with dim (H) = 1.
Then, according to (2.92), operators 𝐿,𝐿1 may be represened in the form:

𝐿 = U𝜃,𝑐 [𝑠,n, 𝐽 ] , 𝐿1 = U𝜃1,𝑐 [𝑠1,n1, 𝐽1] ,

where 𝑠, 𝑠1 ∈ {−1, 1}, 𝜃, 𝜃1 ∈ R ∖ {0}, n,n1 ∈ B1 (H1), 𝐽, 𝐽1 ∈ U (H1). Since dim (H1) =
dim (H) = 1, there exist number 𝜎 ∈ {−1, 1} such, that n1 = 𝜎n. Since 𝐽 is unitary operator
in one-dimensional space H1, there must exist number 𝜎

′ ∈ {−1, 1} such, that 𝐽n = 𝜎′n. Hence:

n1 = 𝜎n = 𝜎𝜎′𝐽n = ̃︀𝜎𝐽n,
where ̃︀𝜎 = 𝜎𝜎′ ∈ {−1, 1}. Hence, U𝜃1,𝑐 [𝑠1,n1, 𝐽1] = U𝜃1,𝑐 [𝑠1, ̃︀𝜎𝐽n, 𝐽1]. And, according to
Assertion 2.18.1, 𝐿1𝐿 = U𝜃1,𝑐 [𝑠1, ̃︀𝜎𝐽n, 𝐽1] U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐).

The next corollary proves, that the operation of taking inverse operator does not lead outside
the class of generalized Lorentz transforms OT (H, 𝑐).

Corollary 2.18.3. Let, U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐). Then U𝜃,𝑐 [𝑠,n, 𝐽 ]
−1 ∈ OT (H, 𝑐) with:

U𝜃,𝑐 [𝑠,n, 𝐽 ]
−1 = U𝜃𝑠,𝑐

[︀
𝑠𝜃, 𝑠𝜃𝐽n, 𝐽

−1]︀ , (2.137)

where 𝑠𝜃 = S(𝑠, 𝜃).

15 In this remark we understand the reference frames 𝑙 and 𝑙′ in a usual physical sense.
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Proof. Chose any U𝜃,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐). Denote:

𝜃1 := 𝜃𝑠, 𝑠1 := 𝜎 := 𝑠𝜃 = S(𝑠, 𝜃),
𝐽1 := 𝐽−1.

According to Assertion 2.18.1:

U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = U𝜃1𝜃−𝜎𝑠1𝑠,𝑐 [𝜎𝑠
′,−𝑠1𝑠′n, 𝐽1𝐽I−1,1 [n]] =

= U𝜃𝑠𝜃−𝑠𝜃 ·𝑠𝜃 ·𝑠,𝑐

[︀
𝑠𝜃𝑠
′,−𝑠𝜃𝑠′n, 𝐽−1𝐽I−1,1 [n]

]︀
= U1,𝑐 [𝑠𝜃𝑠

′,−𝑠𝜃𝑠′n, I−1,1 [n]] ,
where 𝑠′ = S (𝜎𝑠1𝑠, 𝜃) = S (𝑠𝜃𝑠𝜃𝑠, 𝜃) = S(𝑠, 𝜃) = 𝑠𝜃. Hence:

U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = U1,𝑐 [𝑠𝜃𝑠𝜃, −𝑠𝜃𝑠𝜃n, I−1,1 [n]] =
= U1,𝑐 [1,−n, I−1,1 [n]] .

Using (2.89), (2.125) and (2.21), it is not hard to verify, that for arbitrary w ∈ ℳ (H) it
holds the equality U1,𝑐 [1,−n, I−1,1 [n]] w = w. Therefore, U1,𝑐 [1,−n, I−1,1 [n]] = I. Thus,
U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1]U𝜃,𝑐 [𝑠,n, 𝐽 ] = I. Consequently:

U𝜃,𝑐 [𝑠,n, 𝐽 ]
−1 = U𝜃1,𝑐 [𝑠1, 𝜎𝐽n, 𝐽1] = U𝜃𝑠,𝑐 [𝑠𝜃, 𝑠𝜃𝐽n, 𝐽

−1] .

Remark 2.18.2. By means of application (2.89), (2.124), (2.21) and (2.85, two bottom equali-
ties), the equality (2.137) may be rewritten in the form:

U𝜃,𝑐 [𝑠,n, 𝐽 ]
−1 = U𝜃,𝑐

[︀̃︀𝑠𝜃, 𝑠̃︀𝑠𝜃𝐽n, 𝐽−1]︀ , where ̃︀𝑠𝜃 = 𝑠 sign 𝜃. (2.138)

Indeed, let 𝑠 ∈ {−1, 1}, 𝜃 ∈ R ∖ {0}, n ∈ B1 (H1) and 𝐽 ∈ U (H1). Denote, 𝑠𝜃 := S(𝑠, 𝜃),̃︀𝑠𝜃 := 𝑠 sign 𝜃.
1) In the case 𝑠 = 1 we have, 𝑠𝜃 = S(1, 𝜃) = sign 𝜃, ̃︀𝑠𝜃 := sign 𝜃. So, according to (2.137), in

this case we obtain:

U𝜃,𝑐 [𝑠,n, 𝐽 ]
−1 = U𝜃𝑠,𝑐

[︀
𝑠𝜃, 𝑠𝜃𝐽n, 𝐽

−1]︀ = U𝜃,𝑐

[︀
sign 𝜃, sign 𝜃𝐽n, 𝐽−1

]︀
=

= U𝜃,𝑐

[︀̃︀𝑠𝜃, 𝑠̃︀𝑠𝜃𝐽n, 𝐽−1]︀ .
2) In the case 𝑠 = −1 we have, 𝑠𝜃 = S(−1, 𝜃) = −1, ̃︀𝑠𝜃 := −sign 𝜃. Hence, applying (2.137)

and (2.90), we deduce:

U𝜃,𝑐 [𝑠,n, 𝐽 ]
−1 = U𝜃−1,𝑐

[︀
−1,−𝐽n, 𝐽−1

]︀
=

= U(𝜃−1)−1,𝑐

[︀
(−1)sign

(︀
𝜃−1
)︀
,−sign

(︀
𝜃−1
)︀
(−𝐽n) , 𝐽−1

]︀
=

= U𝜃,𝑐

[︀
−sign (𝜃) , sign 𝜃𝐽n, 𝐽−1

]︀
= U𝜃,𝑐

[︀̃︀𝑠𝜃, 𝑠̃︀𝑠𝜃𝐽n, 𝐽−1]︀ .
Corollary 2.18.3 shows, that class of operators OT (H, 𝑐) is invariant with respect to the

operation of taking inverse. Classes of operators O (H, 𝑐) and O+ (H, 𝑐) also are invariant with
respect to this operation (by assertions 2.17.1 and 2.17.6 respectively). But, it turns out, that
the class OT+ (H, 𝑐) is not invariant with respect to the operation of taking inverse.

Corollary 2.18.4. If 𝐿 ∈ OT+ (H, 𝑐) ∖ (O+ (H, 𝑐) ∪ OT∞ (H, 𝑐)) then 𝐿−1 /∈ OT+ (H, 𝑐).

Proof. Let 𝐿 ∈ OT+ (H, 𝑐) ∖ (O+ (H, 𝑐) ∪ OT∞ (H, 𝑐)). Then 𝐿 ∈ OT+ (H, 𝑐) and 𝐿 /∈
O+ (H, 𝑐) ∪ OT∞ (H, 𝑐). Since 𝐿 ∈ OT+ (H, 𝑐), then, by (2.112), operator 𝐿 can be repre-
sented in the form:

𝐿 = U𝜃,𝑐 [1,n, 𝐽 ] ,

where 𝜃 ∈ [−1, 1] ∖ {0}, n ∈ B1 (H1), 𝐽 ∈ U (H1). Since 𝐿 /∈ O+ (H, 𝑐) ∪ OT∞ (H, 𝑐), then,
according to (2.110) and (2.99), 𝜃 < 0 and 𝜃 ̸= −1. Hence, by equality (2.138), we get:

𝐿−1 = (U𝜃,𝑐 [1,n, 𝐽 ])
−1 = U𝜃,𝑐

[︀
−1,−𝐽n, 𝐽−1

]︀
.

Thus, by (2.114), 𝐿−1 ∈ OT− (H, 𝑐). And, since 𝜃 ̸= −1, then, by (2.98), 𝐿−1 =
U𝜃,𝑐 [−1,−𝐽n, 𝐽−1] ∈ OTf in (H, 𝑐). So, by (2.97), we have 𝐿−1 /∈ OT∞ (H, 𝑐). Thus,
𝐿−1 ∈ OT− (H, 𝑐) and 𝐿

−1 /∈ OT∞ (H, 𝑐). Hence, by Assertion 2.17.8, 𝐿−1 /∈ OT+ (H, 𝑐).
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Any operator of kind 𝐿 = W𝜆,𝑐 [1,n, 𝐽 ], where 𝑐 < 𝜆 < ∞, n ∈ B1 (H1) and 𝐽 ∈ U (H1),
satisfies condition 𝐿 ∈ OT+ (H, 𝑐)∖(O+ (H, 𝑐) ∪ OT∞ (H, 𝑐)). Indeed, according to (2.111), 𝐿 ∈
OT+ (H, 𝑐). According to (2.98), 𝐿 ∈ OTf in (H, 𝑐), and so, by (2.97), we get 𝐿 /∈ OT∞ (H, 𝑐).
Since 𝑐 < 𝜆 < ∞ then, by Assertion 2.17.4, we have ‖𝒱 (𝐿)‖ = |𝜆| > 𝑐. So, by Assertion
2.17.2, we obtain 𝐿 /∈ O (H, 𝑐). And, by (2.101), we get, 𝐿 /∈ O+ (H, 𝑐). Thus, we have
𝐿 ∈ OT+ (H, 𝑐), 𝐿 /∈ OT∞ (H, 𝑐) and 𝐿 /∈ O+ (H, 𝑐). Hence, the class of operators OT+ (H, 𝑐) ∖
(O+ (H, 𝑐) ∪ OT∞ (H, 𝑐)) is not empty. Therefore Corollary 2.18.4 leads to the next corollary.

Corollary 2.18.5. Class of operators OT+ (H, 𝑐) does not form a group of operators over the
spaceℳ (H).

The next corollary immediatelly follows from Corollary 2.18.2 and Corollary 2.18.3.

Corollary 2.18.6. Let H be a real Hilbert space such, that dim (H) = 1. Then class of operators
OT (H, 𝑐) is a group of operators over the spaceℳ (H).

18.2 Composition of Generalized Lorentz Transforms with Orthogonal Directions
of Motion

Lemma 2.18.4. Let, E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1,n1] ∈ OT (H, 𝑐) be elementary generalized Lorentz
transforms with orthogonal directing vectors, that is ⟨n,n1⟩ = 0. Then for any vector w ∈
ℳ (H) the following equality is performed:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w =

(︃
𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) 𝒯 (w)−

−
(︂
𝑠𝜙0 (𝜃)𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

+ 𝜙1 (𝜃)
⟨n,w⟩
𝑐

)︂)︃
e0+

+ 𝑐𝜙1 (𝜃)

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

)︂
n−

− (𝑠𝜙0 (𝜃) + 1)X1 [n] w+

+ 𝑐𝜙1 (𝜃1) 𝒯 (w)n1 − 𝑠1𝜙0 (𝜃1)X1 [n1] w +X⊥1 [n1] w. (2.139)

Proof. Chose any fixed vector w ∈ℳ (H). Denote:

w′ := E𝜃1,𝑐 [𝑠1,n1] w.

Then, using the formulas (2.89),(2.115), (2.21) and taking into account the fact, that ⟨n,n1⟩ =
0, we get:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w = E𝜃,𝑐 [𝑠,n] w
′ =

=

(︂
𝑠𝜙0 (𝜃) 𝒯 (w′)− 𝜙1 (𝜃)

⟨n,w′⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃) 𝒯 (w′)n− 𝑠𝜙0 (𝜃)X1 [n] w
′ +X⊥1 [n] w′; (2.140)

w′ =

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

)︂
e0+

+ 𝑐𝜙1 (𝜃1) 𝒯 (w)n1 − 𝑠1𝜙0 (𝜃1)X1 [n1] w +X⊥1 [n1] w;

𝒯 (w′) = 𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)
⟨n1,w⟩
𝑐

; (2.141)
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X1 [n] w
′ = X1 [n]

(︁̂︀Tw′ +Xw′
)︁
= X1 [n]Xw′ =

= X1 [n]
(︀
𝑐𝜙1 (𝜃1) 𝒯 (w)n1 − 𝑠1𝜙0 (𝜃1)X1 [n1] w +X⊥1 [n1] w

)︀
=

= 𝑐𝜙1 (𝜃1) 𝒯 (w)X1 [n]n1 − 𝑠1𝜙0 (𝜃1)X1 [n]X1 [n1] w+

+X1 [n]X
⊥
1 [n1] w. (2.142)

Since ⟨n,n1⟩ = 0, we have:

X1 [n]n1 = ⟨n,n1⟩n = 0; X1 [n]X1 [n1] = O;

X1 [n]X
⊥
1 [n1] = X1 [n] (X−X1 [n1]) = X1 [n]X = X1 [n] .

Hence, according to (2.142), we obtain:

X1 [n] w
′ = X1 [n] w; (2.143)

⟨n,w′⟩ = ⟨X1 [n]n,w
′⟩ = ⟨n,X1 [n] w

′⟩ = ⟨n,X1 [n] w⟩ =
= ⟨X1 [n]n,w⟩ = ⟨n,w⟩ . (2.144)

Further, applying (2.143), we deliver:

X⊥1 [n] w′ = (X−X1 [n]) w
′ = Xw′ −X1 [n] w =

= 𝑐𝜙1 (𝜃1) 𝒯 (w)n1 − 𝑠1𝜙0 (𝜃1)X1 [n1] w +

+X⊥1 [n1] w −X1 [n] w. (2.145)

Substitution of the values 𝒯 (w′), X1 [n] w
′, ⟨n,w′⟩, X⊥1 [n] w′ from the formulas

(2.141),(2.143),(2.144),(2.145) into (2.140), provides:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w = E𝜃,𝑐 [𝑠,n] w
′ =

=

(︃
𝑠𝜙0 (𝜃)

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

)︂
− 𝜙1 (𝜃)

⟨n,w⟩
𝑐

)︃
e0+

+ 𝑐𝜙1 (𝜃)

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

)︂
n−

− 𝑠𝜙0 (𝜃)X1 [n] w + 𝑐𝜙1 (𝜃1) 𝒯 (w)n1 − 𝑠1𝜙0 (𝜃1)X1 [n1] w +X⊥1 [n1] w −X1 [n] w =

=

(︃
𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) 𝒯 (w)−

(︂
𝑠𝜙0 (𝜃)𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

+ 𝜙1 (𝜃)
⟨n,w⟩
𝑐

)︂)︃
e0+

+ 𝑐𝜙1 (𝜃)

(︂
𝑠1𝜙0 (𝜃1) 𝒯 (w)− 𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

)︂
n−

− 𝑠𝜙0 (𝜃)X1 [n] w + 𝑐𝜙1 (𝜃1) 𝒯 (w)n1−
− 𝑠1𝜙0 (𝜃1)X1 [n1] w +X⊥1 [n1] w −X1 [n] w,

that was necessary to be proved.

Lemma 2.18.5. Let, E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1,n1] ∈ OT (H, 𝑐) be elementary generalized Lorentz
transforms with orthogonal directing vectors, (⟨n,n1⟩ = 0). Then:

1. The coordinate transform E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] is v-determined if and only if 𝜃, 𝜃1 ̸= −1,
moreover, in the case 𝜃, 𝜃1 ̸= −1 it is performed the equality:

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
1 +

1− sign 𝜃1
𝜙2
0 (𝜃1)

− sign 𝜃

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

. (2.146)

2. For 𝜃, 𝜃1 ̸= −1 the inequality ‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ < 𝑐 holds if and only if 𝜃, 𝜃1 > 0.
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Proof. 1. Using the Corollary 2.18.3, Lemma 2.18.1 and equality (2.125), we obtain:

E𝜃,𝑐 [𝑠,n]
−1 = U𝜃,𝑐 [𝑠,n, I1]−1 = U𝜃𝑠,𝑐

[︀
𝑠𝜃, 𝑠𝜃n, I−11

]︀
= U𝜃𝑠,𝑐 [𝑠𝜃, 𝑠𝜃n, I1] = E𝜃𝑠,𝑐 [𝑠𝜃, 𝑠𝜃n] ;

E𝜃1,𝑐 [𝑠1,n1]
−1 = E𝜃

𝑠1
1 ,𝑐

[︀
(𝑠1)𝜃1 , (𝑠1)𝜃1 n1

]︀
,

where 𝑠𝜃 = S(𝑠, 𝜃), (𝑠1)𝜃1 = S (𝑠1, 𝜃1) .

Hence:

(E𝜃,𝑐 [𝑠,n] E𝜃1,𝑐 [𝑠1,n1])
−1 = E𝜃1,𝑐 [𝑠1,n1]

−1E𝜃,𝑐 [𝑠,n]
−1 =

= E𝜃
𝑠1
1 ,𝑐

[︀
(𝑠1)𝜃1 , (𝑠1)𝜃1 n1

]︀
E𝜃𝑠,𝑐 [𝑠𝜃, 𝑠𝜃n] . (2.147)

Now we substitute the vector w = e0, into (2.147) and apply the equality (2.139):

(E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])
−1 e0 = E𝜃

𝑠1
1 ,𝑐

[︀
(𝑠1)𝜃1 , (𝑠1)𝜃1 n1

]︀
E𝜃𝑠,𝑐 [𝑠𝜃, 𝑠𝜃n] e0 =

= (𝑠1)𝜃1 𝑠𝜃𝜙0 (𝜃
𝑠1
1 )𝜙0 (𝜃

𝑠) 𝒯 (e0) e0+

+ 𝑐𝜙1 (𝜃
𝑠1
1 ) 𝑠𝜃𝜙0 (𝜃

𝑠) 𝒯 (e0) (𝑠1)𝜃1 n1 + 𝑐𝜙1 (𝜃
𝑠) 𝒯 (e0) (𝑠𝜃n) =

= (𝑠1)𝜃1 𝑠𝜃𝜙0 (𝜃
𝑠1
1 )𝜙0 (𝜃

𝑠) e0

+ 𝑐𝑠𝜃 (𝑠1)𝜃1 𝜙1 (𝜃
𝑠1
1 )𝜙0 (𝜃

𝑠)n1 + 𝑐𝑠𝜃𝜙1 (𝜃
𝑠)n. (2.148)

From the equality (2.148) it follows, that 𝒯
(︀
(E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])

−1 e0
)︀

=
(𝑠1)𝜃1 𝑠𝜃𝜙0 (𝜃

𝑠1
1 )𝜙0 (𝜃

𝑠) (where (𝑠1)𝜃1 , 𝑠𝜃 ∈ {−1, 1}). Therefore, the inequality
𝒯 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] e0) ̸= 0 is true if and only if 𝜙0 (𝜃

𝑠1
1 )𝜙0 (𝜃

𝑠) ̸= 0, i.e. if
and only if 𝜃, 𝜃1 ̸= −1. Consequently, by Definition 2.17.2, the coordinate transform
E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] is v-determined if and only if 𝜃, 𝜃1 ̸= −1.

Now we consider the case 𝜃, 𝜃1 ̸= −1. By Definition 2.17.2, applying the equality (2.148),
we obtain:

𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1]) =
X (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])

−1 e0

𝒯
(︀
(E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])

−1 e0
)︀ =

=
𝑐𝑠𝜃 (𝑠1)𝜃1 𝜙1 (𝜃

𝑠1
1 )𝜙0 (𝜃

𝑠)n1 + 𝑐𝑠𝜃𝜙1 (𝜃
𝑠)n

(𝑠1)𝜃1 𝑠𝜃𝜙0 (𝜃
𝑠1
1 )𝜙0 (𝜃𝑠)

=

= 𝑐
𝜙1 (𝜃

𝑠1
1 )𝜙0 (𝜃

𝑠)n1 +S (𝑠1, 𝜃1)𝜙1 (𝜃
𝑠)n

𝜙0 (𝜃
𝑠1
1 )𝜙0 (𝜃𝑠)

.

Since ⟨n,n1⟩ = 0, we have:

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
(𝜙1 (𝜃

𝑠1
1 )𝜙0 (𝜃𝑠))

2 + (𝜙1 (𝜃𝑠))
2

𝜙2
0 (𝜃

𝑠1
1 )𝜙2

0 (𝜃
𝑠)

.

According to two lower equalities from (2.85) for 𝑠 ∈ {−1, 1} it holds |𝜙0 (𝜃
𝑠)| = |𝜙0 (𝜃)|,

|𝜙1 (𝜃
𝑠)| = |𝜙1 (𝜃)|. Hence:

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
𝜙2
1 (𝜃1)𝜙

2
0 (𝜃) + 𝜙2

1 (𝜃)

𝜙2
0 (𝜃1)𝜙

2
0 (𝜃)

.

From here, using equalities (2.85), we deduce:

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
𝜙2
0 (𝜃1)− sign 𝜃1

𝜙2
0 (𝜃1)

+
𝜙2
0 (𝜃)− sign 𝜃

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

=
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= 𝑐

√︃
1 +

1− sign 𝜃1
𝜙2
0 (𝜃1)

− sign 𝜃

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

.

2. Let 𝜃, 𝜃1 ̸= −1.
a) In the case 𝜃, 𝜃1 > 0 (sign 𝜃 = sign 𝜃1 = 1), according to (2.146), we deliver:

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
1− 1

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

< 𝑐.

b) Similarly, in the cases 𝜃 < 0, 𝜃1 > 0 (sign 𝜃 = −1, sign 𝜃1 = 1) and 𝜃1 < 0 (sign 𝜃1 = −1),
using the equalities (2.85) we, correspondingly, obtain:

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
1 +

1

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

> 𝑐;

‖𝒱 (E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1])‖ = 𝑐

√︃
1 +

2

𝜙2
0 (𝜃1)

− sign 𝜃

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

=

= 𝑐

√︃
1 +

𝜙2
0 (𝜃) + (𝜙2

0 (𝜃)− sign 𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

= 𝑐

√︃
1 +

𝜙2
0 (𝜃) + 𝜙2

1 (𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)

> 𝑐.

Lemma 2.18.6. Suppose, that for elementary generalized Lorentz transforms
E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1,n1] ∈ OT (H, 𝑐) ⟨n,n1⟩ = 0 it is performed the equality:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] = U𝜃′,𝑐 [𝑠
′,n′, 𝐽 ′] ,

where 𝑠′ ∈ {−1, 1}, 𝜃′ ∈ [−1, 1] ∖ {0}, n′ ∈ B1 (H1), 𝐽
′ ∈ U (H1). Then the following statements

are true:

1. sign 𝜃′ = S (𝜃, 𝜃1) ;

2. 𝜙0 (𝜃
′) = |𝜙0 (𝜃)𝜙0 (𝜃1)| ;

3. if 𝜃, 𝜃1 ̸= −1, then 𝑠′ = 𝑠𝑠1sign (𝜙0 (𝜃)𝜙0 (𝜃1)) ;

4. 𝜙1 (𝜃
′) =

√︁
𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1);

If, in addition, 𝜃, 𝜃1 ̸= 1, then:

5. n′ =
𝑠𝜙0 (𝜃)𝜙1 (𝜃1)n1 + 𝜙1 (𝜃)n

𝜙1 (𝜃′)
=
𝑠𝜙0 (𝜃)𝜙1 (𝜃1)n1 + 𝜙1 (𝜃)n√︀
𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1)

;

6. 𝐽 ′n′ =
𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)n+ 𝜙1 (𝜃1)n1√︀

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1)

.

Proof. 1. Suppose, that 𝜃, 𝜃1 ̸= −1. Then, by Lemma 2.18.5, the coordinate trans-
form U𝜃′,𝑐 [𝑠

′,n′, 𝐽 ′] = E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] is v-determined, moreover the inequality
‖𝒱 (U𝜃′,𝑐 [𝑠

′,n′, 𝐽 ′])‖ < 𝑐 is true if and only if 𝜃, 𝜃1 > 0. According to Theorem 2.17.3 and

Corollary 2.17.1, we have ‖𝒱 (U𝜃′,𝑐 [𝑠
′,n′, 𝐽 ′])‖ = 𝑐

⃒⃒⃒
1−𝜃′|𝜃′|
1+𝜃′|𝜃′|

⃒⃒⃒
‖n′‖ = 𝑐

⃒⃒⃒
1−𝜃′|𝜃′|
1+𝜃′|𝜃′|

⃒⃒⃒
. From this we can

see, that the inequality 𝜃′ > 0 is true if and only if ‖𝒱 (U𝜃′,𝑐 [𝑠
′,n′, 𝐽 ′])‖ < 𝑐, that is if and

only if 𝜃, 𝜃1 > 0. In the case 𝜃 = −1 or 𝜃1 = −1, according to Lemma 2.18.5, the coordinate
transform U𝜃′,𝑐 [𝑠

′,n′, 𝐽 ′] is not v-determined. But, by Theorem 2.17.3, this is possible only if
𝜃′ = −1. Thus, in the case 𝜃 = −1 or 𝜃1 = −1 the equality sign 𝜃′ = S (𝜃, 𝜃1) also remains to
be true.
2,3. According to the conditions of Lemma and Theorem 2.17.3, for any w ∈ ℳ (H) it is

performed the equality:
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E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w = U𝜃′,𝑐 [𝑠
′,n′, 𝐽 ′] w =

(︂
𝑠′𝜙0 (𝜃

′) 𝒯 (w)− 𝜙1 (𝜃
′)
⟨n′,w⟩
𝑐

)︂
e0+

+ 𝐽 ′
(︀
𝑐𝜙1 (𝜃

′) 𝒯 (w)n′ − 𝑠′𝜙0 (𝜃
′)X1 [n

′] w +X⊥1 [n′] w
)︀
. (2.149)

Matching the coefficients near the vector e0 in right-hand sides of the equalities (2.139) and
(2.149) we deduce the equality:

𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) 𝒯 (w)−
(︂
𝑠𝜙0 (𝜃)𝜙1 (𝜃1)

⟨n1,w⟩
𝑐

+ 𝜙1 (𝜃)
⟨n,w⟩
𝑐

)︂
=

= 𝑠′𝜙0 (𝜃
′) 𝒯 (w)− 𝜙1 (𝜃

′)
⟨n′,w⟩
𝑐

, w ∈ℳ (H) . (2.150)

Hence, if we substitute the vector w0 = e0 to the last equality, we obtain:

𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) = 𝑠′𝜙0 (𝜃
′) ;

Therefore, the equality (2.150) leads to:

𝑠𝜙0 (𝜃)𝜙1 (𝜃1)
⟨n1,w⟩
𝑐

+ 𝜙1 (𝜃)
⟨n,w⟩
𝑐

= 𝜙1 (𝜃
′)
⟨n′,w⟩
𝑐

, w ∈ℳ (H) ,

that is:

⟨𝑠𝜙0 (𝜃)𝜙1 (𝜃1)n1 + 𝜙1 (𝜃)n,w⟩ = ⟨𝜙1 (𝜃
′)n′,w⟩ , w ∈ℳ (H) .

That is why:

𝑠𝜙0 (𝜃)𝜙1 (𝜃1)n1 + 𝜙1 (𝜃)n = 𝜙1 (𝜃
′)n′.

Thus, we have proved the equalities:

𝑠′𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) = 𝜙0 (𝜃
′)

𝑠𝜙0 (𝜃)𝜙1 (𝜃1)n1 + 𝜙1 (𝜃)n = 𝜙1 (𝜃
′)n′ (2.151)

By conditions of Lemma, 𝜃′ ∈ [−1, 1] ∖ {0}, hence 𝜙0 (𝜃
′) = 1+𝜃′|𝜃′|

2|𝜃′| ≥ 0. Consequently, the

first equality (2.151) stipulates the equality:

𝜙0 (𝜃
′) = |𝜙0 (𝜃

′)| = |𝜙0 (𝜃)𝜙0 (𝜃1)| .

And, taking into account the condition 𝜃, 𝜃1 ̸= −1 (that is 𝜙0 (𝜃)𝜙0 (𝜃1) ̸= 0), we get the
equality:

𝑠′𝑠𝑠1 = sign (𝜙0 (𝜃)𝜙0 (𝜃1)) .

4. Using the equalities (2.85), as well as first and second items of this Lemma, we obtain,
𝜙2
1 (𝜃

′) = 𝜙2
0 (𝜃

′) − sign 𝜃′ = 𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) − S (𝜃, 𝜃1). Since, by conditions of Lemma, 𝜃′ ∈

[−1, 1] ∖ {0}, then 𝜙1 (𝜃
′) = 1−𝜃′|𝜃′|

2|𝜃′| ≥ 0. Hence, 𝜙1 (𝜃
′) =

√︀
𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1).

5. Let 𝜃 ̸= 1 and 𝜃1 ̸= 1. It is easy to verify, that in this case
√︀
𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1) > 0.

So, the five statement of this Lemma follows from its four statement together with the equality
(2.151).
6. Substituting the vector w = e0 into the equalities (2.139), (2.149) and taking into account

the equalities ⟨n, e0⟩ = ⟨n1, e0⟩ = 0 and X1 [n] e0 = X1 [n] e0 = 0, we receive:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] e0 = 𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) e0 + 𝑐𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)n+ 𝑐𝜙1 (𝜃1)n1; (2.152)

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] e0 =

(︂
𝑠′𝜙0 (𝜃

′) 𝒯 (e0)− 𝜙1 (𝜃
′)
⟨n′, e0⟩

𝑐

)︂
e0+
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+ 𝐽 ′ (𝑐𝜙1 (𝜃
′) 𝒯 (e0)n

′ − 𝑠′𝜙0 (𝜃
′)X1 [n

′] e0+

+X⊥1 [n′] e0
)︀

= 𝑠′𝜙0 (𝜃
′) e0 + 𝑐𝜙1 (𝜃

′) 𝐽 ′n′ (2.153)

Matching the right-hand sides of the equalities (2.152) we (2.153) deduce:

𝑠′𝜙0 (𝜃
′) e0 + 𝑐𝜙1 (𝜃

′) 𝐽 ′n′ = 𝑠𝑠1𝜙0 (𝜃)𝜙0 (𝜃1) e0 + 𝑐𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)n+ 𝑐𝜙1 (𝜃1)n1.

Hence, taking into account the first equality of (2.151) and the statement 4 of this Lemma, we
have:

𝑐𝜙1 (𝜃
′) 𝐽 ′n′ = 𝑐𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)n+ 𝑐𝜙1 (𝜃1)n1;

𝐽 ′n′ =
𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)n+ 𝜙1 (𝜃1)n1

𝜙1 (𝜃′)
=
𝑠1𝜙1 (𝜃)𝜙0 (𝜃1)n+ 𝜙1 (𝜃1)n1√︀

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1)

.

Theorem 2.18.1. Let E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1,n1] ∈ OT (H, 𝑐) be elementary generalized Lorentz
transforms with orthogonal directing vectors (⟨n,n1⟩ = 0). The product of the transforms
E𝜃,𝑐 [𝑠,n] and E𝜃1,𝑐 [𝑠1,n1] belongs to the class OT (H, 𝑐) if and only if one of the following
conditions is satisfied:

1) 𝜃, 𝜃1 > 0, 2) 𝜃 = 1 or 𝜃1 = 1, 3) 𝜃 = 𝜃1 = −1.

Proof. The proof of Theorem will be divided into the following cases.

Case 1: 𝜃, 𝜃1 > 0. In this case, according to Theorem 2.17.3, ‖𝒱 (E𝜃,𝑐 [𝑠,n])‖ = 𝑐
⃒⃒⃒
1−𝜃|𝜃|
1+𝜃|𝜃|

⃒⃒⃒
< 𝑐

and 𝒱 (E𝜃1,𝑐 [𝑠1,n1]) < 𝑐. Hence, by Lemma 2.17.5, E𝜃,𝑐 [𝑠,n] ,E𝜃1,𝑐 [𝑠1,n1] ∈ O (H, 𝑐).
Since (in accordance with Assertion 2.17.1) the set of operators O (H, 𝑐) is a group, then
E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] ∈ O (H, 𝑐) ⊆ OT (H, 𝑐).
Case 2: 𝜃 = 1 or 𝜃1 = 1. Suppose, that 𝜃 = 1. Then the coordinate transform E𝜃,𝑐 [𝑠,n] is

represented in the form:

E𝜃,𝑐 [𝑠,n] w = E1,𝑐 [𝑠,n] w = 𝑠𝒯 (w) e0 − 𝑠X1 [n] w +X⊥1 [n] w =

= 𝑠
(︀
𝒯 (w) e0 −X1 [n] w + 𝑠X⊥1 [n] w

)︀
=

= 𝑠
(︀
𝒯 (w) e0 + I−1,𝑠 [n]

(︀
X1 [n] w +X⊥1 [n] w

)︀)︀
.

Hence, using the formula (2.38), we get:

E𝜃,𝑐 [𝑠,n] w = 𝑠 (I−1,𝑠 [n])∼
(︀
𝒯 (w) e0 +X1 [n] w +X⊥1 [n] w

)︀
= 𝑠 (I−1,𝑠 [n])∼w.

Therefore, E1,𝑐 [𝑠,n] = 𝑠 (I−1,𝑠 [n])∼. Similarly we can deduce, E1,𝑐 [𝑠,n1] = 𝑠 (I−1,𝑠 [n1])
∼.

According to (2.116) and (2.125), we have ((I−1,𝑠 [n1])
∼)2 =

(︀
(I−1,𝑠 [n1])

2)︀∼ = ̃︀I1 = I. That is
why, using Lemma 2.18.1, we obtain:

E𝜃,𝑐 [𝑠,n] = 𝑠 (I−1,𝑠 [n])∼ = 𝑠 ((I−1,𝑠 [n])∼ (I−1,𝑠 [n1])
∼) (I−1,𝑠 [n1])

∼ =

= (I−1,𝑠 [n] I−1,𝑠 [n1])
∼E1,𝑐 [𝑠,n1] = U1,𝑐 [𝑠,n1, I−1,𝑠 [n] I−1,𝑠 [n1]] .

Thus, in the case 𝜃 = 1 transforms E𝜃,𝑐 [𝑠,n] and E𝜃1,𝑐 [𝑠1,n1] have (in reality) parallel directions
of motion. Hence, by Assertion 2.18.1 we have:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] = U1,𝑐 [𝑠, I1n1, I−1,𝑠 [n] I−1,𝑠 [n1]] U𝜃1,𝑐 [𝑠1,n1, I1] ∈ OT (H, 𝑐) .

Similarly for 𝜃1 = 1 we have E𝜃1,𝑐 [𝑠1,n1] = U1,𝑐 [𝑠1,n, I−1,𝑠1 [n1] I−1,𝑠1 [n]]. Since ⟨n,n1⟩ = 0,
then I−1,𝑠1 [n1] I−1,𝑠1 [n]n = −𝑠1n. Consequently, in accordance with Assertion 2.18.1, we get:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] =

= U𝜃,𝑐 [𝑠,−𝑠1I−1,𝑠1 [n1] I−1,𝑠1 [n]n, I1] U1,𝑐 [𝑠1,n, I−1,𝑠1 [n1] I−1,𝑠1 [n]] ∈ OT (H, 𝑐) .
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Case 3: 𝜃 = 𝜃1 = −1. Since 𝜙0 (−1) = 0, 𝜙1 (−1) = 1, then if this case the operators
E𝜃,𝑐 [𝑠,n] and E𝜃1,𝑐 [𝑠1,n1] may be represented in the form:

E𝜃,𝑐 [𝑠,n] w = −⟨n,w⟩
𝑐

e0 + 𝑐𝒯 (w)n+X⊥1 [n] w,

E𝜃1,𝑐 [𝑠1,n1] w = −⟨n1,w⟩
𝑐

e0 + 𝑐𝒯 (w)n1 +X⊥1 [n1] w.

Hence, taking into account, that ⟨n,n1⟩ = 0, for arbitrary vector w ∈ℳ (H) we receive:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w =

= −

⟨
n,− ⟨n1,w⟩

𝑐
e0 + 𝑐𝒯 (w)n1 +X⊥1 [n1] w

⟩
𝑐

e0+

+ 𝑐𝒯
(︂
−⟨n1,w⟩

𝑐
e0 + 𝑐𝒯 (w)n1 +X⊥1 [n1] w

)︂
n+

+X⊥1 [n]

(︂
−⟨n1,w⟩

𝑐
e0 + 𝑐𝒯 (w)n1 +X⊥1 [n1] w

)︂
=

= −
⟨︀
n,X⊥1 [n1] w

⟩︀
𝑐

e0 − 𝑐
⟨n1,w⟩
𝑐

n+X⊥1 [n]
(︀
𝑐𝒯 (w)n1 +X⊥1 [n1] w

)︀
=

= −
⟨︀
X⊥1 [n1]n,w

⟩︀
𝑐

e0 − ⟨n1,w⟩n+X⊥1 [n]
(︀
𝑐𝒯 (w)n1 +X⊥1 [n1] w

)︀
. (2.154)

Thus, using (2.21), we have:

X⊥1 [n1]n = Xn−X1 [n1]n = n− ⟨n1,n⟩n1 = n,

X⊥1 [n]n1 = n1.

Substituting the last equalities into (2.154), we obtain:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w = −⟨n,w⟩
𝑐

e0 + 𝑐𝒯 (w)n1 − ⟨n1,w⟩n+

+X⊥1 [n]X⊥1 [n1] w (w ∈ℳ (H)). (2.155)

(emphasize that, since ⟨n,n1⟩ = 0, then X1 [n]X1 [n1] = O, and therefore, according to (2.21),
operators X⊥1 [n] = X−X1 [n] and X⊥1 [n1] = X−X1 [n1] are commuting).

Denote:

𝒥n,n1𝑥 = ⟨n, 𝑥⟩n1 − ⟨n1, 𝑥⟩n+X⊥1 [n1]X
⊥
1 [n]𝑥, 𝑥 ∈ H1.

By means of the operator 𝒥n,n1 , using correlations (2.21), we can rewrite the equality (2.155)
as follows:

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] w = −⟨n,w⟩
𝑐

e0 + 𝒥n,n1

(︀
𝑐𝒯 (w)n+X⊥1 [n] w

)︀
(w ∈ℳ (H)). (2.156)

Now, we are going to prove, that 𝒥n,n1 ∈ U (H1). Since ⟨n,n1⟩ = 0 and operators X⊥1 [n],
X⊥1 [n1] are commuting, then for any 𝑥 ∈ H1 vectors n,n1 and X⊥1 [n1]X

⊥
1 [n]𝑥 are pairwise

orthogonal. That is why, by definition of operator 𝒥n,n1 , for all 𝑥 ∈ H1 we have the equality:

‖𝒥n,n1𝑥‖
2 = ⟨n, 𝑥⟩2 + ⟨n1, 𝑥⟩2 +

⃦⃦
X⊥1 [n1]X

⊥
1 [n]𝑥

⃦⃦2
.

According to (2.21), we have:

X⊥1 [n]X⊥1 [n1] = (X−X1 [n]) (X−X1 [n1]) =
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= X−XX1 [n1]−X1 [n]X+X1 [n]X1 [n1] = X−X1 [n1]−X1 [n] . (2.157)

Hence, for an arbitrary ∀𝑥 ∈ H1 we get:

‖𝒥n,n1𝑥‖
2 = ⟨n, 𝑥⟩2 + ⟨n1, 𝑥⟩2 +

⃦⃦
X⊥1 [n1]X

⊥
1 [n]𝑥

⃦⃦2
=

=
⃦⃦
⟨n, 𝑥⟩n+ ⟨n1, 𝑥⟩n1 +X⊥1 [n1]X

⊥
1 [n]𝑥

⃦⃦2
=

=
⃦⃦
X1 [n]𝑥+X1 [n1]𝑥+X⊥1 [n1]X

⊥
1 [n]𝑥

⃦⃦2
=

= ‖X1 [n]𝑥+X1 [n1]𝑥+ (X−X1 [n1]−X1 [n])𝑥‖2 = ‖X𝑥‖2 = ‖𝑥‖2 .

Therefore, the operator 𝒥n,n1 is isometric. Using the definition of the operator 𝒥n,n1 , commuta-
tion of the operators X⊥1 [n] and X⊥1 [n1] as well as the equality (2.157), it is not hard to verify,
that 𝒥n,n1𝒥n1,n𝑥 = 𝒥n1,n𝒥n,n1𝑥 = 𝑥 (𝑥 ∈ H1). Consequently the operator 𝒥n,n1 has the inverse
operator 𝒥n1,n on H1. Thus, 𝒥n,n1 ∈ U (H1).

That is why, according to the equality (2.156), we have, E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] =
U−1,𝑐 [1,n,𝒥n,n1 ] ∈ OT (H, 𝑐).
Case 4: 𝜃1 < 0, 𝜃 /∈ {−1, 1}. Let us assume, that in this case the coordinate transform

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] belongs to the class OT (H, 𝑐). Then, by Theorem 2.17.3, there exist
numbers 𝑠′ ∈ {−1, 1}, 𝜃′ ∈ [−1, 1] ∖ {0}, vector n′ ∈ B1 (H1) and operator 𝐽 ′ ∈ U (H1) such,
that E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] = U𝜃′,𝑐 [𝑠

′,n′, 𝐽 ′]. From here, by Lemma 2.18.6, we have n′ =
𝑠𝜙0(𝜃)𝜙1(𝜃1)n1+𝜙1(𝜃)n√
𝜙2
0(𝜃)𝜙

2
0(𝜃1)−S(𝜃,𝜃1)

. Consequently, taking into account, that ⟨n,n1⟩ = 0 and applying (2.85),

we obtain:

‖n′‖ =

√︃
𝜙2
0 (𝜃)𝜙

2
1 (𝜃1) + 𝜙2

1 (𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1)

=

=

√︃
𝜙2
0 (𝜃) (𝜙

2
0 (𝜃1)− sign 𝜃1) + (𝜙2

0 (𝜃)− sign 𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1)

=

=

√︃
𝜙2
0 (𝜃) (𝜙

2
0 (𝜃1) + 1) + (𝜙2

0 (𝜃)− sign 𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

=

√︃
1 +

2𝜙2
0 (𝜃)− 1− sign 𝜃

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

. (2.158)

Since 𝜃 /∈ {−1, 1}, then 𝜙0 (𝜃) =
1+𝜃|𝜃|
2|𝜃| ̸= 0, 𝜙1 (𝜃) =

1−𝜃|𝜃|
2|𝜃| ̸= 0. Hence, in the case 𝜃 < 0

from the equality (2.158) we get:

‖n′‖ =

√︃
1 +

2𝜙2
0 (𝜃)− 1− (−1)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

=

√︃
1 +

2𝜙2
0 (𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

> 1,

and in the case 𝜃 > 0 we receive:

‖n′‖ =

√︃
1 +

2𝜙2
0 (𝜃)− 2

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

=

√︃
1 +

2𝜙2
1 (𝜃)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

> 1.

Thus, in the both cases we have, that ‖n′‖ > 1, which contradicts to the condition n′ ∈ B1 (H1).
The last contradiction proves, that the product of the operators E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] can not
belong to OT (H, 𝑐).
Case 5: 𝜃 < 0, 𝜃1 /∈ {−1, 1}. Let us assume, that in this case the coordinate transform

E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] belongs to the class OT (H, 𝑐). Then, by Theorem 2.17.3, there exist
numbers 𝑠′ ∈ {−1, 1}, 𝜃′ ∈ [−1, 1] ∖ {0}, vector n′ ∈ B1 (H1) and operator 𝐽 ′ ∈ U (H1) such,
that E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] = U𝜃′,𝑐 [𝑠

′,n′, 𝐽 ′]. From here, by Lemma 2.18.6, we have, 𝐽 ′n′ =
𝑠1𝜙1(𝜃)𝜙0(𝜃1)n+𝜙1(𝜃1)n1√

𝜙2
0(𝜃)𝜙

2
0(𝜃1)−S(𝜃,𝜃1)

. Consequently, taking into account, that ⟨n,n1⟩ = 0 and applying (2.85),
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similarly to the previous case we obtain:

‖𝐽 ′n′‖ =

√︃
𝜙2
0 (𝜃1)𝜙

2
1 (𝜃) + 𝜙2

1 (𝜃1)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1)−S (𝜃, 𝜃1)

=

√︃
1 +

2𝜙2
0 (𝜃1)− 1− sign 𝜃1
𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

. (2.159)

Since 𝜃1 /∈ {−1, 1}, then 𝜙0 (𝜃1) ̸= 0, 𝜙1 (𝜃1) ̸= 0. Hence in the case 𝜃1 < 0 from the equality
(2.159) we get:

‖𝐽 ′n′‖ =

√︃
1 +

2𝜙2
0 (𝜃1)− 1− (−1)
𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

=

√︃
1 +

2𝜙2
0 (𝜃1)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

> 1,

and in the case 𝜃1 > 0 we receive:

‖𝐽 ′n′‖ =

√︃
1 +

2𝜙2
0 (𝜃1)− 2

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

=

√︃
1 +

2𝜙2
1 (𝜃1)

𝜙2
0 (𝜃)𝜙

2
0 (𝜃1) + 1

> 1.

Thus, in the both cases we have, that ‖𝐽 ′n′‖ > 1. But, since 𝐽 ′ is unitary operator and
n′ ∈ B1 (H1), the equality ‖𝐽 ′n′‖ = 1 must hold. The last contradiction proves, that in this
case we have, that E𝜃,𝑐 [𝑠,n]E𝜃1,𝑐 [𝑠1,n1] /∈ OT (H, 𝑐) also.

The next corollary immediately follows from Theorem 2.18.1.

Corollary 2.18.7. Let H be a real Hilbert space such, that dim (H) > 1. Then the class of
operators OT (H, 𝑐) does not form a group of operators over the spaceℳ (H).

Proof. Indeed, in the case dim (H) > 1 there exist vectors n,n1 ∈ B1 (H1) such, that
⟨n,n1⟩ = 0.

Main results of this Section were published in [7].

19 Kinematic Sets, Generated by Special Relativity and its Tachyon

Extensions

Let (H, ‖·‖ , ⟨·, ·⟩) be a Hilbert space over the Real field. Space H generates the coordinate

space ̂︀H = (H, 𝒯H,LH, 𝜌H, ‖·‖ , ⟨·, ·⟩), where 𝜌H and 𝒯H are metrics and topology, generated by
the norm ‖·‖ on the space H, as well as LH is the natural linear structure of the space H.

Recall that in Subsection 17.1 (page 101) we have denoted by ℒ (H) the space of (homoge-
neous) linear continuous operators over the space H. Denote by ℒ× (H) the space of all operators
of affine transformations over the space H, that is ℒ× (H) =

{︀
A[a] | A ∈ ℒ (H) , a ∈ H

}︀
, where

A[a]𝑥 = A𝑥+ a, 𝑥 ∈ H.
Denote via Pk (H) the set of all operators S ∈ ℒ× (ℳ (H)), which has the continuous inverse

operator S−1 ∈ ℒ× (ℳ (H)). Operators S ∈ Pk (H) will be named as (affine) coordinate
transform operators .

Let, ℬ be any base changeable set such, that Bs(ℬ) ⊆ H = Zk
(︁̂︀H)︁ and Tm(ℬ) = (R,≤),

where ≤ is the standard order in the field of real numbers R { 16 }. Then Bs(ℬ) ⊆ R × H =

ℳ (H). Any set S ⊆ Pk (H) is the transforming set of bijections relatively the ℬ on H = Zk
(︁̂︀H)︁

(in the sense of Example 1.11.2). Therefore, we can put:

Kim (S,ℬ; H) := Kim
(︁
S,ℬ, ̂︀H)︁ ,

16 Such base changeable set ℬ exists, because, for example, we may put ℬ := 𝒜𝑡 (R,ℛ), whereℛ is a system of abstract trajectories
from R to a set M ⊆ H.
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where the kinematic set Kim
(︁
S,ℬ, ̂︀H)︁ is defined in (2.14). Now, we deduce the following

corollary from Theorem 2.16.2.

Corollary 2.19.1. The kinematic set Kim (S,ℬ; H) allows universal coordinate transform.

In Section 17 we have defined the operator of kind W𝜆,𝑐 [𝑠,n, 𝐽 ] for any fixed values 𝑐 ∈
(0,∞), 𝜆 ∈ [0,∞] ∖ {𝑐}, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1) (see formula (2.79)). Now we
extend definition of this operator to the case 𝑐 =∞. Namely, in this case we put:

W𝜆,∞ [𝑠,n, 𝐽 ] w := 𝑠𝒯 (w)e0 + 𝐽
(︀
(𝜆𝒯 (w)− 𝑠 ⟨n,w⟩)n+X⊥1 [n] w

)︀
(∀w ∈ℳ (H)) ,

where 𝜆 ∈ [0,∞). Thus, for any fixed values 𝑐 ∈ (0,∞], 𝜆 ∈ [0,∞] ∖ {𝑐}, 𝑠 ∈ {−1, 1},
𝐽 ∈ U (H1), n ∈ B1 (H1) and w ∈ℳ (H) we have:

W𝜆,𝑐 [𝑠,n, 𝐽 ] w =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑠𝒯 (w)− 𝜆

𝑐2
⟨n,w⟩)√︂⃒⃒⃒

1−𝜆2
𝑐2

⃒⃒⃒ e0 + 𝐽

⎛⎝𝜆𝒯 (w)−𝑠⟨n,w⟩√︂⃒⃒⃒
1−𝜆2

𝑐2

⃒⃒⃒ n+X⊥1 [n] w

⎞⎠ , 𝜆 <∞, 𝑐 <∞;

− ⟨n,w⟩
𝑐

e0 + 𝐽
(︀
𝑐𝒯 (w)n+X⊥1 [n] w

)︀
, 𝜆 =∞, 𝑐 <∞;

𝑠𝒯 (w)e0 + 𝐽
(︀
(𝜆𝒯 (w)− 𝑠 ⟨n,w⟩)n+X⊥1 [n] w

)︀
, 𝜆 <∞, 𝑐 =∞.

(2.160)

In the case H = R3 operators of kind W𝜆,∞ [𝑠,n, 𝐽 ] (𝜆 < ∞) become Galilean transforms,
“started” from the origin at zero time point. It is not difficult prove, that W𝜆,∞ [𝑠,n, 𝐽 ] =
lim𝑐→∞W𝜆,𝑐 [𝑠,n, 𝐽 ], where the convergence is understood in the sense of uniform operator
topology.

Assertion 2.19.1. For any fixed 𝜆 ∈ [0,∞), 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1) operator
W𝜆,∞ [𝑠,n, 𝐽 ] is a linear coordinate transform operator (that is W𝜆,∞ [𝑠,n, 𝐽 ] has the inverse

operator W𝜆,∞ [𝑠,n, 𝐽 ]−1 ∈ ℒ (ℳ (H))). Moreover:

W𝜆,∞ [𝑠,n, 𝐽 ]−1 = W𝜆,∞
[︀
𝑠, 𝐽n, 𝐽−1

]︀
Proof. It is easy to verify, that W𝜆,∞ [𝑠,n, 𝐽 ] ∈ ℒ (ℳ (H)). Now, we are going to prove the
equality:

W𝜆,∞ [𝑠,n, 𝐽 ]W𝜆,∞
[︀
𝑠, 𝐽n, 𝐽−1

]︀
= I, (2.161)

where I = Iℳ(H) is the identity operator on the spaceℳ (H). Chose any w ∈ℳ (H). According
to (2.160) we have:

W𝜆,∞ [𝑠,n, 𝐽 ]W𝜆,∞
[︀
𝑠, 𝐽n, 𝐽−1

]︀
w = W𝜆,∞ [𝑠,n, 𝐽 ] ̃︀w, where (2.162)̃︀w = W𝜆,∞

[︀
𝑠, 𝐽n, 𝐽−1

]︀
w = 𝑠𝒯 (w)e0+

+ 𝐽−1
(︀
(𝜆𝒯 (w)− 𝑠 ⟨𝐽n,w⟩) 𝐽n+X⊥1 [𝐽n] w

)︀
.

Next, applying (2.17), (2.20) and taking into account that 𝐽 is the unitary operator on the
subspace H1 ⊆ℳ (H), we obtain:

𝒯 (̃︀w) = 𝑠𝒯 (w);
⟨n, ̃︀w⟩ = (𝜆𝒯 (w)− 𝑠 ⟨𝐽n,w⟩) ⟨n,n⟩+

⟨︀
n, 𝐽−1X⊥1 [𝐽n] w

⟩︀
=

= (𝜆𝒯 (w)− 𝑠 ⟨𝐽n,w⟩) +
⟨︀
𝐽n,X⊥1 [𝐽n] w

⟩︀
= (𝜆𝒯 (w)− 𝑠 ⟨𝐽n,w⟩) ;

X⊥1 [n] ̃︀w = (X−X1 [n]) ̃︀w =

= 𝐽−1
(︀
(𝜆𝒯 (w)− 𝑠 ⟨𝐽n,w⟩) 𝐽n+X⊥1 [𝐽n] w

)︀
− ⟨n, ̃︀w⟩n =

= 𝐽−1
(︀
⟨n, ̃︀w⟩ 𝐽n+X⊥1 [𝐽n] w

)︀
− ⟨n, ̃︀w⟩n = 𝐽−1X⊥1 [𝐽n] w.
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Herefrom, using (2.162), (2.160) and (2.21) we deduce:

W𝜆,∞ [𝑠,n, 𝐽 ]W𝜆,∞
[︀
𝑠, 𝐽n, 𝐽−1

]︀
w =

= 𝑠𝒯 (̃︀w)e0 + 𝐽
(︀
(𝜆𝒯 (̃︀w)− 𝑠 ⟨n, ̃︀w⟩)n+X⊥1 [n] ̃︀w)︀ = 𝑠 (𝑠𝒯 (w)) e0+

+ 𝐽
(︀
(𝜆 (𝑠𝒯 (w))− 𝑠 (𝜆𝒯 (w)− 𝑠 ⟨𝐽n,w⟩))n+ 𝐽−1X⊥1 [𝐽n] w

)︀
=

= 𝒯 (w)e0 + ⟨𝐽n,w⟩ 𝐽n+X⊥1 [𝐽n] w = ̂︀Tw +X1 [𝐽n] w +X⊥1 [𝐽n] w = w.

Equality (2.161) is proved. Applying the equality (2.161) to the operator W𝜆,∞ [𝑠, 𝐽n, 𝐽−1],

we obtain the equality: W𝜆,∞ [𝑠, 𝐽n, 𝐽−1]W𝜆,∞ [𝑠,n, 𝐽 ] = I. Thus, W𝜆,∞ [𝑠,n, 𝐽 ]−1 =
W𝜆,∞ [𝑠, 𝐽n, 𝐽−1] ∈ ℒ (ℳ (H)).

Let 𝐽 ∈ U (H1), 𝑠 ∈ {−1, 1}, n ∈ B1 (H1). Denote:

𝐽(𝑠,n) := 𝐽 I−𝑠,1 [n] , (2.163)

where operator I−𝑠,1 [n] is defined by (2.125). Using operator (2.163) we rewrite representation
(2.160) of operator W𝜆,∞ [𝑠,n, 𝐽 ] in more convenient (for some considerations) form. Applying

the equality (I−𝑠,1 [n])2 = I as well as the equalities (2.160), (2.125) and (2.20) for any 𝜆 ∈
[0,∞), 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1) and w ∈ℳ (H) we obtain:

W𝜆,∞ [𝑠,n, 𝐽 ] w = 𝑠𝒯 (w)e0 + 𝐽(𝑠,n)I−𝑠,1 [n]
(︀
(𝜆𝒯 (w)− 𝑠 ⟨n,w⟩)n+X⊥1 [n] w

)︀
=

= 𝑠𝒯 (w)e0 + 𝐽(𝑠,n)
(︀
(⟨n,w⟩ − 𝜆𝑠𝒯 (w))n+X⊥1 [n] w

)︀
=

= 𝑠𝒯 (w)e0 + 𝐽(𝑠,n) ((⟨n,w⟩ − 𝜆𝑠𝒯 (w))n+Xw − ⟨n,w⟩n) =
= 𝑠𝒯 (w)e0 + 𝐽(𝑠,n) (Xw − 𝜆𝑠𝒯 (w)n) .

Hence, for any 𝜆 ∈ [0,∞), 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1) and w ∈ℳ (H) we have:

W𝜆,∞ [𝑠,n, 𝐽 ] w = 𝑠𝒯 (w)e0 + 𝐽(𝑠,n) (Xw − 𝜆𝑠𝒯 (w)n) ; (2.164)

𝒯 (W𝜆,∞ [𝑠,n, 𝐽 ] w) = 𝑠𝒯 (w) ; (2.165)

XW𝜆,∞ [𝑠,n, 𝐽 ] w = 𝐽(𝑠,n) (Xw − 𝜆𝑠𝒯 (w)n) . (2.166)

Denote by O (H,∞) the following class of operators:

O (H,∞) := {W𝜆,∞ [𝑠,n, 𝐽 ] | 𝜆 ∈ [0,∞), 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1) , n ∈ B1 (H1)} .

Using (2.164), (2.165), (2.166) for any operators 𝐿 = W𝜆,∞ [𝑠,n, 𝐽 ] ∈ O (H,∞), 𝐿1 =
W𝜆1,∞ [𝑠1,n1, 𝐽1] ∈ O (H,∞) (where 𝜆, 𝜆1 ∈ [0,∞), 𝑠, 𝑠1 ∈ {−1, 1}, 𝐽, 𝐽1 ∈ U (H1), n,n1 ∈
B1 (H1)) and arbitrary w ∈ℳ (H) we get:

𝐿1𝐿w = W𝜆1,∞ [𝑠1,n1, 𝐽1]W𝜆,∞ [𝑠,n, 𝐽 ] w =

= 𝑠1 (𝑠𝒯 (w)) e0 + (𝐽1)(𝑠1,n1)

(︀
𝐽(𝑠,n) (Xw − 𝜆𝑠𝒯 (w)n)− 𝜆1𝑠1 (𝑠𝒯 (w))n1

)︀
=

= 𝑠𝑠1𝒯 (w) e0 + (𝐽1)(𝑠1,n1)
𝐽(𝑠,n)

(︁
Xw − 𝜆𝑠𝒯 (w)n− 𝜆1𝑠1𝑠𝒯 (w) 𝐽−1(𝑠,n)n1

)︁
=

= 𝑠𝑠1𝒯 (w) e0 + (𝐽1)(𝑠1,n1)
𝐽(𝑠,n)

(︁
Xw − 𝑠𝑠1𝒯 (w)

(︁
𝜆𝑠1n− 𝜆1𝐽−1(𝑠,n)n1

)︁)︁
=

= 𝑠𝑠1𝒯 (w) e0 + (𝐽2)(𝑠𝑠1,n2)
(Xw − 𝜆2𝑠𝑠1𝒯 (w)n2) = W𝜆2,∞ [𝑠𝑠1,n2, 𝐽2] w,

where

𝜆2 =
⃦⃦⃦
𝜆𝑠1n− 𝜆1𝐽−1(𝑠,n)n1

⃦⃦⃦
; n2 =

{︃
𝜆𝑠1n−𝜆1𝐽−1

(𝑠,n)
n1

𝜆2
, 𝜆2 ̸= 0

n, 𝜆2 = 0
; 𝐽2 = (𝐽1)(𝑠1,n1)

𝐽(𝑠,n)I−𝑠𝑠1,1 [n2] .
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It is easy to see, that 𝜆2 ∈ [0,∞), n2 ∈ B1 (H1) and 𝐽2 ∈ U (H1). That is why the product of
operators W𝜆1,∞ [𝑠1,n1, 𝐽1]W𝜆,∞ [𝑠,n, 𝐽 ] may be represented in the form:

W𝜆1,∞ [𝑠1,n1, 𝐽1]W𝜆,∞ [𝑠,n, 𝐽 ] = W𝜆2,∞ [𝑠𝑠1,n2, 𝐽2] , (2.167)

where 𝜆2 ∈ [0,∞), 𝑠𝑠1 ∈ {−1, 1}, n2 ∈ B1 (H1), 𝐽2 ∈ U (H1).
Thus we have seen, that for any operators 𝐿1, 𝐿 ∈ O (H,∞) the operator 𝐿1𝐿 belongs to

O (H,∞). The last result togrther with Assertion 2.19.1 leads to the following conclusion:

Corollary 2.19.2. The set of operators O (H,∞) is a group of operators over the Minkowski
spaceℳ (H) over the Hilbert space H.

By analogy with (2.102) we may introduce the class of operators O+ (H,∞) (in the case,
where the velocity of light is equal to infinity):

O+ (H,∞) = {W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ O (H,∞) | 𝑠 = 1} .
Applying Assertion 2.19.1 and formula (2.167) it is easy to obtain the following corollary.

Corollary 2.19.3. The set of operators O+ (H,∞) is a group of operators overℳ (H).

Chose any fixed values 𝑐 ∈ (0,∞], 𝜆 ∈ [0,∞] ∖ {𝑐}, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1)
and a ∈ℳ (H). Introduce the following operator:

W𝜆,𝑐 [𝑠,n, 𝐽 ; a]w := W𝜆,𝑐 [𝑠,n, 𝐽 ] (w + a). (2.168)

Corollary 2.19.4. Let 𝑐 ∈ (0,∞], 𝜆 ∈ [0,∞] ∖ {𝑐}, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1), and
a ∈ℳ (H). Then:

W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ∈ Pk (H) .

Proof. It is sufficient to prove, that for 𝑐 ∈ (0,∞], 𝜆 ∈ [0,∞] ∖ {𝑐}, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1)
and n ∈ B1 (H1) the operator W𝜆,𝑐 [𝑠,n, 𝐽 ] has the continuous inverse W𝜆,𝑐 [𝑠,n, 𝐽 ]

−1 ∈
ℒ (ℳ (H)), because the existence of inverse operator W𝜆,𝑐 [𝑠,n, 𝐽 ]

−1 ∈ ℒ (ℳ (H)) leads to the

existence of operator W𝜆,𝑐 [𝑠,n, 𝐽 ; a]
−1 ∈ ℒ× (ℳ (H)) (for any a ∈ℳ (H)) in accordance with

the formula:

W𝜆,𝑐 [𝑠,n, 𝐽 ; a]
−1w = W𝜆,𝑐 [𝑠,n, 𝐽 ]

−1w − a (∀w ∈ℳ (H)) .

For the case 𝑐 < ∞ the highlighted statement had been proved in Section 18 (see Corol-
lary 2.18.3). While in the case 𝑐 =∞ this statement was proved in Assertion 2.19.1.

For 0 < 𝑐 ≤ ∞ we introduce the following classes of (affine) coordinate transform operators:

PT (H, 𝑐) := {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] | 𝑠 ∈ {−1, 1} , 𝜆 ∈ [0,∞] ∖ {𝑐},
n ∈ B1 (H1) , 𝐽 ∈ U (H1) , a ∈ℳ (H)} ;

PT+ (H, 𝑐) := {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ∈ PT (H, 𝑐) | 𝑠 = 1} ;
P (H, 𝑐) := {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ∈ PT (H, 𝑐) | 𝜆 < 𝑐} ;

P+ (H, 𝑐) := {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ∈ P (H, 𝑐) | 𝑠 = 1} .
(It is apparently, that PT (H,∞) = P (H,∞), PT+ (H,∞) = P+ (H,∞)). It is not hard to
see, that:

PT (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] |W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT (H, 𝑐) , a ∈ℳ (H)} ;
PT+ (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] |W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ OT+ (H, 𝑐) , a ∈ℳ (H)} ;

P (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] |W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ O (H, 𝑐) , a ∈ℳ (H)} ;
P+ (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] |W𝜆,𝑐 [𝑠,n, 𝐽 ] ∈ O+ (H, 𝑐) , a ∈ℳ (H)} .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.169)

Applying representations (2.169) for classes of operators P (H, 𝑐) and P+ (H, 𝑐) as well as Asser-
tion 2.17.1, Assertion 2.17.6, Corollary 2.19.2, Corollary 2.19.3 and formula (2.168), we obtain
the following conclusion:
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Corollary 2.19.5. For arbitrary 𝑐 ∈ (0,∞] classes of operators P (H, 𝑐) and P+ (H, 𝑐) are
groups of operators in the spaceℳ (H).
(Note, that P (H, 𝑐) ,P+ (H, 𝑐) ⊆ ℒ× (ℳ (H)).)

Remark 2.19.1. In the case H = R3, 𝑐 < ∞ the group of operators P+ (H, 𝑐) coincides with
the famous Poincare group (for definition of Poincare group see, for example [61, 62]). In the
case H = R3, 𝑐 = ∞ the group of operators P+ (H,∞) coincides with the Galilean group (for
definition of Galilean group see, for example [61–63]).

Also applying representations (2.169) for classes of operators PT (H, 𝑐) and PT+ (H, 𝑐) as
well as Corollary 2.18.5, Corollary 2.18.7 and formula (2.168), we deduce the following conclu-
sion:

Corollary 2.19.6. For arbitrary 𝑐 ∈ (0,∞) the following assertions are true:

1. Class of operators PT+ (H, 𝑐) is not group of operators in the spaceℳ (H);

2. Class PT (H, 𝑐) is not group of operators in the spaceℳ (H) in the case dim (H) > 1.

Proof. Indeed, if we assume, that PT+ (H, 𝑐) is group of operators overℳ (H), then the set of
operators:

OT+ (H, 𝑐) = {W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ∈ PT+ (H, 𝑐) | a = 0}
will be subgroup of it, which is impossible, according to Corollary 2.18.5. Thus, the first item
of Corollary has been proved. The proof of the second item is similar.

Using the introduced above classes of operators, we may define the following kinematic sets:

KPT0 (H,ℬ, 𝑐) := Kim (PT (H, 𝑐) ,ℬ; H) ;
KPT (H,ℬ, 𝑐) := Kim (PT+ (H, 𝑐) ,ℬ; H) ;
KP0 (H,ℬ, 𝑐) := Kim (P (H, 𝑐) ,ℬ; H) ;
KP (H,ℬ, 𝑐) := Kim (P+ (H, 𝑐) ,ℬ; H) .

In the case dim(H) = 3, 𝑐 < ∞ the kinematic set KP (H,ℬ, 𝑐) represents the simplest
mathematically strict model of the kinematics of special relativity theory in inertial frames of
reference. Kinematic set KP0 (H,ℬ, 𝑐) is constructed on the basis of general Lorentz-Poincare
group, and it includes apart from usual reference frames (with positive direction of time),
which have understandable physical interpretation, also reference frames with negative direc-
tion of time. Kinematic sets KPT (H,ℬ, 𝑐) and KPT0 (H,ℬ, 𝑐) include apart from standard
(“tardyon”) reference frames also “tachyon” reference frames, which are moving relatively the
“tardyon” reference frames with velocity, greater than the velocity of light 𝑐. Kinematic set
KP (H,ℬ,∞) = KPT (H,ℬ,∞) in the case dim(H) = 3, 𝑐 =∞ represents the mathematically
strict model of the Galilean kinematics in the inertial frames of reference. The next corollary
follows from Corollary 2.19.1.

Corollary 2.19.7. Kinematic sets KPT0 (H,ℬ, 𝑐), KPT (H,ℬ, 𝑐), KP0 (H,ℬ, 𝑐), KP (H,ℬ, 𝑐)
allow universal coordinate transform.

Remark 2.19.2. From Corollary 2.19.5 it follows, that the sets of operators P (H, 𝑐) and
P+ (H, 𝑐) form the groups of operators over the spaceℳ (H). At the same time, in Corollary
2.19.6 it is proved, that the classes of operators PT+ (H, 𝑐) and PT (H, 𝑐) (for dim (H) > 1)
do not form a group over ℳ (H). This means, that the kinematics KPT (H,ℬ, 𝑐) and
KPT0 (H,ℬ, 𝑐), constructed on the basis of these classes, do not satisfy the relativity principle,
because, according to Theorem 2.16.2, the subset of universal coordinate transforms (2.15), pro-
viding transition from one reference frame to all other, is different for different frames. But, in
kinematics KPT0 (H,ℬ, 𝑐) and KPT (H,ℬ, 𝑐) the relativity principle is violated only in the su-
perluminal diapason, because the kinematics sets KPT0 (H,ℬ, 𝑐) and KPT (H,ℬ, 𝑐) are formed
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by the “addition” of new, superlight reference frames to the kinematics sets KP0 (H,ℬ, 𝑐) and
KP (H,ℬ, 𝑐), which satisfy the principle of relativity. It should be noted that the principle of
relativity is only one of the experimentally established facts. Therefore, it is possible that this
principle is not satisfied when we exit out of the light barrier. Possibility of revision of the
relativity principle is now discussed in the physical literature (see for example, [48,64–69]).

Main results of this Section were anonced in [11] and published in [12].

20 Kinematic Sets, which do not Allow Universal Coordinate Trans-

form.

In this section, it is constructed one interesting class of kinematic sets, in which every particle
at each time moment can can have its own “velocity of light”. On a physical level, the similar
models (with particle-dependent velocity of light) were considered in the papers [70–74].

Let a set Vf ⊆ (0,∞] be such, that Vf ̸= ∅ and (0,∞] ∖Vf ̸= ∅. Denote:

HVf
:= H×Vf = {(𝑥, 𝑐) | 𝑥 ∈ H, 𝑐 ∈ Vf} ; ℳ

(︀
HVf

)︀
:= R× HVf

.

The setℳ
(︀
HVf

)︀
will be named by the Minkowski space with the set of forbidden velocities

Vf over H. The set ̃︁Vf := [0,∞] ∖Vf will be named as the set of allowed velocities for the
spaceℳ

(︀
HVf

)︀
.

For an arbitrary 𝜔 = (𝑡, (𝑥, 𝑐)) ∈ ℳ
(︀
HVf

)︀
we put 𝜔* := (𝑡, 𝑥) ∈ ℳ (H) . Also for 𝜆 ∈ ̃︁Vf,

𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1), a ∈ ℳ (H) and 𝜔 = (𝑡, (𝑥, 𝑐)) ∈ ℳ
(︀
HVf

)︀
we introduce

the denotation:

W𝜆;Vf
[𝑠,n, 𝐽 ; a]𝜔 := (tm (W𝜆,𝑐 [𝑠,n, 𝐽 ; a]𝜔

*) , (bs (W𝜆,𝑐 [𝑠,n, 𝐽 ; a]𝜔
*) , 𝑐)) . (2.170)

Therefore, for any 𝜔 = (𝑡, (𝑥, 𝑐)) ∈ℳ
(︀
HVf

)︀
we have the equality:(︀

W𝜆;Vf
[𝑠,n, 𝐽 ; a]𝜔

)︀*
= W𝜆,𝑐 [𝑠,n, 𝐽 ; a]𝜔

*. (2.171)

Assertion 2.20.1. For arbitrary 𝜆 ∈ ̃︁Vf, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1), a ∈ ℳ (H)
the mapping W𝜆;Vf

[𝑠,n, 𝐽 ; a] is bijection onℳ
(︀
HVf

)︀
.

Proof. Suppose, that W𝜆;Vf
[𝑠,n, 𝐽 ; a]𝜔1 = W𝜆;Vf

[𝑠,n, 𝐽 ; a]𝜔2, where 𝜔1 = (𝑡1, (𝑥1, 𝑐1)) ∈
ℳ
(︀
HVf

)︀
, 𝜔2 = (𝑡2, (𝑥2, 𝑐2)) ∈ℳ

(︀
HVf

)︀
. Then,

(tm (W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔
*
1) , (bs (W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔

*
1) , 𝑐1)) =

= (tm (W𝜆,𝑐2 [𝑠,n, 𝐽 ; a]𝜔
*
2) , (bs (W𝜆,𝑐2 [𝑠,n, 𝐽 ; a]𝜔

*
2) , 𝑐2)) .

Consequently, 𝑐1 = 𝑐2. Hence, we have proved the equalities:

tm (W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔
*
1) = tm (W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔

*
2)

bs (W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔
*
1) = bs (W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔

*
2) .

Therefore, W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔
*
1 = W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]𝜔

*
2. And, taking into account the fact, that

the mapping W𝜆,𝑐1 [𝑠,n, 𝐽 ; a] is bijection on ℳ (H), we conclude, that, 𝜔*1 = 𝜔*2, ie 𝑡1 = 𝑡2,
𝑥1 = 𝑥2. Hence, 𝜔1 = (𝑡1, (𝑥1, 𝑐1)) = (𝑡2, (𝑥2, 𝑐2)) = 𝜔2. Thus, the mapping W𝜆;Vf

[𝑠,n, 𝐽 ; a] is
one-to-one correspondence.

Now it remains to prove, that W𝜆;Vf
[𝑠,n, 𝐽 ; a] reflects the setℳ

(︀
HVf

)︀
onℳ

(︀
HVf

)︀
. Con-

sider any 𝜔 = (𝑡, (𝑥, 𝑐)) ∈ℳ
(︀
HVf

)︀
. Denote:

̃︀𝜔 :=
(︁
tm
(︁
(W𝜆,𝑐 [𝑠,n, 𝐽 ; a])

[−1] 𝜔*
)︁
,
(︁
bs
(︁
(W𝜆,𝑐 [𝑠,n, 𝐽 ; a])

[−1] 𝜔*
)︁
, 𝑐
)︁)︁

.

146



Draft Introduction to Abstract Kinematics. (Ver 2.0) 20. Kinematic Sets without Universal Coordinate Transform

Then,

̃︀𝜔* = (︁tm(︁(W𝜆,𝑐 [𝑠,n, 𝐽 ; a])
[−1] 𝜔*

)︁
, bs

(︁
(W𝜆,𝑐 [𝑠,n, 𝐽 ; a])

[−1] 𝜔*
)︁)︁

=

= (W𝜆,𝑐 [𝑠,n, 𝐽 ; a])
[−1] 𝜔*.

Consequently, W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ̃︀𝜔* = 𝜔*. Hence,

W𝜆;Vf
[𝑠,n, 𝐽 ; a] ̃︀𝜔 = (tm (W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ̃︀𝜔*) , (bs (W𝜆,𝑐 [𝑠,n, 𝐽 ; a] ̃︀𝜔*) , 𝑐)) =

= (tm (𝜔*) , (bs (𝜔*) , 𝑐)) = (𝑡, (𝑥, 𝑐)) = 𝜔.

Thus, W𝜆;Vf
[𝑠,n, 𝐽 ; a] is bijection fromℳ

(︀
HVf

)︀
ontoℳ

(︀
HVf

)︀
.

Denote:

PT (H;Vf) :=
{︁
W𝜆;Vf

[𝑠,n, 𝐽 ; a] | 𝜆 ∈ ̃︁Vf, 𝑠 ∈ {−1, 1},

𝐽 ∈ U (H1) , n ∈ B1 (H1) , a ∈ℳ (H)
}︁
;

PT+ (H;Vf) :=
{︀
W𝜆;Vf

[𝑠,n, 𝐽 ; a] ∈ PT (H;Vf) | 𝑠 = 1
}︀
.

Let, ℬ be a base changeable set such, that Bs(ℬ) ⊆ HVf
, Tm(ℬ) = (R,≤). Then we have,

Bs(ℬ) ⊆ R× HVf
=ℳ

(︀
HVf

)︀
. Hence, we deliver the following kinematic multi-projectors:

PT (H;Vf)
∧ =

(︁(︁
(R,≤) ,HVf

,S, ̂︀H,q)︁ | S ∈ PT (H;Vf)
)︁
;

PT+ (H;Vf)
∧ =

(︁(︁
(R,≤) ,HVf

,S, ̂︀H,q)︁ | S ∈ PT+ (H;Vf)
)︁
, where

q(̃︀𝑥) = 𝑥
(︀
∀ ̃︀𝑥 = (𝑥, 𝑐) ∈ HVf

)︀
(2.172)

for ℬ. In accordance with Theorem 2.16.1 and Definition 2.16.2, we can denote:

KPT0 (H,ℬ;Vf) := Kim
[︀
PT (H;Vf)

∧ ,ℬ
]︀
;

KPT (H,ℬ;Vf) := Kim
[︀
PT+ (H;Vf)

∧ ,ℬ
]︀
.

It turns out, that the kinematic sets KPT0 (H,ℬ;Vf) and KPT (H,ℬ;Vf), in the general case,
do not allow universal coordinate transform. More precisely, they allow universal coordinate
transform if and only if only one value of forbidden velocity 𝑐 ∈ (0,∞] is actually realized. In
the last case, kinematics in KPT0 (H,ℬ;Vf) or KPT (H,ℬ;Vf) can be reduced to kinematics of
type KPT0 (H,ℬ, 𝑐) or KPT (H,ℬ, 𝑐) (for 𝑐 <∞), and to Galilean kinematics (for 𝑐 =∞).

Theorem 2.20.1. Let the set of forbidden velocities Vf be separated from zero (ie there exists
a number 𝜂 > 0 such, that Vf ⊆ [𝜂,∞]).

Kinematic set KPT (H,ℬ;Vf) allows universal coordinate transform if and only if there don’t
exist elementary states ̃︀𝑥1 = (𝑥1, 𝑐1) , ̃︀𝑥2 = (𝑥2, 𝑐2) ∈ Bs(ℬ) such, that 𝑐1 ̸= 𝑐2.

To prove Theorem 2.20.1 we need the following two lemmas.

Lemma 2.20.1. Chose any fixed 𝑐1, 𝑐2 ∈ (0,∞], 𝑐1 ̸= 𝑐2, 𝑠 ∈ {−1, 1} and 𝐽 ∈ U (H1).
Then, for any fixed number 𝜀 ∈ (0,min (𝑐1, 𝑐2)) and arbitrary fixed vectors w1,w2 ∈ ℳ (H)

such, that w1 ̸= w2, there exist 𝜆 ∈ (0, 𝜀), n ∈ B1 (H1) and a ∈ℳ (H), for which the following
equality holds:

W𝜆,𝑐1 [𝑠,n, 𝐽 ; a] w1 = W𝜆,𝑐2 [𝑠,n, 𝐽 ; a] w2.

Proof. Further, for convenience, we assume, that 𝑐1 < 𝑐2. Obviously, this assumption does not
restrict the the generality of our conclusions.
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1. At first, we are going to prove Lemma in the special case w1 = 0, w2 = w ̸= 0. Consider
any, 𝜀 ∈ (0,min (𝑐1, 𝑐2)). According to the specifics of this case, we should find 𝜆 ∈ (0, 𝜀),
n ∈ B1 (H1) and a ∈ℳ (H), such, that:

W𝜆,𝑐1 [𝑠,n, 𝐽 ; a]0 = W𝜆,𝑐2 [𝑠,n, 𝐽 ; a] w. (2.173)

Taking into account (2.168), we can rewrite the last condition in the form:

W𝜆,𝑐1 [𝑠,n, 𝐽 ] a = W𝜆,𝑐2 [𝑠,n, 𝐽 ] (w + a) . (2.174)

Denote:
𝑡 := 𝒯 (w) , 𝑥 := Xw. (2.175)

Then we can write, w = 𝑡e0 + 𝑥.
Consider any fixed vector n0 ∈ B1 (H1). Denote:

n :=

{︃
𝑥
‖𝑥‖ , 𝑥 ̸= 0

n0, 𝑥 = 0.
(2.176)

Then, we have:

𝑥 = ‖𝑥‖n,
⟨n,w⟩ = ⟨n, 𝑥⟩ = ‖𝑥‖ ,

X⊥1 [n] w = Xw − ⟨n,w⟩n = 𝑥− ‖𝑥‖n = 𝑥− 𝑥 = 0.
(2.177)

Vector a we seek in the form:

a = 𝜏e0 + 𝜇n, where 𝜏, 𝜇 ∈ R. (2.178)

1.a) At first we consider the case 𝑐1, 𝑐2 <∞.
Substituting the value of the vector a from (2.178) into the condition (2.174) and applying

(2.175), (2.177), (2.160), we obtain the following condition:(︂
𝑠𝜏 − 𝜆

𝑐21
𝜇

)︂
𝛾

(︂
𝜆

𝑐1

)︂
e0 + (𝜆𝜏 − 𝑠𝜇) 𝛾

(︂
𝜆

𝑐1

)︂
𝐽n =

=

(︂
𝑠 (𝑡+ 𝜏)− 𝜆

𝑐22
(‖𝑥‖+ 𝜇)

)︂
𝛾

(︂
𝜆

𝑐2

)︂
e0+

+ (𝜆 (𝑡+ 𝜏)− 𝑠 (‖𝑥‖+ 𝜇)) 𝛾

(︂
𝜆

𝑐2

)︂
𝐽n,

where 𝛾(𝜉) =
1√︀
|1− 𝜉2|

, 𝜉 ≥ 0, 𝜉 ̸= 1. (2.179)

Taking into account orthogonality of the vector e0 to the subspace H1 and unitarity of the
operator 𝐽 on the subspace H1, we get the following system of equations:⎧⎨⎩

(︁
𝑠𝜏 − 𝜆

𝑐21
𝜇
)︁
𝛾
(︁
𝜆
𝑐1

)︁
=
(︁
𝑠 (𝑡+ 𝜏)− 𝜆

𝑐22
(‖𝑥‖+ 𝜇)

)︁
𝛾
(︁
𝜆
𝑐2

)︁
(𝜆𝜏 − 𝑠𝜇) 𝛾

(︁
𝜆
𝑐1

)︁
= (𝜆 (𝑡+ 𝜏)− 𝑠 (‖𝑥‖+ 𝜇)) 𝛾

(︁
𝜆
𝑐2

)︁ (2.180)

By means of simple transformations, the system (2.180) can be reduced to the form:⎧⎨⎩𝜏
(︁
𝛾
(︁
𝜆
𝑐2

)︁
− 𝛾

(︁
𝜆
𝑐1

)︁)︁
= 𝜆𝑠

(︁(︁
‖𝑥‖+𝜇
𝑐22

)︁
𝛾
(︁
𝜆
𝑐2

)︁
− 𝜇

𝑐21
𝛾
(︁
𝜆
𝑐1

)︁)︁
− 𝑡𝛾

(︁
𝜆
𝑐2

)︁
𝜆𝜏
(︁
𝛾
(︁
𝜆
𝑐2

)︁
− 𝛾

(︁
𝜆
𝑐1

)︁)︁
= 𝑠

(︁
(‖𝑥‖+ 𝜇) 𝛾

(︁
𝜆
𝑐2

)︁
− 𝜇𝛾

(︁
𝜆
𝑐1

)︁)︁
− 𝜆𝑡𝛾

(︁
𝜆
𝑐2

)︁ (2.181)
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Replacing the expression 𝜏
(︁
𝛾
(︁
𝜆
𝑐2

)︁
− 𝛾

(︁
𝜆
𝑐1

)︁)︁
in the second equation of the system (2.181) by

the right-hand side of the first equation of this system, we deliver the equation:

𝜆2
(︂
‖𝑥‖+ 𝜇

𝑐22
𝛾

(︂
𝜆

𝑐2

)︂
− 𝜇

𝑐21
𝛾

(︂
𝜆

𝑐1

)︂)︂
= (‖𝑥‖+ 𝜇) 𝛾

(︂
𝜆

𝑐2

)︂
− 𝜇𝛾

(︂
𝜆

𝑐1

)︂
.

After simple transformations the last equation takes a form:

(‖𝑥‖+ 𝜇)
(︁
1− 𝜆2

𝑐22

)︁
√︂⃒⃒⃒

1− 𝜆2

𝑐22

⃒⃒⃒ −
𝜇
(︁
1− 𝜆2

𝑐21

)︁
√︂⃒⃒⃒

1− 𝜆2

𝑐21

⃒⃒⃒ = 0. (2.182)

Now, we introduce the denotations:

Φ1(𝑦) := sign (𝑦)
√︀
|𝑦|; Φ2(𝑦) = 𝑦 |𝑦| (𝑦 ∈ R). (2.183)

In the case 𝑦 ̸= 0 the function Φ1(𝑦) may be represented in the form, Φ1(𝑦) =
𝑦√
|𝑦|
.

In view of denotation (2.183) the equation (2.182) becomes:

Φ1

(︂
(‖𝑥‖+ 𝜇) |‖𝑥‖+ 𝜇|

(︂
1− 𝜆2

𝑐22

)︂)︂
= Φ1

(︂
𝜇 |𝜇|

(︂
1− 𝜆2

𝑐21

)︂)︂
.

Taking into account, that the function Φ1 is strictly monotone on R, we get the equation:

(‖𝑥‖+ 𝜇) |‖𝑥‖+ 𝜇|
(︂
1− 𝜆2

𝑐22

)︂
= 𝜇 |𝜇|

(︂
1− 𝜆2

𝑐21

)︂
,

which after simple transformations is reduced to the form:

𝜆2
(︂
Φ2

(︂
‖𝑥‖+ 𝜇

𝑐2

)︂
− Φ2

(︂
𝜇

𝑐1

)︂)︂
= Φ2 (‖𝑥‖+ 𝜇)− Φ2 (𝜇) . (2.184)

Since 𝑐1 < 𝑐2, then for 𝜇 < −‖𝑥‖ we have ‖𝑥‖+𝜇
𝑐2

> 𝜇
𝑐1
. Therefore, taking into account, that the

function Φ2 is strictly increasing on R, we may define the function:

Φ3;𝑥(𝜇) =

⎯⎸⎸⎷Φ2 (‖𝑥‖+ 𝜇)− Φ2 (𝜇)

Φ2

(︁
‖𝑥‖+𝜇
𝑐2

)︁
− Φ2

(︁
𝜇
𝑐1

)︁ =

⎯⎸⎸⎸⎷ 𝜇2 − (‖𝑥‖+ 𝜇)2(︁
𝜇
𝑐1

)︁2
−
(︁
‖𝑥‖+𝜇
𝑐2

)︁2 , 𝜇 < −‖𝑥‖ .

It is easy to verify, that Φ3;𝑥(𝜇) → 0, 𝜇 → −∞. Hence, there exists the number 𝜇0 < −‖𝑥‖
such, that Φ3;𝑥 (𝜇0) ∈ [0, 𝜀).

In the case 𝑥 ̸= 0 we have Φ3;𝑥(𝜇) > 0 for all 𝜇 such, that 𝜇 < −‖𝑥‖. In the case 𝑥 = 0, the
equation (2.184) becomes the true equality for 𝜇 = 0 and arbitrary 𝜆 ∈ R. That is why, if we
put:

𝜇 :=

{︃
𝜇0, 𝑥 ̸= 0

0, 𝑥 = 0
; 𝜆 :=

{︃
Φ3;𝑥 (𝜇0) , 𝑥 ̸= 0
𝜀
2
, 𝑥 = 0,

(2.185)

we will obtain the values 𝜇 ∈ R and 𝜆 ∈ (0, 𝜀), for which the equality (2.184) holds.
Since 0 < 𝜆 < 𝜀 < min (𝑐1, 𝑐2), then for values 𝜆, 𝜇, determined by the formula (2.185), the

second equation from the system (2.181) takes the form:

𝜆𝜏

⎛⎝ 1√︁
1− 𝜆2

𝑐22

− 1√︁
1− 𝜆2

𝑐21

⎞⎠ = 𝑠

⎛⎝ ‖𝑥‖+ 𝜇√︁
1− 𝜆2

𝑐22

− 𝜇√︁
1− 𝜆2

𝑐21

⎞⎠− 𝜆𝑡√︁
1− 𝜆2

𝑐22

, (2.186)
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where, considering that 𝜆 > 0 and 𝑐1 < 𝑐2, we have 𝜆

⎛⎝ 1√︂
1−𝜆2

𝑐22

− 1√︂
1−𝜆2

𝑐21

⎞⎠ ̸= 0. Hence, the

number 𝜏 is uniquely determined by the equality (2.186). Then, the vector a we calculate
by the formula (2.178). And, substituting the delivered values of the parameters 𝜆 ∈ (0, 𝜀),
n ∈ B1 (H1) and a ∈ℳ (H) into (2.174), we guarantee the valid equality. In the case 𝑐2, 𝑐2 <∞
and w1 = 0, Lemma is proved.
1.b) Thus, it remains to consider only the case 𝑐2 = ∞, 𝑐1 < ∞ (w1 = 0, w2 = w ̸= 0).

Note, that the case 𝑐1 =∞ is impossible, because 𝑐1 < 𝑐2.
Substituting the value of the vector a from (2.178) into the condition (2.174) and applying

(2.175), (2.177), (2.160), we obtain the following condition:(︂
𝑠𝜏 − 𝜆

𝑐21
𝜇

)︂
𝛾

(︂
𝜆

𝑐1

)︂
e0 + (𝜆𝜏 − 𝑠𝜇) 𝛾

(︂
𝜆

𝑐1

)︂
𝐽n =

= 𝑠 (𝑡+ 𝜏) e0 + (𝜆 (𝑡+ 𝜏)− 𝑠 (‖𝑥‖+ 𝜇)) 𝐽n.

Hence, taking into account orthogonality of the vector e0 to the subspace H1 and unitarity of
the operator 𝐽 on the subspace H1, we get the following system of equations:⎧⎨⎩

(︁
𝑠𝜏 − 𝜆

𝑐21
𝜇
)︁
𝛾
(︁
𝜆
𝑐1

)︁
= 𝑠 (𝑡+ 𝜏)

(𝜆𝜏 − 𝑠𝜇) 𝛾
(︁
𝜆
𝑐1

)︁
= 𝜆 (𝑡+ 𝜏)− 𝑠 (‖𝑥‖+ 𝜇)

(2.187)

After simple transformations, the system (2.187) may be reduced to the form:⎧⎨⎩𝜏
(︁
1− 𝛾

(︁
𝜆
𝑐1

)︁)︁
= −𝜆𝑠 𝜇

𝑐21
𝛾
(︁
𝜆
𝑐1

)︁
− 𝑡

𝜆𝜏
(︁
1− 𝛾

(︁
𝜆
𝑐1

)︁)︁
= 𝑠

(︁
‖𝑥‖+ 𝜇− 𝜇𝛾

(︁
𝜆
𝑐1

)︁)︁
− 𝜆𝑡

(2.188)

Replacing the expression 𝜏
(︁
1− 𝛾

(︁
𝜆
𝑐1

)︁)︁
in the second equation of the system (2.188) by the

right-hand side of the first equation of this system, we obtain the equation:

−𝜆2 𝜇
𝑐21
𝛾

(︂
𝜆

𝑐1

)︂
= ‖𝑥‖+ 𝜇− 𝜇𝛾

(︂
𝜆

𝑐1

)︂
,

which, by means of simple transformations takes a form:

Φ1 ((‖𝑥‖+ 𝜇) |‖𝑥‖+ 𝜇|) = Φ1

(︂
𝜇 |𝜇|

(︂
1− 𝜆2

𝑐21

)︂)︂
, (2.189)

where the function Φ1 is determined by the formula (2.183). Taking into account, that the
function Φ1 is strictly monotone on R, we get the equation:

(‖𝑥‖+ 𝜇) |‖𝑥‖+ 𝜇| = 𝜇 |𝜇|
(︂
1− 𝜆2

𝑐21

)︂
,

which after simple transformations is reduced to the form:

−𝜆2Φ2

(︂
𝜇

𝑐1

)︂
= Φ2 (‖𝑥‖+ 𝜇)− Φ2 (𝜇) . (2.190)

Therefore, taking into account, that the function Φ2(𝑦) = 𝑦 |𝑦| is strictly increasing on R, we
may define the function:

Φ∞3;𝑥(𝜇) =

⎯⎸⎸⎷Φ2 (‖𝑥‖+ 𝜇)− Φ2 (𝜇)

−Φ2

(︁
𝜇
𝑐1

)︁ =

⎯⎸⎸⎸⎷𝜇2 − (‖𝑥‖+ 𝜇)2(︁
𝜇
𝑐1

)︁2 , 𝜇 < −‖𝑥‖ .
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It is easy to verify, that Φ∞3;𝑥(𝜇) → 0, 𝜇 → −∞. Hence, there exists the number 𝜇0 < −‖𝑥‖
such, that Φ∞3;𝑥 (𝜇0) ∈ [0, 𝜀).

In the case 𝑥 ̸= 0 we have Φ∞3;𝑥(𝜇) > 0 for all 𝜇 such, that 𝜇 < −‖𝑥‖. In the case 𝑥 = 0, the
equation (2.190) becomes the true equality for 𝜇 = 0 and arbitrary 𝜆 ∈ R. That is why, if we
put:

𝜇 :=

{︃
𝜇0, 𝑥 ̸= 0

0, 𝑥 = 0
𝜆 :=

{︃
Φ∞3;𝑥 (𝜇0) , 𝑥 ̸= 0
𝜀
2
, 𝑥 = 0,

(2.191)

we will obtain the values 𝜇 ∈ R and 𝜆 ∈ (0, 𝜀), for which the equality (2.190) is true.
Since 0 < 𝜆 < 𝜀 < min (𝑐1, 𝑐2) = 𝑐1, then for values 𝜆, 𝜇, determined by the formula (2.191),

the second equation from the system (2.188) may be rewritten in the form:

𝜆𝜏

⎛⎝1− 1√︁
1− 𝜆2

𝑐21

⎞⎠ = 𝑠

⎛⎝‖𝑥‖+ 𝜇− 𝜇√︁
1− 𝜆2

𝑐21

⎞⎠− 𝜆𝑡, (2.192)

where, considering that 𝜆, 𝑐1 > 0, we have, 𝜆

⎛⎝1− 1√︂
1−𝜆2

𝑐21

⎞⎠ ̸= 0. Hence, the number 𝜏 is

uniquely determined by the equality (2.192). Then, the vector a we calculate by the formula
(2.178). And, substituting the delivered values of the parameters 𝜆 ∈ (0, 𝜀), n ∈ B1 (H1) and
a ∈ ℳ (H) into (2.174), we obtain the valid equality. Hence, in the case 𝑐1 < ∞, 𝑐2 = ∞ and
w1 = 0, Lemma is proved.
2. We now turn to the general case, where w1,w2 are arbitrary vectors of the space

ℳ (H) such, that w1 ̸= w2. According to the result, proved in the first item of Lemma,
parameters 𝜆 ∈ (0, 𝜀), n ∈ B1 (H1) and ̃︀a ∈ ℳ (H), exist such, that W𝜆,𝑐1 [𝑠,n, 𝐽 ]̃︀a =
W𝜆,𝑐2 [𝑠,n, 𝐽 ] (w2 − w1 + ̃︀a). Denote, a := ̃︀a − w1. Then, taking into account, (2.168), we
receive the desired equality W𝜆,𝑐1 [𝑠,n, 𝐽 ; a] w1 = W𝜆,𝑐2 [𝑠,n, 𝐽 ; a] w2.

For 𝑦1, 𝑦2 ∈ (0,∞], such, that 𝑦1 ̸=∞ or 𝑦2 ̸=∞ we put:

𝜎 (𝑦1, 𝑦2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁
𝑦−2
1 +𝑦−2

2

2

)︁− 1
2
, 𝑦1, 𝑦2 <∞

√
2 𝑦1, 𝑦1 <∞, 𝑦2 =∞
√
2 𝑦2, 𝑦1 =∞, 𝑦2 <∞

. (2.193)

Lemma 2.20.2. Suppose, that for some vector w ∈ℳ (H) it holds the equality

W𝜆,𝑐1 [𝑠,n, 𝐽 ] w = W𝜆,𝑐2 [𝑠,n, 𝐽 ] w,

where 𝑐1, 𝑐2 ∈ (0,∞], 𝜆 ∈ (0,∞] ∖ {𝑐1, 𝑐2, 𝜎 (𝑐1, 𝑐2)}, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1) with

𝑐1 ̸= 𝑐2. Then, 𝒯 (w) = ⟨n,w⟩ = 0.

Proof of Lemma we divide into a few cases.
Case 1: 𝑐1, 𝑐2 <∞, 𝜆 <∞. In this case, by the formula (2.160), we get

W𝜆,𝑐1 [𝑠,n, 𝐽 ] w −W𝜆,𝑐2 [𝑠,n, 𝐽 ] w =

=

(︂(︂
𝛾

(︂
𝜆

𝑐1

)︂
− 𝛾

(︂
𝜆

𝑐2

)︂)︂
𝑠𝒯 (w)−

(︂
𝜆

𝑐21
𝛾

(︂
𝜆

𝑐1

)︂
− 𝜆

𝑐22
𝛾

(︂
𝜆

𝑐2

)︂)︂
⟨n,w⟩

)︂
e0+
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+

(︂
𝛾

(︂
𝜆

𝑐1

)︂
− 𝛾

(︂
𝜆

𝑐2

)︂)︂
(𝜆𝒯 (w)− 𝑠 ⟨n,w⟩) 𝐽n, (2.194)

where the function 𝛾 : [0,∞) ↦→ R is determined by the formula (2.179). By conditions of
Lemma, W𝜆,𝑐1 [𝑠,n, 𝐽 ] w −W𝜆,𝑐2 [𝑠,n, 𝐽 ] w = 0, where 0 is zero vector of the space ℳ (H).
Hence, the right-hand side of the equality (2.194) is equal to zero vector. Therefore, taking
into account orthogonality of the vector e0 to the subspace H1 and unitarity of the operator 𝐽
on the subspace H1, we get the following equalities:

𝑠
(︁
𝛾
(︁
𝜆
𝑐1

)︁
− 𝛾

(︁
𝜆
𝑐2

)︁)︁
𝒯 (w)−

(︁
𝜆
𝑐21
𝛾
(︁
𝜆
𝑐1

)︁
− 𝜆

𝑐22
𝛾
(︁
𝜆
𝑐2

)︁)︁
⟨n,w⟩ = 0;(︁

𝛾
(︁
𝜆
𝑐1

)︁
− 𝛾

(︁
𝜆
𝑐2

)︁)︁
(𝜆𝒯 (w)− 𝑠 ⟨n,w⟩) = 0.

(2.195)

According to the conditions of Lemma, 𝜆 > 0 and 𝜆 ̸= 𝜎 (𝑐1, 𝑐2) =
√︂

2
1

𝑐21
+ 1

𝑐22

. Consequently,

𝛾
(︁
𝜆
𝑐1

)︁
− 𝛾

(︁
𝜆
𝑐2

)︁
̸= 0. Thus, the equalities (2.195) may be rewritten in the form:{︃

𝑠
(︁
𝛾
(︁
𝜆
𝑐1

)︁
− 𝛾

(︁
𝜆
𝑐2

)︁)︁
𝒯 (w)−

(︁
𝜆
𝑐21
𝛾
(︁
𝜆
𝑐1

)︁
− 𝜆

𝑐22
𝛾
(︁
𝜆
𝑐2

)︁)︁
⟨n,w⟩ = 0;

𝜆𝒯 (w)− 𝑠 ⟨n,w⟩ = 0.
(2.196)

The system (2.196) is a system of linear homogeneous equations relatively the variables
𝒯 (w) and ⟨n,w⟩. Determinant of this system is:

Δ = −
[︂(︂
𝛾

(︂
𝜆

𝑐1

)︂
− 𝛾

(︂
𝜆

𝑐2

)︂)︂
−
(︂
𝜆2

𝑐21
𝛾

(︂
𝜆

𝑐1

)︂
− 𝜆2

𝑐22
𝛾

(︂
𝜆

𝑐2

)︂)︂]︂
=

= −
(︂
𝑔

(︂
𝜆

𝑐1

)︂
− 𝑔

(︂
𝜆

𝑐2

)︂)︂
, where

𝑔(𝜉) =
(︀
1− 𝜉2

)︀
𝛾(𝜉) = sign (1− 𝜉)

√︀
|1− 𝜉2| (𝜉 ≥ 0, 𝜉 ̸= 1).

Since the function 𝑔(𝜉) = sign (1− 𝜉)
√︀
|1− 𝜉2| is strictly decreasing on [0,∞), determinant

Δ of the system (2.196) is nonzero. Hence, 𝒯 (w) = ⟨n,w⟩ = 0, that was necessary to prove.
Case 2: 𝑐1, 𝑐2 <∞, 𝜆 =∞.
In this case, by the formula (2.160), we receive:

0 = W𝜆,𝑐1 [𝑠,n, 𝐽 ] w −W𝜆,𝑐2 [𝑠,n, 𝐽 ] w =

= −⟨n,w⟩
𝑐1

e0 + 𝑐1𝒯 (w) 𝐽n−
(︂
−⟨n,w⟩

𝑐2
e0 + 𝑐2𝒯 (w) 𝐽n

)︂
=

= −
(︂
1

𝑐1
− 1

𝑐2

)︂
⟨n,w⟩ e0 + (𝑐1 − 𝑐2) 𝒯 (w) 𝐽n.

And since 𝑐1 ̸= 𝑐2, taking into account orthogonality of the vector e0 to the subspace H1 and
unitarity of the operator 𝐽 on the subspace H1, we get the equality 𝒯 (w) = ⟨n,w⟩ = 0.
Case 3: 𝑐1 <∞, 𝑐2 =∞.
By the conditions of Lemma 𝜆 ̸= 𝑐2. Hence, in this case we have 𝜆 <∞. And, according to

(2.160), we obtain:

0 = W𝜆,𝑐1 [𝑠,n, 𝐽 ] w −W𝜆,𝑐2 [𝑠,n, 𝐽 ] w =

=

(︂(︂
𝛾

(︂
𝜆

𝑐1

)︂
− 1

)︂
𝑠𝒯 (w)− 𝜆

𝑐21
𝛾

(︂
𝜆

𝑐1

)︂
⟨n,w⟩

)︂
e0+

+

(︂
𝛾

(︂
𝜆

𝑐1

)︂
− 1

)︂
(𝜆𝒯 (w)− 𝑠 ⟨n,w⟩) 𝐽n. (2.197)
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By the conditions of Lemma, 𝜆 > 0 and 𝜆 ̸= 𝜎 (𝑐1, 𝑐2) =
√
2 𝑐1. Thus, 𝛾

(︁
𝜆
𝑐1

)︁
− 1 ̸= 0. Hence,

taking into account orthogonality of the vector e0 to the subspace H1 and unitarity of the
operator 𝐽 on the subspace H1, from the equality (2.197) we receive the system of equations:{︃ (︁

𝛾
(︁
𝜆
𝑐1

)︁
− 1
)︁
𝑠𝒯 (w)− 𝜆

𝑐21
𝛾
(︁
𝜆
𝑐1

)︁
⟨n,w⟩ = 0

𝜆𝒯 (w)− 𝑠 ⟨n,w⟩ = 0.
(2.198)

The system (2.198) is a system of linear homogeneous equations relatively the variables 𝒯 (w)
and ⟨n,w⟩. Determinant of this system is:

Δ1 = −
(︂(︂

𝛾

(︂
𝜆

𝑐1

)︂
− 1

)︂
− 𝜆2

𝑐21
𝛾

(︂
𝜆

𝑐1

)︂)︂
= −

(︂
𝑔

(︂
𝜆

𝑐1

)︂
− 𝑔 (0)

)︂
.

Since, by the conditions of Lemma, 𝜆 > 0 and 𝑐1 < ∞, then 𝜆
𝑐1
̸= 0. That is why, Δ1 ̸= 0.

Thus, 𝒯 (w) = ⟨n,w⟩ = 0.
Case 4: 𝑐1 =∞, 𝑐2 <∞ is considered similarly to the case 3.
Case 𝑐1, 𝑐2 =∞ is impossible, because, by the conditions of Lemma, 𝑐1 ̸= 𝑐2.

Corollary 2.20.1. Let, 𝑐1, 𝑐2 ∈ (0,∞], 𝑐1 ̸= 𝑐2, 𝑠 ∈ {−1, 1}, 𝐽 ∈ U (H1), n ∈ B1 (H1).
Then for any w ∈ ℳ (H) and 𝜀 ∈ (0,min (𝑐1, 𝑐2)) there exist 𝜆 ∈ (0, 𝜀) and a ∈ ℳ (H),

such, that
W𝜆,𝑐1 [𝑠,n, 𝐽 ; a] w ̸= W𝜆,𝑐2 [𝑠,n, 𝐽 ; a] w,

Proof. Let us chose any a ∈ℳ (H) such, that:

𝒯 (w + a) ̸= 0. (2.199)

Also we chose any number 𝜆 ∈ (0, 𝜀) ∖ {𝜎 (𝑐1, 𝑐2)}. If we assume, that W𝜆,𝑐1 [𝑠,n, 𝐽 ; a] w =
W𝜆,𝑐2 [𝑠,n, 𝐽 ; a] w, then, according to (2.168), we will obtain:

W𝜆,𝑐1 [𝑠,n, 𝐽 ] (w + a) = W𝜆,𝑐2 [𝑠,n, 𝐽 ] (w + a).

Hence, by Lemma 2.20.2, 𝒯 (w + a) = 0, contrary to the correlation (2.199). Thus,
W𝜆,𝑐1 [𝑠,n, 𝐽 ; a] w ̸= W𝜆,𝑐2 [𝑠,n, 𝐽 ; a] w.

Proof of Theorem 2.20.1. 1. For any fixed vector n ∈ B1 (H1) we are going to prove the equal-
ity:

W0;Vf
[1,n, I−1,1 [n] ,0] = Iℳ(HVf)

, (2.200)

where Iℳ(HVf)
is the the identity operator on ℳ

(︀
HVf

)︀
, and operator I−1,1 [n] is defined

by (2.125). Indeed, according to (2.170), (2.168) and (2.160) for an arbitrary element
𝜔 = (𝑡, (𝑥, 𝑐)) ∈ℳ

(︀
HVf

)︀
, we have:

W0;Vf
[1,n, I−1,1 [n] ,0]𝜔 =

= (tm (W0,𝑐 [1,n, I−1,1 [n]]𝜔*) , (bs (W0,𝑐 [1,n, I−1,1 [n]]𝜔*) , 𝑐)) =
= (tm (𝜔*) , (bs (𝜔*) , 𝑐)) = (𝑡, (𝑥, 𝑐)) = 𝜔,

that was necessary to prove. From the equality (2.200) it follows, that Iℳ(HVf)
∈ PT+ (H;Vf).

Besides this, in accordance with Remark 1.11.3, Iℳ(HVf)
[ℬ] = ℬ. Hence, by Property 2.16.1(1),

we can define the reference frame:

l0 =
(︁
Iℳ(HVf)

, Iℳ(HVf)
[ℬ]
)︁
=
(︁
Iℳ(HVf)

,ℬ
)︁
∈ ℒ𝑘 (KPT (H,ℬ;Vf)) .
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Now, we fix any reference frame l = (𝑈,𝑈 [ℬ]) ∈ ℒ𝑘 (KPT (H,ℬ;Vf)), where 𝑈 =
W𝜆,Vf

[1,n, 𝐽 ; a] ∈ PT+ (H;Vf).
According to Properties 2.16.1(3, 5), we obtain:

M𝑘(l) = R× Zk
(︁̂︀H)︁ = R× H =ℳ (H) ; (2.201)

⟨! l← l0⟩𝜔 = 𝑈

(︂
I [−1]
ℳ(HVf)

𝜔

)︂
= 𝑈𝜔 = W𝜆,Vf

[1,n, 𝐽 ; a]𝜔 (2.202)

(∀𝜔 ∈ Bs (l0) = Bs(ℬ) ⊆ℳ
(︀
HVf

)︀
.

Using Property 2.16.1(3) as well as equality (2.172), for an elementary-time state 𝜔 =
(𝑡, (𝑥, 𝑐)) ∈ Bs(l) we get:

Q⟨l⟩(𝜔) = (tm (𝜔) ,q(bs (𝜔))) = (𝑡,q ((𝑥, 𝑐))) = (𝑡, 𝑥) = 𝜔*. (2.203)

Hence, using Definition 2.15.1 (item 1) and equality (2.171), we deduce:

Q⟨l← l0⟩(𝜔) = Q⟨l⟩ (⟨! l← l0⟩𝜔) =
(︀
W𝜆,Vf

[1,n, 𝐽 ; a]𝜔
)︀*

=

= W𝜆,𝑐 [1,n, 𝐽 ; a]𝜔
* (︀
∀𝜔 ∈ Bs (l0) = Bs(ℬ) ⊆ℳ

(︀
HVf

)︀)︀
. (2.204)

2. By conditions of Theorem a number 𝜂 > 0 exists such, that Vf ⊆ [𝜂,∞).
2.1. Suppose, that there exist elementary states ̃︀𝑥1 = (𝑥1, 𝑐1) , ̃︀𝑥2 = (𝑥2, 𝑐2) ∈ Bs(ℬ)

such, that 𝑐1 ̸= 𝑐2. Since, by Property 1.6.1(9), Bs(ℬ) = {bs (𝜔) |𝜔 ∈ Bs(ℬ)}, then there
exist elementary-time states of kind 𝜔1 = (𝑡1, ̃︀𝑥1) = (𝑡1, (𝑥1, 𝑐1)) ∈ Bs(ℬ), 𝜔2 = (𝑡2, ̃︀𝑥2) =
(𝑡2, (𝑥2, 𝑐2)) ∈ Bs(ℬ). Now, we consider two cases.
Case 2.1.1: 𝜔*1 ̸= 𝜔*2. Consider any fixed operator 𝐽1 ∈ U (H1). By Lemma 2.20.1, there

exist 𝜆1 ∈ (0, 𝜂), n1 ∈ B1 (H1) and a1 ∈ℳ (H), such, that

W𝜆1,𝑐1 [1,n1, 𝐽1; a1]𝜔
*
1 = W𝜆1,𝑐2 [1,n1, 𝐽1; a1]𝜔

*
2. (2.205)

Let us introduce the reference frame:

l1 := (𝑈1, 𝑈1[ℬ]) ∈ ℒ𝑘 (KPT (H,ℬ;Vf)) , where

𝑈1 := W𝜆1;Vf
[1,n1, 𝐽1, a1] ∈ PT+ (H;Vf) .

According to (2.204), and (2.205), we receive:

Q⟨l1← l0⟩ (𝜔1) = W𝜆1,𝑐1 [1,n1, 𝐽1; a1]𝜔
*
1 = W𝜆1,𝑐2 [1,n1, 𝐽1; a1]𝜔

*
2 = Q⟨l1← l0⟩ (𝜔2) .

From the other hand, by the formula (2.203), we obtainQ⟨l0⟩ (𝜔1) = 𝜔*1 ̸= 𝜔*2 = Q⟨l0⟩ (𝜔2). Thus,
for the elementary-time states 𝜔1,𝜔2 we have Q⟨l← l0⟩ (𝜔1) = Q⟨l← l0⟩ (𝜔2), while Q⟨l0⟩ (𝜔1) ̸=
Q⟨l0⟩ (𝜔2). Hence, by Theorem 2.15.1, the reference frames l0 and l do not allow universal
coordinate transform. Therefore, in accordance with Assertion 2.15.2, item 2, the kinematic
set KPT (H,ℬ;Vf) do not allow universal coordinate transform in this case.
Case 2.1.2: 𝜔*1 = 𝜔*2. Consider any fixed operator 𝐽2 ∈ U (H1) and vector n2 ∈ B1 (H1).

According to Corollary 2.20.1, there exist 𝜆2 ∈ (0, 𝜂) and a2 ∈ℳ (H), such, that

W𝜆2,𝑐1 [1,n2, 𝐽2; a2]𝜔
*
1 ̸= W𝜆2,𝑐2 [1,n2, 𝐽2; a2]𝜔

*
2. (2.206)

Let us consider the reference frame:

l2 : = (𝑈2, 𝑈2[ℬ]) ∈ ℒ𝑘 (KPT (H,ℬ;Vf)) , where

𝑈2 = W𝜆2;Vf
[1,n2, 𝐽2, a2] ∈ PT+ (H;Vf) .

According to (2.204), and (2.206), we receive:

Q⟨l2← l0⟩ (𝜔1) = W𝜆2,𝑐1 [1,n2, 𝐽2; a2]𝜔
*
1 ̸= W𝜆2,𝑐2 [1,n2, 𝐽2; a2]𝜔

*
2 = Q⟨l2← l0⟩ (𝜔2) .
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From the other hand, by the formula (2.203), we obtain: Q⟨l0⟩ (𝜔1) = 𝜔*1 = 𝜔*2 = Q⟨l0⟩ (𝜔2).
Thus, for the elementary-time states 𝜔1,𝜔2 we have Q⟨l2← l0⟩ (𝜔1) ̸= Q⟨l2← l0⟩ (𝜔2), while

Q⟨l0⟩ (𝜔1) = Q⟨l0⟩ (𝜔2). Hence, by Theorem 2.15.1, the reference frames l0 and l2 do not allow
universal coordinate transform. Therefore, in accordance with Assertion 2.15.2, item 2, the
kinematic set KPT (H,ℬ;Vf) does not allow universal coordinate transform.

Thus , if the kinematic set KPT (H,ℬ;Vf) allows universal coordinate transform, then there
not exist elementary states ̃︀𝑥1 = (𝑥1, 𝑐1) , ̃︀𝑥2 = (𝑥2, 𝑐2) ∈ Bs(ℬ) such, that 𝑐1 ̸= 𝑐2.
2.2. Now we suppose, that in base changeable set ℬ there not exist elementary states̃︀𝑥1 = (𝑥1, 𝑐1) , ̃︀𝑥2 = (𝑥2, 𝑐2) ∈ Bs(ℬ) such, that 𝑐1 ̸= 𝑐2. Under this assumption a number

𝑐0 ∈ Vf must exist such, that arbitrary elementary state ̃︀𝑥 ∈ Bs(ℬ) can be represented in the
form: ̃︀𝑥 = (𝑥, 𝑐0), where 𝑥 ∈ H. Chose any reference frame:

l : = (𝑈,𝑈 [ℬ]) ∈ ℒ𝑘 (KPT (H,ℬ;Vf)) , where

𝑈 = W𝜆;Vf
[1,n, 𝐽, a] ∈ PT+ (H;Vf) .

According to (2.204), (2.203), for arbitrary elementary-time state 𝜔 = (𝑡, (𝑥, 𝑐0)) ∈ Bs (l0) =
Bs(ℬ) we obtain:

Q⟨l← l0⟩ (𝜔) = W𝜆,𝑐0 [1,n, 𝐽 ; a]𝜔
* = W𝜆,𝑐0 [1,n, 𝐽 ; a]

(︀
Q⟨l0⟩(𝜔)

)︀
,

where W𝜆,𝑐0 [1,n, 𝐽 ; a] is a bijection fromℳ (H) ontoℳ (H) (and, by (2.201), W𝜆,𝑐0 [1,n, 𝐽 ; a]
is a bijection from M𝑘 (l0) onto M𝑘(l)). Hence, in accordance with Definition 2.15.1, the
mapping W𝜆,𝑐0 [1,n, 𝐽 ; a] is universal coordinate transform from l0 to l. Consequently, the
reference frames l0 and l allow universal coordinate transform, ie l0� l (for any reference frame
l ∈ ℒ𝑘 (KPT (H,ℬ;Vf))). Thus, by Assertion 2.15.2, kinematic set KPT (H,ℬ;Vf) allows
universal coordinate transform.

Similarly to Theorem 2.20.1 it can be proved the following theorem.

Theorem 2.20.2. Let the set of forbidden velocities Vf ⊆ (0,∞] be separated from zero (ie
there exists a number 𝜂 > 0 such, that Vf ⊆ [𝜂,∞]).

Kinematic set KPT0 (H,ℬ;Vf) allows universal coordinate transform if and only if there
don’t exist elementary states ̃︀𝑥1 = (𝑥1, 𝑐1) , ̃︀𝑥2 = (𝑥2, 𝑐2) ∈ Bs(ℬ) such, that 𝑐1 ̸= 𝑐2.

Main results of this Section were announced in the paper [11] and published in [12,13].

Part III

Kinematic Changeable Sets with Given Universal

Coordinate Transform

21 Introduction to Third Part

In the previous part we have given the definitions of actual and universal coordinate transform
in kinematic changeable sets and examples of kinematic sets, which allow universal coordinate
transform. Also we have constructed one interesting class of kinematic sets with particle-time-
dependent velocity of light, which do not allow universal coordinate transform. However, the
most of kinematical physical theories (both classical and tachyon) suppose the existence of
universal coordinate transform. Therefore, this Part focuses on the investigation of kinematic
changeable sets with given universal coordinate transforms and their application to the math-
ematical foundations of kinematic theories of tachyon motion.
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22 Definition and Basic Properties of Universal Kinematic Sets

22.1 Definition of Universal Kinematics

Definition 3.22.1. Let
←−
𝒬 =

(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

be universal coordinate transform for precisely

visible kinematic set C. Then the ordered pair

ℱ =
(︁
C,
←−
𝒬
)︁

is referred to as universal kinematic set or, abbreviated, by universal kinematics.

Note that, if ℱ =
(︁
C,
←−
𝒬
)︁
is universal kinematics then, by Definition 3.22.1, the kinematic

set C must allow universal coordinate transform.

22.2 System of Denotations for Universal Kinematics

Everywhere in this subsection ℱ =
(︁
C,
←−
𝒬
)︁

=

(︂
C,
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

)︂
is an arbitrary universal

kinematics.

22.2.1 Evolution Base

a) Changeable set

BE (ℱ) := BE (C)

we will be named by the evolution base of the universal kinematics ℱ .

22.2.2 Denotations, induced from the theory of kinematic sets

b) Denote:

ℐ𝑛𝑑 (ℱ) := ℐ𝑛𝑑 (C) = ℐ𝑛𝑑 (BE (C)) = ℐ𝑛𝑑 (BE (ℱ)) ;
ℒ𝑘 (ℱ) := ℒ𝑘 (C) = ℒ𝑘 (BE (C)) = ℒ𝑘 (BE (ℱ)) .

- The set ℐ𝑛𝑑 (ℱ) is named by the set of indexes of universal kinematics ℱ .
- The set ℒ𝑘 (ℱ) is named by the set of all reference frames of universal kinematics ℱ .

c) Let l ∈ ℒ𝑘 (ℱ) = ℒ𝑘 (C) be any reference frame of universal kinematics ℱ . Then:

- All denotations, introduced for frame l in the theory of changeable sets are remain

unchanged. This concerns the denotations ind (l), lˆ, Bs(l), ←
l
, Bs(l), Bs←

l
, Tm(l),

Tm(l), L𝑙 (l), L𝑑 (l), ≤l, <l, ≥l, >l, 𝜓l, BE(l) = lˆ.

- The following denotations, introduced in the theory of kinematic sets, are induced:

BG(l; ℱ) := BG(l; C); L𝑠(l; ℱ) := L𝑠(l; C);
Zk(l; ℱ) := Zk(l; C); dil (·; ℱ) := dil (·; C) ;
𝒯 𝑝(l; ℱ) := 𝒯 𝑝(l; C); ‖·‖l,ℱ := ‖·‖l,C ;
Ps(l; ℱ) := Ps(l; C); (·, ·)l,ℱ := (·, ·)l,C .

- If L𝑠(l) ̸= ∅ and 𝑎1, . . . , 𝑎𝑛 ∈ Zk(l), 𝜆1, . . . 𝜆𝑛 ∈ Ps(l) then the next denotation is
induced:

(𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)l,ℱ := (𝜆1𝑎1 + · · ·+ 𝜆𝑛𝑎𝑛)l,C .
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d) For any reference frames l,m ∈ ℒ𝑘 (ℱ) = ℒ𝑘 (C) the following denotations are induced:

⟨m← l, ℱ⟩ := ⟨m← l,C⟩ ; ⟨!m← l,ℱ⟩ := ⟨!m← l,C⟩ ;
M𝑘(l;ℱ) := M𝑘 (l;C) ℱ � l := C � l;
Q⟨l⟩(𝜔;ℱ) := Q⟨l⟩(𝜔;C); Q⟨m← l⟩(𝜔;ℱ) := Q⟨m← l⟩(𝜔;C)

(where 𝜔 ∈ Bs(l))
ql(𝑥;ℱ) := ql(𝑥;C); (where 𝑥 ∈ Bs(l)).

From the introduced denotations it follows that for any reference frame l ∈ ℒ𝑘 (ℱ) of any
universal kinematics ℱ the following equality is performed:

BE (ℱ � l) = BE(l).

22.2.3 The Own Denotations for Universal Kinematics

For any reference frames l,m ∈ ℒ𝑘 (ℱ) = ℒ𝑘 (C) we will denote:

[m← l,ℱ ] w = [m← l,ℱ ] (w) := ̃︀𝑄m,l(w), w ∈M𝑘(l).

Under this denotation, [m← l,ℱ ] is the mapping acting from M𝑘(l) := M𝑘(l;ℱ) to M𝑘(m)
([m← l,ℱ ] : M𝑘 (l) ↦→ M𝑘 (m)). Note, that usually we use the abbreviated denotation
[m← l,ℱ ] w instead of [m← l,ℱ ] (w).

22.2.4 Abbreviated Versions of Denotations

∙ In the cases, where the universal kinematics ℱ is known in advance we use the abbrevi-
ated denotations Q⟨l⟩(·), Q⟨m← l⟩(·), [m← l] instead of Q⟨l⟩(·;ℱ), Q⟨m← l⟩(·;ℱ), [m← l,ℱ ]
(correspondingly).

∙ Also we use all abbreviated versions of denotations for reference frames of kinematic sets,
described in the item h) of Subsection 14.2.2 (where the symbol C should be replaced
by the symbol ℱ and term “kinematic set” should be replaced by the term “universal
kinematics”). In particular all abbreviated variants of denotations, introduced for reference
frames of changeable sets and described in Subsection 10.2, remain valid.

22.3 Some Basic Properties of Universal Kinematics

Let ℱ be any universal kinematics. Applying the denotations, accepted in previous subsection
as well as Definition 2.15.1 (items 2,4) we get the following equality, which is true for arbitrary
reference frames l,m ∈ ℒ𝑘 (ℱ):

Q⟨m← l⟩(𝜔) = [m← l]Q⟨l⟩(𝜔) (∀𝜔 ∈ Bs(l)) , (3.1)

As well, taking into account Definition 2.15.1 (item 1), we have the equality:

Q⟨m⟩ (⟨!m← l⟩𝜔) = [m← l]Q⟨l⟩(𝜔) (∀𝜔 ∈ Bs(l)) . (3.2)

Moreover, using Definition 2.15.1 (item 4), for any reference frames l,m, p ∈ ℒ𝑘 (ℱ) we obtain
the following equalities:

[l← l] w = w; (∀w ∈M𝑘(l)) ; (3.3)

[p←m] [m← l] w = [p← l] w (∀w ∈M𝑘(l)) . (3.4)

Let C be any kinematic set or universal kinematics and l ∈ ℒ𝑘 (C) be any reference frame of
C. Applying the denotations, accepted in previous subsection as well as denotations, introduced
for kinematic sets (see Subsection 14.2.2), we obtain the following equalities:

Bs (BE(l)) = Bs(l);
Bs (BE(l)) = Bs(l);
L𝑑 (BE(l)) = L𝑑(l).

(3.5)
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Assertion 3.22.1. Let ℱ1, ℱ2 be arbitrary two universal kinematics, and besides:

1. ℒ𝑘 (ℱ1) = ℒ𝑘 (ℱ2).

2. For any reference frame l ∈ ℒ𝑘 (ℱ1) = ℒ𝑘 (ℱ2) the following equalities are true:

BG (l; ℱ1) = BG (l; ℱ2) ;

ql (𝑥; ℱ1) = ql (𝑥; ℱ2) (∀𝑥 ∈ Bs(l)) .

3. For any reference frames l,m ∈ ℒ𝑘 (ℱ1) = ℒ𝑘 (ℱ2) the following equalities are performed:

⟨m← l,ℱ1⟩ = ⟨m← l,ℱ2⟩ ;
[m← l,ℱ1] = [m← l,ℱ2] .

Then ℱ1 = ℱ2.

Proof. Let ℱ1 =
(︁
C1,
←−
𝒬1

)︁
, ℱ2 =

(︁
C2,
←−
𝒬2

)︁
, where

←−
𝒬1 =

(︁ ̃︀𝑄(1)
m,l

)︁
l,m∈ℒ𝑘(C1)

,
←−
𝒬2 =

(︁ ̃︀𝑄(2)
m,l

)︁
l,m∈ℒ𝑘(C2)

be two universal kinematics, satisfying conditions of this Assertion. Taking into account the
first condition of this Assertion as well as the system of denotations, accepted in Sub-subsection
22.2.2, we obtain:

ℒ𝑘 (C1) = ℒ𝑘 (ℱ1) = ℒ𝑘 (ℱ2) = ℒ𝑘 (C2) . (3.6)

Further, applying conditions of Assertion and system of denotations, accepted in Sub-subsection
22.2.2, we deliver:

BG (l; C1) = BG (l; ℱ1) = BG (l; ℱ2) = BG (l; C2) ; (3.7)

ql (𝑥; C1) = ql (𝑥; ℱ1) = ql (𝑥; ℱ2) = ql (𝑥; C2) (∀𝑥 ∈ Bs(l)) ; (3.8)

⟨m← l,C1⟩ = ⟨m← l,ℱ1⟩ = ⟨m← l,ℱ2⟩ = ⟨m← l,C2⟩ (3.9)

(for any reference frames l,m ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2)). From the equalities (3.6), (3.7), (3.8),
(3.9), according to Corollary 2.14.1, it follows the equality:

C1 = C2. (3.10)

Consider any two fixed reference frames l,m ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2) = ℒ𝑘 (ℱ1) = ℒ𝑘 (ℱ2).
Since, according to (3.10), C1 = C2, then, according to denotations, accepted in Item d) of
Sub-subsection 22.2.2, we obtain:

M𝑘 (l;ℱ1) = M𝑘 (l;C1) = M𝑘 (l;C2) = M𝑘 (l;ℱ2) .

Hence, using the third condition of Assertion and system of denotations, accepted in Sub-
subsection 22.2.3, for any element w ∈ M𝑘 (l;C1) = M𝑘 (l;C2) = M𝑘 (l;ℱ1) = M𝑘 (l;ℱ2) we
receive ̃︀𝑄(1)

m,l(w) = [m← l,ℱ1] w = [m← l,ℱ2] w = ̃︀𝑄(2)
m,l(w),

ie ̃︀𝑄(1)
m,l =

̃︀𝑄(2)
m,l. And, taking into account the arbitrariness of reference frames l,m ∈ ℒ𝑘 (C1) =

ℒ𝑘 (C2), we obtain: ←−
𝒬1 =

(︁ ̃︀𝑄(1)
m,l

)︁
l,m∈ℒ𝑘(C1)

=
(︁ ̃︀𝑄(2)

m,l

)︁
l,m∈ℒ𝑘(C2)

=
←−
𝒬2.

Thus, ℱ1 =
(︁
C1,
←−
𝒬1

)︁
=
(︁
C2,
←−
𝒬2

)︁
= ℱ2.
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Remark 3.22.1.
I From Remark 2.14.1 as well as from system of denotations, accepted in Subsection 22.2 it

follows, that for any reference frame l ∈ ℒ𝑘 (ℱ) of any universal kinematics ℱ Properties 1.6.1
are holding (with replacement the symbol “ℬ” by the symbol “l” and the term “base changeable
set” by the term “reference frame”. Note that all abbreviated variants of notations, described in
Subsection 6.3 are exploited for universal kinematics.
I For the similar reason, Properties 1.10.1 are holding for universal kinematics (with replace-

ment the symbol “𝒵” by the symbol “ℱ ” and the term “changeable set” by the term “universal
kinematics”).

Main results of this Section were published in the paper [14].

23 Theorem on Multi-image for Universal Kinematics

Definition 3.23.1.

1. The ordered composition of five sets (T,𝒳 , 𝑈,Q,𝒦) (where T = (T,≤) is linearly ordered
set) we name by (injective) universal kinematic projector for base kinematic set Cb if
and only if:

1.1. (T,𝒳 , 𝑈) is an injective evolution projector for BE
(︀
Cb
)︀
.

1.2. Q is a coordinate space.

1.3. 𝒦 is a bijection from M𝑘
(︀
Cb
)︀
onto T× Zk(Q).

1.4. For every 𝜔1, 𝜔2 ∈ Bs
(︀
Cb
)︀
the condition bs (𝑈 (𝜔1)) = bs (𝑈 (𝜔2)) assures the equality

bs
(︁
𝒦
(︁
Q⟨Cb⟩ (𝜔1)

)︁)︁
= bs

(︁
𝒦
(︁
Q⟨Cb⟩ (𝜔2)

)︁)︁
.

1.5. For any 𝜔 ∈ Bs
(︀
Cb
)︀
the following equality is true:

tm (𝑈(𝜔)) = tm
(︁
𝒦
(︁
Q⟨Cb⟩ (𝜔)

)︁)︁
.

2. Any indexed family P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) (where 𝒜 ≠ ∅) of injective uni-
versal kinematic projectors for base kinematic set Cb we name by universal kinematic
multi-projector for Cb.

Further we use only injective universal kinematic projectors. So we will use the term “uni-
versal kinematic projector” instead of “injective universal kinematic projector”

Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) be an universal kinematic multi-projector for the
base kinematic set Cb. Then, by Definition 3.23.1, the indexed family:

P[𝑒] = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜)

is an injective evolution multi-projector for the base changeable set BE
(︀
Cb
)︀
.

Theorem 3.23.1. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) (where 𝒜 ≠ ∅) be an universal
kinematic multi-projector for a base kinematic set Cb. Then only one universal kinematics ℱ
exists, satisfying the following conditions:

1. BE (ℱ) = 𝒵 im
[︀
P[𝑒],BE

(︀
Cb
)︀]︀
.

2. For any reference frame l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ) (𝛼 ∈ 𝒜) and any elementary-

time state 𝜔 ∈ Bs(l) the following equalities are performed:

BG (l,ℱ) = Q𝛼;

Q⟨l⟩ (𝜔,ℱ) = 𝒦𝛼
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁
.
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3. For every reference frames l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ), m =(︀

𝛽, 𝑈𝛽
[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈ ℒ𝑘 (ℱ) (𝛼, 𝛽 ∈ 𝒜) and any element w ∈ M𝑘(l;ℱ) the follow-

ing equality holds:
[m← l, ℱ ] w = 𝒦𝛽

(︀
𝒦[−1]
𝛼 (w)

)︀
.

Proof. LetP = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) (where𝒜 ≠ ∅ and T𝛼 = (T𝛼,≤𝛼), 𝛼 ∈ 𝒜) be the
universal kinematic multi-projector for the base kinematic set Cb. Chose any fixed index 𝛼 ∈ 𝒜.
By Definition 3.23.1, the triple (T𝛼,𝒳𝛼, 𝑈𝛼) is an injective evolution projector for BE

(︀
Cb
)︀
. By

definition of evolution projector (see Definition 1.11.1), 𝑈𝛼 is an (injective) mapping from the
set Bs

(︀
BE
(︀
Cb
)︀)︀

= Bs
(︀
Cb
)︀
into the set T𝛼 ×𝒳𝛼. Denote:̃︀𝒳𝛼 :=

{︀
bs (𝑈𝛼(𝜔)) | 𝜔 ∈ Bs

(︀
Cb
)︀}︀
.

Then we get: ̃︀𝒳𝛼 ⊆ 𝒳𝛼.
For an arbitrary 𝑥 = bs (𝑈𝛼(𝜔)) ∈ ̃︀𝒳𝛼 (where 𝜔 ∈ Bs

(︀
Cb
)︀
) we put:

̃︀k𝛼(𝑥) := bs
(︁
𝒦𝛼
(︁
Q⟨Cb⟩(𝜔)

)︁)︁
.

The condition 1.4 of Definition 3.23.1 assures, that the mapping ̃︀k𝛼 is correctly defined.

By Definition, 3.23.1, 𝒦𝛼 is the mapping from M𝑘
(︀
Cb
)︀
to T𝛼 × Zk (Q𝛼). So ̃︀k𝛼 is the

mapping from ̃︀𝒳𝛼 to Zk (Q𝛼). Let us expand the mapping ̃︀k𝛼 to the set 𝒳𝛼 in an arbitrary

manner. Then we obtain the mapping of kind k𝛼 : 𝒳𝛼 ↦→ Zk (Q𝛼) (where k𝛼(𝑥) = ̃︀k𝛼(𝑥) for
𝑥 ∈ ̃︀𝒳𝛼). Since the index 𝛼 ∈ 𝒜 is chosen by an arbitrary way, we obtain the indexed set:

P[𝑘] := ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,k𝛼) | 𝛼 ∈ 𝒜) .

By Definition, 2.16.1, P[𝑘] is the kinematic multi-projector for the base changeable set BE
(︀
Cb
)︀
.

Denote:
C := Kim

[︀
P[𝑘], BE

(︀
Cb
)︀]︀
.

Since
(︀
P[𝑘]

)︀[𝑒]
= P[𝑒], then by Theorem 2.16.1 we obtain:

BE (C) = 𝒵 im
[︀
P[𝑒],BE

(︀
Cb
)︀]︀
. (3.11)

Consider any reference frame l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (C). By Theorem 2.16.1, we

have:
BG (l,C) = Q𝛼. (3.12)

And, according to Theorem 1.11.1 we deliver:

Bs(l) = Bs
(︀
𝑈𝛼
[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
= 𝑈𝛼

(︀
Bs
(︀
BE
(︀
Cb
)︀)︀)︀

=

= 𝑈𝛼
(︀
Bs
(︀
Cb
)︀)︀

=
{︀
𝑈𝛼(𝜔) | 𝜔 ∈ Bs

(︀
Cb
)︀}︀
.

Hence, taking into account Property 1.6.1(9) and Remark 2.14.1, we deduce:

Bs(l) = {bs (̃︀𝜔) | ̃︀𝜔 ∈ Bs(l)} =
=
{︀
bs (𝑈𝛼(𝜔)) | 𝜔 ∈ Bs

(︀
Cb
)︀}︀

= ̃︀𝒳𝛼.
Thence, by Theorem 2.16.1, for every elementary-time state 𝑥 = bs (𝑈𝛼(𝜔)) ∈ Bs(l) = ̃︀𝒳𝛼
(where 𝜔 ∈ Bs

(︀
Cb
)︀
), we get, ql (𝑥,C) = k𝛼(𝑥) = ̃︀k𝛼(𝑥) = bs

(︁
𝒦𝛼
(︁
Q⟨Cb⟩(𝜔)

)︁)︁
. Hence:

ql (bs (𝑈𝛼(𝜔)) ,C) = bs
(︁
𝒦𝛼
(︁
Q⟨Cb⟩(𝜔)

)︁)︁ (︀
𝜔 ∈ Bs

(︀
Cb
)︀)︀
. (3.13)
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By Definition 3.23.1, item 2, (T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) is an universal kinematic projector for Cb.
Therefore, by Definition 3.23.1 (item 1.5), we have:

tm (𝑈𝛼(𝜔)) = tm
(︁
𝒦𝛼
(︁
Q⟨Cb⟩ (𝜔)

)︁)︁
, 𝜔 ∈ Bs

(︀
Cb
)︀
.

Hence, from equality (3.13), for any 𝜔 ∈ Bs
(︀
Cb
)︀
we obtain:

Q⟨l⟩ (𝑈𝛼(𝜔),C) = (tm (𝑈𝛼(𝜔)) , ql (bs (𝑈𝛼(𝜔)) ,C)) =

=
(︁
tm
(︁
𝒦𝛼
(︁
Q⟨Cb⟩ (𝜔)

)︁)︁
, bs
(︁
𝒦𝛼
(︁
Q⟨Cb⟩ (𝜔)

)︁)︁)︁
= 𝒦𝛼

(︁
Q⟨Cb⟩ (𝜔)

)︁
.

Thence we have:

Q⟨l⟩ (𝜔,C) = 𝒦𝛼
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁
, 𝜔 ∈ 𝑈𝛼

(︀
Bs
(︀
Cb
)︀)︀

= Bs(l). (3.14)

According to Properties 2.16.1, for every reference frame l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (C)

we deliver:

Tm(l) = T𝛼;
Tm(l) = T𝛼;

Zk(l; C) = Zk (Q𝛼) ;

M𝑘(l; C) = T𝛼 × Zk (Q𝛼) . (3.15)

For any reference frames l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (C), m =

(︀
𝛽, 𝑈𝛽

[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈

ℒ𝑘 (C) we denote:

̃︀𝒬m,l(w) := 𝒦𝛽
(︀
𝒦[−1]
𝛼 (w)

)︀
, w ∈M𝑘(l,C) = T𝛼 × Zk (Q𝛼) . (3.16)

By Definition 3.23.1 (item 1.3), the mapping 𝒦𝛼 is bijection between M𝑘
(︀
Cb
)︀
and T𝛼 ×

Zk (Q𝛼) = M𝑘(l). So, the mapping ̃︀𝒬m,l bijection between M𝑘(l) and M𝑘(m) (for arbi-
trary reference frames l,m ∈ ℒ𝑘 (C)). The next aim is to prove, that the family of bijections(︁ ̃︀𝒬m,l | l,m ∈ ℒ𝑘 (C)

)︁
is universal coordinate transform for the kinematic set C.

Applying Property 2.16.1(5) as well as formula (3.14), for arbitrary reference frames l =(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (C), m =

(︀
𝛽, 𝑈𝛽

[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈ ℒ𝑘 (C) and any 𝜔 ∈ Bs(l) we

obtain:

Q⟨m← l⟩ (𝜔;C) = Q⟨m⟩ (⟨!m← l, C⟩𝜔; C) = Q⟨m⟩
(︀
𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀)︀
=

= 𝒦𝛽
(︁
Q⟨Cb⟩

(︁
𝑈

[−1]
𝛽

(︀
𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀)︀)︁)︁
=

= 𝒦𝛽
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁

=

= 𝒦𝛽
(︁
𝒦[−1]
𝛼

(︁
𝒦𝛼
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁)︁)︁

=

= 𝒦𝛽
(︀
𝒦[−1]
𝛼

(︀
Q⟨l⟩ (𝜔;C)

)︀)︀
= ̃︀𝒬m,l

(︀
Q⟨l⟩ (𝜔;C)

)︀
.

Therefore, according to Definition 2.15.1 (items 3, 4), the family of mappings(︁ ̃︀𝒬m,l | l,m ∈ ℒ𝑘 (C)
)︁
is universal coordinate transform for the kinematic set C (equalities (2.4)

for
(︁ ̃︀𝒬m,l | l,m ∈ ℒ𝑘 (C)

)︁
obviously are fulfilled). Denote:

←−
𝒬 :=

(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

;
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ℱ :=
(︁
C,
←−
𝒬
)︁
=

(︂
C,
(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(C)

)︂
.

By Definition 3.22.1, ℱ is an universal kinematics. In accordance with the system of denota-
tions, introduced in Subsection 22.2 and formula (3.11) we have:

BE (ℱ) = BE(C) = 𝒵 im
[︀
P[𝑒],BE

(︀
Cb
)︀]︀

;

ℒ𝑘 (ℱ) = ℒ𝑘 (C) .
Moreover, using the formulas (3.12), (3.14), (3.15), (3.16), for any reference frames l =(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ), m =

(︀
𝛽, 𝑈𝛽

[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈ ℒ𝑘 (ℱ) we deliver:

BG (l; ℱ) = BG (l; C) = Q𝛼 ;

Q⟨l⟩ (𝜔;ℱ) = Q⟨l⟩ (𝜔;C) = 𝒦𝛼
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁(︀

∀ 𝜔 ∈ Bs(l) = 𝑈𝛼
(︀
Bs
(︀
Cb
)︀)︀)︀

;

[m← l, ℱ ] w = ̃︀𝒬m,l(w) = 𝒦𝛽
(︀
𝒦[−1]
𝛼 (w)

)︀
(∀ w ∈M𝑘(l,ℱ) = M𝑘(l,C) = T𝛼 × Zk (Q𝛼)) .

Hence, universal kinematics ℱ satisfies conditions 1–3 of this Theorem.
Now, we are aiming to prove, that universal kinematics ℱ , satisfying conditions 1–3 of the

present Theorem is unique. Assume, that universal kinematics ℱ1 also satisfies the conditions
1–3 of Theorem. Then, according to the first condition of Theorem, we have, BE (ℱ) =
𝒵 im

[︀
P[𝑒],BE

(︀
Cb
)︀]︀

= BE (ℱ1). So, in accordance with the system of denotations, accepted in
Sub-subsection 22.2.2, we get:

ℒ𝑘 (ℱ) = ℒ𝑘 (BE (ℱ)) = ℒ𝑘 (BE (ℱ1)) = ℒ𝑘 (ℱ1) ; (3.17)

⟨m← l,ℱ⟩ = ⟨m← l, BE (ℱ)⟩ =
= ⟨m← l, BE (ℱ1)⟩ = ⟨m← l,ℱ1⟩ (∀l,m ∈ ℒ𝑘 (ℱ) = ℒ𝑘 (ℱ1)) . (3.18)

Next, using the second condition of Theorem, for any reference frame l =(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ) = ℒ𝑘 (ℱ1) (𝛼 ∈ 𝒜) and any elementary-time state 𝜔 ∈ Bs(l)

we obtain:

BG (l;ℱ) = Q𝛼 = BG (l;ℱ1) ; (3.19)

Q⟨l⟩ (𝜔;ℱ) = 𝒦𝛼
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁

= Q⟨l⟩ (𝜔;ℱ1) . (3.20)

Chose any elementary state 𝑥 ∈ Bs(l). According to Remark 3.22.1 and Property 1.6.1(9),
there exist elementary state 𝜔𝑥 ∈ Bs(l) such, that 𝑥 = bs (𝜔𝑥). And, using equalities (2.3) and
(3.20), we have:

(tm (𝜔𝑥) , ql(𝑥;ℱ)) = (tm (𝜔𝑥) , ql (bs (𝜔𝑥) ;ℱ)) = Q⟨l⟩ (𝜔𝑥;ℱ) =
= Q⟨l⟩ (𝜔𝑥;ℱ1) = (tm (𝜔𝑥) , ql (𝑥;ℱ1)) .

Thence:
ql(𝑥;ℱ) = ql (𝑥;ℱ1) (∀𝑥 ∈ Bs(l)) . (3.21)

Using equality (3.19) and the third condition of Theorem, for arbitrary reference frames
l =

(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ), m =

(︀
𝛽, 𝑈𝛽

[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈ ℒ𝑘 (ℱ) (𝛼, 𝛽 ∈ 𝒜) and

arbitrary element w ∈M𝑘(l;ℱ) we obtain:
w ∈M𝑘(l;ℱ) = M𝑘 (l;ℱ1) ;

[m← l,ℱ ] w = 𝒦𝛽
(︀
𝒦[−1]
𝛼 (w)

)︀
= [m← l,ℱ1] w. (3.22)

According to Assertion 3.22.1, equalities (3.17), (3.19), (3.21), (3.18), (3.22) lead to the
equality ℱ = ℱ1.
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Definition 3.23.2. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) (where 𝒜 ≠ ∅ and T𝛼 = (T𝛼,≤𝛼),
𝛼 ∈ 𝒜) be an universal kinematic multi-projector for a base kinematic set Cb. Universal kine-
matics, satisfying conditions 1–3 of Theorem 3.23.1 is named by universal kinematic multi-
image of base kinematic set Cb relatively the universal kinematic multi-projector P. This
universal kinematics will be denoted via Ku

[︀
P,Cb

]︀
:

Kim [P,ℬ] := C.

Properties 3.23.1. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) (where 𝒜 ≠ ∅ and T𝛼 = (T𝛼,≤𝛼),
𝛼 ∈ 𝒜) be an universal kinematic multi-projector for a base kinematic set Cb and ℱ =
Ku
[︀
P,Cb

]︀
. Then the following statements are true:

1. ℒ𝑘 (ℱ) =
{︀(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
| 𝛼 ∈ 𝒜

}︀
.

2. ℐ𝑛𝑑 (ℱ) = 𝒜.

3. For every reference frame l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ) the following equalities are

performed:

Bs(l) = 𝑈𝛼
(︀
Bs
(︀
Cb
)︀)︀

=
{︀
𝑈𝛼(𝜔) | 𝜔 ∈ Bs

(︀
Cb
)︀}︀

;

Bs(l) =
{︀
bs (𝑈𝛼(𝜔)) | 𝜔 ∈ Bs

(︀
Cb
)︀}︀

;

Tm(l) = T𝛼; Tm(l) = T𝛼;

4. For every reference frame l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ) the following equalities are

satisfied:

Zk(l;ℱ) = Zk (Q𝛼) ; (3.23)

M𝑘(l;ℱ) = T𝛼 × Zk (Q𝛼) ; (3.24)

Q⟨l⟩(𝜔;ℱ) = 𝒦𝛼
(︁
Q⟨Cb⟩ (︀𝑈 [−1]

𝛼 (𝜔)
)︀)︁

(𝜔 ∈ Bs(l)) . (3.25)

5. Let, l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ), where 𝛼 ∈ 𝒜. Suppose, that ̃︀𝜔1, ̃︀𝜔2 ∈ Bs(l)

and tm (̃︀𝜔1) ̸= tm (̃︀𝜔2). Then ̃︀𝜔1 and ̃︀𝜔2 are united by fate in l if and only if there exist
united by fate in Cb elementary-time states 𝜔1, 𝜔2 ∈ Bs

(︀
Cb
)︀
such, that ̃︀𝜔1 = 𝑈𝛼 (𝜔1),̃︀𝜔2 = 𝑈𝛼 (𝜔2).

6. For any reference frames l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ), m =(︀

𝛽, 𝑈𝛽
[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈ ℒ𝑘 (ℱ) (𝛼, 𝛽 ∈ 𝒜) the following equality holds:

⟨!m← l, ℱ⟩𝜔 = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔)

)︀ (︀
𝜔 ∈ Bs(l) = 𝑈𝛼

(︀
Bs
(︀
Cb
)︀)︀)︀

;

7. For any reference frames l =
(︀
𝛼, 𝑈𝛼

[︀
BE
(︀
Cb
)︀
,T𝛼

]︀)︀
∈ ℒ𝑘 (ℱ), m =(︀

𝛽, 𝑈𝛽
[︀
BE
(︀
Cb
)︀
,T𝛽
]︀)︀
∈ ℒ𝑘 (ℱ) (𝛼, 𝛽 ∈ 𝒜) the following equality is performed:

[m← l, ℱ ] w = 𝒦𝛽
(︀
𝒦[−1]
𝛼 (w)

)︀
(w ∈M𝑘(l;ℱ)) .

Proof. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼,Q𝛼,𝒦𝛼) | 𝛼 ∈ 𝒜) (where T𝛼 = (T𝛼,≤𝛼), 𝛼 ∈ 𝒜) be the universal
kinematic multi-projector for Cb and ℱ = Ku

[︀
P,Cb

]︀
.

1,2,3,5,6: By Theorem 3.23.1 (item 1), we have:

BE (ℱ) = 𝒵 im
[︀
P[𝑒],BE

(︀
Cb
)︀]︀
.

Hence, according to system of denotations, accepted for universal kinematics, values of all com-
ponents of the changeable set 𝒵 = 𝒵 im

[︀
P[𝑒],BE

(︀
Cb
)︀]︀

are equal to the values of corresponding
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components of universal kinematics ℱ . Consequently, the properties 3.23.1(1,2,3,5,6) follow
from the properties 1.11.2(1-4) as well as Corollary 1.12.7.
4: Consider any, reference frame l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (ℱ), where 𝛼 ∈ 𝒜. In accordance

with Theorem 3.23.1 (item 2), we get:

BG (l; ℱ) = Q𝛼. (3.26)

According to system of denotations, accepted for kinematic sets and universal kinematics,
for each reference frame k ∈ ℒ𝑘 (𝒴) of any kinematic set or universal kinematics 𝒴 it holds
the equality Zk (k,𝒴) = Zk (BG (k,𝒴)). The last equality together with (3.26) stipulates the
equality (3.23). The equality (3.24) follows from the equality (3.23), Property 3.23.1(3) and
definition of Minkowski set. Equality (3.25) is a consequence of Theorem 3.23.1 (item 2).
7: Property 3.23.1(7) follows from Theorem 3.23.1 (item 3).

Main results of this Section were published in the paper [14].

24 Universal Kinematics, Generated by Special Relativity and its

Tachyon Extensions

Let, Q be a coordinate space. Each base changeable set ℬ such, that Bs(ℬ) ⊆ Zk(Q) {17}
generates the following base kinematic set:

C(ℬ,Q) =
(︀
ℬ,
(︀
Q, IBs(ℬ)

)︀)︀
,

where IBs(ℬ) is the identity mapping on Bs(ℬ). For this kinematic set we have:

Zk
(︀
C(ℬ,Q)

)︀
= Zk(Q);

M𝑘
(︀
C(ℬ,Q)

)︀
= Tm

(︀
C(ℬ,Q)

)︀
× Zk

(︀
C(ℬ,Q)

)︀
= Tm(ℬ)× Zk(Q); (3.27)

qC(ℬ,Q)(𝑥) = 𝑥, 𝑥 ∈ Bs
(︀
C(ℬ,Q)

)︀
= Bs(ℬ);

Q⟨C(ℬ,Q)⟩(𝜔) = (tm (𝜔) , qC(ℬ,Q) (bs (𝜔))) =

= (tm (𝜔) , bs (𝜔)) = 𝜔, 𝜔 ∈ Bs
(︀
C(ℬ,Q)

)︀
= Bs(ℬ). (3.28)

Let U be any transforming set of bijections relatively the ℬ on Zk(Q) (in the sense of Example
1.11.2).

Assertion 3.24.1. For every mapping U ∈ U the next ordered five-composition:

(Tm(ℬ),Zk(Q),U,Q,U)

is an universal kinematic multi-projector for C(ℬ,Q).

Proof. Consider any mapping U ∈ U. Taking into account definition of transforming set of
bijections, we see that U is the bijection of kind U : Tm(ℬ) × Zk(Q) ←→ Tm(ℬ) × Zk(Q),
where Bs(ℬ) ⊆ Tm(ℬ)×Bs(ℬ) ⊆ Tm(ℬ)×Zk(Q). Therefore, the triple (Tm(ℬ),Zk(Q),U)
is an injective evolution projector for the base changeable set ℬ = BE

(︀
C(ℬ,Q)

)︀
{18}. In addition,

according to (3.27), U is the bijection of kind U : M𝑘
(︀
C(ℬ,Q)

)︀
←→ Tm(ℬ) × Zk(Q). Thus,

conditions 1.1–1.3 of Definition 3.23.1 are satisfied. So, we are going to verify the performance

17 (such base changeable set ℬ exists, because, for example, we may put ℬ := 𝒜𝑡 (T,ℛ), where ℛ is a system of abstract
trajectories from linearly ordered set T to a set M ⊆ Zk(Q), where the definition of 𝒜𝑡 (T,ℛ) can be found in Example 1.6.3 (see
also Theorem 1.6.1)).

18 Recall that, according to convention accepted in Example 1.11.2, we identify the mapping U�Bs(ℬ) with the mapping U (where
U�Bs(ℬ) is the restriction of the mapping U onto the set Bs(ℬ) ⊆ Tm(ℬ)× Zk(Q)).
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of the conditions 1.4 and 1.5. Using (3.28), for any elementary-time states 𝜔1, 𝜔2 ∈ Bs
(︀
C(ℬ,Q)

)︀
such, that bs (U (𝜔1)) = bs (U (𝜔2)) and any 𝜔 ∈ Bs

(︀
C(ℬ,Q)

)︀
we deduce:

bs
(︁
U
(︁
Q⟨C(ℬ,Q)⟩ (𝜔1)

)︁)︁
= bs (U (𝜔1)) = bs (U (𝜔2)) =

= bs
(︁
U
(︁
Q⟨C(ℬ,Q)⟩ (𝜔2)

)︁)︁
;

tm (U(𝜔)) = tm
(︁
U
(︁
Q⟨C(ℬ,Q)⟩ (𝜔)

)︁)︁
.

Hence, the conditions 1.4, 1.5 of Definition 3.23.1 are satisfied also. The proof is completed.

For each transforming set of bijections U relatively the ℬ on Zk(Q) we denote:

̂︀UUK := ((Tm(ℬ),Zk(Q),U,Q,U) |U ∈ U) .

According to Assertion 3.24.1 and Definition 3.23.1, ̂︀UUK is the universal kinematic multi-
projector for the base kinematic set C(ℬ,Q). Denote:

Ku (U,ℬ,Q) := Ku
[︁̂︀UUK,C

(ℬ,Q)
]︁
. (3.29)

Note that the universal kinematics Ku (U,ℬ,Q) can be obtained by another way:

Assertion 3.24.2. The following equality is true:

Ku (U,ℬ,Q) =
(︁
Kim (U,ℬ,Q) ,

←−
𝒬
)︁
,

where
←−
𝒬 =

(︁ ̃︀𝑄m,l

)︁
l,m∈ℒ𝑘(Kim(U,ℬ,Q))

and

̃︀𝑄m,l(w) = V
(︀
U[−1](w)

)︀
, (3.30)

l = (U,U [ℬ]) ∈ ℒ𝑘 (Kim (U,ℬ,Q)) ,

m = (V,V [ℬ]) ∈ ℒ𝑘 (Kim (U,ℬ,Q))

w ∈M𝑘(l) = Tm(ℬ)× Zk(Q).

Proof. Denote C := Kim (U,ℬ,Q). According to Theorem 2.16.2, the system of mapping
←−
𝒬 ,

defined by the formula (3.30) is universal coordinate transform for kinematic set C. So, the
pair:

ℱ =
(︁
C,
←−
𝒬
)︁
=
(︁
Kim (U,ℬ,Q) ,

←−
𝒬
)︁

is an universal kinematics.
According to (2.14) we have:

Kim (U,ℬ,Q) = Kim
[︁̂︀U,ℬ]︁ , where (3.31)̂︀U =

(︀(︀
Tm(ℬ),Zk(Q),U,Q, IZk(Q)

)︀
|U ∈ U

)︀
and Iℳ is the identity mapping on some setℳ. In accordance with (3.29) we get,

Ku (U,ℬ,Q) = Ku
[︁̂︀UUK,C

(ℬ,Q)
]︁
, where (3.32)̂︀UUK = ((Tm(ℬ),Zk(Q),U,Q,U) |U ∈ U) and

C(ℬ,Q) =
(︀
ℬ,
(︀
Q, IBs(ℬ)

)︀)︀
. (3.33)
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Using (3.33), for any 𝜔 ∈ Bs
(︀
C(ℬ,Q)

)︀
we obtain:

M𝑘
(︀
C(ℬ,Q)

)︀
= Tm

(︀
C(ℬ,Q)

)︀
× Zk

(︀
C(ℬ,Q)

)︀
= Tm(ℬ)× Zk(Q);

Q⟨C(ℬ,Q)⟩(𝜔) = (tm (𝜔) , qC(ℬ,Q) (bs (𝜔))) =

=
(︀
tm (𝜔) , IBs(ℬ) (bs (𝜔))

)︀
= 𝜔

(︀
∀𝜔 ∈ Bs

(︀
C(ℬ,Q)

)︀)︀
. (3.34)

Applying (3.31), (3.32), (3.34), as well as Properties 2.16.1, Theorem 2.16.1, and Properties
3.23.1, we deduce the following results:

1. BE (ℱ) = 𝒵 im
[︁̂︀U[𝑒],ℬ

]︁
= 𝒵 im

(︁̂︀U[𝑒]
UK,BE

(︀
C(ℬ,Q)

)︀)︁
;

2. if l ∈ ℒ𝑘 (ℱ) then l = (U,U [ℬ]) =
(︀
U,U

[︀
BE
(︀
C(ℬ,Q)

)︀
,Tm(ℬ)

]︀)︀
for some U ∈ U and

BG (l,ℱ) = BG (l, Kim (U,ℬ,Q)) = Q;

Q⟨l⟩ (𝜔,ℱ) = Q⟨l⟩ (𝜔, Kim (U,ℬ,Q)) =
(︀
tm (𝜔) , IZk(Q)(bs (𝜔))

)︀
=

= 𝜔 = U
(︀
U[−1](𝜔)

)︀
= U

(︁
Q⟨C(ℬ,Q)⟩ (︀U[−1](𝜔)

)︀)︁
(︀
∀𝜔 ∈ Bs (l) = U (Bs(ℬ)) = U

(︀
Bs
(︀
C(ℬ,Q)

)︀)︀)︀
.

3. if l = (U,U [ℬ]) ∈ ℒ𝑘 (ℱ), m = (V,V [ℬ]) ∈ ℒ𝑘 (ℱ) (U,V ∈ U) and w ∈M𝑘(l) then:

[m← l, ℱ ] w = ̃︀𝑄m,l(w) = V
(︀
U[−1](w)

)︀
.

According to Theorem 3.23.1, from the statements, proven above in the items 1,2,3 it follows,

that ℱ = Ku
[︁̂︀UUK,C

(ℬ,Q)
]︁
= Ku (U,ℬ,Q), that is(︁

Kim (U,ℬ,Q) ,
←−
𝒬
)︁
= Ku (U,ℬ,Q).

Let (H, ‖·‖ , ⟨·, ·⟩) be any real Hilbert space andℳ (H) be Minkowski space over H. In ac-

cordance with Section 19, space H generates the coordinate space ̂︀H = (H, 𝒯H,LH, 𝜌H, ‖·‖ , ⟨·, ·⟩),
where 𝜌H and 𝒯H are metrics and topology, generated by the norm ‖·‖ on the space H, as well
as LH is the natural linear structure of the space H.

Let ℬ be any base changeable set such, that Bs(ℬ) ⊆ H = Zk
(︁̂︀H)︁ and Tm(ℬ) = (R,≤),

where ≤ is the standard order in the field of real numbers R. Then Bs(ℬ) ⊆ R×H =ℳ (H).
Any set S ⊆ Pk (H) (where the class of operators Pk (H) is defined in Section 19) is the

transforming set of bijections relatively the ℬ on H = Zk
(︁̂︀H)︁. Therefore, we can put:

Ku (S,ℬ; H) := Ku
(︁
S,ℬ, ̂︀H)︁ .

Substituting instead of S the classes of operators PT (H, 𝑐), PT+ (H, 𝑐), P (H, 𝑐), P+ (H, 𝑐),
introduced in Section 19, we obtain the following universal kinematics:

UPT0 (H,ℬ, 𝑐) := Ku (PT (H, 𝑐) ,ℬ; H) ;
UPT (H,ℬ, 𝑐) := Ku (PT+ (H, 𝑐) ,ℬ; H) ;
UP0 (H,ℬ, 𝑐) := Ku (P (H, 𝑐) ,ℬ; H) ;
UP (H,ℬ, 𝑐) := Ku (P+ (H, 𝑐) ,ℬ; H) .

Certainly, according to Assertion 3.24.2, universal kinematics UPT0 (H,ℬ, 𝑐), UPT (H,ℬ, 𝑐),
UP0 (H,ℬ, 𝑐), UP (H,ℬ, 𝑐) may be defined on the basis of kinematic sets KPT0 (H,ℬ, 𝑐),
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KPT (H,ℬ, 𝑐), KP0 (H,ℬ, 𝑐), KP (H,ℬ, 𝑐) together with the corresponding universal coordinate
transforms.

In the case dim(H) = 3, 𝑐 <∞ the universal kinematics UP (H,ℬ, 𝑐) represents the simplest
mathematically strict model of the kinematics of special relativity theory in inertial frames of
reference. Universal kinematics UP0 (H,ℬ, 𝑐) is constructed on the basis of general Lorentz-
Poincare group, and it includes apart from usual reference frames (with positive direction of
time), which have understandable physical interpretation, also reference frames with nega-
tive direction of time. Universal kinematics UPT (H,ℬ, 𝑐) and UPT0 (H,ℬ, 𝑐) include apart
from standard (“tardyon”) reference frames also “tachyon” reference frames, which are moving
relatively the “tardyon” reference frames with velocity, greater than the velocity of light 𝑐.
Kinematic set UP (H,ℬ,∞) = UPT (H,ℬ,∞) in the case dim(H) = 3, 𝑐 = ∞ represents the
mathematically strict model of the Galilean kinematics in the inertial frames of reference.

From Corollary 2.19.5 it follows, that the sets of operators P (H, 𝑐) and P+ (H, 𝑐) form the
groups of operators over the spaceℳ (H). At the same time, in Corollary 2.19.6 it was proved,
that the classes of operators PT+ (H, 𝑐) and PT (H, 𝑐) (for dim (H) > 1) do not form a group
over ℳ (H). This means, that the kinematics UPT (H,ℬ, 𝑐) and UPT0 (H,ℬ, 𝑐), constructed
on the basis of these classes, do not satisfy the relativity principle, because, according to
Property 3.23.1(7), for universal kinematics ℱ ∈ {UPT0 (H,ℬ, 𝑐) , UPT (H,ℬ, 𝑐)} the subset of
universal coordinate transforms:

UP(l) = {[m← l,ℱ ] |m ∈ ℒ𝑘 (ℱ)} ,

providing transition from some reference frame l ∈ ℒ𝑘 (ℱ) to all other frames m ∈ ℒ𝑘 (ℱ), is
different for different frames l. But, in kinematics UPT (H,ℬ, 𝑐) and UPT0 (H,ℬ, 𝑐) the rela-
tivity principle is violated only in the superluminal diapason, because the universal kinematics
UPT (H,ℬ, 𝑐) and UPT0 (H,ℬ, 𝑐) are formed by the “addition” of new, superlight reference
frames to the universal kinematics UP (H,ℬ, 𝑐) and UP0 (H,ℬ, 𝑐), which satisfy the principle
of relativity. In Remark 2.19.2 it was be noted that the principle of relativity is only one of
the experimentally established facts, which must not be satisfied when we exit out of the light
barrier. Recall that possibility of revision of the relativity principle is discussed in the physical
literature (see [48,64–69]).

Main results of this Section were published in the paper [14].

25 On Equivalence of Universal Kinematics Relatively Coordinate

Transform

Remark concerning reference frames and their indexes. Let 𝒴 be any changeable set or kine-
matic set or universal kinematics. According to Properties 1.10.1(1,2), Remark 2.14.1 and
Remark 3.22.1, for an arbitrary index 𝛼 ∈ ℐ𝑛𝑑 (𝒴) the unique reference frame l ∈ ℒ𝑘 (𝒴) exists
such, that

ind (l) = 𝛼.

Further we denote this reference frame by lk𝛼 (𝒴):

∀𝛼 ∈ ℐ𝑛𝑑 (𝒴) : lk𝛼 (𝒴) = l, where l ∈ ℒ𝑘 (𝒴) , ind (l) = 𝛼.

Directly from the definition of lk𝛼 (𝒴), taking into account Property 1.10.1(1) and remarks
2.14.1, 3.22.1, we obtain the following properties.

Properties 3.25.1. Let 𝒴,𝒴1 be any changeable sets or kinematic sets or universal kinematics.
Then the following statements are fulfilled:
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1. For each reference frame l ∈ ℒ𝑘 (𝒴) the following equality holds:

l = lkind(l) (𝒴) .

2. The following equality is true:

ℒ𝑘 (𝒴) = {lk𝛼 (𝒴) | 𝛼 ∈ ℐ𝑛𝑑 (𝒴)} . (3.35)

3. If the equality ℒ𝑘 (𝒴1) = ℒ𝑘 (𝒴) holds, then:

a) ℐ𝑛𝑑 (𝒴) = ℐ𝑛𝑑 (𝒴1);

b) For any index 𝛼 ∈ ℐ𝑛𝑑 (𝒴) = ℐ𝑛𝑑 (𝒴1) it is true the equality:

lk𝛼 (𝒴) = lk𝛼 (𝒴1) .

Equivalence of Universal Kinematics Relatively Coordinate Transform

Definition 3.25.1. We say, that base kinematic sets Cb
0 and Cb

1 are chrono-geometrically
affined if and only if:

1) Tm
(︀
Cb
0

)︀
= Tm

(︀
Cb
1

)︀
;

2) BG
(︀
Cb
0

)︀
= BG

(︀
Cb
1

)︀
.

Definition 3.25.2. We say that the universal kinematics ℱ1 and ℱ2 are equivalent relatively
coordinate transform if and only if:

1. ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2);

2. For every index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) the base kinematic sets ℱ1 � lk𝛼 (ℱ1) and
ℱ2 � lk𝛼 (ℱ2) are chrono-geometrically affined, that is:

Tm (lk𝛼 (ℱ1)) = Tm (lk𝛼 (ℱ2)) ; (3.36)

BG (lk𝛼 (ℱ1) ;ℱ1) = BG (lk𝛼 (ℱ2) ;ℱ2) (3.37)

(note, that equalities (3.36) and (3.37) assure the equalities Zk (lk𝛼 (ℱ1) ;ℱ1) =
Zk (lk𝛼 (ℱ2) ;ℱ2) and M𝑘 (lk𝛼 (ℱ1) ;ℱ1) = M𝑘 (lk𝛼 (ℱ2) ;ℱ2).

3. For any indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) it is performed the equality:

[lk𝛽 (ℱ1)← lk𝛼 (ℱ1) ,ℱ1] = [lk𝛽 (ℱ2)← lk𝛼 (ℱ2) ,ℱ2] .

The fact, that universal kinematics ℱ1 and ℱ2 are equivalent relatively coordinate transform
will be denoted as follows:

ℱ1 [≡]ℱ2.

The next statement is the direct consequence of Definition 3.25.2.

Assertion 3.25.1. Binary relation [≡] is the equivalence relation on any setℳ, which consists
of universal kinematics.

Remark 3.25.1. Let ℱ1 and ℱ2 be universal kinematics such, that ℱ1 [≡]ℱ2. Then we may
consider ℱ1 and ℱ2 as two different scenarios of evolution, acting in the same space-time and
coordinate-transform environment. The following assertion confirms the mind, expressed above.

Assertion 3.25.2. Let us suppose the following conditions:

1. Q is any coordinate space;
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2. ℬ1,ℬ2 are arbitrary base changeable sets such, that Tm (ℬ1) = Tm (ℬ2) and Bs (ℬ𝑖) ⊆
Zk(Q) (𝑖 ∈ 1, 2);

3. U is any transforming set of bijections relatively ℬ1 on Zk(Q).

Then U is transforming set of bijections relatively ℬ2 on Zk(Q). Moreover, the next correlation
holds:

Ku (U,ℬ1,Q) [≡] Ku (U,ℬ2,Q) .

Proof. A. Since U is transforming set of bijections relatively ℬ1 on Zk(Q), then any any map-
ping U ∈ U is the bijection of kind U : Tm (ℬ1)× Zk(Q) ←→ Tm (ℬ1)× Zk(Q). According
to second condition of Assertion, Tm (ℬ1) = Tm (ℬ2). So any any mapping U ∈ U is the
bijection of kind U : Tm (ℬ2) × Zk(Q) ←→ Tm (ℬ2) × Zk(Q). Hence, U is transforming set
of bijections relatively ℬ2 on Zk(Q).
B. Denote:

ℱ𝑖 := Ku (U,ℬ𝑖,Q) (𝑖 ∈ 1, 2).

According to (3.29), for 𝑖 ∈ 1, 2 we have:

Ku (U,ℬ𝑖,Q) = Ku
[︁̂︀UUK,C

(ℬ𝑖,Q)
]︁
, wherê︀UUK = ((Tm (ℬ1) ,Zk(Q),U,Q,U) |U ∈ U) =

= ((Tm (ℬ2) ,Zk(Q),U,Q,U) |U ∈ U) ;
C(ℬ𝑖,Q) =

(︀
ℬ𝑖,
(︀
Q, IBs(ℬ𝑖)

)︀)︀
(𝑖 ∈ 1, 2).

Therefore, using Property 3.23.1(2) we deliver:

ℐ𝑛𝑑 (ℱ1) = U = ℐ𝑛𝑑 (ℱ2) . (3.38)

Next, using Properties 3.23.1 and Theorem 3.23.1, for any two indexes (mappings) U,V ∈ U
we deduce:

lkU (ℱ𝑖) = (U,U [ℬ𝑖,Tm (ℬ𝑖)]) , lkV (ℱ𝑖) = (V,V [ℬ𝑖,Tm (ℬ𝑖)]) (𝑖 ∈ 1, 2);

Tm (lkU (ℱ1)) = Tm (ℬ1) = Tm (ℬ2) = Tm (lkU (ℱ2)) ;

BG (lkU (ℱ1) ;ℱ1) = Q = BG (lkU (ℱ2) ;ℱ2) ;

[lkV (ℱ1)← lkU (ℱ1) ,ℱ1] w = V
(︀
U[−1](w)

)︀
=

= [lkV (ℱ2)← lkU (ℱ2) ,ℱ2] w.

(∀w ∈M𝑘 (lkU (ℱ1) ;ℱ1) = M𝑘 (lkU (ℱ2) ;ℱ2))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.39)

Thus, applying (3.38), (3.39) and Definition 3.25.2, we obtain, ℱ1 [≡]ℱ2.

Main results of this Section were published in the paper [15].

26 Evolutional Extensions for Universal Kinematics and their Prop-

erties

26.1 Evolutional Extensions for Base Kinematic Sets

Remark 3.26.1. Let ℬ0 and ℬ1 be base changeable sets such, that ℬ0⊂−→ℬ1. Then, according to

Assertion 1.9.1, we have, Bs (ℬ0) ⊆ Bs (ℬ1). Therefore if for chrono-geometrically affined base
kinematic sets Cb

0 and Cb
1 the correlation BE

(︀
Cb
0

)︀
⊂−→BE

(︀
Cb
1

)︀
holds, then we have:

Bs
(︀
Cb
0

)︀
= Bs

(︀
BE
(︀
Cb
0

)︀)︀
⊆ Bs

(︀
BE
(︀
Cb
1

)︀)︀
= Bs

(︀
Cb
1

)︀
.
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In particular if BE
(︀
Cb
0

)︀
<−→BE

(︀
Cb
1

)︀
, then, according to Assertion 1.9.2, we get BE

(︀
Cb
0

)︀
⊂−→BE

(︀
Cb
1

)︀
,

and so Bs
(︀
Cb
0

)︀
⊆ Bs

(︀
Cb
1

)︀
.

Definition 3.26.1.

1. Base kinematic set Cb
1 will be named by evolutional extension of the base kinematic set

Cb
0 if and only if:

(1.a) Cb
0 and Cb

1 are chrono-geometrically affined;

(1.b) base changeable set BE
(︀
Cb
1

)︀
is evolutional extension of the base changeable set

BE
(︀
Cb
0

)︀
(ie BE

(︀
Cb
0

)︀
⊂−→BE

(︀
Cb
1

)︀
);

(1.c) for any 𝑥 ∈ Bs
(︀
Cb
0

)︀
(⊆ Bs

(︀
Cb
1

)︀
) it is true the equality qCb

1
(𝑥) = qCb

0
(𝑥) (or, in the

other words, qCb
0
⊆ qCb

1
).

In the case, where the base kinematic set Cb
1 is an evolutional extension of the base kine-

matic set Cb
0, we also will say, that Cb

0 is evolutionarily included in Cb
1, using the deno-

tation Cb
0⊂−→Cb

1 or Cb
1⊃←−C

b
0.

2. We say that base kinematic set Cb
1 is super-evolutional extension of an base kinematic

set Cb
0 if and only if:

(2.a) Cb
0 and Cb

1 are chrono-geometrically affined;

(2.b) base changeable set BE
(︀
Cb
1

)︀
is super-evolutional extension of the base changeable set

BE
(︀
Cb
0

)︀
(ie BE

(︀
Cb
0

)︀
<−→BE

(︀
Cb
1

)︀
);

(2.c) for any 𝑥 ∈ Bs
(︀
Cb
0

)︀
(⊆ Bs

(︀
Cb
1

)︀
) it is true the equality qCb

1
(𝑥) = qCb

0
(𝑥) (that is

qCb
0
⊆ qCb

1
).

In the case, where the base kinematic set Cb
1 is an super-evolutional extension of the base

kinematic set Cb
0, we also will say, that C

b
0 is super-evolutionarily included in Cb

1, using
the denotation Cb

0<−→Cb
1 or Cb

1=←−C
b
0.

Also we use the denotations Cb
0 ̸⊂−→Cb

1 and Cb
0 ̸<−→Cb

1 for the cases, when the conditions Cb
0⊂−→Cb

1

or Cb
0<−→Cb

1 are not satisfied (correspondingly).

In accordance with Assertion 1.9.2, for any base changeable sets ℬ0, ℬ1 the correlation
ℬ0<−→ℬ1, always leads to the correlation ℬ0⊂−→ℬ1. Thence, we obtain the following corollary of

definition 3.26.1.

Corollary 3.26.1. Any super-evolutional extension of arbitrary base kinematic set Cb
0 is its

evolutional extension, that is the correlation Cb
0<−→Cb

1, always leads to the correlation Cb
0⊂−→Cb

1.

Remark 3.26.2. Let ℬ0 and ℬ1 be the changeable sets such, that ℬ0⊂−→ℬ1, but ℬ0 ̸<−→ℬ1 (see

Example 1.9.1). Chose any coordinate space Q and any mapping k1 : Bs (ℬ1) ↦→ Zk(Q).
According to Assertion 1.9.1, we have, Bs (ℬ0) ⊆ Bs (ℬ1). So, we can put:

k0 := (k1)�Bs(ℬ0) ,

where (k1)�Bs(ℬ0) is the restriction of the mapping k1 into the set Bs (ℬ0). Thus, we may define
the following base kinematic sets:

Cb
0 := (ℬ0, (Q,k0)) , Cb

1 := (ℬ1, (Q,k1)) .

In accordance wit Definition 3.26.1, for these base kinematic sets we have Cb
0⊂−→Cb

1, but

Cb
0 ̸<−→Cb

1. Thus:

Statement, inverse to Corollary 3.26.1 in the general case is not true .
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Assertion 3.26.1. The evolutional inclusion of base kinematic sets possesses the following
properties:

1. Cb
0⊂−→Cb

0 for an arbitrary base kinematic set Cb
0;

2. If Cb
1⊂−→Cb

2 and Cb
2⊂−→Cb

1 then Cb
1 = Cb

2;

3. If Cb
1⊂−→Cb

2 and Cb
2⊂−→Cb

3 then Cb
1⊂−→Cb

3.

Proof. 1. In the case of Cb
0 = Cb

1, conditions (1.a.) and (1.c) of Definition 3.26.1 are performed
trivially. The condition (1.b) also is satisfied in this case, because, by Assertion 1.9.3, we have
BE
(︀
Cb
0

)︀
⊂−→BE

(︀
Cb
0

)︀
.

2. Suppose, that Cb
1⊂−→Cb

2 and Cb
2⊂−→Cb

1. Then, according to Definition 3.26.1, we obtain:

BG
(︀
Cb
1

)︀
= BG

(︀
Cb
2

)︀
,

BE
(︀
Cb
1

)︀
⊂−→BE

(︀
Cb
2

)︀
, BE

(︀
Cb
2

)︀
⊂−→BE

(︀
Cb
1

)︀
,

qCb
1
⊆ qCb

2
qCb

2
⊆ qCb

1
.

So, taking into account Assertion 1.9.3, we see, that BG
(︀
Cb
1

)︀
= BG

(︀
Cb
2

)︀
, BE

(︀
Cb
1

)︀
= BE

(︀
Cb
2

)︀
and qCb

1
= qCb

2
. Hence, Cb

1 =
(︁
BE
(︀
Cb
1

)︀
,
(︁
BG
(︀
Cb
1

)︀
, qCb

1

)︁)︁
=
(︁
BE
(︀
Cb
2

)︀
,
(︁
BG
(︀
Cb
2

)︀
, qCb

2

)︁)︁
= Cb

2.

3. Suppose, that Cb
1⊂−→Cb

2 and Cb
2⊂−→Cb

3. Then, according to Definition 3.26.1, we obtain:

BG
(︀
Cb
1

)︀
= BG

(︀
Cb
2

)︀
= BG

(︀
Cb
3

)︀
,

Tm
(︀
Cb
1

)︀
= Tm

(︀
Cb
2

)︀
= Tm

(︀
Cb
3

)︀
,

BE
(︀
Cb
1

)︀
⊂−→BE

(︀
Cb
2

)︀
, BE

(︀
Cb
2

)︀
⊂−→BE

(︀
Cb
3

)︀
,

qCb
1
⊆ qCb

2
qCb

2
⊆ qCb

3
.

So, taking into account Assertion 1.9.3, we deliver:

BG
(︀
Cb
1

)︀
= BG

(︀
Cb
3

)︀
, Tm

(︀
Cb
1

)︀
= Tm

(︀
Cb
3

)︀
, BE

(︀
Cb
1

)︀
⊂−→BE

(︀
Cb
3

)︀
, qCb

1
⊆ qCb

3
.

Thence, by Definition 3.26.1, we obtain, Cb
1⊂−→Cb

3.

Assertion 3.26.2. The super-evolutional inclusion of base kinematic sets possesses the follow-
ing properties:

1. Cb
0<−→Cb

0 for an arbitrary base kinematic set Cb
0;

2. If Cb
1<−→Cb

2 and Cb
2<−→Cb

1 then Cb
1 = Cb

2;

3. If Cb
1<−→Cb

2 and Cb
2<−→Cb

3 then Cb
1⊂−→Cb

3

Proof. 1. In the case of Cb
0 = Cb

1, conditions (2.a.) and (2.c) of Definition 3.26.1 are performed
trivially. The condition (2.b) also is satisfied in this case, because, by Assertion 1.9.7, we have
BE
(︀
Cb
0

)︀
<−→BE

(︀
Cb
0

)︀
.

2. Suppose, that Cb
1<−→Cb

2 and Cb
2<−→Cb

1. Then, according to Corollary 3.26.1, we have,

Cb
1⊂−→Cb

2 and Cb
2⊂−→Cb

1.

Thence, by Assertion 3.26.1, we obtain, Cb
1 = Cb

2.
3. Suppose, that Cb

1<−→Cb
2 and Cb

2<−→Cb
3. Then, according to Definition 3.26.1, we obtain:

BG
(︀
Cb
1

)︀
= BG

(︀
Cb
2

)︀
= BG

(︀
Cb
3

)︀
,

171



Draft Introduction to Abstract Kinematics. (Ver 2.0) 26. Evolutional Extensions of Universal Kinematics

Tm
(︀
Cb
1

)︀
= Tm

(︀
Cb
2

)︀
= Tm

(︀
Cb
3

)︀
,

BE
(︀
Cb
1

)︀
<−→BE

(︀
Cb
2

)︀
, BE

(︀
Cb
2

)︀
<−→BE

(︀
Cb
3

)︀
,

qCb
1
⊆ qCb

2
qCb

2
⊆ qCb

3
.

So, taking into account Assertion 1.9.7, we deliver:

BG
(︀
Cb
1

)︀
= BG

(︀
Cb
3

)︀
, Tm

(︀
Cb
1

)︀
= Tm

(︀
Cb
3

)︀
, BE

(︀
Cb
1

)︀
<−→BE

(︀
Cb
3

)︀
, qCb

1
⊆ qCb

3
.

Therefore, by Definition 3.26.1, we obtain, Cb
1<−→Cb

3.

Assertion 3.26.3. Let Cb
1,C

b
2 be any base kinematic sets such, that C

b
1⊂−→Cb

2. Then the following

statements are performed:

1. Bs
(︀
Cb
1

)︀
⊆ Bs

(︀
Cb
2

)︀
;

2. Bs
(︀
Cb
1

)︀
⊆ Bs

(︀
Cb
2

)︀
;

3. If, in addition Cb
1<−→Cb

2, then we have L𝑑
(︀
Cb
1

)︀
⊆ L𝑑

(︀
Cb
2

)︀
.

Proof. If Cb
1⊂−→Cb

2, then, by Definition 3.26.1, we have:

BE
(︀
Cb
1

)︀
⊂−→BE

(︀
Cb
2

)︀
.

1. Since BE
(︀
Cb
1

)︀
⊂−→BE

(︀
Cb
2

)︀
, then, due to Definition 1.9.2 and system of denotations for base

kinematic sets (see Subsection 14.2) we get:

Bs
(︀
Cb
1

)︀
= Bs

(︀
BE
(︀
Cb
1

)︀)︀
⊆ Bs

(︀
BE
(︀
Cb
2

)︀)︀
= Bs

(︀
Cb
2

)︀
.

2. Similarly, using Assertion 1.9.1, we obtain:

Bs
(︀
Cb
1

)︀
= Bs

(︀
BE
(︀
Cb
1

)︀)︀
⊆ Bs

(︀
BE
(︀
Cb
2

)︀)︀
= Bs

(︀
Cb
2

)︀
.

3. Suppose, that Cb
1<−→Cb

2. Then, by Definition 3.26.1, we have, BE
(︀
Cb
1

)︀
<−→BE

(︀
Cb
2

)︀
. Hence,

by Definition 1.9.3, we obtain the following correlation:

L𝑑
(︀
BE
(︀
Cb
1

)︀)︀
⊆ L𝑑

(︀
BE
(︀
Cb
2

)︀)︀
.

Thence, taking into account the system of denotations for base kinematic sets, we deliver the
correlation, L𝑑

(︀
Cb
1

)︀
⊆ L𝑑

(︀
Cb
2

)︀
.

26.2 Evolutional Extensions for Kinematic Sets

Definition 3.26.2. We say that kinematic sets C1 and C2 are chrono-geometrically affined
if and only if the following statements are performed:

1. ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2).

2. For each index 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) the base kinematic sets:

C1 � lk𝛼 (C1) and C2 � lk𝛼 (C2)

are chrono-geometrically affined.

Assertion 3.26.4. Let ℱ1 =
(︁
C1,
←−
𝒬1

)︁
and ℱ2 =

(︁
C2,
←−
𝒬2

)︁
be any universal kinematics such,

that ℱ1 [≡]ℱ2. Then the kinematic sets C1 and C2 are chrono-geometrically affined.
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Proof. Since ℱ1 [≡]ℱ2, then, by Definition 3.25.2, we get, ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2). According
to system of denotations, accepted for universal kinematics (see Subsection 22.2), we have,
ℒ𝑘 (ℱ𝑖) = ℒ𝑘 (C𝑖) (𝑖 ∈ 1, 2). Therefore, in accordance with Property 3.25.1(3), we obtain,
ℐ𝑛𝑑 (ℱ𝑖) = ℐ𝑛𝑑 (C𝑖) (𝑖 ∈ 1, 2), moreover:

lk𝛼 (ℱ𝑖) = lk𝛼 (C𝑖)
(︀
𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) = ℐ𝑛𝑑 (C𝑖) , 𝑖 ∈ 1, 2

)︀
.

Hence, using system of denotations, accepted for universal kinematics, as well as Definition
3.25.2, for any index 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) we deliver:

Tm (C1 � lk𝛼 (C1)) = Tm (lk𝛼 (C1)) =

= Tm (lk𝛼 (ℱ1)) = Tm (lk𝛼 (ℱ2)) = Tm (C2 � lk𝛼 (C2)) ;

BG (C1 � lk𝛼 (C1)) = BG (lk𝛼 (C1) ;C1) = BG (lk𝛼 (ℱ1) ;C1) =

= BG (lk𝛼 (ℱ1) ;ℱ1) = BG (lk𝛼 (ℱ2) ;ℱ2) = BG (C2 � lk𝛼 (C2)) .

Thus, by Definition 3.25.1, base kinematic sets C1 � lk𝛼 (C1) and C2 � lk𝛼 (C2) are chrono-
geometrically affined (for any index 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2)). Therefore, by Definition 3.26.2,
kinematic sets C1 and C2 are chrono-geometrically affined.

Using Assertion 3.26.4 as well as Assertion 3.25.2 and Assertion 3.24.2, we obtain the fol-
lowing corollary.

Corollary 3.26.2. Let us suppose the following conditions:

1. Q is any coordinate space;

2. ℬ1,ℬ2 are arbitrary base changeable sets such, that Tm (ℬ1) = Tm (ℬ2) and Bs (ℬ𝑖) ⊆
Zk(Q) (𝑖 ∈ 1, 2);

3. U is any transforming set of bijections relatively ℬ1 (and therefore, relatively ℬ2{19}) on
Zk(Q).

Then the kinematic sets Kim (U,ℬ1,Q) and Kim (U,ℬ2,Q) are chrono-geometrically affined.

Remark 3.26.3. Let (H, ‖·‖ , ⟨·, ·⟩) be any real Hilbert space and ℬ1,ℬ2 be arbitrary base change-
able sets such, that Bs (ℬ𝑖) ⊆ H and Tm (ℬ𝑖) = (R,≤) (𝑖 ∈ 1, 2), where ≤ is the standard
order in the field of real numbers R. Applying Corollary 3.26.2, we can easy deduce, that
for each set of operators S ⊆ Pk (H) the kinematic sets Kim (S,ℬ1; H) and Kim (S,ℬ2; H) are
chrono-geometrically affined. In particular any of the following items represents the pair of
chrono-geometrically affined kinematic sets:

a) KP (H,ℬ1, 𝑐) and KP (H,ℬ2, 𝑐);
b) KP0 (H,ℬ1, 𝑐) and KP0 (H,ℬ2, 𝑐);
c) KPT (H,ℬ1, 𝑐) and KPT (H,ℬ2, 𝑐);
d) KPT0 (H,ℬ1, 𝑐) and KPT0 (H,ℬ2, 𝑐).

Thus, we may consider any two chrono-geometrically affined kinematic sets as two different
scenarios of evolution, acting in the same space-time environment.

Definition 3.26.3.

1. We say that kinematic set C2 is evolutional (super-evolutional) extension of kine-
matic set C1, if and only if:

(a) Kinematic sets C1 and C2 are chrono-geometrically affined.

19 This is due to Assertion 3.25.2.
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(b) For any index 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) the following evolutional (super-evolutional)
inclusion holds:

C1 � lk𝛼 (C1)⊂−→C2 � lk𝛼 (C2)(︂
C1 � lk𝛼 (C1)<−→C2 � lk𝛼 (C2)

)︂
(3.40)

(c) For arbitrary indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) and any changeable system 𝐴 ⊆
Bs (lk𝛼 (C1)) ⊆ Bs (lk𝛼 (C2)) {

20} the following equality is performed:

⟨lk𝛽 (C1)← lk𝛼 (C1) ,C1⟩𝐴 = ⟨lk𝛽 (C2)← lk𝛼 (C2) ,C2⟩𝐴.

2. In the case, where the kinematic set C2 is evolutional (super-evolutional) extension of the
kinematic set C1, we also will say, that C1 is evolutionarily (super-evolutionarily)
included in C2, using the following denotations:

C1⊂−→C2 or C2⊃←−C1

(︁
C1<−→C2 or C2=←−C1

)︁
.

Assertion 3.26.5. For any kinematic sets C, C1, C2 and C3 the following statements are
performed:

1. C⊂−→C.

2. If C1⊂−→C2 and C2⊂−→C1 then C1 = C2.

3. If C1⊂−→C2 and C2⊂−→C3 then C1⊂−→C3.

Proof. 1,3: First and third items of Assertion follow directly from definitions 3.26.2, 3.26.3 and
Assertion 1.9.3. Hence, it remains to prove only the second item.
2: Consider any kinematic sets C1, C2 such, that C1⊂−→C2 and C2⊂−→C1. By definitions 3.26.2

and 3.26.3, we have, ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2), and besides for any index 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2)
we get the following evolutional inclusions:

C1 � lk𝛼 (C1) ⊂−→C2 � lk𝛼 (C2) and C2 � lk𝛼 (C2) ⊂−→C1 � lk𝛼 (C1) .

Therefore, according to Assertion 3.26.1, we obtain:

C1 � lk𝛼 (C1) = C2 � lk𝛼 (C2) (∀ 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2)) . (3.41)

Thence, according to denotations, accepted in Subsection 14.2.2 (see formula (2.1)), we obtain:

lk𝛼 (C1) ˆ = lk𝛼 (C2) ˆ.

Therefore, taking into account Property 1.10.1(3) and Remark 2.14.1, we get:

lk𝛼 (C1) = (ind (lk𝛼 (C1)) , lk𝛼 (C1) ˆ) = (𝛼, lk𝛼 (C1) ˆ) =

= (𝛼, lk𝛼 (C2) ˆ) = lk𝛼 (C2) (∀ 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2)) . (3.42)

Hence, by formula (3.35) we have:

ℒ𝑘 (C1) = {lk𝛼 (C1) | 𝛼 ∈ ℐ𝑛𝑑 (C1)} =
20 evolutional (super-evolutional) inclusion (3.40) together with Definition 3.26.1 and Assertion 1.9.2 lead to the evolutional

inclusion BE (C1 � lk𝛼 (C1)) ⊂−→BE (C2 � lk𝛼 (C2)). Thence, by Definition 1.9.2, we obtain the following inclusion:

Bs (lk𝛼 (C1)) = Bs (BE (C1 � lk𝛼 (C1))) ⊆ Bs (BE (C2 � lk𝛼 (C2))) =

= Bs (lk𝛼 (C2)) .
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= {lk𝛼 (C2) | 𝛼 ∈ ℐ𝑛𝑑 (C2)} = ℒ𝑘 (C2) . (3.43)

From the equalities (3.41) and (3.35) it follows the equality:

C1 � l = C2 � l (∀l ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2)) . (3.44)

According to equality (3.43), ℒ𝑘 (C1) = ℒ𝑘 (C2). Let l,m ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2) be any
reference frames of C1 and C2. Then, by formulas (3.35) and (3.42), there exist indexes 𝛼, 𝛽 ∈
ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) such, that:

l = lk𝛼 (C1) = lk𝛼 (C2) ;

m = lk𝛽 (C1) = lk𝛽 (C2) .

Using the last two equalities as well as Definition 3.26.3 (item 1c), for an arbitrary changeable
system 𝐴 ⊆ Bs (lk𝛼 (C1)) = Bs (lk𝛼 (C2)) we obtain:

⟨m← l,C1⟩𝐴 = ⟨lk𝛽 (C1)← lk𝛼 (C1) ,C1⟩𝐴 =

= ⟨lk𝛽 (C2)← lk𝛼 (C2) ,C2⟩𝐴 = ⟨m← l,C2⟩𝐴.

So, since Bs (lk𝛼 (C1)) = Bs (lk𝛼 (C2)), we have the equality:

⟨m← l,C1⟩ = ⟨m← l,C2⟩ (∀ l,m ∈ ℒ𝑘 (C1) = ℒ𝑘 (C2)) . (3.45)

Taking into account the equalities (3.43), (3.44), (3.45), according to Assertion 2.14.1, we obtain
the equality:

C1 = C2.

Assertion 3.26.6. If for kinematic sets C1, C2 it is true the correlation C1<−→C2, then C1⊂−→C2.

Proof. This Assertion follows directly from Definition 3.26.3 and Corollary 3.26.1.

Assertion 3.26.7. Let C1,C2 be any kinematic sets such, that C1⊂−→C2. Then for any index

𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) the following statements are true:

1. BE (lk𝛼 (C1)) ⊂−→BE (lk𝛼 (C2));

2. Bs (lk𝛼 (C1)) ⊆ Bs (lk𝛼 (C2));

3. Bs (lk𝛼 (C1)) ⊆ Bs (lk𝛼 (C2));

4. If, in addition, C1<−→C2, then

BE (lk𝛼 (C1)) <−→BE (lk𝛼 (C2)) and L𝑑 (lk𝛼 (C1)) ⊆ L𝑑 (lk𝛼 (C2));

5. for any 𝑥 ∈ Bs (lk𝛼 (C1)) it holds the equality:

qlk𝛼(C1) (𝑥,C1) = qlk𝛼(C2) (𝑥,C2) ;

6. for any 𝜔 ∈ Bs (lk𝛼 (C1)) the following equality is performed:

Q⟨lk𝛼(C1)⟩ (𝜔,C1) = Q⟨lk𝛼(C2)⟩ (𝜔,C2) .

Proof. Since C1⊂−→C2, then, by definitions 3.26.3 and 3.26.2, we have ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2).

Consider any index 𝛼 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2).

1. According to Definition 3.26.3, we get, C1 � lk𝛼 (C1) ⊂−→C2 � lk𝛼 (C2). Thence, by Definition

3.26.1, we obtain BE (C1 � lk𝛼 (C1)) ⊂−→BE (C2 � lk𝛼 (C2)). In accordance with denotations, in-

troduced in Sub-subsection 14.2.2, we have, ∀l ∈ ℒ𝑘 (C𝑖) (BE(l) = lˆ = BE (C𝑖 � l)) (𝑖 ∈ {1, 2}).
So, we deliver, BE (lk𝛼 (C1)) ⊂−→BE (lk𝛼 (C2)).
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2. Since BE (lk𝛼 (C1)) ⊂−→BE (lk𝛼 (C2)), then applying equalities (3.5) an Definition 1.9.2, we

obtain:

Bs (lk𝛼 (C1)) = Bs (BE (lk𝛼 (C1))) ⊆ Bs (BE (lk𝛼 (C2))) =

= Bs (lk𝛼 (C2)) .

3. Similarly, using equalities (3.5) and Assertion 1.9.1, we deduce:

Bs (lk𝛼 (C1)) = Bs (BE (lk𝛼 (C1))) ⊆ Bs (BE (lk𝛼 (C2))) =

= Bs (lk𝛼 (C2)) .

4. Suppose, that, in addition, C1<−→C2. Then, by Definition 3.26.3, we get the in-

clusion C1 � lk𝛼 (C1) <−→ C2 � lk𝛼 (C2). So, by Definition 3.26.1 (item 2), we have,

BE (C1 � lk𝛼 (C1)) <−→BE (C2 � lk𝛼 (C2)). Therefore, taking into account denotations, introduced

in Sub-subsection 14.2.2, we obtain

BE (lk𝛼 (C1)) <−→BE (lk𝛼 (C2)) .

The last super-evolutional inclusion, according to Definition 1.9.3 assures the inclusion
L𝑑 (BE (lk𝛼 (C1))) ⊆ L𝑑 (BE (lk𝛼 (C2))). Thence, using the equalities (3.5), we obtain the in-
clusion L𝑑 (lk𝛼 (C1)) ⊆ L𝑑 (lk𝛼 (C2)).

5. Consider any element 𝑥 ∈ Bs (lk𝛼 (C1)). By Definition 3.26.3, we have
C1 � lk𝛼 (C1) ⊂−→C2 � lk𝛼 (C2). Hence, using denotations, introduced in subsection 14.2.2, as

well as Definition 3.26.1, we deduce:

qlk𝛼(C1) (𝑥,C1) = qC1�lk𝛼(C1)(𝑥) = qC2�lk𝛼(C2)(𝑥) = qlk𝛼(C2) (𝑥,C2) .

6. Applying the result, obtained in the previous item as well as definition of Minkowski
coordinates (see. formula (2.3)), for any 𝜔 ∈ Bs (lk𝛼 (C1)) we deliver:

Q⟨lk𝛼(C1)⟩ (𝜔,C1) =
(︀
tm (𝜔) , qlk𝛼(C1) (bs (𝜔) ,C1)

)︀
=

=
(︀
tm (𝜔) , qlk𝛼(C2) (bs (𝜔) ,C2)

)︀
= Q⟨lk𝛼(C2)⟩ (𝜔,C2) .

Assertion 3.26.8. For any kinematic sets C, C1, C2 and C3 the following statements are
performed:

1. C<−→C.

2. If C1<−→C2 and C2<−→C1 then C1 = C2.

3. If C1<−→C2 and C2<−→C3 then C1<−→C3.

Proof. The first and the third items of this Assertion follow directly from definitions 3.26.2,
3.26.3 and Assertion 3.26.2. Second item of Assertion is stipulated by Assertion 3.26.6 as well
as second item of Assertion 3.26.5.

26.3 Evolutional Extensions for Universal Kinematics

Definition 3.26.4. We say that the universal kinematics ℱ2 =
(︁
C2,
←−
𝒬2

)︁
is evolutional

(super-evolutional) extension of universal kinematics ℱ1 =
(︁
C1,
←−
𝒬1

)︁
if and only if the

following statements are true:

1. ℱ1 [≡]ℱ2;
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2. C1⊂−→C2 (C1<−→C2 in the case of super-evolutional extension)

If ℱ2 is evolutional (super-evolutional) extension of ℱ1, we use the following denotations:

ℱ1⊂−→ℱ2

(︁
ℱ1<−→ℱ2

)︁
(correspondingly).

Assertion 3.26.9. For arbitrary universal kinematics ℱ1 and ℱ2 the correlation ℱ1⊂−→ℱ2 holds

if and only if the following conditions are fulfilled:

1. ℱ1 [≡]ℱ2 (thence, according to Definition 3.25.2, it follows that ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2)).

2. For every index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) the following inclusion holds:

ℱ1 � lk𝛼 (ℱ1) ⊂−→ℱ2 � lk𝛼 (ℱ2) (3.46)

(thence, by Assertion 3.26.3, it follows the inclusion Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ2))).

3. For arbitrary indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) and any changeable system 𝐴 ⊆
Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ2)) it is performed the equality:

⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) ,ℱ1⟩𝐴 = ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) ,ℱ2⟩𝐴. (3.47)

Proof. A). Let, ℱ1 =
(︁
C1,
←−
𝒬1

)︁
, ℱ2 =

(︁
C2,
←−
𝒬2

)︁
be universal kinematics such, that ℱ1⊂−→ℱ2.

Then, by Definition 3.26.4, the following conditions must be satisfied:

ℱ1 [≡]ℱ2 and C1⊂−→C2.

From the condition ℱ1 [≡]ℱ2, according to Definition 3.25.2, we obtain the equality ℐ𝑛𝑑 (ℱ1) =
ℐ𝑛𝑑 (ℱ2). Hence:

ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) = ℐ𝑛𝑑 (C2) .

Since ℒ𝑘 (ℱ𝑖) = ℒ𝑘 (C𝑖) (𝑖 ∈ {1, 2}), then, by Property 3.25.1(3), we have:

lk𝛼 (C𝑖) = lk𝛼 (ℱ𝑖) (𝑖 ∈ {1, 2} , 𝛼 ∈ ℐ𝑛𝑑 (C𝑖) = ℐ𝑛𝑑 (ℱ𝑖)). (3.48)

Therefore, taking into account the system of denotations for universal kinematics (see Sub-
subsection 22.2.2), for 𝑖 ∈ {1, 2}, 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (C𝑖) = ℐ𝑛𝑑 (ℱ𝑖) and 𝐴 ⊆ Bs (lk𝛼 (C𝑖)) =
Bs (lk𝛼 (ℱ𝑖)) we deduce:

C𝑖 � lk𝛼 (C𝑖) = C𝑖 � lk𝛼 (ℱ𝑖) = ℱ𝑖 � lk𝛼 (ℱ𝑖) ; (3.49)

⟨lk𝛽 (C𝑖)← lk𝛼 (C𝑖) ,C𝑖⟩𝐴 = ⟨lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) ,C𝑖⟩𝐴 =

= ⟨lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) ,ℱ𝑖⟩𝐴. (3.50)

Since C1⊂−→C2, then, in accordance with Definition 3.26.3, for arbitrary indexes 𝛼, 𝛽 ∈
ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) and arbitrary changeable system 𝐴 ⊆ Bs (lk𝛼 (C1)) ⊆ Bs (lk𝛼 (C2)) the
following correlations must be performed:

C1 � lk𝛼 (C1)⊂−→C2 � lk𝛼 (C2) ; (3.51)

⟨lk𝛽 (C1)← lk𝛼 (C1) ,C1⟩𝐴 = ⟨lk𝛽 (C2)← lk𝛼 (C2) ,C2⟩𝐴. (3.52)

From here, taking into account (3.49), (3.50) and (3.48), we obtain the correlations (3.46),
(3.47). Thus, conditions 1-3 of this Assertion are satisfied.

B) Inversely, assume, that conditions 1-3 of this Assertion are fulfilled for ℱ1 =
(︁
C1,
←−
𝒬1

)︁
,

ℱ2 =
(︁
C2,
←−
𝒬2

)︁
. Under this assumption, we deliver, ℱ1 [≡]ℱ2. We can easy deduce, that
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the correlations (3.49), (3.50) are fulfilled. Hence, the correlations (3.46), (3.47) lead to the
correlations (3.51), (3.52) (for arbitrary 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) and 𝐴 ⊆ Bs (lk𝛼 (C1)) ⊆
Bs (lk𝛼 (C2))). Taking into account, that, according to Assertion 3.26.4, the kinematic sets C1

and C2 are chrono-geometrically affined, we obtain the evolutional inclusion C1⊂−→C2. Thus, we

have proved, that ℱ1 [≡]ℱ2 and C1⊂−→C2. And, in accordance with Definition 3.26.4 we obtain

the evolutional inclusion ℱ1⊂−→ℱ2.

Similarly to Assertion 3.26.9 it can be proven the following Assertion.

Assertion 3.26.10. For arbitrary universal kinematics ℱ1 and ℱ2 the correlation ℱ1<−→ℱ2 holds

if and only if the following conditions are fulfilled:

1. ℱ1 [≡]ℱ2 (thence, according to Definition 3.25.2, it follows that ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2)).

2. For every index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) the following inclusion holds:

ℱ1 � lk𝛼 (ℱ1) <−→ℱ2 � lk𝛼 (ℱ2) . (3.53)

(thence, by to Assertion 3.26.3, it follows the inclusion Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ2))).

3. For arbitrary indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) and any changeable system 𝐴 ⊆
Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ2)) it is performed the equality:

⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) ,ℱ1⟩𝐴 = ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) ,ℱ2⟩𝐴. (3.54)

Assertion 3.26.11. For any universal kinematics ℱ , ℱ1, ℱ2 and ℱ3 the following statements
are performed:

1. ℱ⊂−→ℱ .

2. If ℱ1⊂−→ℱ2 and ℱ2⊂−→ℱ1 then ℱ1 = ℱ2.

3. If ℱ1⊂−→ℱ2 and ℱ2⊂−→ℱ3 then ℱ1⊂−→ℱ3.

Proof. The first and the third items of this Assertion can be easy deduced from Definition
3.26.4, as well as assertions 3.25.1 and 3.26.5.

Thus, it remains to prove only the second statement of Assertion. Let ℱ1 =
(︁
C1,
←−
𝒬1

)︁
,

ℱ2 =
(︁
C2,
←−
𝒬2

)︁
be any universal kinematics, where:

←−
𝒬1 =

(︁ ̃︀𝑄(1)
m,l

)︁
l,m∈ℒ𝑘(C1)=ℒ𝑘(ℱ1)

,
←−
𝒬2 =

(︁ ̃︀𝑄(2)
m,l

)︁
l,m∈ℒ𝑘(C2)=ℒ𝑘(ℱ2)

,

and besides, ℱ1⊂−→ℱ2 and ℱ2⊂−→ℱ1. Then, by Definition 3.26.4, we have, C1⊂−→C2, C2⊂−→C1 and

ℱ1 [≡]ℱ2. Therefore, by Assertion 3.26.5, we get C1 = C2. Hence:

ℒ𝑘 (ℱ1) = ℒ𝑘 (C1) = ℒ𝑘 (C2) = ℒ𝑘 (ℱ2) ;

ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (C1) = ℐ𝑛𝑑 (C2) = ℐ𝑛𝑑 (ℱ2) ;

lk𝛼 (ℱ1) = lk𝛼 (C1) = lk𝛼 (C2) = lk𝛼 (ℱ2)

(∀𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2)) .

Since ℱ1 [≡]ℱ2, using Definition 3.25.2 as well as denotations, accepted in Subsection 22.2,
for arbitrary reference frames l,m ∈ ℒ𝑘 (ℱ1) = ℒ𝑘 (ℱ2) of kind l = lk𝛼 (ℱ1) = lk𝛼 (ℱ2),
m = lk𝛽 (ℱ1) = lk𝛽 (ℱ2) (𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2)) we deduce:̃︀𝑄(1)

m,l = [m← l,ℱ1] = [lk𝛽 (ℱ1)← lk𝛼 (ℱ1) ,ℱ1] =
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= [lk𝛽 (ℱ2)← lk𝛼 (ℱ2) ,ℱ2] = [m← l,ℱ2] = ̃︀𝑄(2)
m,l.

Therefore,
←−
𝒬1 =

(︁ ̃︀𝑄(1)
m,l

)︁
l,m∈ℒ𝑘(ℱ1)

=
(︁ ̃︀𝑄(2)

m,l

)︁
l,m∈ℒ𝑘(ℱ2)

=
←−
𝒬2. So, ℱ1 =

(︁
C1,
←−
𝒬1

)︁
=
(︁
C2,
←−
𝒬2

)︁
=

ℱ2.

Directly from Definition 3.26.4 as well as Assertion 3.26.6 we obtain the following assertion.

Assertion 3.26.12. If for universal kinematics ℱ1 and ℱ2 it is true the correlation ℱ1<−→ℱ2,

then ℱ1⊂−→ℱ2.

Assertion 3.26.13. For any universal kinematics ℱ , ℱ1, ℱ2 and ℱ3 the following statements
are performed:

1. ℱ<−→ℱ .

2. If ℱ1<−→ℱ2 and ℱ2<−→ℱ1 then ℱ1 = ℱ2.

3. If ℱ1<−→ℱ2 and ℱ2<−→ℱ3 then ℱ1<−→ℱ3.

Proof. The first and the third items of this Assertion can be easy deduced from Definition
3.26.4, as well as assertions 3.25.1 and 3.26.8. The second statement follows from assertions
3.26.12 and 3.26.11 (item 2).

Assertion 3.26.14. Let ℱ1,ℱ2 be any universal kinematics such, that ℱ1⊂−→ℱ2. Then for any

index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) the following statements are true:

1. BE (lk𝛼 (ℱ1)) ⊂−→BE (lk𝛼 (ℱ2)).

2. Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ2)).

3. Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ2)).

4. If, in addition, ℱ1<−→ℱ2, then

BE (lk𝛼 (ℱ1)) <−→BE (lk𝛼 (ℱ2)) and L𝑑 (lk𝛼 (ℱ1)) ⊆ L𝑑 (lk𝛼 (ℱ2));

5. for any 𝑥 ∈ Bs (lk𝛼 (ℱ1)) it holds the equality:

qlk𝛼(ℱ1) (𝑥,ℱ1) = qlk𝛼(ℱ2) (𝑥,ℱ2) .

6. for any 𝜔 ∈ Bs (lk𝛼 (ℱ1)) the following equality is performed:

Q⟨lk𝛼(ℱ1)⟩ (𝜔,ℱ1) = Q⟨lk𝛼(ℱ2)⟩ (𝜔,ℱ2) .

Proof. Let ℱ1 =
(︁
C1,
←−
𝒬1

)︁
and ℱ2 =

(︁
C2,
←−
𝒬2

)︁
be universal kinematics such, that ℱ1⊂−→ℱ2.

Then, by Definition 3.26.4, we get C1⊂−→C2, and under additional condition ℱ1<−→ℱ2, we obtain

the super-evolutional inclusion C1<−→C2.

According to denotations, accepted in Sub-subsection 22.2.2, we have, ℒ𝑘 (ℱ𝑖) = ℒ𝑘 (C𝑖)
(𝑖 ∈ 1, 2). Thence, according to Property 3.25.1(3), for 𝑖 ∈ 1, 2 we obtain:

ℐ𝑛𝑑 (ℱ𝑖) = ℐ𝑛𝑑 (C𝑖) ; (3.55)

lk𝛼 (ℱ𝑖) = lk𝛼 (C𝑖) (∀𝛼 ∈ ℐ𝑛𝑑 (ℱ𝑖) = ℐ𝑛𝑑 (C𝑖)) . (3.56)

Hence, using item d) of Subsection 22.2.2, for 𝛼 ∈ ℐ𝑛𝑑 (ℱ𝑖) = ℐ𝑛𝑑 (C𝑖), 𝑥 ∈ Bs (lk𝛼 (ℱ𝑖)) =
Bs (lk𝛼 (C𝑖)) and 𝜔 ∈ Bs (lk𝛼 (ℱ𝑖)) = Bs (lk𝛼 (C𝑖)) we get:

qlk𝛼(ℱ𝑖) (𝑥,ℱ𝑖) = qlk𝛼(C𝑖) (𝑥,C𝑖) ; (3.57)
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Q⟨lk𝛼(ℱ𝑖)⟩ (𝜔,ℱ𝑖) = Q⟨lk𝛼(C𝑖)⟩ (𝜔,C𝑖) . (3.58)

Applying equalities (3.55)–(3.58) together with Assertion 3.26.7 we obtain all items of Assertion
3.26.14.

Main results of this Section were published in the paper [15].

27 Evolutional Union of Universal Kinematics

27.1 Definition of Evolutional Union

Definition 3.27.1. Let (ℱ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) be any indexed family of of universal kinematics. We
say that universal kinematics ℱ is evolutional union of the family (ℱ𝛼)𝛼∈𝒜 if and only if:

(EUk1) ℱ𝛼⊂−→ℱ for an arbitrary 𝛼 ∈ 𝒜.

(EUk2) If ℱ ′ is an universal kinematics such, that ℱ𝛼⊂−→ℱ
′ for any 𝛼 ∈ 𝒜, then ℱ⊂−→ℱ

′.

Assertion 3.27.1. Any indexed family (ℱ𝛼)𝛼∈𝒜 (𝒜 ≠ ∅) of universal kinematics may have no
more than one evolutional union.

Proof. Indeed, let ℱ and ̃︀ℱ be two evolutional unions of the family (ℱ𝛼)𝛼∈𝒜 of universal kine-

matics. Then, by Definition 3.27.1, we have ℱ⊂−→
̃︀ℱ and ̃︀ℱ⊂−→ℱ . Thus, in accordance with

Assertion 3.26.11, we receive ℱ = ̃︀ℱ .
Taking into account Assertion 3.27.1 (about the uniqueness of evolutional union), we will

denote the evolutional union ℱ of the family (ℱ𝛼)𝛼∈𝒜 of universal kinematics by the following
way:

ℱ =
←−⋃︁
𝛼∈𝒜

ℱ𝛼

(in the case, where such evolutional union exists). In particular, in the case 𝒜 = {1, ...𝑛}
(𝑛 ∈ N), we use the following denotation:

ℱ1

←
∪ · · ·

←
∪ ℱ𝑛 :=

𝑛←−⋃︁
𝑘=1

ℱ𝑘 :=
←−⋃︁
𝛼∈𝒜

ℱ𝛼.

Using Definition 3.27.1 it is easy to verify, that in the case, where ℱ𝛼 ≡ ̃︀ℱ for every 𝛼 ∈ 𝒜,
the evolutional union of the family (ℱ𝛼)𝛼∈𝒜 exists, moreover

←−⋃︀
𝛼∈𝒜
ℱ𝛼 = ̃︀ℱ . In particular:

ℱ
←
∪ ℱ = ℱ

for any universal kinematics ℱ .
In the next subsection we consider the another case, where the evolutional union of family

of universal kinematics exists surely. Namely, we will consider the case of family of two disjoint
universal kinematics.

27.2 Disjoint Evolutional Union of Universal Kinematics

Definition 3.27.2. We say that universal kinematics ℱ1 and ℱ2 are disjoint if and only if
the following conditions are fulfilled:

1. ℱ1 [≡]ℱ2.
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2. For each index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) {
21} it is true the next equality:

Bs (lk𝛼 (ℱ1)) ∩Bs (lk𝛼 (ℱ2)) = ∅.

In the case, where the universal kinematics ℱ1 and ℱ2 are disjoint we also will also say, that
kinematics ℱ1 is disjoint with ℱ2.

Assertion 3.27.2. If universal kinematics ℱ1 and ℱ2 are disjoint, then for every index 𝛼 ∈
ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) it is true the equality:

Bs (lk𝛼 (ℱ1)) ∩ Bs (lk𝛼 (ℱ2)) = ∅.

Proof. Indeed, suppose, that Bs (lk𝛼 (ℱ1)) ∩ Bs (lk𝛼 (ℱ2)) ̸= ∅, for some index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) =
ℐ𝑛𝑑 (ℱ2). Then there exist an elementary-time state 𝜔 ∈ Bs (lk𝛼 (ℱ1)) ∩ Bs (lk𝛼 (ℱ2)). Ac-
cording to Property 1.6.1(9) (taking into account Remark 3.22.1), we have, that bs (𝜔) ∈
Bs (lk𝛼 (ℱ1)) and bs (𝜔) ∈ Bs (lk𝛼 (ℱ2)). Therefore, bs (𝜔) ∈ Bs (lk𝛼 (ℱ1)) ∩ Bs (lk𝛼 (ℱ2)),
that is, Bs (lk𝛼 (ℱ1)) ∩ Bs (lk𝛼 (ℱ2)) ̸= ∅. But, since the kinematics ℱ1 and ℱ2 are dis-
joint, the last correlation is impossible, according to Definition 3.27.2. Hence, Bs (lk𝛼 (ℱ1)) ∩
Bs (lk𝛼 (ℱ2)) = ∅.

Definition 3.27.3. Let ℱ ,ℱ1 be any universal kinematics or kinematic sets or changeable sets
such, that ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1). For any reference frame l ∈ ℒ𝑘 (ℱ) we denote:

l �ℱ1 := lkind(l) (ℱ1) . (3.59)

The reference frame l �ℱ1 we name by frame, related with l in the universal kinematics (or
kinematic set or changeable set) ℱ1.

Based on Definition 3.27.3 we obtain the following properties.

Properties 3.27.1. Let ℱ ,ℱ1,ℱ2 be any universal kinematics or kinematic sets or changeable
sets such, that ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2). Operation of selection of related reference
frame has the following properties:

1. l �ℱ= l for each reference frame l ∈ ℒ𝑘 (ℱ);

2. if l ∈ ℒ𝑘 (ℱ) then l �ℱ1�ℱ2= l �ℱ2, in particular l �ℱ1�ℱ= l (∀l ∈ ℒ𝑘 (ℱ)).

Assertion 3.27.3. Let ℱ1 and ℱ2 be disjoint universal kinematics and ℱ be universal kine-
matics such, that ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2). Then for any reference frame l ∈ ℒ𝑘 (ℱ)
the following equality holds:

Bs (l �ℱ1) ∩ Bs (l �ℱ2) = Bs (l �ℱ1) ∩Bs (l �ℱ2) = ∅.

Proof. Consider any reference frame l ∈ ℒ𝑘 (ℱ). Denote, 𝛼 := ind (l). Then we have:

l �ℱ1= lk𝛼 (ℱ1) ; l �ℱ2= lk𝛼 (ℱ2) .

So applying Definition 3.27.2 and Assertion 3.27.2, we obtain the desired equality.

Definition 3.27.4. We say, that universal kinematics and ℱ is disjoint evolutional union
of disjoint universal kinematics ℱ1 and ℱ2 if and only if the following conditions are satisfied:

1. ℱ [≡]ℱ1 [≡]ℱ2.

21 Since ℱ1 [≡]ℱ2, then, By Definition 3.25.2, we have ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2). So the second condition of Definition 3.27.2 is
formulated correctly.

181



Draft Introduction to Abstract Kinematics. (Ver 2.0) 27. Evolutional Union of Universal Kinematics

2. For any reference frame l ∈ ℒ𝑘 (ℱ) it is true the equality: 22

BE(l) = BE (l �ℱ1)
←
∪ BE (l �ℱ2) .

3. For arbitrary l,m ∈ ℒ𝑘 (ℱ) and 𝜔 ∈ Bs(l) it is performed the following equality: 23

⟨!m← l,ℱ⟩𝜔 =

{︃
⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔, 𝜔 ∈ Bs (l �ℱ1)

⟨!m �ℱ2 ← l �ℱ2 ,ℱ2⟩𝜔, 𝜔 ∈ Bs (l �ℱ2) .
(3.60)

4. For any l,m ∈ ℒ𝑘 (ℱ) and 𝜔 ∈ Bs(l) the following equality holds:

Q⟨l⟩ (𝜔;ℱ) =

{︃
Q⟨l�ℱ1⟩ (𝜔,ℱ1) , 𝜔 ∈ Bs (l �ℱ1)

Q⟨l�ℱ2⟩ (𝜔,ℱ2) , 𝜔 ∈ Bs (l �ℱ2) .

Assertion 3.27.4. Let universal kinematics and ℱ be disjoint evolutional union of disjoint
universal kinematics ℱ1 and ℱ2. Then for arbitrary reference frame l ∈ ℒ𝑘 (ℱ) the following
statements are performed:

1. BE (l) = BE (l �ℱ1)
←
∨ BE (l �ℱ2).

2. Bs(l) = Bs (l �ℱ1) ⊔ Bs (l �ℱ2).

3. Bs(l) = Bs (l �ℱ1) ⊔ Bs (l �ℱ2).

4. For any element 𝑥 ∈ Bs(l) it is true the equality:

ql (𝑥,ℱ) =

{︃
ql�ℱ1 (𝑥,ℱ1) , 𝑥 ∈ Bs (l �ℱ1) ;

ql�ℱ2 (𝑥,ℱ2) , 𝑥 ∈ Bs (l �ℱ2) .

Proof. Chose any reference frame l ∈ ℒ𝑘 (ℱ).
1. In accordance with Assertion 3.27.3, we have:

Bs (BE (l �ℱ1)) ∩ Bs (BE (l �ℱ2)) = Bs (l �ℱ1) ∩ Bs (l �ℱ2) = ∅.

Hence, according to Lemma 1.9.1 (item 3), the family of two base changeable sets BE (l �ℱ1)
and BE (l �ℱ2) is evolutionarily saturated. Therefore, by Assertion 1.9.12, the super-evolutional

union BE (l �ℱ1)
←
∨ BE (l �ℱ2) exists. So, using Definition 3.27.4 as well as Corollary 1.9.4 we

deduce:
BE(l) = BE (l �ℱ1)

←
∪ BE (l �ℱ2) = BE (l �ℱ1)

←
∨ BE (l �ℱ2) .

2. Taking into account item 2 of Definition 3.27.4 as well as Corollary 1.9.2, we obtain:

Bs(l) = Bs (BE(l)) = Bs
(︁
BE (l �ℱ1)

←
∪ BE (l �ℱ2)

)︁
=

= Bs (BE (l �ℱ1)) ∪ Bs (BE (l �ℱ2)) = Bs (l �ℱ1) ∪ Bs (l �ℱ2) ,

where, according to Assertion 3.27.3, Bs (l �ℱ1) ∩ Bs (l �ℱ2) = ∅. So we have:

Bs(l) = Bs (l �ℱ1) ⊔ Bs (l �ℱ2) .

22 Condition ℱ [≡]ℱ1 [≡]ℱ2 stipulates the equality ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2). Hence, by Definition 3.27.3, for every
reference frame l ∈ ℒ𝑘 (ℱ) the reference frames l �ℱ1 and l �ℱ2 surely exist.

23 From the condition BE(l) = BE
(︀
l �ℱ1

)︀ ←
∪ BE

(︀
l �ℱ2

)︀
, according to Corollary 1.9.2, it follows the equality Bs (BE(l)) =

Bs
(︀
BE

(︀
l �ℱ1

)︀)︀
∪ Bs

(︀
BE

(︀
l �ℱ2

)︀)︀
, that is the equality Bs (l) = Bs

(︀
l �ℱ1

)︀
∪ Bs

(︀
l �ℱ2

)︀
, where, in accordance with Assertion 3.27.3,

Bs
(︀
l �ℱ1

)︀
∩ Bs

(︀
l �ℱ2

)︀
= ∅. So, equality (3.60) is written correctly.

182



Draft Introduction to Abstract Kinematics. (Ver 2.0) 27. Evolutional Union of Universal Kinematics

3. Using item 2 of Definition 3.27.4 and Corollary 1.9.2, we obtain:

Bs(l) = Bs (BE(l)) = Bs
(︁
BE (l �ℱ1)

←
∪ BE (l �ℱ2)

)︁
=

= Bs (BE (l �ℱ1)) ∪Bs (BE (l �ℱ2)) = Bs (l �ℱ1) ∪Bs (l �ℱ2) ,

where, according to Assertion 3.27.3, Bs (l �ℱ1) ∩Bs (l �ℱ2) = ∅. So we have:

Bs(l) = Bs (l �ℱ1) ⊔Bs (l �ℱ2) .

4. Chose any element 𝑥 ∈ Bs(l). According to third item of this Assertion, it holds one and
only one of the following conditions: 𝑥 ∈ Bs (l �ℱ1) or 𝑥 ∈ Bs (l �ℱ2).

a) Let us consider the case 𝑥 ∈ Bs (l �ℱ1). According to Property 1.6.1(9), the elementary-
time state 𝜔𝑥 ∈ Bs (l �ℱ1) exists such, that 𝑥 = bs (𝜔𝑥). Since 𝜔𝑥 ∈ Bs (l �ℱ1), then, in accor-
dance with second item of this Assertion, we have, 𝜔𝑥 ∈ Bs(l). Hence, by item 4 of Definition
3.27.4, we get:

Q⟨l⟩ (𝜔𝑥;ℱ) = Q⟨l�ℱ1⟩ (𝜔𝑥;ℱ1) .

Thence, applying the definition of Minkowski coordinates (see formula (2.3)), we obtain:

(tm (𝜔𝑥) , ql (bs (𝜔𝑥) ;ℱ)) =
(︀
tm (𝜔𝑥) , ql�ℱ1 (bs (𝜔𝑥) ;ℱ1)

)︀
.

Hence, we deduce:

ql (𝑥;ℱ) = ql (bs (𝜔𝑥) ,ℱ) = ql�ℱ1 (bs (𝜔𝑥) ;ℱ1) = ql�ℱ1 (𝑥;ℱ1) .

b) Similarly in the case 𝑥 ∈ Bs (l �ℱ2) we get, ql (𝑥;ℱ) = ql�ℱ2 (𝑥;ℱ2).

Assertion 3.27.5. Let universal kinematics and ℱ be disjoint evolutional union of disjoint
universal kinematics ℱ1 and ℱ2. Then:

1. ℱ1,ℱ2<−→ℱ .

2. If ℱ1,ℱ2⊂−→
̃︀ℱ (for some universal kinematics ̃︀ℱ), then ℱ⊂−→ ̃︀ℱ .

Proof.
1. Our first aim is to prove, that ℱ1<−→ℱ .
1.1) Since ℱ is disjoint evolutional union of ℱ1 of ℱ2, then, By Definition 3.27.4 (item 1),

we have ℱ [≡]ℱ1.
1.2) Since ℱ [≡]ℱ1, then, By Definition 3.25.2 (item 1), we get ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1). So,

using Definition 3.25.2 (item 2) as well as the system of denotations for universal kinematics
(see. Subsection 22.2), for each index 𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1) we deliver:

Tm (ℱ � lk𝛼 (ℱ)) = Tm (lk𝛼 (ℱ)) =
= Tm (lk𝛼 (ℱ1)) = Tm (ℱ1 � lk𝛼 (ℱ1)) ;

BG (ℱ � lk𝛼 (ℱ)) = BG (lk𝛼 (ℱ) ,ℱ) = BG (lk𝛼 (ℱ1) ,ℱ1) =

= BG (ℱ1 � lk𝛼 (ℱ1)) .

Hence, by Definition 3.25.1, the base kinematic sets ℱ � lk𝛼 (ℱ) and ℱ1 � lk𝛼 (ℱ1) are chrono-
geometrically affined.
1.3) Let us consider any index 𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1). Denote:

l := lk𝛼 (ℱ) .

According to Definition 3.27.3, we have:

l �ℱ1= lk𝛼 (ℱ1) , l �ℱ2= lk𝛼 (ℱ2) .
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In accordance with Assertion 3.27.4 we get:

BE(l) = BE (l �ℱ1)
←
∨ BE (l �ℱ2) .

Hence, by Definition 1.9.6, we obtain BE (l �ℱ1) <−→BE(l), ie BE (lk𝛼 (ℱ1)) <−→BE (lk𝛼 (ℱ)).
Thence, taking into account the system of denotations for kinematic sets (see. Subsection
14.2.2), we deduce:

BE (ℱ1 � lk𝛼 (ℱ1)) = BE (lk𝛼 (ℱ1)) <−→
<−→BE (lk𝛼 (ℱ)) = BE (ℱ � lk𝛼 (ℱ)) (3.61)

Applying Assertion 3.27.4 (item 4), for any elementary state 𝑥 ∈ Bs (l �ℱ1) we obtain:
ql (𝑥,ℱ) = ql�ℱ1 (𝑥,ℱ1), that is qlk𝛼(ℱ) (𝑥,ℱ) = qlk𝛼(ℱ1) (𝑥,ℱ1). Thence, using the system of
denotations for kinematic sets (see. Subsection 14.2.2), we deliver:

qℱ1�lk𝛼(ℱ1)(𝑥) = qℱ�lk𝛼(ℱ)(𝑥) (3.62)

(∀𝑥 ∈ Bs (lk𝛼 (ℱ1)) = Bs (ℱ1 � lk𝛼 (ℱ1))) .

According to item 1.2) of this proof, the base kinematic sets ℱ � lk𝛼 (ℱ) and ℱ1 � lk𝛼 (ℱ1)
are chrono-geometrically affined. So, taking into account equalities (3.61), (3.62) and Definition
3.26.1 (item 2), we obtain the following super-evolutional inclusion

ℱ1 � lk𝛼 (ℱ1) <−→ℱ � lk𝛼 (ℱ) (∀𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1)) .

Note that, last inclusion leads to the inclusion:

Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ)) (∀𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1)) , (3.63)

which will be necessary us further.
1.4) Chose any indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1). Denote:

l := lk𝛼 (ℱ) , m := lk𝛽 (ℱ) . (3.64)

Then, we get:
l �ℱ1= lk𝛼 (ℱ1) , m �ℱ1= lk𝛽 (ℱ1) . (3.65)

Consider arbitrary changeable system 𝐴 ⊆ Bs (lk𝛼 (ℱ1)). Using (3.63), we see, that 𝐴 ⊆
Bs (lk𝛼 (ℱ1)) ⊆ Bs (lk𝛼 (ℱ)). So, taking into account formulas (3.65) and (3.64), we have,
𝐴 ⊆ Bs (l �ℱ1) ⊆ Bs (l). Applying Theorem 1.12.2 as well as item 3 of Definition 3.27.4, we
obtain:

⟨lk𝛽 (ℱ)← lk𝛼 (ℱ) ,ℱ⟩𝐴 = ⟨m← l,ℱ⟩𝐴 =

=
⋃︁
𝜔∈𝐴

{⟨!m← l,ℱ⟩𝜔} =
⋃︁
𝜔∈𝐴

{⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔} =

= ⟨m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝐴 = ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) ,ℱ1⟩𝐴.

Results, proven in the items 1.1)–1.4), together with Assertion 3.26.10, assure the inclusion
ℱ1<−→ℱ . Similarly we can prove, that ℱ2<−→ℱ .

2. Let ̃︀ℱ be universal kinematics such, that ℱ1,ℱ2⊂−→
̃︀ℱ . By Definition 3.22.1, universal

kinematics ℱ and ̃︀ℱ may be represented in the form:

ℱ =
(︁
C,
←−
𝒬
)︁
, ̃︀ℱ =

(︁̃︀C,←−𝒬∼)︁ ,
where C, ̃︀C are kinematic sets.
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2.1) Since ℱ1⊂−→
̃︀ℱ and ℱ1<−→ℱ , then, by assertions 3.26.9 and 3.26.10, we have, that ℱ1 [≡]ℱ

and ℱ1 [≡] ̃︀ℱ . Hence, by Assertion 3.25.1, we get, ℱ [≡] ̃︀ℱ . In particular, the last correlation,
leads to the correlation:

ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑
(︁ ̃︀ℱ)︁ .

So, by Assertion 3.26.4, the kinematic sets C and ̃︀C are chrono-geometrically affined. There-
fore, according to Definition 3.26.2, base kinematic sets ℱ � lk𝛼 (ℱ) = C � lk𝛼 (C) and̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁ = ̃︀C � lk𝛼 (︁̃︀C)︁ are chrono-geometrically affined (for any index 𝛼 ∈ ℐ𝑛𝑑 (ℱ) =

ℐ𝑛𝑑
(︁ ̃︀ℱ)︁ = ℐ𝑛𝑑 (C) = ℐ𝑛𝑑

(︁̃︀C)︁).
2.2) Consider any fixed index 𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑

(︁ ̃︀ℱ)︁.
2.2.1) Since ℱ1,ℱ2⊂−→

̃︀ℱ then, according to Assertion 3.26.9, we have:

ℱ𝑖 � lk𝛼 (ℱ𝑖) ⊂−→
̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁ (︀

𝑖 ∈ 1, 2
)︀
. (3.66)

Therefore, by Definition 3.26.1, for 𝑖 ∈ 1, 2 we obtain:

BE (lk𝛼 (ℱ𝑖)) = BE (ℱ𝑖 � lk𝛼 (ℱ𝑖)) ⊂−→BE
(︁ ̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁)︁ =

= BE
(︁
lk𝛼

(︁ ̃︀ℱ)︁)︁ .
Thence, using of Definition 3.27.4 item (2) and Assertion 1.9.10 (item 4), we deduce:

BE (lk𝛼 (ℱ)) = BE (lk𝛼 (ℱ) �ℱ1)
←
∪ BE (lk𝛼 (ℱ) �ℱ2) =

= BE (lk𝛼 (ℱ1))
←
∪ BE (lk𝛼 (ℱ2)) ⊂−→BE

(︁
lk𝛼

(︁ ̃︀ℱ)︁)︁ .
Hence:

BE (ℱ � lk𝛼 (ℱ)) ⊂−→BE
(︁ ̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁)︁ .

2.2.2) According to (3.66), we have ℱ1 � lk𝛼 (ℱ1) ⊂−→
̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁. So, by Definition 3.26.1,

base kinematic sets ℱ1 � lk𝛼 (ℱ1) and ̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁ are chrono-geometrically affined. According

to the first statement of this assertion, proven above, we have ℱ1,ℱ2⊂−→ℱ . Hence, according

to Assertion 3.26.9, we get, ℱ1 � lk𝛼 (ℱ1) ⊂−→ℱ � lk𝛼 (ℱ). So, by Definition 3.26.1, base kine-

matic sets ℱ1 � lk𝛼 (ℱ1) and ℱ � lk𝛼 (ℱ) are chrono-geometrically affined also. Since base

kinematic sets ℱ1 � lk𝛼 (ℱ1) and ̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁ as well as ℱ1 � lk𝛼 (ℱ1) and ℱ � lk𝛼 (ℱ) are

chrono-geometrically affined (pairwise), then ℱ � lk𝛼 (ℱ) and ̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁ must be chrono-

geometrically affined.
2.2.3) Using correlation (3.66), Definition 3.26.1 and Assertion 1.9.1, we deliver,

Bs (ℱ𝑖 � lk𝛼 (ℱ𝑖)) ⊆ Bs
(︁ ̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁)︁ (𝑖 ∈ {1, 2}), as well:

qℱ𝑖�lk𝛼(ℱ𝑖)(𝑥) = q ̃︀ℱ�lk𝛼( ̃︀ℱ)(𝑥) (3.67)

(∀𝑥 ∈ Bs (ℱ𝑖 � lk𝛼 (ℱ𝑖)) = Bs (lk𝛼 (ℱ𝑖))) ,

where
(︀
𝑖 ∈ 1, 2

)︀
. From Correlation (3.67), applying Assertion 3.27.4 (item 4), for every 𝑥 ∈

Bs (ℱ � lk𝛼 (ℱ)) we deduce:

qℱ�lk𝛼(ℱ)(𝑥) = qlk𝛼(ℱ)(𝑥,ℱ) =
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=

{︃
qlk𝛼(ℱ)�ℱ1 (𝑥,ℱ1) , 𝑥 ∈ Bs (lk𝛼 (ℱ) �ℱ1)

qlk𝛼(ℱ)�ℱ2 (𝑥,ℱ2) , 𝑥 ∈ Bs (lk𝛼 (ℱ) �ℱ2)
=

=

{︃
qlk𝛼(ℱ1) (𝑥,ℱ1) , 𝑥 ∈ Bs (lk𝛼 (ℱ1))

qlk𝛼(ℱ2) (𝑥,ℱ2) , 𝑥 ∈ Bs (lk𝛼 (ℱ2))
=

=

{︃
qℱ1�lk𝛼(ℱ1)(𝑥), 𝑥 ∈ Bs (lk𝛼 (ℱ1))

qℱ2�lk𝛼(ℱ2)(𝑥), 𝑥 ∈ Bs (lk𝛼 (ℱ2))
= q ̃︀ℱ�lk𝛼( ̃︀ℱ)(𝑥).

By Definition 3.26.1, results, obtained in subitems 2.2.1), 2.2.2), 2.2.3), lead to the evolu-
tional inclusion:

ℱ � lk𝛼 (ℱ) ⊂−→
̃︀ℱ � lk𝛼 (︁ ̃︀ℱ)︁

(for each index 𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑
(︁ ̃︀ℱ)︁).

2.3) Consider any fixed indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑
(︁ ̃︀ℱ)︁. Since ℱ1,ℱ2⊂−→

̃︀ℱ , then, by
Assertion 3.26.9, for arbitrary 𝜔 ∈ Bs (lk𝛼 (ℱ𝑖)) (𝑖 ∈ {1, 2}), we obtain:

⟨lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) , ℱ𝑖⟩ {𝜔} =
⟨
lk𝛽

(︁ ̃︀ℱ)︁← lk𝛼

(︁ ̃︀ℱ)︁ , ̃︀ℱ⟩ {𝜔} .
Therefore, taking into account equality (1.74), we have:

⟨! lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) , ℱ𝑖⟩𝜔 =
⟨
! lk𝛽

(︁ ̃︀ℱ)︁← lk𝛼

(︁ ̃︀ℱ)︁ , ̃︀ℱ⟩𝜔
(𝜔 ∈ Bs (ℱ𝑖) , 𝑖 ∈ {1, 2}) .

Thence, using Definition 3.27.4 (item 3), for any 𝜔 ∈ Bs (lk𝛼 (ℱ)) we deduce:

⟨! lk𝛽 (ℱ)← lk𝛼 (ℱ) , ℱ⟩𝜔 =

=

{︃
⟨! lk𝛽 (ℱ) �ℱ1 ← lk𝛼 (ℱ) �ℱ1 ,ℱ1⟩𝜔, 𝜔 ∈ Bs (lk𝛼 (ℱ) �ℱ1)

⟨! lk𝛽 (ℱ) �ℱ2 ← lk𝛼 (ℱ) �ℱ2 ,ℱ2⟩𝜔, 𝜔 ∈ Bs (lk𝛼 (ℱ) �ℱ2)
=

=

{︃
⟨! lk𝛽 (ℱ1)← lk𝛼 (ℱ1) ,ℱ1⟩𝜔, 𝜔 ∈ Bs (lk𝛼 (ℱ1))

⟨! lk𝛽 (ℱ2)← lk𝛼 (ℱ2) ,ℱ2⟩𝜔, 𝜔 ∈ Bs (lk𝛼 (ℱ2))
=

=
⟨
! lk𝛽

(︁ ̃︀ℱ)︁← lk𝛼

(︁ ̃︀ℱ)︁ , ̃︀ℱ⟩𝜔. (3.68)

Taking into account equality (3.68) as well as Property 1.12.1(2), for any changeable system
∀ 𝐴 ⊆ Bs (lk𝛼 (ℱ)) we obtain:

⟨lk𝛽 (ℱ)← lk𝛼 (ℱ) , ℱ⟩𝐴 =
⋃︁
𝜔∈𝐴

{⟨! lk𝛽 (ℱ)← lk𝛼 (ℱ) , ℱ⟩𝜔} =

=
⋃︁
𝜔∈𝐴

{︁⟨
! lk𝛽

(︁ ̃︀ℱ)︁← lk𝛼

(︁ ̃︀ℱ)︁ , ̃︀ℱ⟩𝜔}︁ =

=
⟨
lk𝛽

(︁ ̃︀ℱ)︁← lk𝛼

(︁ ̃︀ℱ)︁ , ̃︀ℱ⟩𝐴.
Recall, that in item 2.1) we have proven, that ℱ [≡] ̃︀ℱ . So, from results, established in items

2.1)–2.3), in accordance with Assertion 3.26.9, we obtain the evolutional inclusion:

ℱ⊂−→
̃︀ℱ .

From Assertion 3.27.5 as well as Assertion 3.26.12 and Definition 3.27.1 we readily obtain
the following corollary.
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Corollary 3.27.1. If disjoint evolutional union of disjoint universal kinematics ℱ1 and ℱ2

exists, then it is unique, moreover:

∙ Evolutional union ℱ1

←
∪ ℱ2 also exists.

∙ Disjoint evolutional union of ℱ1 and ℱ2 coincides with their evolutional union ℱ1

←
∪ ℱ2.

Denotation 3.27.1. Taking into account Corollary 3.27.1, further in the case, where universal
kinematics ℱ is disjoint evolutional union of (disjoint) universal kinematics ℱ1 and ℱ2 we use
the following denotation:

ℱ1

←
⊔ ℱ2 := ℱ .

Theorem 3.27.1. For arbitrary disjoint universal kinematics ℱ1 and ℱ2 the disjoint evolutional

union ℱ1

←
⊔ ℱ2 exists.

Proof. I. Let ℱ1 and ℱ2 be disjoint universal kinematics. Then, by Definition 3.27.2, we have
ℱ1 [≡]ℱ2. Therefore, by Definition 3.25.2, we deliver, ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2). Denote:

𝒜 := ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) .

By Definition 3.25.2, for any index 𝛼 ∈ 𝒜 the base changeable sets BE (lk𝛼 (ℱ1)) and
BE (lk𝛼 (ℱ2)) are chronologically affined (see equality (3.36)). Hence, we may put:

ℬ𝛼 := BE (lk𝛼 (ℱ1))
←
∪ BE (lk𝛼 (ℱ2)) , 𝛼 ∈ 𝒜. (3.69)

According to Corollary 1.9.2, for any index 𝛼 ∈ 𝒜 we obtain:

Bs (ℬ𝛼) = Bs (BE (lk𝛼 (ℱ1))) ∪ Bs (BE (lk𝛼 (ℱ2))) =

= Bs (lk𝛼 (ℱ1)) ∪ Bs (lk𝛼 (ℱ2)) . (3.70)

Moreover, in accordance with Assertion 3.27.2, we have:

Bs (lk𝛼 (ℱ1)) ∩ Bs (lk𝛼 (ℱ2)) = ∅, 𝛼 ∈ 𝒜. (3.71)

II. For any 𝛼, 𝛽 ∈ 𝒜 and 𝐴 ⊆ Bs (ℬ𝛼) we put:

U𝛽𝛼𝐴 := ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ1))) ∪
∪ ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ2))) . (3.72)

Now our aim is to prove, that the family of mappings (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) is an unification of
perception for the family of base changeable sets (ℬ𝛼 | 𝛼 ∈ 𝒜).
a) It is apparently, that 𝐴 ∩ Bs (lk𝛼 (ℱ𝑖)) ⊆ Bs (lk𝛼 (ℱ𝑖)) (for arbitrary 𝛼 ∈ 𝒜,

𝐴 ⊆ Bs (ℬ𝛼) and 𝑖 ∈ 1, 2). According to Definition 1.10.1, the unification mapping

⟨lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) , ℱ𝑖⟩ reflects the any set in 2Bs(lk𝛼(ℱ𝑖)) into the set in 2Bs(lk𝛽(ℱ𝑖)). Hence,
⟨lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) , ℱ𝑖⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ𝑖))) ⊆ Bs (lk𝛽 (ℱ𝑖)) (𝑖 ∈ 1, 2). Hence, the right-hand
side of the equality (3.72) is subset of the set Bs (lk𝛽 (ℱ1)) ∪ Bs (lk𝛽 (ℱ2)). So, according to
(3.70), U𝛽𝛼𝐴 ⊆ Bs (ℬ𝛽). Thus:

∙ U𝛽𝛼 is the mapping from 2Bs(ℬ𝛼) into 2Bs(ℬ𝛽) (for arbitrary indexes 𝛼, 𝛽 ∈ 𝒜).

b) Let 𝛼 ∈ 𝒜 and 𝐴 ⊆ Bs (ℬ𝛼). Then, applying Property 1.10.1(5) and equality (3.70), we
obtain:

U𝛼𝛼𝐴 = ⟨lk𝛼 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ1))) ∪
∪ ⟨lk𝛼 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ2))) =

= (𝐴 ∩ Bs (lk𝛼 (ℱ1))) ∪ (𝐴 ∩ Bs (lk𝛼 (ℱ2))) = 𝐴.
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c) Let 𝛼, 𝛽 ∈ 𝒜 and 𝐴 ⊆ 𝐵 ⊆ Bs (ℬ𝛼). Then, Using Property 1.10.1(8) and (3.72), we
deduce:

U𝛽𝛼𝐴 = ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ1))) ∪
∪ ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ2))) ⊆

⊆ ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩ (𝐵 ∩ Bs (lk𝛼 (ℱ1))) ∪
∪ ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩ (𝐵 ∩ Bs (lk𝛼 (ℱ2))) =

= U𝛽𝛼𝐵.

d) Let, 𝛼, 𝛽, 𝛾 ∈ 𝒜 and 𝐴 ⊆ Bs (ℬ𝛼). Denote:

𝐴𝑖 := 𝐴 ∩ Bs (lk𝛼 (ℱ𝑖)) , 𝑖 ∈ 1, 2; (3.73)̃︀𝐴 := U𝛽𝛼𝐴.

According to (3.70) and (3.72), we have:

𝐴 = 𝐴1 ∪ 𝐴2;̃︀𝐴 = ̃︀𝐴1 ∪ ̃︀𝐴2, wherẽ︀𝐴1 = ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩𝐴1;̃︀𝐴2 = ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩𝐴2.

In accordance with (3.73), we have, 𝐴𝑖 ⊆ Bs (lk𝛼 (ℱ𝑖)) (𝑖 ∈ 1, 2). Moreover, by Definition
1.10.1, the unification mappings ⟨lk𝛽 (ℱ𝑖)← lk𝛼 (ℱ𝑖) , ℱ𝑖⟩ are mappings from 2Bs(lk𝛼(ℱ𝑖)) into

2Bs(lk𝛽(ℱ𝑖)). So, ̃︀𝐴𝑖 ⊆ Bs (lk𝛽 (ℱ𝑖)) (𝑖 ∈ 1, 2). Hence, applying equality (3.71), for set ̃︀𝐴 =̃︀𝐴1 ∪ ̃︀𝐴2 we obtain: ̃︀𝐴 ∩ Bs (lk𝛽 (ℱ𝑖)) = ̃︀𝐴𝑖 (︀
𝑖 ∈ 1, 2

)︀
.

Therefore, using (3.72) as well as Property 1.10.1(9), we deduce:

U𝛾𝛽U𝛽𝛼𝐴 = U𝛾𝛽 ̃︀𝐴 = ⟨lk𝛾 (ℱ1)← lk𝛽 (ℱ1) , ℱ1⟩ ̃︀𝐴1 ∪
∪ ⟨lk𝛾 (ℱ2)← lk𝛽 (ℱ2) , ℱ2⟩ ̃︀𝐴2 =

= ⟨lk𝛾 (ℱ1)← lk𝛽 (ℱ1) , ℱ1⟩ ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩𝐴1 ∪
∪ ⟨lk𝛾 (ℱ2)← lk𝛽 (ℱ2) , ℱ2⟩ ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩𝐴2 ⊆

⊆ ⟨lk𝛾 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩𝐴1 ∪
∪ ⟨lk𝛾 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩𝐴2 = U𝛾𝛼𝐴.

Taking into account results, proven in the items b), c), d) and Definition 1.10.1, we see that
the family of mappings (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜) is an unification of perception on (ℬ𝛼 | 𝛼 ∈ 𝒜), so the
triple:

𝒵 = (𝒜, (ℬ𝛼 | 𝛼 ∈ 𝒜) , (U𝛽𝛼 | 𝛼, 𝛽 ∈ 𝒜))
is a changeable set. Moreover, according to denotations, accepted in the theory of changeable
set (see Subsection 10.2), we get:

ℐ𝑛𝑑 (𝒵) = 𝒜 = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) ; (3.74)

ℒ𝑘 (𝒵) = {(𝛼,ℬ𝛼) | 𝛼 ∈ 𝒜} . (3.75)

Next, using Denotations, accepted in the theory of changeable set, as well as formulas (3.70),
(3.71), (3.69) for any reference frame l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (𝒵) we obtain:

Bs(l) = Bs (ℬ𝛼) = Bs (lk𝛼 (ℱ1)) ⊔ Bs (lk𝛼 (ℱ2)) =
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= Bs (l �ℱ1) ⊔ Bs (l �ℱ2) ; (3.76)

Tm(l) = Tm (ℬ𝛼) = Tm
(︁
BE (lk𝛼 (ℱ1))

←
∪ BE (lk𝛼 (ℱ2))

)︁
=

= Tm (lk𝛼 (ℱ1)) = Tm (lk𝛼 (ℱ2)) =

= Tm (l �ℱ1) = Tm (l �ℱ2) . (3.77)

From (3.76), taking into account Property 1.6.1(9), we deduce:

Bs(l) = {bs (𝜔) | 𝜔 ∈ Bs(l)} =
= {bs (𝜔) | 𝜔 ∈ Bs (l �ℱ1) ∪ Bs (l �ℱ2)} =
= {bs (𝜔) | 𝜔 ∈ Bs (l �ℱ1)} ∪ {bs (𝜔) | 𝜔 ∈ Bs (l �ℱ2)} =
= Bs (l �ℱ1) ∪Bs (l �ℱ2) . (3.78)

By conditions of Theorem, universal kinematics ℱ1 and ℱ2 are disjoint. So, by Assertion 3.27.3,
we have Bs (l �ℱ1) ∩Bs (l �ℱ2) = ∅. Hence, taking into account (3.78), we get:

Bs(l) = Bs (l �ℱ1) ⊔Bs (l �ℱ2) (∀ l ∈ ℒ𝑘 (𝒵)) . (3.79)

Moreover, in accordance with (3.72), for any reference frames l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (𝒵), m =
(𝛽,ℬ𝛽) ∈ ℒ𝑘 (𝒵) and any changeable system 𝐴 ⊆ Bs(l) we obtain:

⟨m← l, 𝒵⟩𝐴 = U𝛽𝛼𝐴 =

= ⟨lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ1))) ∪
∪ ⟨lk𝛽 (ℱ2)← lk𝛼 (ℱ2) , ℱ2⟩ (𝐴 ∩ Bs (lk𝛼 (ℱ2))) =

= ⟨m �ℱ1 ← l �ℱ1 , ℱ1⟩ (𝐴 ∩ Bs (l �ℱ1)) ∪
∪ ⟨m �ℱ2 ← l �ℱ2 , ℱ2⟩ (𝐴 ∩ Bs (l �ℱ2)) . (3.80)

Consider any l,m ∈ ℒ𝑘 (𝒵), 𝐴 ⊆ Bs(l), 𝐴 ̸= ∅. According to (3.76), at least one of the sets
𝐴 ∩ Bs (l �ℱ1) or 𝐴 ∩ Bs (l �ℱ2) is nonempty. Since ℱ1,ℱ2 are universal kinematics, then, by
Definition 3.22.1, they are precisely visible. So, according to Definition 1.12.3, Corollary 1.12.5
and Assertion 1.12.3 (item (nVi3)), at least one of the sets ⟨m �ℱ𝑖 ← l �ℱ𝑖 , ℱ𝑖⟩ (𝐴 ∩ Bs (l �ℱ𝑖))
(𝑖 ∈ 1, 2) is nonempty. Hence, taking into account (3.80), we get:

⟨m← l, 𝒵⟩𝐴 ̸= ∅ (for any 𝐴 ⊆ Bs(l), 𝐴 ̸= ∅ and l,m ∈ ℒ𝑘 (𝒵)).

Therefore, according to Corollary 1.12.5, Assertion 1.12.3 (item (nVi3)), and Definition 1.12.3,
changeable set 𝒵 is precisely visible. Applying equalities (3.76), (3.80), and (1.74), for arbitrary
l,m ∈ ℒ𝑘 (𝒵) and 𝜔 ∈ Bs(l) we obtain:

⟨m← l, 𝒵⟩ {𝜔} =

{︃
⟨m �ℱ1 ← l �ℱ1 , ℱ1⟩ {𝜔} , 𝜔 ∈ Bs (l �ℱ1)

⟨m �ℱ2 ← l �ℱ2 , ℱ2⟩ {𝜔} , 𝜔 ∈ Bs (l �ℱ2)
=

=

{︃
{⟨!m �ℱ1 ← l �ℱ1 , ℱ1⟩𝜔} , 𝜔 ∈ Bs (l �ℱ1)

{⟨!m �ℱ2 ← l �ℱ2 , ℱ2⟩𝜔} , 𝜔 ∈ Bs (l �ℱ2) .

Thence, taking into account the equality (1.74), for arbitrary l,m ∈ ℒ𝑘 (𝒵) and 𝜔 ∈ Bs(l) we
obtain:

⟨!m← l, 𝒵⟩𝜔 =

{︃
⟨!m �ℱ1 ← l �ℱ1 , ℱ1⟩𝜔, 𝜔 ∈ Bs (l �ℱ1)

⟨!m �ℱ2 ← l �ℱ2 , ℱ2⟩𝜔, 𝜔 ∈ Bs (l �ℱ2) .
(3.81)

For any reference frame l ∈ ℒ𝑘 (𝒵) we put:

𝑘l(𝑥) :=

{︃
ql�ℱ1 (𝑥;ℱ1) , 𝑥 ∈ Bs (l �ℱ1)

ql�ℱ2 (𝑥;ℱ2) , 𝑥 ∈ Bs (l �ℱ2)
(𝑥 ∈ Bs(l)) (3.82)
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Since the union in the equality (3.79) is disjoint, then the denotation (3.82) is correct.
Since ℱ1 [≡]ℱ2, then, by Definition 3.25.2, for any reference frame l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (𝒵) we

get:

BG (l �ℱ1 ;ℱ1) = BG (lk𝛼 (ℱ1) ;ℱ1) =

= BG (lk𝛼 (ℱ2) ;ℱ2) = BG (l �ℱ2 ;ℱ2) ;

Zk (l �ℱ1 ;ℱ1) = Zk (l �ℱ2 ;ℱ2) . (3.83)

Denote:
Ql := BG (l �ℱ1 ;ℱ1) = BG (l �ℱ2 ;ℱ2) (l ∈ ℒ𝑘 (𝒵)). (3.84)

Then we have:
Zk (Ql) = Zk (l �ℱ1 ;ℱ1) = Zk (l �ℱ2 ;ℱ2) , l ∈ ℒ𝑘 (𝒵) .

Hence, 𝑘l is the mapping from Bs(l) into Zk (Ql) (for every reference frame l ∈ ℒ𝑘 (𝒵)).
Therefore by Definition 2.14.3 (item 2), the pair:

C = (𝒵, ((Ql, 𝑘l) | l ∈ ℒ𝑘 (𝒵)))

is a kinematic set. For this kinematic set, taking into account denotations, accepted in Subsec-
tion 14.2.2 and equalities (3.74), (3.75), (3.76), (3.79), (3.77) we obtain:

ℐ𝑛𝑑 (C) = 𝒜 = ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ2) ; (3.85)

ℒ𝑘 (C) = {(𝛼,ℬ𝛼) | 𝛼 ∈ 𝒜} ;
BE(C) = 𝒵; (3.86)

Bs(l) = Bs (l �ℱ1) ⊔ Bs (l �ℱ2) (l ∈ ℒ𝑘 (C)) ; (3.87)

Bs(l) = Bs (l �ℱ1) ⊔Bs (l �ℱ2) (l ∈ ℒ𝑘 (C)) ;
Tm(l) = Tm (l �ℱ1) = Tm (l �ℱ2) (l ∈ ℒ𝑘 (C)) . (3.88)

Since (as it was proved above) changeable set 𝒵 is precisely visible, then, according to
item d) of Subsection 14.2.2) kinematic set C also is precisely visible. Moreover, taking into
account denotations, accepted in Subsection 14.2.2 and equality (3.81), for any l,m ∈ ℒ𝑘 (C)
and 𝜔 ∈ Bs(l) we get:

⟨!m← l, C⟩𝜔 =

{︃
⟨!m �ℱ1 ← l �ℱ1 , ℱ1⟩𝜔, 𝜔 ∈ Bs (l �ℱ1)

⟨!m �ℱ2 ← l �ℱ2 , ℱ2⟩𝜔, 𝜔 ∈ Bs (l �ℱ2) .
(3.89)

Next, using equalities (3.82), (3.83), (3.84), (3.88) and taking into account denotations, accepted
in Subsection 14.2.2 as well as denotation (2.3), for any reference frame l ∈ ℒ𝑘 (C) we obtain:

BG(l;C) = Ql = BG (l �ℱ1 ;ℱ1) = BG (l �ℱ2 ;ℱ2) ; (3.90)

Zk(l;C) = Zk (Ql) = Zk (l �ℱ1 ;ℱ1) = Zk (l �ℱ2 ;ℱ2) ; (3.91)

M𝑘(l;C) = Tm(l)× Zk(l;C) = Tm (l �ℱ1)× Zk (l �ℱ1 ;ℱ1) =

= Tm (l �ℱ2)× Zk (l �ℱ2 ;ℱ2) =

= M𝑘 (l �ℱ1 ;ℱ1) = M𝑘 (l �ℱ2 ;ℱ2) ; (3.92)

ql (𝑥;C) = 𝑘l(𝑥) =

{︃
ql�ℱ1 (𝑥;ℱ1) , 𝑥 ∈ Bs (l �ℱ1)

ql�ℱ2 (𝑥,ℱ2) , 𝑥 ∈ Bs (l �ℱ2)
, 𝑥 ∈ Bs(l);

Q⟨l⟩ (𝜔; C) = (tm (𝜔) , ql (bs (𝜔) ;C)) =

=

{︃(︀
tm (𝜔) , ql�ℱ1 (bs (𝜔) ;ℱ1)

)︀
, bs (𝜔) ∈ Bs (l �ℱ1)(︀

tm (𝜔) , ql�ℱ2 (bs (𝜔) ;ℱ2)
)︀
, bs (𝜔) ∈ Bs (l �ℱ2) .

(3.93)
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In the case 𝜔 ∈ Bs (l �ℱ1), according to Property 1.6.1(9), we have bs (𝜔) ∈ Bs (l �ℱ1). There-
fore, in this case, in accordance with (3.93), we get:

Q⟨l⟩ (𝜔; C) =
(︀
tm (𝜔) , ql�ℱ1 (bs (𝜔) ;ℱ1)

)︀
=

= Q⟨l�ℱ1⟩ (𝜔;ℱ1) .

Similarly, in the case 𝜔 ∈ Bs (l �ℱ2) we obtain, Q
⟨l⟩ (𝜔; C) = Q⟨l�ℱ2⟩ (𝜔;ℱ2). Hence, taking into

account (3.87), for arbitrary l ∈ ℒ𝑘 (C) and 𝜔 ∈ Bs(l) we ensure:

Q⟨l⟩ (𝜔; C) =

{︃
Q⟨l�ℱ1⟩ (𝜔;ℱ1) , 𝜔 ∈ Bs (l �ℱ1)

Q⟨l�ℱ2⟩ (𝜔;ℱ2) , 𝜔 ∈ Bs (l �ℱ2) .
(3.94)

Applying formulas (3.94), (3.89) and Definition 2.15.1 (item 1) for any l,m ∈ ℒ𝑘 (C) and
𝜔 ∈ Bs(l) we deduce:

Q⟨m← l⟩ (𝜔,C) = Q⟨m⟩(⟨!m← l,C⟩𝜔; C) =

=

{︃
Q⟨m⟩ (⟨!m �ℱ1 ← l �ℱ1 , ℱ1⟩𝜔; C) , 𝜔 ∈ Bs (l �ℱ1)

Q⟨m⟩ (⟨!m �ℱ2 ← l �ℱ2 , ℱ2⟩𝜔; C) , 𝜔 ∈ Bs (l �ℱ2)
=

=

{︃
Q⟨m�ℱ1⟩ (⟨!m �ℱ1 ← l �ℱ1 , ℱ1⟩𝜔; ℱ1) , 𝜔 ∈ Bs (l �ℱ1)

Q⟨m�ℱ2⟩ (⟨!m �ℱ2 ← l �ℱ2 , ℱ2⟩𝜔; ℱ2) , 𝜔 ∈ Bs (l �ℱ2)
=

=

{︃
Q⟨m�ℱ1← l�ℱ1⟩ (𝜔; ℱ1) , 𝜔 ∈ Bs (l �ℱ1)

Q⟨m�ℱ1← l�ℱ1⟩ (𝜔; ℱ2) , 𝜔 ∈ Bs (l �ℱ2) .

Thence, using formula (3.1), we conclude:

Q⟨m← l⟩ (𝜔,C) =

=

{︃
[m �ℱ1 ← l �ℱ1 , ℱ1]Q

⟨l�ℱ1⟩ (𝜔;ℱ1) , 𝜔 ∈ Bs (l �ℱ1)

[m �ℱ2 ← l �ℱ2 , ℱ2]Q
⟨l�ℱ2⟩ (𝜔;ℱ2) , 𝜔 ∈ Bs (l �ℱ2) .

(3.95)

Denote: ̃︀𝑄m,l := [m �ℱ1 ← l �ℱ1 , ℱ1] , l,m ∈ ℒ𝑘 (C) .
Let l,m ∈ ℒ𝑘 (C) be arbitrary reference frames of C. Since ℱ1 [≡]ℱ2, then using Definition

3.25.2, we obtain the following (equivalent) representation for the mapping ̃︀𝑄m,l:̃︀𝑄m,l = [m �ℱ1 ← l �ℱ1 , ℱ1] =

=
[︀
lkind(m) (ℱ1)← lkind(l) (ℱ1) , ℱ1

]︀
=

=
[︀
lkind(m) (ℱ2)← lkind(l) (ℱ2) , ℱ2

]︀
=

= [m �ℱ2 ← l �ℱ2 , ℱ2] . (3.96)

Thence, using formulas (3.95), (3.94) for arbitrary reference frames l,m ∈ ℒ𝑘 (C) we obtain the
equality:

Q⟨m← l⟩ (𝜔,C) = ̃︀𝑄m,l

(︀
Q⟨l⟩ (𝜔; C)

)︀
,

where ̃︀𝑄m,l is the bijection of kind ̃︀𝑄m,l : M𝑘(l; C) ↦→ M𝑘(m; C) (according to (3.96),
(3.92)). Hence, by Definition 2.15.1 (item 4) and equalities (3.3)–(3.4), the family of map-

pings
(︁ ̃︀𝑄m,l | l,m ∈ ℒ𝑘 (C)

)︁
is universal coordinate transform for the kinematic set C. Thus,

the pair:

ℱ =
(︁
C,
(︁ ̃︀𝑄m,l | l,m ∈ ℒ𝑘 (C)

)︁)︁
(3.97)
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is an universal kinematics. Moreover, universal coordinate transform for the kinematics ℱ is
determined by the formula:

[m← l, ℱ ] = [m �ℱ1 ← l �ℱ1 , ℱ1] =

= [m �ℱ2 ← l �ℱ2 , ℱ2] , l,m ∈ ℒ𝑘 (ℱ) = ℒ𝑘 (C) . (3.98)

Equalities (3.85)–(3.94) for kinematics ℱ remain true (with replacement the symbol C by the
symbol ℱ).
III. Next our aim is to prove, that universal kinematics ℱ is disjoint evolutional union of

kinematics ℱ1 and ℱ2.
1. Let us prove, that ℱ [≡]ℱ1.
1.a) Using equality (3.85), we obtain:

ℐ𝑛𝑑 (ℱ) = 𝒜 = ℐ𝑛𝑑 (ℱ1) .

1.b) Let, 𝛼 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1). Then, applying (3.88), (3.90) and Definition 3.27.3, we
have:

Tm (lk𝛼 (ℱ)) = Tm (lk𝛼 (ℱ) �ℱ1) = Tm (lk𝛼 (ℱ1))

BG (lk𝛼 (ℱ) ; ℱ) = BG (lk𝛼 (ℱ) �ℱ1 ;ℱ1) = BG (lk𝛼 (ℱ1) ; ℱ1) .

1.c) According to (3.98), for any 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ) = ℐ𝑛𝑑 (ℱ1) we deliver:

[lk𝛽 (ℱ)← lk𝛼 (ℱ) , ℱ ] = [lk𝛽 (ℱ) �ℱ1 ← lk𝛼 (ℱ) �ℱ1 , ℱ1] =

= [lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1] .

Subitems 1.a)–1.c), according to Definition 3.25.2, ensure the correlation ℱ [≡]ℱ1. There-
fore, we have ℱ [≡]ℱ1 [≡]ℱ2.
2. Let, l = (𝛼,ℬ𝛼) ∈ ℒ𝑘 (ℱ) = ℒ𝑘 (𝒵) be any reference frame of ℱ (where 𝛼 ∈ 𝒜 =

ℐ𝑛𝑑 (ℱ)). Then, in accordance with (3.69), we get:

BE(l) = ℬ𝛼 = BE (lk𝛼 (ℱ1))
←
∪ BE (lk𝛼 (ℱ2)) =

= BE (l �ℱ1)
←
∪ BE (l �ℱ2) (∀l ∈ ℒ𝑘 (ℱ)) .

3. Chose any l,m ∈ ℒ𝑘 (ℱ) and 𝜔 ∈ Bs(l). Then, according to (3.89) and (3.94), we deduce:

⟨!m← l, ℱ⟩𝜔 =

{︃
⟨!m �ℱ1 ← l �ℱ1 , ℱ1⟩𝜔, 𝜔 ∈ Bs (l �ℱ1)

⟨!m �ℱ2 ← l �ℱ2 , ℱ2⟩𝜔, 𝜔 ∈ Bs (l �ℱ2) .

Q⟨l⟩ (𝜔; ℱ) =

{︃
Q⟨l�ℱ1⟩ (𝜔;ℱ1) , 𝜔 ∈ Bs (l �ℱ1)

Q⟨l�ℱ2⟩ (𝜔;ℱ2) , 𝜔 ∈ Bs (l �ℱ2) .

From the results, obtained above in the items 1,2,3, by Definition 3.27.4, it follows, that the
universal kinematics ℱ is disjoint evolutional union of the universal kinematics ℱ1 and ℱ2, that

is ℱ = ℱ1

←
⊔ ℱ2.

Combining Theorem 3.27.1 and Corollary 3.27.1 we obtain the following corollary.

Corollary 3.27.2. Let ℱ1 and ℱ2 be disjoint universal kinematics. Then both evolutional

unions ℱ1

←
∪ ℱ2 and ℱ1

←
⊔ ℱ2 exist, moreover:

ℱ1

←
∪ ℱ2 = ℱ1

←
⊔ ℱ2.
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27.3 Disjoint Evolutional Union of Evolutionarily Visible Universal Kinematics

Definition 1.11.5 of united by fate elementary-time states in the reference frame of changeable
set can be easy extended to elementary-time states in reference frames of kinematic sets and
universal kinematics.

Definition 3.27.5. Let 𝒴 be any changeable set or kinematic set or universal kinematics and
l ∈ ℒ𝑘 (𝒴) be any reference frame of 𝒴. We say, that elementary-time states 𝜔1, 𝜔2 ∈ Bs(l)
are united by fate in the reference frame l if and only if they are united by fate in the base
changeable set lˆ = BE(l), that is if and only if at least one of the following conditions is
satisfied:

𝜔2←
l
𝜔1 or 𝜔1←

l
𝜔2

(cf Assertion 1.7.3, item 2)).

Definition 3.27.6. 1. Changeable set 𝒵 is named as evolutionarily visible if and only if:

(a) 𝒵 is precisely visible;

(b) For arbitrary reference frames l,m ∈ ℒ𝑘 (𝒵) and arbitrary united by fate in the ref-
erence frame l elementary-time states 𝜔1, 𝜔2 ∈ Bs(l) such, that tm (⟨!m← l⟩𝜔1) ̸=
tm (⟨!m← l⟩𝜔2) elementary-time states ⟨!m← l⟩𝜔1 and ⟨!m← l⟩𝜔2 are united by fate
in the frame m.

2. We say that kinematic set C (universal kinematics ℱ) is evolutionarily visible, if and
only if the changeable set BE (C) (BE (ℱ)) is evolutionarily visible (correspondingly).

The next assertion follows directly from Definition 3.27.6 and system of denotations for
kinematic sets (see Subsection 14.2.2).

Assertion 3.27.6. Kinematic set C is evolutionarily visible, if and only if conditions (a) and
(b) of first item of Definition 3.27.6 are satisfied (with replacement the char 𝒵 by the char C).

Let ℱ =
(︁
C,
←−
𝒬
)︁
be any universal kinematics. Then, by Definition 3.22.1, kinematic set C is

precisely visible. So the changeable set BE (ℱ) = BE (C) also is precisely visible. That is why
the following assertion holds.

Assertion 3.27.7. Universal kinematics ℱ is evolutionarily visible, if and only if condition (b)
of first item of Definition 3.27.6 is satisfied (with replacement the symbol 𝒵 by the symbol ℱ).

From physical point of view evolutionary visibility can be interpreted as invariance of evo-
lutionary (transformation) processes in different reference frames.

Assertion 3.27.8. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜) be an evolution multi-projector for base
changeable set ℬ. Then the changeable set 𝒵 im [P,ℬ] is evolutionarily visible.

Proof. Let P = ((T𝛼,𝒳𝛼, 𝑈𝛼) | 𝛼 ∈ 𝒜), be an evolution multi-projector for ℬ. Denote

𝒵 := 𝒵 im [P,ℬ] .

(a) According to Corollary 1.12.3, the changeable set 𝒵 is precisely visible.
(b) According to Property 1.11.2(1), we have ℒ𝑘 (𝒵) = ((𝛼, 𝑈𝛼 [ℬ,T𝛼]) | 𝛼 ∈ 𝒜). Consider

any two reference frames l = (𝛼, 𝑈𝛼 [ℬ,T𝛼]) ∈ ℒ𝑘 (𝒵), m = (𝛽, 𝑈𝛽 [ℬ,T𝛽]) ∈ ℒ𝑘 (𝒵), where
𝛼, 𝛽 ∈ 𝒜. Suppose, that elementary-time states 𝜔1, 𝜔2 ∈ Bs(l) are united by fate in the frame
l and tm (⟨!m← l⟩𝜔1) ̸= tm (⟨!m← l⟩𝜔2). Then, obviously, we have 𝜔1 ̸= 𝜔2. Since 𝜔1, 𝜔2 are
united by fate in the frame l then at least one of the correlations:

𝜔2←
l
𝜔1 or 𝜔1←

l
𝜔2
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must be fulfilled. But, since 𝜔1 ̸= 𝜔2, using Property 1.6.1(7), in the both cases (𝜔2←
l
𝜔1

and 𝜔1←
l
𝜔2) we obtain tm (𝜔1) ̸= tm (𝜔2). Thus, 𝜔1, 𝜔2 are united by fate in the frame l

and tm (𝜔1) ̸= tm (𝜔2). So, according to Property 1.11.2(4) there exist united by fate in ℬ
elementary-time states 𝜔′1, 𝜔

′
2 ∈ Bs(ℬ) such, that 𝜔1 = 𝑈𝛼 (𝜔

′
1), 𝜔2 = 𝑈𝛼 (𝜔

′
2). By Definition

1.11.3, the mapping 𝑈𝛼 is bijection from Bs(ℬ) onto the set R (𝑈𝛼). Therefore we can write:

𝜔′1 = 𝑈 [−1]
𝛼 (𝜔1) , 𝜔′2 = 𝑈 [−1]

𝛼 (𝜔2) ,

where 𝑈
[−1]
𝛼 is the mapping, inverse to 𝑈𝛼. Thence, applying Corollary 1.12.7, we obtain:

⟨!m← l⟩𝜔1 = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔1)

)︀
= 𝑈𝛽 (𝜔

′
1) ;

⟨!m← l⟩𝜔2 = 𝑈𝛽
(︀
𝑈 [−1]
𝛼 (𝜔2)

)︀
= 𝑈𝛽 (𝜔

′
2) ,

where, as it was mentioned before, elementary-time states 𝜔′1, 𝜔
′
2 ∈ Bs(ℬ) are united by fate in

ℬ and tm (⟨!m← l⟩𝜔1) ̸= tm (⟨!m← l⟩𝜔2). Therefore, in accordance with Property 1.11.2(4),
elementary-time states ⟨!m← l⟩𝜔1 and ⟨!m← l⟩𝜔2 are united by fate in the reference frame m.

From the results, established in the items (a), (b), by Definition 3.27.6, it follows, that the
changeable set 𝒵 is evolutionarily visible.

According to item 2 of Definition 3.27.6, kinematic set C (universal kinematics ℱ) is evo-
lutionarily visible, if and only if the changeable set BE (C) (BE(ℱ)), is evolutionarily visible
(correspondingly). So, using theorems on multi-image for kinematic sets and universal kine-
matics (see theorems 2.16.1 and 3.23.1) we get the following corollaries of Assertion 3.27.8:

Corollary 3.27.3. Let P be kinematic multi-projector for base changeable set ℬ. Then the
kinematic set Kim [P,ℬ] is evolutionarily visible.

Corollary 3.27.4. Let P be universal kinematic multi-projector for base kinematic set Cb.
Then the universal kinematics Ku

[︀
P,Cb

]︀
is evolutionarily visible.

From the corollaries 3.27.3 and 3.27.4 it follows, that all kinematic sets and universal kine-
matics, generated by special relativity and its tachyon extensions, introduced in Sections 19
and 24 are evolutionarily visible.

Theorem 3.27.2. If disjoint universal kinematics ℱ1 and ℱ2 are evolutionarily visible, then

universal kinematic ℱ1

←
⊔ ℱ2 also is evolutionarily visible.

Proof. Let ℱ1 and ℱ2 be disjoint and evolutionarily visible universal kinematics. Denote:

ℱ := ℱ1

←
⊔ ℱ2.

Consider arbitrary two reference frames l,m ∈ ℒ𝑘 (ℱ). By Definition 3.27.4, we have:

BE(l) = BE (l �ℱ1)
←
∪ BE (l �ℱ2) .

Hence, using Corollary 1.9.2, we obtain

Bs←
l
=

Bs←−−−
BE(l)

=
Bs←−−−

BE(l�ℱ1)
∪ Bs←−−−

BE(l�ℱ2)
=

Bs←−−−
l�ℱ1
∪ Bs←−−−

l�ℱ2
. (3.99)

Suppose, that elementary-time states 𝜔1, 𝜔2 ∈ Bs (l) are united by fate in the reference frame
l and

tm (⟨!m← l⟩𝜔1) ̸= tm (⟨!m← l⟩𝜔2) . (3.100)

Since 𝜔1 and 𝜔2 are united by fate in l, then at least one of the following conditions must be
satisfied:

𝜔2←
l
𝜔1 or 𝜔1←

l
𝜔2. (3.101)
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In the language of set theory the set of conditions (3.101) can be rewritten as follows:

{(𝜔2, 𝜔1) , (𝜔1, 𝜔2)} ∩
Bs←
l
̸= ∅.

Therefore, according to (3.99), at least one of the following two conditions must hold:

{(𝜔2, 𝜔1) , (𝜔1, 𝜔2)} ∩
Bs←−−−
l�ℱ1

̸= ∅ (3.102)

{(𝜔2, 𝜔1) , (𝜔1, 𝜔2)} ∩
Bs←−−−
l�ℱ2

̸= ∅. (3.103)

First we consider the case (3.102). In this case we obtain, that 𝜔1, 𝜔2 ∈ Bs (l �ℱ1) and 𝜔1, 𝜔2

united by fate in the reference frame l �ℱ1∈ ℒ𝑘 (ℱ1). Since 𝜔1, 𝜔2 ∈ Bs (l �ℱ1), then by item 3
of Definition 3.27.4, we have:

⟨!m← l,ℱ⟩𝜔𝑖 = ⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔𝑖, 𝑖 ∈ 1, 2. (3.104)

Hence, according to (3.100), we get:

tm (⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔1) ̸= tm (⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔2) .

So, since 𝜔1, 𝜔2 are united by fate in the reference frame l �ℱ1∈ ℒ𝑘 (ℱ1) and universal kine-
matics ℱ1 is evolutionarily visible, then elementary-time states ⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔1 and
⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔2 are united by fate in the reference frame m �ℱ1∈ ℒ𝑘 (ℱ1) (according to
Definition 3.27.6). Hence we have:

{(⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔1, ⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔2) ,

(⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔2, ⟨!m �ℱ1 ← l �ℱ1 ,ℱ1⟩𝜔1)} ∩
Bs←−−−

m�ℱ1
̸= ∅.

Thence, applying equality (3.99) for the reference frame m ∈ ℒ𝑘 (ℱ) as well as equality (3.104),
we obtain:

{(⟨!m← l,ℱ⟩𝜔1, ⟨!m← l,ℱ⟩𝜔2) ,

(⟨!m← l,ℱ⟩𝜔2, ⟨!m← l,ℱ⟩𝜔1)} ∩
Bs←
m
̸= ∅. (3.105)

Similarly one can prove, that the correlation (3.105) is also true in the case (3.103).
Thus, in the both cases elementary-time states ⟨!m← l,ℱ⟩𝜔1 and ⟨!m← l,ℱ⟩𝜔2 are united

by fate in the reference frame m ∈ ℒ𝑘 (ℱ). Taking into account, that reference frames l,m ∈
ℒ𝑘 (ℱ) and united by fate in l elementary-time states 𝜔1, 𝜔2 were chosen in an arbitrary manner,
by Definition 3.27.6, we conclude that, universal kinematics ℱ is evolutionarily visible.

Main results of Subsection 27.1 were published in the paper [16]. Other main results of this
Section were published in the paper [15].

28 Theorem on Evolutional Extension for Universal Kinematics

Let ℱ be any universal kinematics and l ∈ ℒ𝑘 (ℱ) be any reference frame of ℱ . For arbitrary
changeable system 𝐴 ⊆ Bs(l) we denote:

trjl [𝐴; ℱ ] := trjℱ�l [𝐴] =
{︀
Q⟨l⟩(𝜔) | 𝜔 ∈ 𝐴

}︀
(3.106)

The main aim of this section is to prove the following theorem.
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Theorem 3.28.1. Let ℱ be any universal kinematics and l ∈ ℒ𝑘 (ℱ) be any reference frame
of ℱ . Let ℛ be arbitrary system of abstract trajectories from Tm (l) to the set 𝑀 ⊆ Zk (l).
Then:

1. The super-evolutional extension ℱ1=←−ℱ of universal kinematics ℱ exists such, that all

trajectories 𝑟 ∈ ℛ are trajectories of fate lines 24 of the reference frame l � ℱ1 (IE ∀𝑟 ∈
ℛ ∃𝐿 ∈ L𝑑 (l � ℱ1) (𝑟 = trjl�ℱ1 [𝐿,ℱ1])).

2. If, in addition, universal kinematics ℱ is evolutionarily visible, then there exist evolu-
tionarily visible super-evolutional extension ℱ1=←−ℱ of universal kinematics ℱ , such, that
∀𝑟 ∈ ℛ ∃𝐿 ∈ L𝑑 (l � ℱ1) (𝑟 = trjl�ℱ1 [𝐿,ℱ1]).

To prove Theorem 6 we need some auxiliary lemmas.

Lemma 3.28.1. Let Q be any coordinate space and ℛ be a system of abstract trajectories from
T = (T,≤) to the set 𝑀 ⊆ Zk(Q).

Then for arbitrary set 𝒦 the base kinematic set Cb
𝒦 exists such, that:

1. Tm
(︀
Cb
𝒦
)︀
= T.

2. BG
(︀
Cb
𝒦
)︀
= Q.

3. Bs
(︀
Cb
𝒦
)︀
∩ 𝒦 = ∅.

4. All trajectories 𝑟 ∈ ℛ are trajectories of fate lines in Cb
𝒦 (that is ∀𝑟 ∈ ℛ∃𝐿 ∈ L𝑑

(︀
Cb
𝒦
)︀(︁

𝑟 = trjCb
𝒦
[𝐿]
)︁
).

Proof. Apparently it is sufficient to prove this Lemma for the case of nonempty set 𝒦 . So
further we will suppose, that 𝒦 ̸= ∅.

Let 𝜉 be any mathematical object (that is any set), possessing the following property:

∀𝑥 ∈ 𝒦 ({𝜉} /∈ 𝑥) . (3.107)

Such set 𝜉 exists. Indeed, denote:

𝑌 := {𝑦 | ∃𝑥 ∈ 𝒦 (𝑦 ∈ 𝑥)} =
⋃︁
𝑋∈𝒦

𝑋;

𝑌1 :=
{︀
{𝑢} | 𝑢 ∈ 2𝑌

}︀
.

Note, that in this paper we follow the classical axiomatization of set theory [40] or or close to
it [75]. So, any set does not contain urelements. That is why application of operation

⋃︀
𝑋∈K

𝑋 is

correct for any nonempty set. According to Cantor’s theorem, we have card(𝑌 ) < card (𝑌1).
Therefore, 𝑌1 ∖𝑌 ̸= ∅. Hence, any set 𝜉 ∈ 2𝑌 such, that {𝜉} ∈ 𝑌1 ∖𝑌 satisfies condition (3.107).

Thus, we fix the set 𝜉, satisfying condition (3.107).
For any trajectory 𝑟 ∈ ℛ we denote:

𝑟#(𝑡) := (𝜉, 𝑟, 𝑟(𝑡)) , 𝑡 ∈ D(𝑟) (3.108)(︀
D
(︀
𝑟#
)︀
= D(𝑟) ⊆ T

)︀
ℛ# :=

{︀
𝑟# | 𝑟 ∈ ℛ

}︀
.

Emphasize that in the formula (3.108) the ordered pair is treated by the standard way as
the set (𝑎, 𝑏) = {{𝑎} , {𝑎, 𝑏}} and triple (𝑎, 𝑏, 𝑐) is the set of kind (𝑎, 𝑏, 𝑐) = (𝑎, (𝑏, 𝑐)) =
{{𝑎} , {𝑎, (𝑏, 𝑐)}}.

24 Recall, that, according to Definition 1.8.5, fate lines of l are changeable systems, generating elementary process in the frame l.
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Now we are going to prove, that ℛ# is a system of of individual trajectories from T to⋃︀
𝑟∈ℛR

(︀
𝑟#
)︀
. Hence, we are to prove, that for arbitrary 𝑟#1 , 𝑟

#
2 ∈ ℛ# condition 𝑟#1 ̸= 𝑟#2 assures

𝑟#1 ∩ 𝑟
#
2 = ∅. So, consider any 𝑟#1 , 𝑟

#
2 ∈ ℛ# such, that 𝑟#1 ̸= 𝑟#2 . Assume, that there exists(︀

𝑡, 𝑥#
)︀
∈ 𝑟#1 ∩ 𝑟

#
2 (where 𝑡 ∈ T). Then we have 𝑡 ∈ D (𝑟1) ∩D (𝑟2) and 𝑥

# = 𝑟#1 (𝑡) = 𝑟#2 (𝑡).

Since 𝑟#1 (𝑡) = 𝑟#2 (𝑡), then, according to (3.108), we have 𝑟1 = 𝑟2 and so 𝑟#1 = 𝑟#2 , which

contradicts to the start condition 𝑟#1 ̸= 𝑟#2 . Thus, our assumption is wrong. Hence 𝑟#1 ∩ 𝑟
#
2 = ∅

for any 𝑟#1 , 𝑟
#
2 ∈ ℛ# such, that 𝑟#1 ̸= 𝑟#2 . So ℛ# is the system of of individual trajectories.

Denote:
ℬ := 𝒜𝑡

(︀
T,ℛ#

)︀
.

Applying Theorem 1.6.1 and Theorem 1.7.2, we obtain:

Tm(ℬ) = T. (3.109)

L𝑑(ℬ) = L𝑑
(︀
𝒜𝑡
(︀
T,ℛ#

)︀)︀
= ℛ#; (3.110)

Now we aim to prove, that
Bs(ℬ) ∩ 𝒦 = ∅. (3.111)

According to Property 1.6.1(9), we have:

Bs(ℬ) = {bs (𝜔) |𝜔 ∈ Bs(ℬ)} . (3.112)

In accordance with Theorem 1.6.1, we assure:

Bs(ℬ) =
⋃︁

𝑟#∈ℛ#

𝑟#. (3.113)

Combining formulas (3.112) and (3.113) we deduce:

Bs(ℬ) =

{︃
bs (𝜔) |𝜔 ∈

⋃︁
𝑟#∈ℛ#

𝑟#

}︃
=
{︀
bs (𝜔) | ∃𝑟# ∈ ℛ#

(︀
𝜔 ∈ 𝑟#

)︀}︀
=

=
{︀
bs (𝜔) | ∃𝑟# ∈ ℛ#

(︀
bs (𝜔) = 𝑟# (tm (𝜔))

)︀}︀
=

⋃︁
𝑟#∈ℛ#

R
(︀
𝑟#
)︀

(3.114)

(recall that by R
(︀
𝑟#
)︀
we denote the range of the trajectory 𝑟#). Consider any element 𝑦 ∈

Bs(ℬ). According to equality (3.114), there exist trajectory 𝑟# ∈ ℛ# and element 𝑡 ∈ T such,
that

𝑡 ∈ D
(︀
𝑟#
)︀

and 𝑦 = 𝑟#(𝑡).

Assume, that 𝑦 ∈ 𝒦. Then we have, 𝑟#(𝑡) ∈ 𝒦, ie, according to (3.108), (𝜉, 𝑟, 𝑟(𝑡)) ∈ 𝒦.
But, (𝜉, 𝑟, 𝑟(𝑡)) = {{𝜉} , {𝜉, (𝑟, 𝑟(𝑡))}}. Hence for element 𝑦 = {{𝜉} , {𝜉, (𝑟, 𝑟(𝑡))}} ∈ 𝒦 we get
{𝜉} ∈ 𝑦, which contradicts to the condition (3.107). Thus, our assumption is wrong. Therefore,
any element 𝑦 ∈ Bs(ℬ) can not belong to the set 𝒦. Equality (3.111) has been proven.

Recall, that according to (3.114), we have Bs(ℬ) =
⋃︀

𝑟#∈ℛ#

R
(︀
𝑟#
)︀
. For 𝑥 ∈ Bs(ℬ) =⋃︀

𝑟#∈ℛ#

R
(︀
𝑟#
)︀
we denote:

𝑘(𝑥) : = 𝑟(𝑡) (3.115)(︀
where 𝑟# ∈ ℛ#, 𝑥 ∈ R

(︀
𝑟#
)︀
, 𝑥 = 𝑟#(𝑡) for 𝑡 ∈ D(𝑟)

)︀
In accordance with (3.108), for arbitrary 𝑟#, 𝑟#1 ∈ ℛ#, 𝑡 ∈ D(𝑟) and 𝑡1 ∈ D (𝑟1), condition

𝑥 = 𝑟#(𝑡) = 𝑟#1 (𝑡1) assures 𝑟(𝑡) = 𝑟1 (𝑡1). Hence, the mapping 𝑘 : Bs (ℬ) ↦→ Zk (Q) is correctly
defined by formula (3.115). So, the pair:

Cb
𝒦 = (ℬ, (Q, 𝑘)) (3.116)
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is base kinematic set. Moreover, we have:

BE
(︀
Cb
𝒦
)︀
= ℬ, BG

(︀
Cb
𝒦
)︀
= Q,

qCb
𝒦
= 𝑘, L𝑑

(︀
Cb
𝒦
)︀
= L𝑑(ℬ). (3.117)

According to (3.116), (3.109), (3.111) taking into account system of denotations, accepted in
the theory of base kinematic sets (see Subsection 14.2.1), we obtain:

Tm
(︀
Cb
𝒦
)︀
= Tm (ℬ) = T; (3.118)

Bs
(︀
Cb
𝒦
)︀
∩ 𝒦 = Bs(ℬ) ∩ 𝒦 = ∅. (3.119)

Therefore, we have seen, that the base kinematic set Cb
𝒦 satisfies first three conditions of Lemma

3.28.1. So, it remains to verify only the fourth condition of Lemma for Cb
𝒦.

Consider any trajectory 𝑟 ∈ ℛ. Obviously we have 𝑟# ∈ ℛ#. Hence, According to (3.110)
and (3.117), we obtain:

𝑟# ∈ L𝑑(ℬ) = L𝑑
(︀
Cb
𝒦
)︀
.

In accordance with (3.108), we have D
(︀
𝑟#
)︀
= D(𝑟). So, using definition of Minkowski coor-

dinates for base kinematic sets (see (2.2)), as well as formulas (2.6), (3.117) and (3.115) we
deduce:

trjCb
𝒦

[︀
𝑟#
]︀
=
{︁
Q⟨Cb

𝒦⟩(𝜔) | 𝜔 ∈ 𝑟#
}︁
=

=
{︁
Q⟨Cb

𝒦⟩ (︀(︀𝑡, 𝑟#(𝑡))︀)︀ | 𝑡 ∈ D
(︀
𝑟#
)︀}︁

=

=
{︁
Q⟨Cb

𝒦⟩ (︀(︀𝑡, 𝑟#(𝑡))︀)︀ | 𝑡 ∈ D (𝑟)
}︁
=

=
{︁(︁
𝑡, qCb

𝒦

(︀
𝑟#(𝑡)

)︀)︁
| 𝑡 ∈ D (𝑟)

}︁
=

=
{︀(︀
𝑡, 𝑘
(︀
𝑟#(𝑡)

)︀)︀
| 𝑡 ∈ D (𝑟)

}︀
= {(𝑡, 𝑟(𝑡)) | 𝑡 ∈ D (𝑟)} = 𝑟.

Therefore, for every 𝑟 ∈ ℛ there exist the fate line 𝑟# ∈ L𝑑
(︀
Cb
𝒦
)︀
such, that trjCb

𝒦

[︀
𝑟#
]︀
= 𝑟.

Thus, the fourth condition of Lemma also is satisfied for Cb
𝒦.

The next corollary will be deduced from Lemma 3.28.1.

Corollary 3.28.1. Let Q be any coordinate space and ℛ be a system of abstract trajectories
from T = (T,≤) to the set 𝑀 ⊆ Zk(Q).

Then for arbitrary set 𝒦 the base kinematic set Cb
𝒦 exists satisfying conditions 1,2,4 of

Lemma 3.28.1, as well as the condition:

3 ′.
(︀
Bs
(︀
Cb
𝒦
)︀
∪Bs

(︀
Cb
𝒦
)︀)︀
∩ 𝒦 = ∅.

Proof. Denote:

𝒦1 :=
⋃︁
𝑊∈𝒦

𝑊 ; 𝒦2 :=
⋃︁

𝑊1∈𝒦1

𝑊1.

According to Lemma 3.28.1, base kinematic set Cb
𝒦, exists, satisfying the following conditions:

1. Tm
(︀
Cb
𝒦
)︀
= T;

2. BG
(︀
Cb
𝒦
)︀
= Q;

3. Bs
(︀
Cb
𝒦
)︀
∩ (𝒦2 ∪ 𝒦) = ∅;

4. ∀𝑟 ∈ ℛ∃𝐿 ∈ L𝑑
(︀
Cb
𝒦
)︀ (︁

𝑟 = trjCb
𝒦
[𝐿]
)︁
.
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Condition 3 leads to equality Bs
(︀
Cb
𝒦
)︀
∩𝒦 = ∅. Hence, to prove Corollary it remains to prove,

that Bs
(︀
Cb
𝒦
)︀
∩ 𝒦 = ∅. Assume the contrary. Then the elementary-time state 𝜔 = (𝑡, 𝑥) ∈

Bs
(︀
Cb
𝒦
)︀
exists such, that 𝜔 ∈ 𝒦 (where 𝑥 ∈ Bs

(︀
Cb
𝒦
)︀
). Since 𝜔 = (𝑡, 𝑥) = {{𝑡} , {𝑡, 𝑥}} ∈ 𝒦

and {𝑡, 𝑥} ∈ 𝜔, then we have: {𝑡, 𝑥} ∈
⋃︀
𝑊∈𝒦𝑊 = 𝒦1. Since 𝑥 ∈ {𝑡, 𝑥}, where {𝑡, 𝑥} ∈ 𝒦1,

then we get 𝑥 ∈
⋃︀
𝑊1∈𝒦1

𝑊1 = 𝒦2. Hence we see, that 𝑥 ∈ 𝒦2, which contradicts to the

condition 3 (that is the condition Bs
(︀
Cb
𝒦
)︀
∩ (𝒦2 ∪ 𝒦) = ∅). The obtained contradiction assures

the equality Bs
(︀
Cb
𝒦
)︀
∩ 𝒦 = ∅. Thus, we have proven, that

(︀
Bs
(︀
Cb
𝒦
)︀
∪Bs

(︀
Cb
𝒦
)︀)︀
∩ 𝒦 = ∅.

Lemma 3.28.2. Let ℱ be any universal kinematics and l0 ∈ ℒ𝑘 (ℱ) be any reference frame of
ℱ . Let ℛ be arbitrary system of abstract trajectories from Tm (l0) to the set 𝑀 ⊆ Zk (l0).

Then the evolutionarily visible universal kinematics ℱ1 exists such, that:

1. ℱ1 is disjoint with ℱ ;

2. all trajectories 𝑟 ∈ ℛ are trajectories of fate lines of the reference frame l0 � ℱ1 (IE
∀𝑟 ∈ ℛ ∃𝐿 ∈ L𝑑 (l0 � ℱ1) (𝑟 = trj l0�ℱ1 [𝐿,ℱ1])).

Proof. Since ℱ � l0 is a base kinematic set and Zk (l0) = Zk (ℱ � l0) = Zk (BG (ℱ � l0)), then,
by Corollary 3.28.1, there exists the base kinematic set C(0), satisfying the following conditions:

(C1
0): Tm

(︀
C(0)
)︀
= Tm (ℱ � l0) = Tm (l0);

(C2
0): BG

(︀
C(0)
)︀
= BG (ℱ � l0) = BG (l0,ℱ);

(C3
0):

(︀
Bs
(︀
C(0)
)︀
∪Bs

(︀
C(0)
)︀)︀
∩
(︁⋃︀

l∈ℒ𝑘(ℱ) Bs(l)
)︁
= ∅ ;

(C4
0): ∀𝑟 ∈ ℛ ∃𝐿 ∈ L𝑑

(︀
C(0)
)︀
(𝑟 = trjC(0) [𝐿]) .

From conditions (C1
0), (C

2
0) it follows, that:

M𝑘
(︀
C(0)
)︀
= Tm

(︀
C(0)
)︀
× Zk

(︀
C(0)
)︀
=

= Tm
(︀
C(0)
)︀
× Zk

(︀
BG
(︀
C(0)
)︀)︀

= Tm (l0)× Zk (BG (l0,ℱ)) =
= Tm (l0)× Zk (l0,ℱ) = M𝑘 (l0,ℱ) . (3.120)

1. Denote: 𝛼0 := ind (l0). Next, for arbitrary 𝛼 ∈ ℐ𝑛𝑑 (ℱ) and 𝜔 ∈ Bs
(︀
C(0)
)︀
we put:

𝒰𝛼(𝜔) :=

{︃(︁
tm
(︁
[lk𝛼 (ℱ)← l0, ℱ ]Q⟨C

(0)⟩(𝜔)
)︁
, 𝜔
)︁
, 𝛼 ̸= 𝛼0

𝜔, 𝛼 = 𝛼0.
(3.121)

𝒰𝛼 is an injective mapping from the set Bs
(︀
C(0)
)︀
into the set Tm (lk𝛼 (ℱ))×𝒳𝛼, where

𝒳𝛼 =

{︃
Bs
(︀
C(0)
)︀
, 𝛼 ̸= 𝛼0

Bs
(︀
C(0)
)︀
, 𝛼 = 𝛼0.

(3.122)

For any 𝛼 ∈ ℐ𝑛𝑑 (ℱ) and w ∈M𝑘
(︀
C(0)
)︀
= M𝑘 (l0,ℱ) we denote:

𝒦𝛼(w) := [lk𝛼 (ℱ)← l0, ℱ ] w. (3.123)

2. Chose any fixed index 𝛼 ∈ ℐ𝑛𝑑 (ℱ). Let us prove that the ordered composition of
five sets (Tm (lk𝛼 (ℱ)) ,𝒳𝛼,𝒰𝛼,BG (lk𝛼 (ℱ) ,ℱ) ,𝒦𝛼) is universal kinematic projector for base
kinematic set C(0).
2.1) Since 𝒰𝛼 is an injective mapping from Bs

(︀
C(0)
)︀
= Bs

(︀
BE
(︀
C(0)
)︀)︀

into Tm (lk𝛼 (ℱ))×
𝒳𝛼, then, by Definitions 1.11.1 and 1.11.3, the ordered triple (Tm (lk𝛼 (ℱ)) ,𝒳𝛼,𝒰𝛼) is an
injective evolution projector for base changeable set BE

(︀
C(0)
)︀
.
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2.2) According to Definition 3.22.1 and system of denotations for universal kinematics (see
subsection 22.2), BG (lk𝛼 (ℱ) ,ℱ) is a coordinate space.
2.3) In accordance with Definition 3.22.1 and system of denotations for universal kinematics

(see subsection 22.2), the mapping 𝒦𝛼, represented by the formula (3.123), is bijec-
tion from M𝑘 (l0,ℱ) onto M𝑘 (lk𝛼 (ℱ) ,ℱ) = Tm (lk𝛼 (ℱ)) × Zk (BG (lk𝛼 (ℱ) ,ℱ)), where
M𝑘 (l0,ℱ) = M𝑘

(︀
C(0)
)︀
(according to (3.120)). Moreover, applying (3.123) as well as equalities

(3.3) and (3.4), for every w ∈M𝑘 (lk𝛼 (ℱ) ,ℱ) we obtain:

𝒦[−1]
𝛼 (w) = [l0← lk𝛼 (ℱ) , ℱ ] w (3.124)

2.4) Suppose, that 𝜔1, 𝜔2 ∈ Bs
(︀
C(0)
)︀
and bs (𝒰𝛼 (𝜔1)) = bs (𝒰𝛼 (𝜔2)). Then for 𝛼 ̸= 𝛼0 using

(3.121) we obtain, 𝜔1 = 𝜔2, and therefore bs
(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔1)

)︁)︁
= bs

(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔2)

)︁)︁
.

In the case 𝛼 = 𝛼0, according to (3.121), we get:

bs (𝜔1) = bs (𝜔2) . (3.125)

Since 𝛼0 = ind (l0), then we have, lk𝛼 (ℱ) = lk𝛼0 (ℱ) = l0. Hence, applying (3.123) and (3.3),
we obtain:

𝒦𝛼(w) = 𝒦𝛼0(w) = [l0← l0,ℱ ] w = w, (w ∈M𝑘 (l0,ℱ)). (3.126)

Therefore, using definition of Minkowski coordinates for base kinematic sets (see. formula
(2.2)), for every 𝜔 ∈ Bs

(︀
C(0)
)︀
we get:

bs
(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔)

)︁)︁
= bs

(︁
Q⟨C(0)⟩ (𝜔)

)︁
=

= bs ((tm (𝜔) , qC(0) (bs (𝜔)))) = qC(0) (bs (𝜔)) .

Thence, taking into account (3.125), we deduce the equality, bs
(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔1)

)︁)︁
=

bs
(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔2)

)︁)︁
.

Thus, in the both cases for arbitrary 𝜔1, 𝜔2 ∈ Bs
(︀
C(0)
)︀
equality bs (𝒰𝛼 (𝜔1)) = bs (𝒰𝛼 (𝜔2))

leads to the equality:

bs
(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔1)

)︁)︁
= bs

(︁
𝒦𝛼
(︁
Q⟨C(0)⟩ (𝜔2)

)︁)︁
.

2.5) In the case 𝛼 ̸= 𝛼0, applying (3.121), (3.123), for each 𝜔 ∈ Bs
(︀
C(0)
)︀
we obtain:

tm (𝒰𝛼 (𝜔)) = tm
(︁
[lk𝛼 (ℱ)← l0, ℱ ]Q⟨C

(0)⟩(𝜔)
)︁
= tm

(︁
𝒦𝛼
(︁
Q⟨C(0)⟩(𝜔)

)︁)︁
.

Now we consider the case 𝛼 = 𝛼0. In this case, according to (3.121), we have, 𝒰𝛼 (𝜔) = 𝜔
(∀𝜔 ∈ Bs

(︀
C(0)
)︀
). Therefore, using (3.126) for 𝜔 ∈ Bs

(︀
C(0)
)︀
we deliver:

tm (𝒰𝛼 (𝜔)) = tm (𝜔) = tm ((tm (𝜔) , qC(0) (bs (𝜔)))) =

= tm
(︁
Q⟨C(0)⟩(𝜔)

)︁
= tm

(︁
𝒦𝛼
(︁
Q⟨C(0)⟩(𝜔)

)︁)︁
.

Thus, the equality tm (𝒰𝛼 (𝜔)) = tm
(︁
𝒦𝛼
(︁
Q⟨C(0)⟩(𝜔)

)︁)︁
(∀𝜔 ∈ Bs

(︀
C(0)
)︀
) is fulfilled in the both

cases.

From the results, obtained in the items 2.1)–2.5), by Definition 3.23.1, it follows, that he
ordered composition of five sets (Tm (lk𝛼 (ℱ)) ,𝒳𝛼,𝒰𝛼,BG (lk𝛼 (ℱ) ,ℱ) ,𝒦𝛼) is universal kine-
matic projector for base kinematic set C(0) (for each index 𝛼 ∈ ℐ𝑛𝑑 (ℱ)). Hence, in accordance
with Definition 3.23.1 (item 2), the following indexed family is universal kinematic multi-
projector for C(0):

P = ((Tm (lk𝛼 (ℱ)) ,𝒳𝛼,𝒰𝛼,BG (lk𝛼 (ℱ) ,ℱ) ,𝒦𝛼) | 𝛼 ∈ ℐ𝑛𝑑 (ℱ)) .
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3. Taking into account Definition 3.23.2 and Theorem 3.23.1, we may put:

ℱ1 := Ku
[︀
P,C(0)

]︀
, (3.127)

3.1) First, we are going to prove, that ℱ1 [≡]ℱ .
3.1.1) According to Property 3.23.1(2) we have:

ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑
(︀
Ku
[︀
P,C(0)

]︀)︀
= ℐ𝑛𝑑 (ℱ) .

3.1.2) Using Property 3.23.1(1) we get:

ℒ𝑘 (ℱ1) = ℒ𝑘
(︀
Ku
[︀
P,C(0)

]︀)︀
=

=
{︀(︀
𝛼, 𝒰𝛼

[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛼 (ℱ))

]︀)︀ ⃒⃒
𝛼 ∈ ℐ𝑛𝑑 (ℱ)

}︀
. (3.128)

Applying formula (3.128) for any index 𝛼 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ) we obtain the equality:

lk𝛼 (ℱ1) =
(︀
𝛼, 𝒰𝛼

[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛼 (ℱ))

]︀)︀
. (3.129)

So, according to Theorem 1.11.1, we deliver:

Tm (lk𝛼 (ℱ1)) = Tm
(︀
𝒰𝛼
[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛼 (ℱ))

]︀)︀
= Tm (lk𝛼 (ℱ)) ,

and, in accordance with Theorem 3.23.1 (item 2) we have:

BG (lk𝛼 (ℱ1) ,ℱ1) = BG (lk𝛼 (ℱ) ,ℱ) .

3.1.3) Consider arbitrary indexes 𝛼, 𝛽 ∈ ℐ𝑛𝑑 (ℱ1) = ℐ𝑛𝑑 (ℱ). Taking into account formula
(3.129), we may put:

l := lk𝛼 (ℱ1) =
(︀
𝛼, 𝒰𝛼

[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛼 (ℱ))

]︀)︀
;

m := lk𝛽 (ℱ1) =
(︀
𝛽, 𝒰𝛽

[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛽 (ℱ))

]︀)︀
.

Using Property 3.23.1(7) as well as equalities (3.123), (3.124) and (3.4), for each 𝜔 ∈
M𝑘 (l,ℱ1) = M𝑘 (lk𝛼 (ℱ1) ,ℱ1) we obtain:

[lk𝛽 (ℱ1)← lk𝛼 (ℱ1) , ℱ1] w = [m← l, ℱ1] w =

= 𝒦𝛽
(︀
𝒦[−1]
𝛼 (w)

)︀
= [lk𝛽 (ℱ)← l0, ℱ ] [l0← lk𝛼 (ℱ) , ℱ ] w =

= [lk𝛽 (ℱ)← lk𝛼 (ℱ) , ℱ ] w.

3.1.4) According to Definition 3.25.2, results, obtained in the items 3.1.1)–3.1.3), assure the
correlation ℱ [≡]ℱ1.
3.2) Now we are aiming to prove, that universal kinematics ℱ1 is disjoint with ℱ .
Taking into account equality (3.129) and Theorem 1.11.1 for any index 𝛼 ∈ ℐ𝑛𝑑 (ℱ) we

deduce:

Bs (lk𝛼 (ℱ1)) = Bs
(︀
𝒰𝛼
[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛼 (ℱ))

]︀)︀
=

= 𝒰𝛼
(︀
Bs
(︀
BE
(︀
C(0)
)︀)︀)︀

= 𝒰𝛼
(︀
Bs
(︀
C(0)
)︀)︀

=
{︀
𝒰𝛼(𝜔) | 𝜔 ∈ Bs

(︀
C(0)
)︀}︀
.

Since 𝒰𝛼 is the mapping from Bs
(︀
C(0)
)︀
into Tm (lk𝛼 (ℱ))×𝒳𝛼, then, taking into account the

last equality and Property 1.6.1(9), we obtain:

Bs (lk𝛼 (ℱ1)) =
{︀
bs (𝒰𝛼(𝜔)) | 𝜔 ∈ Bs

(︀
C(0)
)︀}︀
⊆ 𝒳𝛼,

where we recall, that the set 𝒳𝛼 is defined by the formula (3.122). Therefore, 𝒳𝛼 ⊆ Bs
(︀
C(0)
)︀
∪

Bs
(︀
C(0)
)︀
. So applying condition (C3

0), we get, 𝒳𝛼 ∩Bs (lk𝛼 (ℱ)) = ∅ (∀𝛼 ∈ ℐ𝑛𝑑 (ℱ)). Thus,
for every 𝛼 ∈ ℐ𝑛𝑑 (ℱ) we get:

Bs (lk𝛼 (ℱ1)) ∩Bs (lk𝛼 (ℱ)) ⊆ 𝒳𝛼 ∩Bs (lk𝛼 (ℱ)) = ∅. (3.130)
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According to item 3.1) above, we have ℱ1 [≡]ℱ . Hence, by Definition 3.27.2, we obtain, that
universal kinematics ℱ1 is disjoint with ℱ .
3.3) Since 𝛼0 = ind (l0), then, using the formulas (3.59), (3.129) and condition (C1

0), we
deduce:

l0 �ℱ1 = lk𝛼0 (ℱ1) =
(︀
𝛼0, 𝒰𝛼0

[︀
BE
(︀
C(0)
)︀
, Tm (lk𝛼0 (ℱ))

]︀)︀
=

=
(︀
𝛼0, 𝒰𝛼0

[︀
BE
(︀
C(0)
)︀
, Tm (l0)

]︀)︀
=
(︀
𝛼0, 𝒰𝛼0

[︀
BE
(︀
C(0)
)︀
, Tm

(︀
C(0)
)︀]︀)︀

. (3.131)

Since, according to (3.121), 𝒰𝛼0 is the identity mapping, then, by Remark 1.11.3, we have
𝒰𝛼0

[︀
BE
(︀
C(0)
)︀
, Tm

(︀
C(0)
)︀]︀

= BE
(︀
C(0)
)︀
. Hence, in accordance with (3.131), we get:

l0 �ℱ1=
(︀
𝛼0, BE

(︀
C(0)
)︀)︀
.

From the last equality it follows, that:

Bs (l0 �ℱ1) = Bs
(︀
BE
(︀
C(0)
)︀)︀

= Bs
(︀
C(0)
)︀
; (3.132)

L𝑑 (l0 �ℱ1) = L𝑑
(︀
C(0)
)︀
. (3.133)

Consider any trajectory 𝑟 ∈ ℛ. According to condition (C4
0), the fate line 𝐿 ∈ L𝑑

(︀
C(0)
)︀

exists such, that:
𝑟 = trjC(0) [𝐿] . (3.134)

Using equality (3.131) as well as Property 3.23.1(4) we deliver:

Q⟨l0�ℱ1⟩ (𝜔,ℱ1) = 𝒦𝛼0

(︁
Q⟨C(0)⟩ (︀𝒰 [−1]

𝛼0
(𝜔)
)︀)︁
, (∀ 𝜔 ∈ Bs (l0 �ℱ1)) ,

where (in accordance with (3.132)) Bs (l0 �ℱ1) = Bs
(︀
C(0)
)︀
. From the equalities (3.121) and

(3.126) it follows, that 𝒰𝛼0 and 𝒦𝛼0 are identity mappings. Therefore:

Q⟨l0�ℱ1⟩ (𝜔,ℱ1) = Q⟨C(0)⟩(𝜔),
(︀
∀ 𝜔 ∈ Bs (l0 �ℱ1) = Bs

(︀
C(0)
)︀)︀
.

So, from the equality (3.134), using equalities (3.106), (2.6), we obtain:

𝑟 = trjC(0) [𝐿] =
{︁
Q⟨C(0)⟩(𝜔) | 𝜔 ∈ 𝐿

}︁
=

=
{︁
Q⟨l0�ℱ1⟩ (𝜔,ℱ1) | 𝜔 ∈ 𝐿

}︁
= trjl0�ℱ1 [𝐿,ℱ1] ,

where 𝐿 ∈ L𝑑 (l0 �ℱ1) (according to (3.133)). Thus, we have proven, that:

∀𝑟 ∈ ℛ∃𝐿 ∈ L𝑑 (l0 �ℱ1)
(︀
𝑟 = trjl0�ℱ1 [𝐿,ℱ1]

)︀
.

From the results, proven in the items 3.2) and 3.3) it follows, that universal kinematics ℱ1

satisfies conditions 1,2 of the present Lemma. Moreover, according to equality (3.127) and
Corollary 3.27.4, the universal kinematics ℱ1 is evolutionarily visible.

Proof of Theorem 3.28.1. Let ℱ be universal kinematics and ℛ be a system of abstract tra-
jectories from Tm (l) to the set 𝑀 ⊆ Zk (l) (where l ∈ ℒ𝑘 (ℱ)). In accordance with Lemma
3.28.2, the evolutionarily visible universal kinematics ℱ∼1 exists such, that:

1) ℱ ∼1 is disjoint with ℱ ; (3.135)

2) ∀ 𝑟 ∈ ℛ ∃ 𝐿 ∈ L𝑑 (l � ℱ ∼1 )
(︀
𝑟 = trj l�ℱ∼1 [𝐿,ℱ ∼1 ]

)︀
. (3.136)

Denote:
ℱ1 := ℱ ∼1

←
⊔ ℱ . (3.137)
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Since, according to (3.135), kinematics ℱ∼1 is disjoint with ℱ , then the disjoint evolutional
union in the right-hand side of (3.137) exists (by Theorem 3.27.1). We are going to prove, that
the universal kinematics ℱ1 satisfies conditions of Theorem 3.28.1.
1. Consider any trajectory 𝑟 ∈ ℛ. According to condition (3.136), there exists the fate line

𝐿 ∈ L𝑑 (l � ℱ ∼1 ) such, that
𝑟 = trj l�ℱ∼1 [𝐿,ℱ ∼1 ] . (3.138)

Since ℱ1 = ℱ ∼1
←
⊔ℱ , then in accordance to Assertion 3.27.5, item 1, we have ℱ ∼1 <−→ℱ1. Therefore,

according to Assertion 3.26.14, item 4, we obtain:

L𝑑 (l � ℱ ∼1 ) = L𝑑
(︀
lkind(l) (ℱ ∼1 )

)︀
⊆ L𝑑

(︀
lkind(l) (ℱ1)

)︀
= L𝑑 (l � ℱ1) .

So, since 𝐿 ∈ L𝑑 (l � ℱ∼1 ), then we have 𝐿 ∈ L𝑑 (l � ℱ1). Moreover, applying equalities (3.138)
and (3.106), as well as Assertion 3.26.14, item 6 we conclude:

𝑟 = trj l�ℱ∼1 [𝐿,ℱ ∼1 ] =

=
{︁
Q⟨l�ℱ∼1 ⟩ (𝜔,ℱ ∼1 ) | 𝜔 ∈ 𝐿

}︁
=

=
{︀
Q⟨l�ℱ1⟩ (𝜔,ℱ1) | 𝜔 ∈ 𝐿

}︀
= trj l�ℱ1 [𝐿,ℱ1] .

Thus, the first item of Theorem 3.28.1 for the universal kinematics ℱ1 is fulfilled.
2. Assume, that, in addition, kinematics ℱ is evolutionarily visible. Recall, that the uni-

versal kinematics ℱ ∼1 is evolutionarily visible also (according to the first paragraph of the

present proof). That is why the universal kinematics ℱ1 = ℱ ∼1
←
⊔ℱ is evolutionarily visible (in

accordance with Theorem 3.27.2).

Main results of this Section were published in the paper [16].
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