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Abstract. 
 
 
1. Introduction 
The concept of randomness entered Newtonian dynamics almost a century ago: in 1926, 
Synge, J. introduced a new type of instability - orbital instability- in classical mechanics, 
[1], that can be considered as a precursor of chaos formulated a couple of decades later, 
[2]. The theory of chaos was inspired by the fact that in recent years, in many different 
domains of science (physics, chemistry, biology, engineering), systems with a similar 
strange behavior were frequently encountered displaying irregular and unpredictable 
behavior called chaotic. Currently the theory of chaos that describes such systems is well 
established. However there are still two unsolved problem remain: prediction of chaos 
(without numerical runs), and analytical description of chaos in term of the probability 
density that would formally follow from the original ODE. This paper proposes a 
contribution to the solution of these problems.    
2 Randomness in chaotic systems 
In this Section we present a sketch of general theory of chaos in context of existing 
analytical results starting with the flow generated by an autonomous ODE  
dxi
dt

=Vi (x), i =1,2,...m                                                                                    (1)                    

and compare two neighboring trajectories in m-dimensional phase space with initial  
conditions x0 and x0 +Δx0  denoting Δx0 = w . These evolve with time yielding the 

tangent vector Δx(x0 ,t)  with its Euclidian norm 

d(x0 ,t) = Δx(x0 ,t)                   (2)                                                                                                          

Now the Liapunov exponent can be introduced as the mean exponential rate of 
divergence of two initially close trajectories 
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λ(x0 ,w) = limt→∞
d (0)→0

(1
t
)ln
d(x0 ,t)
d(x0 ,0)

              (3)                                                                                

  
Figure 1. Two nearby trajectories that separate as time evolves. 

 

 
Ficure 2. Tangent space for the Liapunov exponents. 
Therefore in general the Lyapunov exponent cannot be analytically expressed via the 
parameters of the underlying dynamical system (as it was done in case of inertial motion 
on a pseudosphere), and that makes prediction of chaos a hard task. However some 
properties of the Liapunov exponents can be expressed in an analytical form. Firstly, it 
can be shown that in an m-dimensional space, there exist m Liapunov exponents  

λ1 ≥
λ2...≥ λm                   (4)                                                                                                           

while at least one of them must vanish. Indeed, as follows from Eqs. (1) and (2), w grows 
only linearly in the direction of the flow, and the corresponding Liapunov exponent is 
zero. Secondly it has been proven that the sum of the Liapunov exponents is equal to the 
average phase space volume contraction 

λi
i=1

m

∑ = Λ0           (5)                                                                                                                                                  

where the instantaneous phase space volume contraction 
Λ =∇⋅V           (6)                                                                                                                                                   
But 
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Λ0 = Λ          (7)   
when 
∇⋅V = const           (8)                                                                                                                                           
Therefore in case (20), the sum of the Liapunov exponents is expressed analytically      

λi
i=1

m

∑ =∇⋅V          (9)                                                                                                                            

Thus	 the	 result	 we	 extracted	 from	 the	 theory	 of	 chaos,	 which	 can	 be	 used	 for	
comparison	 to	quantum	randomness	 is	 the	 following:	 the	origin	of	 randomness	 in	
Newtonian	mechanics	 is	 instability	of	 ignorable	variables	that	 leads	to	exponential	
divergence	 of	 initially	 adjacent	 trajectories;	 this	 divergence	 is	 measured	 by	
Liapunov	exponents,	which	form	a	discrete	spectrum	of	numbers	that	must	include	
positive	ones.	
	

3. Orbital instability as a precursor of chaos 
In	 this	and	 the	next	Sections	we	 take	a	non-traditional	approach	 to	chaos	starting	
with	orbital	instability	as	its	precursor.	
Chaos	is	a	special	type	of	 instability	when	the	system	does	not	have	an	alternative	
stable	 state	 and	 displays	 an	 irregular	 aperiodic	 motion.	 Obviously	 this	 kind	 of	
instability	 can	be	associated	only	with	 ignorable	variables,	 i.e.	with	 such	variables	
that	do	not	contribute	into	energy	of	the	system.	In	order	to	demonstrate	this	kind	
of	 instability,	consider	an	 inertial	motion	of	a	particle	M	of	unit	mass	on	a	smooth	
pseudosphere	S	having	a	constant	negative	curvature	G0,	Fig.	3.	
G0 = const > 0 	 	 	 	 	 	 	 	 	 (10)	
	
	 	 	 	 	 	  

 
	Figure	3.	Inertial	motion	on	a	smooth	pseudosphere.																					
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Remembering	that	trajectories	of	inertial	motions	must	be	geodesics	on	S,	compare	
two	different	trajectories	assuming	that	 initially	they	are	parallel,	and	the	distance	
ε0 	between	them,	are	small	(but	not	infinitesimal!),	

0 < ε0 <<1 	 	 	 	 	 	 	 	 	 (11)	 	
	 	 	 	 	 	 	
As	shown	in	differential	geometry,	 the	distance	between	these	geodesics	 increases	
exponentially	

ε = ε0e
−G0 t , G0 < 0 ,	 	 	 	 	 	 	 	 (12)	

Hence	no	matter	how	small	 the	 initial	distance	ε0 ,	 the	current	distance	ε 	tends	 to	
infinity.	
Let	 us	 assume	 now	 that	 accuracy	 to	 which	 the	 initial	 conditions	 are	 known	 is	
characterized	 by	 the	 scale	 L.	 This	 means	 that	 any	 two	 trajectories	 cannot	 be	
distinguished	if	the	distance	between	them	is	less	than	L	i.e.	if	
ε < L 	 	 	 	 	 	 	 	 	 (13)	
The	period	during	which	the	inequality	(4)	holds	has	the	order	

Δt ≈ 1
|−G0 |

ln L
ε0
	 	 	 	 	 	 	 (14)	

However	for		
t >> Δt 	 	 	 	 	 	 	 	 (15)	
these	two	trajectories	diverge	such	that	 they	can	be	easily	distinguished	and	must	
be	 considered	 as	 two	 different	 trajectories.	Moreover	 the	 distance	 between	 them	
tends	to	 infinity	no	matter	how	small	 is	ε0 .	That	 is	why	the	motion	once	recorded	
cannot	 be	 reproduced	 again	 (unless	 the	 initial	 condition	 are	 known	 exactly),	 and	
consequently	it	attains	stochastic	features.	The	Liapunov	exponent	for	this	motion	is	
positive	and	constant	

σ = limt→∞
ε0→0
[1
t
ln
ε0e

−G0 t

ε0
]= −G0 = const > 0 	 	 	 (16)	

Remark.	 In	 theory	 of	 chaos,	 the	 Liapunov	 exponent	 measures	 divergence	 of	 initially	 close	
trajectories	 averaged	over	 infinite	 period	of	 time.	But	 in	 this	 particular	 case,	 even	 “instantaneous”	
Liapunov	exponent	taken	at	a	fixed	time	has	the	same	value	(16).	
	
Let	us	 introduce	a	system	of	coordinates	on	the	surface	S:	 the	coordinate	q1	along	
the	 geodesic	 meridians	 and	 the	 coordinate	 q2	 along	 the	 parallels.	 In	 differential	
geometry	 such	 a	 system	 is	 called	 semigeodesic.	 The	 square	 distance	 between	
adjacent	points	on	the	pseudosphere	is		
ds = g11dq

2
1
+ 2q12dq1dq2 + g22dq

2
2 	 	 	 	 (17)	

where	
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g11 =1, q12 = 0, g22 = −
1
G0
e(−2 −G0q1) 	 	 	 	 (18)	

			The	 Lagrangian	 for	 the	 inertial	motion	 of	 the	 particle	M	 on	 the	pseudosphere	 is	
expressed	via	the	coordinates	and	their	temporal	derivatives	as	

L = gij qi qj = q
2
1 −
1
G0
e(−2 −G0q1) q22 	 	 	 	 	 (19)	

and	consequently,		
∂L
∂q2

= 0 	 	 	 	 	 	 	 	 (20)	

∂L
∂q1

≠ 0 if q2 ≠ 0 	 	 	 	 	 (21)	

Hence	q1	 and	q2	play	 the	 roles	of	position	and	 ignorable	 coordinates,	 respectively,	
and	 therefore,	 the	 inertial	 motion	 of	 a	 particle	 on	 a	 smooth	 pseudosphere	 is	
unstable	with	respect	to	the	ignorable	coordinate.	This	instability	known	as	orbital	
instability	is	not	bounded	by	energy	and	it	can	persist	indefinitely.	As	shown	in	[2],	
eventually	 orbital	 instability	 leads	 to	 stochasticity.	 Later	 on	 such	 motions	 were	
identified	as	chaotic.	
4.	Analytical	criteria	for	prediction	of	chaos	
a.	Inertial	motions.	The	results	described	above	were	related	to	inertial	motions	of	
a	particle	on	a	smooth	pseudosphere.	However	they	can	be	generalized	to	motions	
of	any	degree-of-freedom	dynamical	systems	by	using	the	concept	of	configuration	
space.	 Indeed	if	 the	dynamical	system	has	N	generalized	coordinates	qi	(i=	1,2,…N)	
and	is	characterized	by	the	kinetic	energy	
W = aij q

i q j 	 	 	 	 	 	 	 	 	 	 (22)	

then	the	configuration	space	can	be	introduced	as	an	N-dimensional	space	with	the	
following	metric	tensor	
gij = aij 	 	 	 	 	 	 	 	 	 	 (23)	

while	 the	 motion	 of	 the	 system	 is	 represented	 by	 the	 motion	 of	 the	 unit-	 mass	
particle	in	this	configuration	space.	
	In	order	to	continue	the	analogy	to	the	motion	of	the	particle	on	a	surface	in	actual	
space	 we	 will	 consider	 only	 two-dimensional	 sub-spaces	 of	 the	 N-dimensional	
configuration	space,	without	loss	of	generality.	Indeed,	a	motion	that	is	unstable	in	
any	such	subspace	has	to	be	qualified	as	unstable	in	the	entire	configuration	space.	
				Now	 the	 Gaussian	 curvature	 of	 a	 two-dimensional	 configuration	 space	 (q1,q2)	
follows	from	the	Gauss	formula	

G =
1

a11a22 − a
2
12

(
∂2a12
∂q1∂q2

−
1
2
∂2a11
∂q2∂q2

−
1
2
∂2a22
∂q1∂q1

)−Γγ
12Γ

δ
12aγδ − Γ

α
11Γ

β
22aαβ 				(24)	

where	the	connection	coefficients	Γ lsk 	are	expressed	via	the	Christoffel	symbols	
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Γ lsk =
1
2
aip (

∂asp
∂qk

+
∂akp
∂qs

−
∂ask
∂qp

) 	 	 	 	 	 	 	 (25)	

while	
aαβaβχ = a

γ
α = 0 if α ≠ γ 	

	 	 	 	 	 	 	 	 	 	 	 (26)	
aαβaβχ = a

γ
α =1 if α = γ 	

	Thus	the	Gaussian	curvature	of	these	subspaces	depends	only	on	the	coefficients	aij,	
i.e	.,	it	is	fully	determined	by	the	kinematical	structure	of	the	system	(see	Eq.	(22).	In	
the	case	of	 inertial	motions,	 the	 trajectories	of	 the	representative	particle	must	be	
geodesics	of	the	configuration	space.	If	the	Gaussian	curvature	(24)	is	negative	
G < 0 		 	 	 	 	 	 	 	 	 	 (27)	
then	 the	 trajectories	 of	 the	 inertial	motions	 of	 the	 system	 that	 originated	 at	 close	
points	 of	 the	 configuration	 space	 diverge	 exponentially	 from	 each	 other,	 and	 the	
motion	becomes	chaotic,	(see	Fig.	3).	
As	 proved	 in	 [1],	 orbital	 instability,	 and	 therefore,	 chaotic	 motion	 occurs	 if	 the	
Gaussian	curvature	is	negative	in	each	of	two-dimensional	subspace.		
Example	 1.	 Consider	 a	 double	 pendulum	 represented	 by	 a	 two	 bar	 linkage,	 i.e.,	 a	
system	of	two	rigid	rods	AB	and	CD	connected	by	an	ideal	hinge	B	and	rotating	about	
a	vertical	axis	x	normal	to	the	plane	ABC	(Fig.4a).	Setting		
q1 = ϕ1, q2 = ϕ2 	 	 	 	 	 	 	 	 	 (28)	
one	obtains	their	kinetic	energy	
2W = a11 ϕ

2
1 + a12 ϕ1 ϕ2 + a22 ϕ

2
2 	 	 	 	 	 	 	 (29)	

where	
a11 = (I1 +mr

2 ), a12 =mrl cos(ϕ2 −ϕ1), a22 = I2 	 	 	 	 (30)	
While	I1	and	I2	are	the	moments	of	inertia	of	the	rods	AB	and	BC	with	respect	to	the	
vertical	axes	passing	through	the	points	A	and	B,	respectively,	m	is	the	mass	of	the	
rod	BC,	r	is	the	length	of	the	rod	BC,	and	l	 is	the	distance	between	point	B	and	the	
center	of	inertia	of	the	rod	BC.	Taking	in	the	account	that		

Γ111 =
−mrl sin(ϕ2 −ϕ1)

a2
a12 , Γ122 =

−mrl sin(ϕ2 −ϕ1)
a2

a22 , 	 	 	 (31)	

Γ211 =
−mrl sin(ϕ2 −ϕ1)

a2
a11, Γ222 =

−mrl sin(ϕ2 −ϕ1)
a2

a12 	 	 	 (32)	

Γ112 = Γ
2
12 = 0, a2 = a11a22 − a

2
12 	 	 	 	 	 	 	 (33)	

one	 arrives	 at	 the	 following	 expression	 for	 the	 Gaussian	 curvature	 of	 the	
configuration	space	(see	Eq.	(24))	

G =
mrl
a2
{1+

[mrl sin(ϕ2 −ϕ1]
2

a2
}2 cos(ϕ2 −ϕ1) 		 	 	 	 (34)	

where	
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G < 0 if π >|ϕ2 −ϕ1 |>
π
2
	 	 	 	 	 	 	 (35)	

and	

G > 0 if |ϕ2 −ϕ1 |<
π
2
	 	 	 	 	 	 	 	 (36)	

	

	
Figure	4.	Chaotic	oscillations	of	double	pendulum.	
	
The	shaded	line	0	–	0	separates	the	chaotic	area	(left)	from	the	stable	area	(right)	in	
Fig.	4b.		
Example	 2.	 Consider	 a	 symmetric	 rigid	 body	 rotating	 about	 its	 center	 of	 gravity,	
Fig.5.		
Determining	its	position	by	Euler’s	angles	
θ = q1,ψ = q2 , φ = q3 	 	 	 	 	 	 	 (37)	
one	obtains	the	following	expression	for	the	kinetic	energy	

W =
1
2
[A( θ2 + ψ2 sin2 θ)+C( φ+ ψcosθ)2 ] 	 	 	 	 (38)	

in	which	A	and	C	are	the	axial	moments	of	inertia.	Then	the	metric	coefficients	of	the	
Christoffel	 symbols	and	 the	Gaussian	curvature	of	 two-dimensional	subspaces	are,	
respectively	
a11 = A, a12 = 0, a22 = Asin

2 θ+C cos2 θ, a13 = 0, a23 =C cosθ, a33 = 0 ,		(39)	

Γ122 =
C − A
A
sinθcosθ, Γ123 =

C
2A
sinθ, Γ221 =

2A−C
2A

cosθ, 	 (40)	

Γ231 =
C
2A
sinθ, Γ221 = −

1
2sinθ

(A−C
A
cos2 θ+1), Γ331 =

C
2A
cotθ 				(41),	
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G(12) =
1

A(Asin2 θ+C cos2 θ)
[2(A−C)cos2θ

+(2A−C
2A

cotθ)2 (Asin2 θ+C cos2 θ)]
	 	 	 	 (42)	

G(13) = 0, G(23) = 0 	 	 	 	 	 	 	 (43)	

	

	
	
Figure	5.	Chaotic	rotating	of	a	symmetric	rigid	body.	
	
	
Now	the	condition	for	chaos	can	be	presented	as	
G(12) < 0 	 	 	 	 	 	 	 	 	 (44)	

where	G(12) is	the	Gaussian	curvature	in	the	subspace	θ,ψ .,	(see	eq.	(42)).	
Assuming,	for	simplicity,	that	2A=C,	one	reduces	the	condition	(44)	to	the	following	
cos2θ > 0 	 	 	 	 	 	 	 	 	 (45)	
Thus	any	motion	in	the	subspace	θ,ψ is	chaotic	if	

0 < θ < π
4
	 	 	 	 	 	 	 	 	 (46)	

b.	Potential	motions.	Turning back to the motion of the particle M on a smooth 
pseudosphere (Fig. 3), let us depart from inertia motions and introduce a force F acting 
on this particle. For noninertial motions the trajectories of the particle will not be 
geodesics, while the rate of their deviation from geodesics is characterized by the 
geodesic curvature χ . It is obvious that this curvature must depend of the forces F: 

χ = χ(F)          (47) 

It has been shown in [1] that if the force F is potential 
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F = −∇Π          (48) 

where Π is the potential energy, then the condition (27) is replaced by 

the following 

G0 +3χ
2 +
1
W
( ∂

2Π

∂qi∂q j
−Γkij

∂Π

∂qk
)nin j < 0     (49) 

Here  Γkij are defined by Eq. (25), and ni are the contravariant components of the unit 
normal n to the trajectory, and G0 is the Gaussian curvature for the case of inertial 
motion. 

The geodesic curvature χ in Eq. (49) can be expressed via the potential force F 

χ =
F ⋅n
2W

= −
∇Π
2W

       (50) 

As follows from Eqs. (49) and (50), the condition (49) is reduced toEq. (27) if F = 0. 

Example. Suppose that the elastic force 

F = −α2ν, α = const       (51) 

proportional to the normal deviation ν  from the geodesic trajectory is applied to the 
particle M moving on the smooth pseudosphere. If the initial velocity is directed along 
one of the meridians (which are all geodesics), the unperturbed motion will be inertial, 
and its trajectory will coincide with this meridian since there ν= 0, and therefore, F = 0, 
In order to verify the orbital instability of this motion, let us turn to the criterion ( 49). 
Since 

χ = 0      and      
∂Π

∂qk
= Fk = 0      (52) 

for the unperturbed motion, one obtains the condition for chaos 

G0 +
α2

2W
< 0, i.e. α2 > −2WG0 , G0 < 0    (53) 

c. General case. So far we discussed the conservative chaos. But the main attention to 
chaotic motions was attracted by dissipative systems that possess so called “strange 
attractors”. Following J.Synge, [1] the results for the orbital instability of inertial and 
potential motions can be generalized to arbitrary motions. For that purpose, instead of the 
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Gaussian curvature of two-dimensional subspaces (49) one has to introduce the 
Riemannian curvature that can be expressed by the following covariant curvature tensor 

Gmsnl =
∂Γmnl
∂qs

−
∂Γmns
∂ql

+ (ΓunlΓ
v
ms −Γ

u
nsΓ

v
ml}a

uv , auvavp = δ
p
u   (53) 

Here Γrmn are the Christoffel symbols defined by Eq. (25) as well as the derivative of the  
generalized force Qr 

Qrs = (
∂Qr

∂ql
+ΓrlnQ

n )als       (54) 

while the metric tensor of the configuration space is expressed by Eq. (22).  

As shown in [1], the orbital instability, and therefore, chaotic motion occurs if the 
Riemannian curvature of the manifold of configurations corresponding to every two-
space element containing the direction of the given trajectory is no positive, and if 
Qmnq

mqn is no negative for arbitrary values of qr  at all points of the trajectory.  

The significance of this result is in the fact that all the components of the criterion of 
chaos are uniquely defined by the coefficients of the governing ODE’s. However this 
result gives sufficient, but not necessary condition for chaos. That is why we have 
concentrated on inertial motions for which the criterion of chaos is sufficient and 
necessary. 
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