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Abstract We here apply – albeit, with improved assumptions

compared to our earlier work (Nyambuya et al., Astrophys. & S.

Sci. 358(1) : pp.1− 12, 2015); the ASTG-model to the observed

secular trend in the mean Sun-(Earth-Moon) and Earth-Moon dis-

tances thereby providing an alternative explanation as to what the

cause of this secular trend may be. For the semi-major axis rate

of the Earth-Moon system, we now obtain a new value of about

+3.00 cm/yr while in the earlier work we obtained a value of

about +5.00 cm/yr. This new value of +3.00 cm/yr is closer to

that of Standish (2005)’s measurement of +(7.00 ± 2.00) cm/yr.
Our present value accounts for only 43% of Standish (2005)’s mea-

surement. The other 57% can be accounted for by invoking the

hypothesis that the θ-component of the angular momentum maybe

non-zero. In the end, it can be said that the ASTG-model predicts

orbital drift as being a result of the orbital inclination and the Solar

mass loss rate. The Newtonian gravitational constant G is assumed

to be an absolute time constant.

Keywords astrometry, celestial mechanics, ephemerides, plane-

tary recession

1 Introduction

In our earlier reading (Nyambuya et al. 2015), we did

demonstrate that the ASTG-model (Nyambuya 2010, 2015),

is in-principle and to a reasonable extent capable of proffer-

ing an alternative explanation to the observed secular reces-

sion of the Earth-Moon system that has been measured by

Krasinsky and Brumberg (2004) & Standish (2005). Krasin-

sky and Brumberg (2004) & Standish (2005) reported for

the Earth-Moon system, an orbital recession from the Sun of

about +(15.00±4.00) cm/yr and +(7.00±2.00) cm/yr re-

spectively. In Nyambuya et al. (2015), we deduced from the

ASTG-model a secular recession of +(5.10± 0.10) cm/yr.
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This result is in favor of the Standish (2005)’s measurement.

An assumption made in our earlier work (Nyambuya et al.

2015), is that the tangential orbital speed of planets around

the Sun stays the same. This assumption was made only as a

first order approximation. In this short reading, we drop this

assumption and conduct a new calculation.

It should be said that as argued (calculated) by e.g.

Krasinsky and Brumberg (2004) & Noerdlinger (2008), a

Newtonian gravitational calculation that takes into account

the Solar mass loss rate is able to account for only ∼ 0.3 cm
of the annual drift of the Earth-Moon system (this is about

3% of the measured value). In the ASTG-model which

brings in a θ-dependence into the fold, one is able to account

for much more of the drift. It is only interesting that this is

the case; one wonders whether this model will stand the test

to successfully account for the predicted drift of other plan-

ets.

2 New Calculation with Improved Assumptions

In conducting the new calculation, what we need is equation

(24) of Nyambuya et al. (2015), i.e.:
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γ
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where Jϕ is the orbital angular momentum of a planet

around the Sun, θ is this planet’s orbital inclination to the

Solar equator, r is the planet’s radial distance from the Sun,

γ is the planet’s gravitational to inertial mass ratio. For all

practical purposes, the gravitational and inertial mass of a

planet as it orbits the Sun can be assumed to be a constant,

the meaning of which is that (γ̇ = 0).

The assumption made in Nyambuya et al. (2015), namely

that the tangential orbital speed of planets around the Sun

stays the same implies that (J̇ϕ/Jϕ = ȧ/a) where a is

the planet’s semi-major axis. In-order to maintain Kepler’s
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Table 1 Theoretical Predictions of Secular Solar Planetary Drifts

Planet Tilt Mean New Old New Old

Angle Radius Value Value Value Value

(θ) (ȧ) (ȧ) (ȧ/a)
(1.0◦) (AU) (cm/yr) (cm/yr) (10−13yr−1) (10−13yr−1)

Mercury 14.0 0.390 ± 0.080 +16.00 ± 3.00 +1.10± 0.30 +28.30 +1.50± 0.50
Venus 10.4 0.726 ± 0.005 +3.55 ± 0.02 +2.74± 0.02 +3.30 +2.50± 0.03
Earth 7.0 1.000 ± 0.020 +2.70 ± 0.04 +5.10± 0.10 +1.80 +3.65± 0.10
Mars 8.9 1.500 ± 0.100 +5.50 ± 0.50 +6.50± 0.50 +2.40 +2.50± 0.50
Jupiter 8.3 5.200 ± 0.300 +16.90 ± 0.90 +24.50 ± 1.00 +2.20 +3.00± 0.30
Saturn 9.5 9.60 ± 0.500 +39.00 ± 2.00 +39.50 ± 2.00 +2.70 +2.60± 0.30
Uranus 7.8 19.300 ± 0.900 +57.500 ± 3.00 +97.500 ± 5.00 +2.00 +3.20± 0.30
Neptune 8.8 30.200 ± 0.300 +106.00 ± 1.00 +134.00 ± 2.00 +2.40 +2.85± 0.05
Pluto 24.2 40.000 ± 10.000 −80.00 ± 20.00 −65.00 ± 20.00 −1.40 −0.90± 0.50

Note: The planetary data on the tilt angle θ of planetary orbits relative to the Solar spin equator, the perihelion and apehilion dis-

tances of planets used in the present table are adapted from the NASA website: http://nssdc.gsfc.nasa.gov/planetary/

factsheet/ on this day 15 Nov. 2014@16h07 GMT+2. The angle θ has been calculated as follows (1) we obtained the tilt of Solar

planetary orbits relative to the ecliptic plane and these values are available on the NASA website; (2) we then add to this the tilt angle of

the Solar spin equator relative to the ecliptic plane and this is known to be 7◦. In this way, we obtained the tilt angles of the planes of these

orbits relative to the Solar spin equator. This same method has been used in Table (1) of Nyambuya (2010).

Third Law (T 2
orb

∝ R3
orb

) at all times as the planets undergo

their secular drift, a more realistic assumption can be ob-

tained from the first order Newtonian approximation relat-

ing the orbital angular momentum Jϕ, M⊙, and a, namely

J2
ϕ
≃ 2γGM⊙a (see Eqn. [13] of Nyambuya and Simango

2014). Taking (Ġ ≡ 0) and setting (r = a), from this as-

sumption (namely, J2
ϕ
≃ GM⊙a), one obtains:
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1

2
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a
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Inserting (2) into (1) and re-arranging, one obtains:

ȧ

a
= −

1

1− 4 sin θ

Ṁ⊙

M⊙

. (3)

Obviously, this result (3) will have a singularity when the

angle (θ ∼ 14.48◦). What this implies is that in the regime

where (θ 7→ 14.48◦), the assumption that we made, namely

that (Jθ = 0), this will have to be revisited. Therefore, this

result (3) will apply for a θ that is significantly different from

(θ = 14.48◦).

If we do not assume (Jθ = 0), then, equation (24) of

Nyambuya et al. (2015) and the assumption (2), equation

(3) will be given by:

(1− 4 sin θ)
ȧ

a
− 4ωθ cos θ = −

Ṁ⊙

M⊙

. (4)

From this formula – for the case (Jθ 6= 0), it is clear that at

(θ 7→ 14.48◦), the singularity does not exist, thus is a result

of the approximation (Jθ = 0). Clearly, as (θ 7→ 14.48◦),

we must have:

ωθ 7→
1

4 cos θ

Ṁ⊙

M⊙

. (5)

We will now apply (3) to Solar planets.

3 Recession of Earth-Moon System

Just as in the reading Nyambuya et al. (2015), there are

two parameters involved in the secular drift of the a planet

around the Sun; these are – its tilt (θ) angle and the So-

lar mass loss rate (Ṁ⊙/M⊙). The actual cause is the

Solar mass loss rate – for if the Sun was non-luminous,

there would be no recession according to (3). According

(e.g.) to Noerdlinger (2008), the total Solar mass loss rate

is (Ṁ⊙/M⊙ = − 9.13 × 10−14 yr−1). This Solar

mass rate includes electromagnetic radiation, the Solar neu-

trino luminosity and Solar wind. Given that: the tilt of the

Earth-Moon’s orbit about the Solar equator is (θ ∼ 7.0◦),
it follows from equation (3) that for the Earth-Moon sys-

tem (ȧem ∼ + 2.70 cm/yr). This value is about 43%

of the measurement by Standish (2005) and adds ∼ 40%

to Krasinsky and Brumberg (2004) & Noerdlinger (2008)’s

calculation of the recession due to the Solar mass loss rate.
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We will discuss in the subsequent section, what the 57% dis-

crepancy between the present theoretical and observational

value really means.

Now, using this equation (3), we will – just as we did in

the reading Nyambuya et al. (2015), make predictions about

the the possible drift of other Solar planets. We are of the

view that the improved assumption adopted here make these

predictions superior to the our earlier prediction. These pre-

dictions are tabled in the self explanatory Table (1). As in

Nyambuya et al. (2015), the case of Pluto still has a negative

recession.

4 General Discussion

With improved assumptions, we herein have applied the

ASTG-model to the observed secular drift in the mean Sun-

(Earth-Moon). Our findings give a value that is about half

the measurement of Standish (2005); i.e., we obtain an an-

nual recession of about +2.70 cm/yr. As before (Nyam-

buya et al. 2015), this prediction from the ASTG-model is

seen as being a result of the orbital inclination, θ, and the

Solar mass loss rate, Ṁ⊙/M⊙.

If we take the Standish (2005) value for ȧem, and the rea-

son for this being that it is the closer value compared to our

result ∼ +2.70 cm/yr, then, there is an unaccounted for re-

cession of ∼ +(4.00± 2.00) cm/yr. According to (5), this

can be attributed to the θ-component of the orbital angular

momentum being non-zero (Jθ 6= 0). If (ȧ/a)∆ is a mea-

sure of this deficiency, then, according to (5):

(

ȧ

a

)

∆

=
4ωθ cos θ

1− 4 sin θ
. (6)

From this, it follows that:

ωθ = 1.30× 10−14 yr−1 = 7.25× 10−22 s−1. (7)

Hence:

Jθ = 16.00m2s−1. (8)

This value (8) is 14 orders of magnitude smaller than Jϕ i.e.:

Jθ
Jϕ

= 1.30× 10−14. (9)

Just as is the case with the Earth-Moon system’s theoret-

ical value for ȧ exhibits a clear discrepancy between this

value and the observational values of Standish (2005) &

Krasinsky and Brumberg (2004), it is expected that – should

observational measurements for the recession of other plan-

ets be made available, these will also exhibit a discrepancy

between the ASTG-model’s theoretical values and the ob-

servational values. This discrepancy can, as has been done

for the Earth-Moon system; be attributed to a non-zero θ-

component of the orbital angular momentum. So, the mea-

surement of ȧ can – according to the present ASTG-model;

be taken as a way of also measuring Jθ for these planets.

It should be said that – at present, there does not exists

any effort in the measurement of Jθ. The planetary orbital

plane’s inclination to the Solar equator is usually assumed to

be fixed, i.e., their inclination angles to the Solar equatorial

plane has largely remained the same since these planets went

into orbit around the Sun. The present ideas are suggesting

this might not be the case.

Having assumed that a non-zero Jθ might account for

the unaccounted for drift of the Earth-Moon system, at this

point, it should be said, that the present model is a simplistic

model that ignores processes such as tidal effects and Solar

oblateness etc. These certainly have an effect on the Earth-

Moon system drift. Thus, apart from the unaccounted drift

being attributed to the a non-zero Jθ , it is possible that this

may be accounted by these processes or a combination of

these processes including a non-zero Jθ.

In-closing, allow us to say that the present letter should

– perhaps – be taken more as an addendum to our earlier

reading (Nyambuya et al. 2015). That is to say, despite the

new addition of the a possible non-zero θ-component of the

orbital angular momentum (Jθ 6= 0), the present letter is not

a fully-fledged research article.

5 Conclusion

Assuming the correctness (i.e., acceptability) of the the-

sis posited herein, and its consequences thereof as applied

herein, we hereby make the following conclusion that:

1. The observed secular recession of the Earth-Moon system may

very well be a result of the Solar azimuthal gravitational field.

2. According to the present ideas, the unaccounted for recession

of the Earth-Moon system suggests a non-zero θ-component of

the orbital angular momentum being non-zero (Jθ 6= 0).
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