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Abstract: Informational entropies, although proved to be useful in the evaluation of nervous1

function, are suitable just if we assume that nervous activity takes place under ergo dic conditions.2

However, widespread claims suggest that the brain operates in a non-ergodic framework. Here3

we show that a topological concept, namely the Borsuk-Ulam theorem, is able to wipe away4

this long-standing limit of both Shannon entropy and its generalizations, such as Rényi’s. We5

demonstrate that both ergodic and non-ergodic informational entropies can be evaluated and6

quantified through topological methods, in order to improve our knowledge of central nervous7

system function.8
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1. Introduction10

The most successful entropy-based theories of brain function – e.g., the free-energy principle [1] –11

require that the brain activity take place in an ergodic phase space. In physics and thermodynamics,12

the ergodic hypothesis states that, over long periods, the time spent by a system in a region of the13

microstates’ phase space with the same energy is proportional to the region’s volume, so that all14

accessible microstates are equiprobable over a long period of time [2]. In other words, ergodicity is15

a random process characterized by the time average of one sequence of events being the same as the16

ensemble average [3,4]. It also means that, in case of a Markov chain, as one increases the steps, there17

exists a positive probability measure at step n that is independent of the probability distribution at18

initial step 0 [5].19

The Shannon informational entropy (1948), [6], is able to link choice, uncertainty and20

thermodynamic entropy in a coherent picture able to explain macroscopic systems’ behavior such21

as the brain, if one just knows the statistical properties of the microscopic constituents. In the22

context of nervous function, it has been shown that variations in entropy are correlated with23

different psychological and cognitive states. As an example, analysis performed on emotionally24

online dialogues demonstrated the tendency towards a growing entropy [7]. Further, ensemble of25

supervised maximum entropy classifiers can accurately detect and identify sentiments expressed26

in notes [8], perceptual functions are correlated with thermodynamical entropy and free energy27

[9] and Shannon entropy is able to predict task performance [10]. Finally, the entropy has been28

recently proposed as a measure of semantic and syntactic information of multidimensional discrete29

phenomena [11]. Shannon entropy H requires some properties to be applied, because it should30

be: a) continuous in the pi, b) a monotonic increasing function of n and c) the weighted sum of31
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the individual values of H. The most important limitation to the use of Shannon entropy is the32

need to operate under ergodic conditions. However, widespread claims suggest that the brain is33

not ergodic. Many authors suggest that the properties of brain fluctuations are inconsistent with34

the Markovian approximation [12], the mean-square distance travelled by brain particles displays35

anomalous diffusion [13] and the brain is weakly non-ergodic, as some phase space region may take36

extremely long times to be visited [14]. This paper aims to answer to the question whether it is37

possible to use informational entropies for the evaluation of non-ergodic systems [15] and questions38

the validity of informational entropies under non-ergodic conditions. In such a framework, an39

underrated theorem from algebraic topology comes in help: The Borsuk-Ulam theorem (BUT) and its40

variants. The theorem states that two opposite points on a sphere, when projected on a one-dimension41

lower circumference, give rise to a single point displaying a matching description [16]. We here show42

how Shannon and its generalized variants, both ergodic and non-ergodic, may be treated in terms of43

algebraic topology. We will discuss the mechanisms and the consequences for brain studies of such44

an "unification" between concepts from far-flung branches.45

2. Results46

2.1. Shannon entropy on a circle47

Shannon entropy and its links with thermodynamical entropy. Shannon entropy (denoted48

by H(X), X a random variable with values (x1, x2, ....xn) is a measure of the unpredictability of49

information content [6]. Entropy is defined by:50

H(X) =
n

∑
i=1

P(xi)log2(P(xi)), X = x1, x2, ....xn, (1)

H(x) =

{
0, if P(x) = 1,

0, if P(x) = 0, by definition

Shannon entropy states that, under ergodic conditions, if we know the values of p, we may obtain51

the values of S(p). In other words, S(p) is a function(al) of a generic probability distribution p such52

that, if we modify p, we achieve a different value of entropy on the Shannon’s curve. The connection53

with informational entropies’ thermodynamical counterpart - i.e. the Boltzmann-Gibbs entropy - is54

given by a standard procedure of Maximum Entropy (MaxEnt) distribution and thermodynamical55

limit (N → ∞), which leads to the relation: S(P) = kBH(P), where kB is the Boltzmann constant.56

2.2. The Borsuk-Ulam theorem (BUT)57

The (BUT) is a remarkable finding by K. Borsuk about Euclidean n-spheres and antipodal points.58

It states that [17] Every continuous map f : Sn → Rn must identify a pair of antipodal points. In other59

words, the sphere Sn maps to the Euclidean space Rn, which stands for an n-dimensional Euclidean60

space. Note that the function needs to be continuous and that n must be a natural number (although61

we will see that it is not completely true) [18–20].62

The notation Sn denotes an n-sphere, which is a generalization of the circle [21]. A n-sphere is a63

n-dimensional structure embedded in a n+ 1 space. For example, a 2-sphere (S2) is the 2-dimensional64

surface of a 3-dimensional ball (a beach ball is a good example). An n-sphere is formed by points65

which are constant distance from the origin in (n + 1)-dimensions [22]. For example, a 3-sphere (also66

called glome or hypersphere) of radius r (where r may be any positive real number) is defined as the67

set of points in 4D Euclidean space at distance r from some fixed center point c (which may be any68

point in the 4D space) [23].69

A 3-sphere is a simply connected 3-dimensional manifold of constant, positive curvature, which70

is enclosed in a Euclidean 4-dimensional space called a 4-ball. A 3-sphere is thus the surface or71
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Figure 1. The Borsuk-Ulam theorem for different values of Sn. Two antipodal points in Sn project to a
single point in Rn, and vice versa. Remind that every Sn is embedded in a n + 1-ball, and thus every
Sn is one-dimension higher than the corresponding Rn.

boundary of a 4-dimensional ball, while a 4-dimensional ball is the interior of a 3-sphere. From a72

geometer’s perspective, we have different n-spheres, starting with the perimeter of a circle (S1) and73

advancing to S3, which is the smallest hypersphere, embedded in a 4-ball (Figure 1). Points on Sn
74

are antipodal, provided they are diametrically opposite [24]. Examples of antipodal points are the75

poles of a sphere. Further, every continuous function from an n-sphere Sn into Euclidean n-space Rn
76

maps some pair of antipodal points of Sn to the same point of Rn. To make an example, if we use77

the mapping f : S3 → R3, then f (x) in R3 is just a signal value (a real number associated with x in78

S3) and f (x) = f (−x) in R3. Furthermore, when g : S2 → R2, the g(x) in R2 is a vector in R2 that79

describes the x embedded in S2. In other words, a point embedded in a Rn manifold is projected to80

two opposite points on a Sn+1-sphere, and vice versa.81

2.3. Application of BUT to signal analysis: shapes and homotopies.82

In terms of activity, a feature vector x ∈ Rn models the description of a signal. To elucidate83

the picture in the application of the BUT in signal analysis, we view the surface of a manifold as a84

n-sphere and the feature space for signals as finite Euclidean topological spaces. The BUT tells us85

that for description f (−x) for a signal x, we can expect to find an antipodal feature vector f (−x) that86

describes a signal on the opposite (antipodal) side of the manifold Sn. Thus, the pair of antipodal87

signals have matching descriptions on Sn. Let X denote a nonempty set of points on the surface of88

the manifold. A topological structure on X (called a topological space) is a structure given by a set of89

subsets τ of X, having the following properties:90

(Str.1) Every union of sets in τ is a set in τ.91

(Str.2) Every finite intersection of sets in τ is a set in τ.92

The pair (X, τ) is called a topological space. Usually, X by itself is called a topological space,93

provided it has a topology τ on it. Let X, Y be topological spaces. Recall that a function or map94

f : X → Y on a set X to a set Y is a subset X × Y so that for each x ∈ X there is a unique y ∈ Y such95
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that (x, y) ∈ f (usually written y = f (x)). The mapping f is defined by a rule that tells us how to find96

f (x). For a good introduction to mappings, see [25].97

A mapping f : X → Y is continuous, provided A ⊂ Y is open, then the inverse f−1 ⊂ X98

is also open. For more about this, see [26]. In this view of continuous mappings from the signal99

topological space, X on the manifold’s surface to the signal feature space Rn, we can consider not just100

one signal feature vector X ∈ Rn, but also mappings from X to a set of signal feature vectors f (X).101

This expanded view of signals has interest, since every connected set of feature vectors f (X) has a102

shape. The significance of this is that signal shapes can be compared.103

A consideration of f (X) (set of signal descriptions for a region X) instead of f (X) (description
of a single signal x) leads to a region-based view of signals. This region-based view of the manifold
arises naturally in terms of a comparison of shapes produced by different mappings from X (object
space) to the feature space Rn. An interest in continuous mappings from object spaces to feature
spaces leads into homotopy theory and the study of shapes. Let be continuous mappings from X to
Y. The continuous map H : X× [0, 1]→ Y is defined by:

H(x, 0) = f (x), H(x, 1) = g(x), f oreveryx ∈ X. (2)

The mapping H is a homotopy, provided there is a continuous transformation (called a104

deformation) from f to g. The continuous maps f , g are called homotopic maps, provided f (X)105

continuously deforms into g(X) (denoted by f (X) → g(X)). The sets of points f (X), g(X) are called106

shapes. For more about this, see [27,28].107

For the mapping H : X× [0, 1]→ Rn , where H(X, 0) and H(X, 1) are homotopic, provided f (X)

and g(X) and have the same shape. That is, f (X) and g(X) are homotopic, provided:

‖ f (X)− g(X) ‖<‖ f (X) ‖, f orallx ∈ X (3)

There are natural ties between Borsuk’s result for antipodes and mappings called homotopies.108

The early work on n-spheres and antipodal points eventually led Borsuk to the study of retraction109

and homotopic mappings [29–31], paving the way to the geometry of shapes and shapes of space110

[32]. A pair of connected planar subsets in Euclidean space R2 have equivalent shapes, provided the111

planer sets have the same number of holes. For example, the letters e, O, P and numerals 6, 9 belong112

to the same equivalence class of single-hole shapes. In terms of signals, it means that the connected113

graph for f (X) with, for example, an e shape, can be deformed into the 9 shape.114

This suggests yet another useful application of Borsuk’s view of the transformation of a shape115

into another, in terms of signal analysis: sets of signals not only will have similar descriptions, but116

also dynamic character. Moveover, the deformation of one signal shape into another occurs when117

they are descriptively near [33]. It means that we are allowed to embed the Shannon entropy onto a118

n-sphere and to treat its values in terms of antipodal points. Therefore, we can deduce an optimization119

scheme that enables us to transport the two Shannon’s antipodal points x and−x from Sn onto a Sn−1
120

abstract manifold. The next two paragraphs will be devoted to illustrate how the Shannon entropy121

can be embedded in a n-sphere, both in ergodic and non-ergodic conditions.122

2.4. Shannon entropy under ergodic conditions123

For random numbers in the range from 0 to 1, we obtain the Shannon plot (Figure 2A). By124

embedding the Shannon plot in a hypersphere S1 (the perimeter of a circle) with diameter F1 , a125

continuous function π : S1 → R1 maps the BUT antipodal points x and −x to the same extreme126

entropy value, namely, H(1) = 0. In other words, both antipodal points have the same information127

content, since both are mapped to the same Shannon value, namely, 0. The center of the straight line128

segment x(−x) between the antipodal points (at the center of S1 ) is mapped to the highest entropy,129

namely, H(0.5) = 1 (Figure 2B). The intermediate points on either side of the center of x(−x) are130

mapped to intermediate entropy values between 0 and 0.5. It is easy to observe that the projection131
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Figure 2. A. Shannon entropy for probability distribution P = (p, 1− p), under ergodic conditions
(from the original Shannon’s graph). The entropy is plotted as a function of the random variablep,
in the case of two possibilities with probabilities p and (1− p). B. Shannon (ergodic) entropyin the
framework of the BUT theorem. Note that the entropy follows the circle diameter, e.g., the line which
connects (maps to) the two antipodal points on S1.

π : (x1, ..., xn+1) → (x1, ..., xn) is a homeomorphism from the Shannon curve U to S1 with diameter132

F1 (Figure 2B). In such a vein, the points along one of the S1 circles are homeomorphic to the Shannon133

entropy, under ergodic conditions. As a result, BUT provides a model for the computation of Shannon134

entropy, by evaluating the divergence of the probability of an event from the antipodal points on a135

hypersphere.136

2.5. Shannon entropy under non-ergodic conditions137

What happens in the case of non-ergodic informational entropy? For example, take the case138

of a point λ on the S1 sphere illustrated in Figure 1, which lies on a 1- circle forming the angle φ139

with the diameter F1 of the ergodic Shannon entropy (Figure 3). If we find its antipodal point −λ,140

we achieve their homeomorphisms which can be projected on the Shannon plot, where we obtain141

the two points τ and −τ. We can easily calculate the values of entropy and probability of τ and142

−τ (which are outside the classical Shannon curve), thus achieving the values of Shannon entropy143

in non-ergodic conditions. A bundle of lines (through the center of S1 ) with different values of φ144

cover all the possibilities of non-ergodic entropy, just by embedding them in our n-sphere S1. (Figure145

4). In such a way, we achieve a circle equipped with countless diameters: one of them displays the146

Shannon entropy under ergodic conditions, the others display instead the informational entropies147
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Figure 3. Non-ergodic probabilistic entropies in the framework of the BUT theorem. A. Shannon
entropy under non-ergodic conditions. B. Note that, while the ergodic Shannon entropy follows
the diameter which connects the two antipodal points on S1, non-ergodic entropies follow other
quantifiable diameters along the "circumference" of S1 . Into the circle S1, the points external to the
Shannon entropy’s diameter display all the possible values of non-ergodic entropy, i.e. the possibilities
which does not fall into the Shannon plot’s entropy curves. See text for further details.
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Figure 4. Bundle of lines on a n-sphere which illustrates the position of antipodal points for different
non-ergodic conditions. The bundle can be used to evaluate the corresponding values of p and
informational entropy on the Shannon plot.

under non-ergodic condition. This simple operation allows a quantitative evaluation of informational148

entropies under non-ergodic assumptions.149

2.6. Rényi entropy on a circle150

The Shannon entropy is just a case of a family of more generalized entropies, such as Tsallis,
and in particular, Rényi entropies, which also work just in an ergodic context. Indeed, the basic
thermodynamic properties of many systems (i.e., multifractals) may be discussed by extending the
notion of the information Shannon entropy into the more general framework of the Rényi entropy.
Let X be a random variable with values in the range from 1 to n. Rényi entropy of order n [34] is
defined by

Hn(X) =
logC(n, X)

1− n
, where C(n, x) =

m

∑
i=1

Pn(xi) (4)

The Rényi entropy approaches the Shannon entropy as β approaches 1. By now, for sake of simplicity,151

we will term the Rényi entropy order n with the greek letter β, so that β = 1 (i.e., the limit for β→ 1)152

is defined to be the Shannon entropy:153

limβ→1Hβ(X) = ∑
i

PilnPi (5)

The Rényi entropy is also closely related to the thermodynamical Gibbs entropy via the154

thermodynamic free energy F, through the formula: F = (1− T)Hβ(X) in which T is the temperature.155

Mathematically, it is expressed as follows: the Rényi entropy of a system is minus the "1/β-derivative”156

of its free energy with respect to a quantity. Because of its built–in predisposition to account for157

self–similar systems, the Rényi entropy is an effective tool to describe multifractal systems [35]. It has158

been demonstrated that the Rényi entropy and generalized fractal dimension α are interchangeable:159

the Rényi’s parameter β is connected via a Legendre transformation with the multifractal singularity160

spectrum α. It means that, from the maximum entropy point of view, the power law exponent n and161

Rényi’s parameter β exhibit a straight relation (see [35] for further details) and changes in power law162

exponents n lead to changes in Rényi’s parameter β, and vice versa [36]. In Materials and Methods163

section, we describe two different ways to embed the Rényi entropy on a n-sphere, both in touch with164

BUT dictates.165
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3. Discussion166

We demonstrated that ergodic and non-ergodic informational entropies can be solved in terms167

of algebraic topology, by embedding the Shannon’s plot in a n-sphere and by applying the BUT.168

Further, we provided an effort to insert informational entropies in the framework of group theory,169

by considering probabilities in guise of permutations on a n-sphere. The question now is: which are170

the advantages of such a "treatment"? For example, what does the use of Hausdorff-Borsuk-Ulam171

Theorem give us for different applications of Rényi entropy? The BUT and its variants display very172

useful general features which help us to explain a wide-range of phenomena, including brain activity.173

When a single point is embedded in just one dimension higher, it gives rise to two antipodal points.174

Thus, by adding just a further dimension to a biological system, we are allowed to study it in terms175

of antipodal points [20]. Furthermore, the two antipodal points on a Sn-sphere display homotopy176

and have matching descriptions. If we evaluate biological dynamics instead of "signals", BUT leads177

naturally to the possibility of a region-based, not simply point-based, geometry. In such a vein, a178

collections of brain signals could be viewed as surface shapes (or functions, or signals), where one179

shape maps to another antipodal one. We are also allowed to use the parameter n− a versatile tool180

which can be used both for integer and rational numbers - not just for the description of topological181

manifolds, but of biological systems too.182

Why Rényi entropy? Rényi entropy and generalized diversity functions have shown to be proper183

indicators to quantify systems over time: from plant communities [37] to urban mosaics [38]. The184

use of Rényi entropy– unlike the many diversity measures for summarizing landscape structure185

based on Shannon entropy [39] – allows the description of the ecosystem status at a specific moment186

and its trend over time [40]. Rényi entropy offers a "continuum of possible diversity measures"187

[38] at diverse spatial scales, which differ in their sensitivity to rare and abundant picture indexes,188

becoming increasingly regulated by the commonest when β gets higher. The change in β exponent189

can be regarded as a scaling operation that takes place not in the real, but in the data space [41].190

The aim of using the Rényi entropy does not consist in selecting the most appropriate parameter,191

rather in constructing ’diversity profiles’: the Rényi’s parameter β is particularly important, since192

it is not redundant and allows us to consider several measures at a time, by varying just the β193

parameter therein. The opportunity to treat Rényi entropies as topological structures gives rise to194

the possibility to evaluate brain phenomena with novel analytical tools, such as algebraic topology,195

combinatory, hereditary set systems [18], simplicial complexes, homology theory, functional analysis196

and with generalizations of the BUT, such as, for example, the Bourgin-Yang-type theorems [42]197

and the Grassmann manifolds [43]. If the dimension in which the sphere is embedded takes into198

account also non-ergodic conditions, we have a tool which is feasible for a calculation of both199

ergodic and non-ergodic entropies. In conclusion, we provided a very general topological mechanism200

which solveslong-standing problems of non-ergodic and general informational entropies, casted in201

a physical/biological fashion which has the potential of being operationalized and experimentally202

tested in the evaluation of brain dynamics.203

4. Materials and Methods204

4.1. The first way: Rényi entropy-Based Friendship Theorem205

The correlation between Rényi entropy and thermodynamic free energy can be explained via the206

Friendship Theorem introduced by Rényi and his coauthors in terms of the vertices of a particular207

graph [44,45]. It is C. Huneke’s simplified version of the Friendship Theorem [46] that we give next.208

4.1.1. Friendship Theorem209

if G is a graph in which any two vertices have exactly one common neighbor, then G has a210

vertex joined to all other vertices in the graph. This theorem can be reformulated in terms of points211
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Figure 5. A.Point-Based Friendship Theorem. See the main text for further details.B. Rényi
entropy-Based Friendship Theorem.

and regions in the following way. In this reformulation, points x,y are connected, provided there212

is a straight edge whose endpoints are x, y. Point-Based Friendship Theorem: if X is a nonempty213

set of points in which any two points are connected to a common point, then X has a point p that214

is connected to every other point in the set. This situation is illustrated in Figure 5A. It is now a215

straightforward step to obtain a Rényi entropy-based Friendship Theorem: if X maps to is a nonempty216

set of points in which any two points are connected to a common point, then X has a point p that217

is connected to every other point in the set. The situation described by the Rényi entropy-Based218

Friendship Theorem is illustrated in Figure 5B. If X is a region on an n-sphere and Hα1 , Hα2 are Rényi219

entropies of region X with respect to parameters α1 and α2 , respectively. In addition, it is assumed220

that X is a smooth manifold and f : Hα(X) → X ∈ 2Rn is a homeomorphism that maps Hα1 , Hα2 to a221

region X in Euclidean space Rn. The vectors in X represent observations such as cortical temperatures222

that give rise to the n-sphere entropies shown in Figure 2B. We know from BUT that, whenever there is223

a continuous function f on n-sphere, a pair of antipodal points is mapped by f to a value in Rn, which224

has a region-based extension [47]. In particular, given the homeomophism f which is a continuous225

function on an n-sphere Sn whose surface values are Rényi entropies, then we know there is a pair of226

Rényi entropies that are mapped by f to X ∈ 2Rn. In effect, we arrive at a reversal of Rényi entropies.227

4.2. The second way: a fractional dimension228

In the framework of Rényi entropy, we introduce a quantity called the entropy difference:

∆(α,α0)
(P) = Hα(P)− Hα0(P) (6)

If we assume that α → α0, we can use the expansion of Hα(P) around α0, obtaining the229

differential entropy difference, which is proportional to entropy derivative with respect to Rényi230

parameter:231



Version October 4, 2016 submitted to Entropy 10 of 13

Figure 6. Generalized Renyi entropy. Note that S0.4 has a smaller diameter than S2 and the dotted
lines are tangent to S2. We achieve a mapping of antipodal points in S0.4 to the Rényi entropy values
associated with antipodal points on S2.

∆α,α0(P) ≈
dHα0(P)

dα0
(α− α0) (7)

Rényi entropy Hn(X) of order n correlates with a hypersphere Sn and, applying BUT, we can232

predict entropy values associated antipodal points on each n-sphere. That is, for a range of Rényi233

entropy orders 1, ..., n , we map each n-sphere to Rényi entropy values in Rn. See Figure 6 for an234

example. Indeed, hyperspheres of order n can to extended to fractional values of n, giving rise to235

an enlarged of hyperspheres susceptible to treatment by BUT. To see this, consider the following236

introduction to the Hausdorff dimension.237

1. Metric space: Let X be a metric space with the metric µd(X) defined on it. This means that238

µd(X) ≥ 0 and µd has the usual symmetry and triangle inequality properties for all subsets of239

X.240

2. Hausdorff measure: Let d be either 0 or a positive real number in R+
0 . The Hausdorff measure241

µd(X) equals a real number for each number d in X = Rd.242

3. Hausdorff dimension (informal): The threshold value of d denoted by dimH(X) is the Hausdorff243

dimension of X, provided µd(X) = 0 , if d > dimH(X), and µd(X) = ∞, if d < dimH(X).244

Hausdorff Dimension- To arrive at the Hausdorff (fractional) dimension of a subset X in a metric
space, we need to consider the Hausdorff measure of X.
Definition 1. Hausdorff measure. Let X be a subset of a metric space M and let d any real number
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in R+
0 ε ∈ R+

0 (a real number that is either positive or zero) a nonempty subset of X, Ui, i ∈ 1, ..., n
is a cover of X, i.e. X is a subset of X ⊆ Ci for all i [48]. Here n is any positive integer. Also,
let diam(Ui) < ε be the diameter of the cover Ui. The d-dimensional Hausdorff measure µd(X) is
defined by:

µd(X) = limε→0

[
inf

Ui⊇X

n

∑
i=1

n

(
diam

(
Ui

))d]
(8)

The basic idea is to cover X with sets Ui with small diameters and estimate the d-measure of X245

as the sum of the (diam(Ui))
d , i.e., the sum of the Ui diameters raised to the power d.246

Lemma 1. Schleicher Lemma. Let d be any real number in R+
0 . For every bounded set X in a metric247

space, there is a unique value of d := dimH(X) in R+
0 U{∞} such that:248

µI
d(X) =

{
0, if dI > d,

∞, if dI < d

Definition 2. Hausdorff dimension. The value of d = dimH(X) in R+
0 called the Hausdorff249

dimension of X. With d = dimH(X), the Hausdorff measure µd(X) may be zero, positive or infinite.250

Lemma 2. Schleicher Boundedness Lemma. Let d be any real number in R+
0 and let Y be a metric251

space. If , then: dimH(X) ≤ dimH(Y).252

Proof. Immediate from the definition of the Hausdorff dimension of a nonempty set. Assume that X is253

a nonempty subset (inner sphere) of an n-sphere and having the same center as Sn with the Hausdorff254

measure µd(X) defined on it and assume that µd(X) satisfies the Schleicher Lemma 1 conditions. The255

inner sphere Sd of an n-sphere Sn can be any sub-sphere in Sn, including Sn itself. Then, the inner256

sphere Sd has dimension d = dimH(X), d ≤ n. In addition, assume that Rd is a d-dimensional space257

which is a subset of the n-dimensional Euclidean space Rn, d ≤ n. This gives us new form of the BUT.258

Theorem 1. Hausdorff-Borsuk-Ulam Theorem. Let Sd with Hausdoff dimension d be an inner sphere259

of an n-sphere and let f : Sd → Rd be a continuous map. There exists a pair of antipodal points on Sd
260

that are mapped to the same point in Rd.261

Proof. A direct proof of this theorem is symmetric with the proof of the BUT is given by [49],262

since we assume that Sd is an inner sphere of Sn symmetric about the center of Sn and, from the263

Schleicher Boundedness Lemma 2, dimH(Sd) ≤ dimH(Sn). We can thus evaluate how changes of264

Rényi parameter influence the structure of information measures in the probability space (Figure 6).265

To make an example, starting from a value of Rényi exponent (i.e., 0.4), it is possible to calculate the266

entropy values in case one wants to evaluate other exponents (Figure 6). The Figure 6 shows that267

the antipodal points corresponding to the exponent 2 are indeed in an exact position on the diameter268

corresponding to the 0.4 exponent. If one knows the position of all the Rényi exponents projected on269

a n-sphere, it is feasible to achieve all the corresponding values of Rényi entropies.270
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