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Abstract – We present a solution for the Euler and Navier-Stokes equations for 

incompressible case given any smooth (  ) initial velocity, pressure and external 

force in     spatial dimensions, based on expansion in Taylor’s series of time. 

Without major difficulties, it can be adapted to any spatial dimension,     . 
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§ 1 

 Let  ,  ,   be the three components of velocity of an element of fluid in the 3-

D orthogonal Euclidean system of spatial coordinates ( ,  ,    and   the time in this 

system.  

 Lagrange in his Mécanique Analitique, firstly published in 1788, proved that 

if the quantity                  is an exact differential when     it will also 

be an exact differential when   has any other value. If the quantity            

      is an exact differential at an arbitrary instant, it should be such for all other 

instants. Consequently, if there is one instant during the motion for which it is not 

an exact differential, it cannot be exact for the entire period of motion. If it were 

exact at another arbitrary instant, it should also be exact at the first instant.[1]   

 To prove it Lagrange used 

(1.1)   
                        

                        

                        

  

in which the quantities   ,    ,     , etc.,   ,    ,     , etc.,   ,    ,     , etc., are functions 

of  ,  ,   but without  . 

 Here we will finally solve the equations of Euler and Navier-Stokes using 

this representation of the velocity components in infinite series, as pointed by 

Lagrange. We assume satisfied the condition of incompressibility, for brevity. 

Without it the resulting equations are more complicated, as we know, but the 

method of solution is essentially the same in both cases. We focus our attention in 

the general case of the Navier-Stokes equations, and for the Euler equations simply 

set the viscosity coefficient as      .  
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 To facilitate and abbreviate our writing, we represent the fluid velocity by 

its three components in indicial notation, i.e.,      ,   ,    , as well as the 

external force will be      ,   ,     and the spatial coordinates     ,     ,

    . The pressure, a scalar function, will be represented as  . As frequently used 

in mathematics approach, the density mass will be    . 

 The representation (1.1) is as the expansion of the velocity in a Taylor´s 

series in relation to time around    , considering  ,  ,   as constant, i.e., for 
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 For the calculation of  
   

  
,
    

   
,
    

   
,   we use the values that are obtained 

directly from the Navier-Stokes equations and its derivatives in relation to time, 

i.e., 
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and therefore    
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and using induction we come to    

(1.9)  
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 In (1.2) and (1.3) it is necessary to know the values of the derivatives 
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  in     then we must to calculate, from (1.4) to (1.9),   

(1.10)  
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the superior index   meaning the value of the respective function at    , and 
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(1.14)  
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and of generic form, 
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 If the external force is conservative there is a scalar potential   such as 

     and the pressure can be calculated from this potential  , i.e.,  

(1.16)  
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and then 

(1.17)          , 

     a generic function of time of class   , so it is not necessary the use of  the 

pressure   and external force  , and respective derivatives, in (1.4) to (1.15) if the 

external force is conservative. In this case, the velocity can be independent of the 

both pressure and external force, otherwise it will be necessary to use both the 

pressure and external force derivatives to calculate the velocity in powers of time.  

 The result that we obtain here in this development in Taylor’s series seems 

to me a great advance in the search of the solutions of the Euler’s and Navier-

Stokes equations. It is possible now to know on the possibility of non-uniqueness 

solutions as well as breakdown solution respect to unbounded energy of another 

manner. 

 We now can choose previously an infinity of different pressures such that 

the calculation of 
  

  
 and derivatives can be done, for a given initial velocity and 

external force, although such calculation can be very hard. 
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 It is convenient say that Cauchy[2] in his memorable and admirable Mémoire 

sur la Théorie des Ondes, winner of the Mathematical Analysis award, year 1815,  

firstly does a study on the equations to be obeyed by three-dimensional molecules 

in a homogeneous fluid in the initial instant    , coming to the conclusion which 

the initial velocity must be irrotational, i.e., a potential flow. Of this manner, after, 

he comes to conclusion that the velocity is always irrotational, potential flow, if the 

external force is conservative, which is essentially the Lagrange’s theorem 

described in the begin of this article, but it is shown without the use of series 

expansion (a possible exception to the theorem occurs if one or two components of 

velocity are identically zero, when the reasonings on 3-D molecular volume are not 

valid). The solution obtained by Cauchy for Euler's equations is the Bernouilli's 

law, as almost always happens. Now a more generic solution is obtained, in special 

when it is possible a solution be expanded in polynomial series of time. Though not 

always a function can be expanded in Taylor’s series, there is certainly an infinity 

of possible cases of solution where this is possible. 

 If the mentioned series is divergent in some point or region may be an 

indicative of that the correspondent velocity and its square diverge, again going to 

the case of breakdown solution due to unbounded energy. With the three functions 

initial velocity, pressure and external force belonging to Schwartz Space is 

expected that the solution for velocity also belongs to Schwartz Space, obtaining 

physically reasonable and well-behaved solution throughout the space. 

 The method presented here in this first section can also be applied in other 

equations, of course, for example in the heat equation, Schrödinger equation, wave 

equation and many others. Always will be necessary that the remainder in the 

Taylor's series goes to zero when the order   of the derivative tends to infinity 

(Courant[3], chap. VI). Applying this concept in (1.3) and (1.9), substituting   by  , 

the remainder is 

(1.18)     
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§ 2 

 In this section we will build a series of powers of time solving the Navier-

Stokes equations, differently than that used in the previous section. From theorem 

of uniqueness of series of powers (Courant[3], chap. VIII),  both solutions need be 

the same. 

 Defining 

(2.1)       
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where each   ,  is a function of position    ,   ,   ), without  , and 

(2.2)  
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we can put these series in the Navier-Stokes equation,  

(2.4)  
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 The velocity derivative in relation to time is 

(2.5)  
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the nonlinear terms are, of order zero (constant in time) 
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of order 3, 

(2.9)       
    , 

   
   , 

   , 

   
   , 

   , 

   
   , 

   
 

   
    

   , 

and of order  , of generic form, equal to  
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 Applying these sums in (2.4) we have 

(2.11)          ,    
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and then 
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which allows us to obtain, by recurrence,    , ,   , ,   , , etc., that is, for       

and    , 
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 You can see how much will become increasingly difficult calculate the terms 

  ,  with increasing the values of  , for example, will appear terms in 

  ,          
 , etc. If     certainly there is a specific problem to be studied 

with relation to convergence of the series, which of course also occurs in the 

representation given in section § 1. The same can be said for    . In fact, I do not 

understand why a particle fluid initially in motion, without any collision with 

another particle and submitted to an permanent impulsive force need be with 

finite velocity as    . 
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What good would living on a planet without destruction, greed and envy,  

where the nations were dedicated to building a beautiful world  

and to the salvation of those in need.  

That there were no enemies and everyone could be happy where they live,  

in their own way. 
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