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0So God made the people speak many different langudges

Virus

a ¢ K\MBrld Health Organizatiorhas announced a wordide epidemic of theCoordinate Virusn
mathematics and physics courses at all grade levels. Students infected withirtiee exhibit
compulsivevector avoidanceébehavior, unable to conceive of a vector except as a list of numbers, and
seizing every opportunity to replace vectors by coordinates. At least two thirds of physics graduate
students are severely infected by th&us, and half of those may be permanently damaged so they
will never recover. The most promising treatment is a strong do€geoimetric Algebra ®estenep

Cat

oWhen the spiritual teacher and his disciples began their evening meditation, the cat wtadrlithe
monastery made such noise that it distracted them. So the teacher ordered that the cat be tied up
during the evening practice. Years later, when the teacher died, the cat continued to be tied up during
the meditation session. And when the cat ewally died, another cat was brought to the monastery
and tied up. Centuries later, learned descendants of the spiritual teacher wrote scholarly treatises
about the religious significance of tying up a cat for meditation pra¢ti@en story

Empty yourcup

OA university professor went to visit a famous Zen master. While the master quietly served tea, the
professor talked about Zen. The master poured the visitor's cup to the brim, and then kept pouring. The
professor watched the overflowing cup untildeild no longer restrain himselfit's overfull! No more

will go in! - the professor blurted.You are like this cupthe master replied,How can | show you Zen

unless you first empty your c¥p(Zen story

Division algebra

GDS2YSUNRO fac Thé mydst pdssitie agsotiative division algebra that integrates all

algebraic systems (algebra afmplex numbers, vector algebra, matrix algebra, quaternion algebra,

etc.) into a coherent mathematical language tlaatgments the powerful geometric intuition of the
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(SabbataGeometric algebra and applications in phy$i3)



Preface

The aim of this paper is to introduce the iterested reader to the world of geometric
algebra Why?

Alright,imagine theNeelixand Vulcan(from the starship Voyager)conversation. The goal
is to sell a new product to the VulcafiTuvok) . This can be achieved so thatleelix quickly intrigue
the Vulcan, giving him as little information as possible and the ultimate goal is hat Vulcan, after
using it, be surprised by the quality of the product and recommend it tthe others. Let's start.

Neelix: Mr Vulcan,would you like to rotate objects without matrices in any dimensiore 6
Vulcang, Mr@eelix, do you offering me quaterniong 6

Neelix: O o, they only work in 3D, | have something much betterln addition you will be able todo
spinors, t00.0

Vulcand, Spihors? Come onmr Neelix, you're not going to say thatl will be able to work with
complex numbers t00?0

Neelixd, Ye®mr Vulcan, thewhole complex analysisgeneralized to higher dimensionsAnd you
will be able toget rid of tensorso

Vulcand, Ex€use me, whaI'm a physicist it will not pass 8 &

Neelixd, It v@ll , you do not need the coordinatesAnd you will be able to do the special theory of
relativity and quantum mechanicsusing the same tool And all integral theorems that you know
including the complex areabecome a single theorena.

Vulcand, Cothe on8 nice idea8 | work a lot with the Lie algebras and groups.a
Neelixd, In the package8 6

Vulcand, Ar®©you kidding me mr Neelix? Ok, let's say that | believe yoyuhow much would that
product cost meg 6

Neelixd, PeBnyworth, mr Vulcan, You must multiply vectors differently.d
Vulcang, Théx's all? All of this you offer mefor such a small pric€ What's trape 6
Neelixd, Thére is no oneBut true, you will have tospend some time to learn to uséhe new toold 8

Vulcand, Tire? lust do not have8 And why would | everforgo coordinates? You know, | am quite
adept at jugglingindices, | havemy career8 o

Neelixg, Dophysical processes you arstudying depend on the coordinate systemgou choos&o
Vulcang, | h@pe not8 6

Neelixd, Thére. Doesa rotation by matrices provides you a clear geometrianeaningwhen youdo
it 20

Vulcand, oQ have to work hard to findit out.6

Neelixd, No you will not haveto, it will be available to you at each step 6



VulcAT ¢ O- Ol#h curidud, vied bid you get this new tocg 6

. A AT VEell dor MQlcan, it is an old tool from Earth, 19th century, | think, invented by humans
Grassmanmand# | E £&1 OA86

VulcA T WhatOHow is that I'm not aware of i) OT § O EO OOOAT CA

. A Al WeB g thik that human Gibbsand his followers had a hand in it.Allegedly, human
Hesteneswas trying to tell the other humans about it, but they did not listen to him. You will
agree nmr Vulcan, that humans arereally funny sometimes3 6

VulcA T MJr Néelx, this is a rare occasion when | have to agree with y&ué

Vulcanbuys and lives long and prosperAnd, of course recommends the new tool to the
captain 8

This text is not intended as a textbook, it is morenotivationally AE OAAOAAR OI
Op08 )OO EO EIT OAT AAA | Atérkidn bere@as toliseGimale eRafnplds ladki 8
reader is referred to théndependent problem solving@ he active reading dhe text is recommended,
with paper and pencil in han@here is a lot of literature usually available atinternet, so, reader is
referred to the independent researchThe use of available computer prograimslso recommended
There are reasons to thinkthat geometric algebrais mathematics for future Paradoxically, it has
been established since the mid9th century, but was ignored as a result of a series of
(unfortunate) circumstances. It's hard to believehat those who have made careers will easily accept
something newhence belief that this text is mainly for young peaflae backgrond in physics and
mathematics at the undergraduate level is necessary for some parts of thebtéxt is somewhat
possible to follow theexposure using Internet to find explanation for the less familiar teAnsseful
source is the book[35], which can certainly help to those who are just starting with algebra and
geometry. The book[20] is hard one and it is recommended to those who thinkseriously. But,
read HestenesSarticles first.

It is important for the reader to adophe idea that the vector multiplication here exposed is
natural and justified The rest are the consequences of such a multiplicatioriThe reader can
independently come up with arguments to justify the introduction of the geometric productThe
goal is to understand that the geometric product is not just a "neat trickbut that naturally arises
from the concept of vector That changes a lot of mathematic#\ simple setting that parallel vectors
commute whileorthogonalanti-commute produces an incredible amount of mathematasd unites
many different mathematical disciplinésto the language ofjeometric algebra.

You can send meomments or questionsat:

miroslav.josipovic@gmail.com

Miroslavd OEDBIT OEc¢
Zagreb, 207.
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Geometre product (of vectors)

Vectors will generally be denoted in small lettersitalic format, wherever there's no
possibility of confusiorWe will usebold format also, if necessaryWe will use the Greek alphabet for
real numbersMultivectors are denoted imppercasadtalic format. If we define the orthonormal base
in the vectorspacethen the number of unit vectors which square to 1 is denoted withthe number

of those with squarel with q and the number of those witrsquare 0 with r . Then the common

designation for such a vector spaiseA (p, g, r) or A™%" while triplet (p,q,r) is referred aghe
signatute (in literature it isalso thesum p+ q). Forgeometric algebia of 3D Euclidean vector space

A® we usethe abbreviationCB, whichis motivatedby the surnameClifford.
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take thatconcept azx 2 N Stsaigh$IiReé To add vectors we use the parallelogram ruléectors

a and b that satisfy the relationb=aa, al A a 0,areparalel For parallel vectors we say that
they have the samalirection (attitude), but could have the same @pposite orientation We can
resolve ay vectorb into the componentin the direction of the vectora (projectior) and the
componentwithout any part parallel tahe vectora (rejection

b=h #, b #a a I, AacC

Here we can immediately anticipate objectiotikeY Yeg but if we talk aboutorthogonal vetorswe
need ascalar produci  YAllhdugh we use theharactera™ ¢ here we arenot talking about the
orthogonality of vectorsyet. Simple by the factthat vectors can beadded we conclude thatany
vector can be written as a vector sum of two vectansan infinite number of waysOne of these
possibilites is just giveby the previous relationsoit can be seen as a questionafistence andnot

how to practically implemenit. Namely, for b, =b - b a<, if we assumehat the vectorb,
contains acomponent parallel t@we can write bj + ba =b -a, but then vector bj is our
rejection If there is nobj thenvector b is parallel to the vectora. After, eventually we succeedo

define the product of vectorsve can return to the questiohow to find b, practically and thatis
what the new producif vectorsshouldcertainly enableo us.

Let's ask the questiorow to multiply vectors? We will need to "forget" everything we have
learnedabout the multiplication of vector§i.e. scalar and cross produgtsVell, before we "forget"
them, let's look at some of their propertie€an weuniquely solve the equatioaXX & (here a(X
is a scalar produc®)The answer is, clearly, we cannbécause if we imagine a plane perpendicular to
the vectora and passinghrough thevector endpoint each vector whose start point coincides with
the start point of the vectora andending on the plan&vill be the solutionWhat about the equation
ad x =b(crossproduct)? It cannot be uniquely solvethecausef X is a solution thereach vector of
form X+ ba is a solutiontoo. But, interesting if we take into account both equations then we can

find a unique solution Notice that scalar product is commutative while cross product is anti-
commutative. Fortwo unit vectors m and n in 3Dwe have

mQy osa and |m3n| ssina,

which suggests that these two produetse somehowrelated, because of

sin’a + cog a =.



An interconnection could be anticipated if we look at multiplicatiablesin 3D (g are orthonormal
basisvectors):

& § 8§ e & 8§
g 1 .0 O e 0 & -¢
e 0 1 O e - O ]
e, 0 0 1 e, e - O

We see that scalar product has a valdégerent from zero only on the diagonathile crossproduct

has zeros on diagonélue toanti-commutativity). Multiplication tables simplyure usto unite them.

The formof both products suggests similarity with complex numbers that can be elegantly written in
the trigonometric form but for this we need a quantity which givessquared like imaginay unit.

But, it is not clear howto naturally relate the cross product to the imaginary diké quantity On the
other hand crossproduct isanti-commutative, which suggests that it "should" have the feature to give
-1 when squaredNamely if we imagineanyquantities thatgive positive reavalues when squared and
whose productsare anti-commutative and associativave would have

(AB)" = ABAB = ABBA =A-B 0.

Let's lookat anorthonormal bassin 3D,we can say that the vectd® ispolarvector, while &3 €, =€

is axial vector. S, what is € like? Of coursewe could play with more general definitiomsvoking

tensors but it is strange that in such an elementary example immediately have a problem
Mathematicians would argue that the @ss product can generally be defined in the dimensions
different from 3 but if you think about it a little and require a natural and simple definiteome
guestions arise immediately

axh /\
a b
b
7 b uns)
a
Cross productives in 3D Bivectoris an oriented
and have dot of part of plane, lives in all
problems. dimensiongyreater than 1
and is almost magical.

Let's look at a 2D world where flatbed physicists want to ddfieeorque. If they do not wish
to look for the new dimensions outside "their worldhey will not even tty to define a cross produgt
there is novector orthogonato their world. But, we can see that the torque makes sense in 2D world
it is proportional to the amount of both force aridrce arm the two possibleorientations of rotation
are clearly definegtherefore, how to multiplya force arm vector anc force vector to provide the
desiredtorque?The answer to that question is found alreadylBth centuryby greatmathematician
Grassmannunderestimatal and neglected in his timéHe defined the anttommutative exterior
product of vectors and so gotlavector, an object contained ia plane, with orientation and module,
so, it isideal for our 2D problemin addition, it can beesasilygeneralzed to higher dimensions.
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Grassmantimselfand Clifforda little latermanaged to unite scaland outer(exterior) product irto

one: geometrt product, exactly what weare talkinghere about The scalar produadf vectorsis not

changed, but the cross product is replaced by outer product and artificial difference betmzit

anddpolaré vectorsdisappeared! f f  al EA L £ ¢ O $nGghadidiBld Vedtl forceta@Be) (i 2 NE&
see in text).

Alright, now "forget” scalarand cross product and letfsnd how to definea new one. It is
reasonable to require @sciativity and distributivityf the new multiplication(like for real numbers)
ie

a(bc)=(abh cand (bb+ g)a = Ha +cga(bb+ g) = ab +ag , bl

Of coursewe do not expect commutativity of vector multiplication, exceptdoalars (real numbers)
After all defintion of the crossproduct is motivatedby the need for suclka non-commutative
constructs (like torque or Lorentzforcez . X 0

1) Let's considerthe term a?® first (a is a vector) We will assume thata®i A. Clarify
immediately thatwe donot imply that ab? a @, as usualwhere we have thecalar product
denoted by dot This igmportant to note as it would lead to confusiootherwise We expect
that the square of the vector does not depend on the veaoedion, but dependson its
length (we excludehe possibility of nonzero vectorgith the length zero, for noy

2) We expect that the multiplication of the vector by restalar is commutativewhich
immediately results in that the multiplication of parallel vectdrs|| b) is commutative:

/la=a/Yab =a & =aa ba /..

Actually, we could call the principles of symmetry to help we immediately see that multiplication
of parallel vectors must be commutatiieecause we have no criterion to distinguish which vector is
the "first" and whichisthe "second" It is obvious if vectors have the same orientatibnt if vectors
have the opposite orientationg/e can refer to the fact that all the orientations in space are equal
(isotropy). Our new product shouldlsoinclude multiplication of reals by reals.

3) Due to the independence of the square of the vector on dicective have(recall, b, has no
component in the direction of)

(b. +a)" {b. &" 0=2(s.a ab},

meaningthat vectors b, and a anti-commute. You can desigather "arguments! but recall

we do not assume scalar or cross produa are looking for properties of theew product of
vectors "from scratch'This example inot the proof, just an idea how we could think about
it. In figurep. 1we can easily see what we demanddiat the square of vectardoes not
depend on the direction

(b, +a) =(b —a)

—a [

p.1

We can of course after we assumed hooommutative multiplicationjust use

(a+h)” = B ab. b

7



4)

and immediately conclude that it must b#, +b,a 20 because we expect the Pythagorean
theorem is true But figure p. 1 show us thate have symmetry here, namely, vect@sand
-aRSTAYS | G SNE ‘MANREBKAEY $ R doricépthnd sve skdhat y 2 {
direction of vectorb, suggests the symmetry in accordance with dituitive concept of

orthogonality. Without this symmetry we enter thie & { 18, but let pure mathematicians
to go there.

Let us show now thaticcording td3), a®> commuteswith b (without any assumption whaa®
iS):

a’b=a(h +h) Hd aba pd ba K

which justifies ourprevioug assumption thata®i A. Again, i is important to understand
that we arenot giving proofs, we are tgustify the new product of vectorslit follows

immediately thatali{I commutes withb, because ohl =aa, a [ . Now we have
ab+tba =ab +haz28p 24,

so ab+ ba commutes with b. It is clear thatcommutes with a alsq which means that
commutes with any vector

We can always decompos@&yanon-commutative product into symmetric and anti
symmetric part

ab+ba  ab-be
2 2
Symmetric part, we have seen, commutes with all vectibviis alsoseen from

ab=

ab+ba =& # (a B~

becausethe square of a vectois commutatve. Note that we have not defined ygirecisely
what a? is, but it is obvious that regardless ekplicitvalueof a®* we have fovectorsa and

b,
(a+h) = B ab, ba & =B, @b,.+ab. & 1

i.e. we have the Pythagorean theoreimere expressedhrough the new multiplication of
vectors If we define the term "orthogonal as the relation between vectors in which the

projection of one on the other is zel®, =a -b), we get the Pythagorean theorem, which

now applies to orthogonal vectors regardless of 8pecificvalue of a?, if we accept the
arguments from the part 3) et us recall that the Pythagorean theorem is, as a rule, expressed
over the scalar product of vectond that in this way we have a problem with negative
signature (meaning that there are vectors whose square is nega#isay customary in the
special theory of relativityror any two vectors, the relation

(a+b)’ = ¥ ab be

AY



can be taken as thecalar theorembecause the symmetrigart of the new product commutes
with all vectors, and thuss the "scalar’, that is easiljustified here, because the symmetric
part of the product of vectors depends only on squares of vectors

We assumdthat a? is realnumberequal to° ajz, where |a| is the absolute length

of the vectord (we say that we are introducingetricg. Now we can write for the symmetric
part

al f{ab bg/2,

that we calthe innerproduct We see that it coincides with the usual scalar prodifatectors
but here we need a little bit of cautioin geometric algebia we generally distinguish several
types of "scalar" productspne of themis scalarproduct (generally different than that of
Gibbs) andthere aremore: dot product,left contraction etc. For vectorsall types of "scalar"
products coincide, but generally theyea little different (see literature)Here we ardo work
with the inner productand theleft contraction(see in text).

For the unit vectors of the orthonormal biasve haveel2 = 1 (null-vectors are not

included here)which means

ge+ge =2
Cautiont do not confuseg € with € Cﬁ I'If you are wondering whats €€ the answer isa
completely new type of objectye will see iiin the text.

Let's look at a 2D examptes

A’: &€=¢ 2 e @ 1=1 e+ pe®R I& e
At =€ 1= (% eF 1% ep+pe @ Ze=X

we see that in both cases the Pythagorean theolismalid but with the new multiplication of
vectors

For A® we have

€=¢ =€ E pp ge 2,

but, here'samagic there are known mathematical objects that meet precidblyse relations
Paulimatrices, discovered in the glorious years of the development of quantum mechanics
We can say that the Pauli matrices are 2D matrix representation of the unit vectdys, iwe

only needvectorsto be multiplied in a newnanner, just describedlhat is to saythe Pauli
matrices have the same multiplication table @thonormal bass vectors Let's make sure of
that. Pauli matrices are defined as

‘f:_é.o 16 E_Oé'l 6 "1 @-
H 0¥ %0 $0-F
so, for example
. ~.al 035 S 03
(= + E
£sEq ;o sBEs BE



Designationd: isoften usedfor Pauli matricesso here we usé, for unit vectors inA*. Pauli

matrices are important to describe the spin in quantum mechardgosve see thatvectors
could serve to this purposaswell, but with our new productof vectors Indeed quantum
mechanics cabe nicdy formulated by suchmathematics without matricesand imaginary
unit (see below.

Note that by transposition followed by complex conjugatafrPauli matricesve get
again the same matrigHermitian adjoin}, for example

. a8 -i 0§ 04 i 6 0 i3
‘g :a- 81/'12'1/2 ?‘E 1/2812 - a ,
§ 0 = - IQ 0 = | (Ee
or simply d%“ = gl. Also we havefor example (;E gE‘\ = 5 l; (antiautomorphism show
that). This exactly matches the operatiomverse (see belowy on vectors, for example

€€€- €€ f Therefore, the characteh is often used to denote theeverseoperation(we
will do sohere).

Here we can immediately spot the important feature of the new multiplicatién
vectors The vector is geometrically clear aimtLitive conceptand thenew productof vectors
also has a clear geometric interpretatioftee below. For eample we can clearly

geometrically presenthe product €€ as the oriented areait has the abilityto rotate,
unambiguously defines the plangpannedby vectors € and €,, etc. All this we can
immediately conclude at a glander comparisonconsider now the matrix representatioof

vectorsS, and S, with their product

. -8 1 504-i 5 @
E ] - =
g (0= T§ @

Can we derive similar conclusioabout geometric interpretation jusby looking into the
resultant matriX Just looking certainly npit would take a lot of effortbut we will often fail

to getthe clear geometrical interpretatiodWhich plane the resultant matrix defines (if any is
to be defined? Paulimatrices cannot doall that vectorscan In thistext we will, hopefully,
illuminate suchathings in order to get an idea of the importance of the new multiplicatbn
vectors

It is time forthe new multiplication of vectorso getthe name"officially" (Clifford
Hestene®  )§ebiietrc product. Symmetric and arsymmetric pars of the geometric
product of vectorshave speciainsignia al and a@b (a isinnerand a@b is outer
product), so we can writdor the vectors

ab=a ® a L

An importantconcept that we will often usejs thegrade Real numbers havgrade
zerg, vectors have gradel, all elements that are linear combinatisnof products

€ @q, i s J have grade?, and so onNotice thatgeometrc product of two vectorsis a

combination of grade® and 2, it iseven becausdts grades are evenWhat gradegenerally
has thegeometricproduct of three vector?

10



A vector space over the real field with geometric prod(@P in textbecomes an
algebra(geometric algebraGA in text Elemens ofgeometric algebia obviously are not the
vectors only Note that inner product is zerdor orthogonal vectorsfor example for
orthonormal basis vectors we have

ety 2979%% 126 c0fETEF o 6876 Q ¢ & £,

sofor orthogonal vectorgieometric products the same asuter product Howabout the antk
symmetric par? We have

- + e-,ee
e Je _91%2%? _?§2 ££ ee e oD 1612 16€

Obviously,€€ isnotascalah i R2Say Qi O2 YYdzi Sorexdmpl& I f f

(eZe)e, {gg)e, =gee £ k

but isneithera vector inA?, it squares to-1:

2 — —
(68) =egee= eepe %
so,we have anew type of mathematical object, it is likeimaginary unit, except that is non

commutative The name for this object isivector. Generally we will define abivector as

elementof algebi of form a@b. Let's look at some more properties of the bivecQE, .
We have

(ee)e,= -gee =¢ ( gpe, |

so, actingfrom the lefton vectorsit rotatesthem by - p/2. How it rotates vectors iécting
from the right?

Recall thereverse operation ongeometric product of vectors: Xx=abc..d -
d..cba= X, so we have

(ee)(ee)'=(e9( £ = ( &F 1.

therefore we call ita unit bivector. Generallyjt is possible tdind a module of bivectors,so,
bivectors have the modu and orientation. Furthermore unit bivectors, like € €, except for
the module orientation (€€, €€ = €¢) and the ability to rotate vectorshave another
important feature whichimaginary unit does not hayeamely, it definesthe plane spaned

by vectors(here € and €E,). Later we will see houhisis implemented in practice by outer
product

Now let'sseehow we can graphically present (unit) bivectdhe obvious option is to

try with oriented parallelogran(squarefor €E€). But, the shapeof area which represents

11
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bivector is noimportant, we should keep the amount of area andentation, therefore it is
often a practical choice an oriented circle of radibﬂ;sg| / \/,; To justify our claimdook at

ee=¢ % Ye g B &

it can illustratethe factthat shape is not important

p. 2

Notice immediately thattwo vectors except that define a planegenerally define a
parallelogramtoo. The auter product ofsuchvectors (bivector) has modulpist equal to the
paralelogramarea (see belowwhile direction we define as iiigurep. 2.Find the area ofhe

leftmost parallelogram irp. 2 Notice that bivector is jus€ €, but show that formula

1=|ee| 3¢ ¥ gsina

givesthe area of the parallelogram

Let's look at three vectorsn A*which sum iszero (triangle), from a+b 4 @ it
follows that

adb b @ & ¢

to see this it is enough to look at expressions
(a+b +C) @ and (a+b +C) B (chech, but we can

see it easy without calculatigit is enough to look athe
figure on the left: each pair ofvectors defines the
pardlelogram of areaequal to the double area of the
triangle, andall pairs givethe sameorientation of bivector
This is importantoften we can draw conclusions simply
from the geometricobservations without calculation In
i the formula for the area of garallelogram appearthe
sine function, so we see that the previous equdéts are
just thesine theoremif we recall that bivector is nahape
depended,we see thatall three our bivectors have the
same factot (the unit bivector) Now we have

labsing = Ibcsin a=lacsin

12



Bivectors define a plan€onsider the outer product 6B

(62e) dac 8e 89 (2 p2 @ ae e+ a6,

S0,we can see that outer product of bivector with a vector gives the possibility to eliminate
the componentof vectorthat do not belong to the plane defined by thévector. Therefore,
the plane of thebivector B isdefined by the relation

Bdx 0.

In our example, this would be all vectors of foXw a€ *3 €.

Imagine a unit bivector il€B. It defines a planeand have the properties ofnon-
commutative) imaginay unit (in that plane) It is powerful we can usethe formalism of

complex numbersin any plane in any dimensionrHow? Let's take back our bivectd € and

the vector X§ + Y&, If we multiplyour vector by € from the leftwe get

e(xe+ yg) =x e X W | @,

so, we have aomplex number. What we get if we multiply from the rigAtFor more details
see below.

The reader may showhat any linear combination of unit bivectoia CB can be
expressed as an outer product of two vector§his is notecessarily truen 4D, take for

example €€ + € §. Prove that there areno two vectors in 4D with the property

a@db =eg¢ €e¢ In3D, for eachplane wehave exactlypne orthogonalunit vector (up to the
sign, while that is not true in the higher dimensiarBor example in 4D, plane defined by

bivector € € has orthogonal unit vector§€, and €, (their linear combinatios too) Takethe
bivector €€, in A® and multiply it by -€€¢ * 4 e€e ] € one can see that we get

exactly the cross product of vecto® and €, , or, for arbitrary vectors

a3b =jfa b

This is valid iBD, but expression la @ is valid in any dimensigwhere | isageneral pseudoscalar.
In 2D-la @ isjustareal scalar, while in 4D or higher we can take advantage of the concepalidy.
The ¢oss product of vector§Gibbg requires the right hand ruleand use ofperpendiculas to the
surfaces. With bivectors it will nbbe necessaryso, for examplewe can completely omit objects such

3 3

as 'fotation axis ', etc. Find the geometric produdif two vectorsa=§ ae andb=g bein A® and

i=1 i=1

show that it can be expressed as

ab=a O (& Heeg ab (& b

13



Algebra

Let's lookagainat 2D exampleAll possible outer products of vectoexpressed in the

orthonormal basisan provide a linear combination of "numbers!' €, €, and € J€ =€¢ (any
linear combination of these "numbers" we will refers multivector). Outer product is anti-

commutative so, all terms that have some unit vector repeated disappeddumbersr  &,28, and

€ € form the basiof 22 ¢ dimensionallinear spaceln fact, we have théasis of thealgeba (Clifford
algebrg. When geometric meaning is the forefront we refer it ageometric algebrgdue to Clifford
himself) Element lis areal scalar. We have twovectors and one bivector (in the terminology of
geometric algebra it is referred asseudosalar in algebra namely member of the algebra with the
maximum grade In A® we have thebasis of the algebréCB):

16,6, & 68,66, ,68, 66§,

herej'e @ @ &¢¢isthe unitpseudosalar. Show thaj commuteswith allelement of Clifford

basis inCB and that j2 = 1. Pseudoscalars in any dimension are all proportional to some unit
pseudoscalarProve it at leastfor j. So, pseudoscalgris a perfect (commutative) imaginay unit in

CB. Such a pseudoscalaiill appearalsoin CI7, CM m 2ThiXhas fareaching consequenceBut here
one should be carefugommutativity property of pseudoscalaneansgeometrc product, while in
terms with other products one should be cautiauRealcalars do not have this "problem'they can
"walk" through all productsFor pseudoscalaxe have, for exanple

ee=eije =eejFelie # i
i.e. geometric product allows "walkingjut thisis notgenerallyvalidwith the, say,nner product

(e®)i & g(i€ e(=9g.

herewe havea mixed produc{see belov.

In 3D, for arbitrary four vectos we have a@b & @ 0= Outer product has distributivity
and associativity properties alseeg literatureor prove itself. If any two vectors here are parallel,
relation is true due to antcommutativity of outer product Otherwise we haw, for example,
d=aa + +g ,a b I, so, our statement is true due todistributivity and anti-

commutativity.

Maximum grade of multivector cannot be larger than the dimension of the vegiace ghow
that). Show that number oélementin Qifford basiswith the gradek equals tobinomial coefficient
an
ck
where n isthe dimension of thevector space For real scalars we have= 0, so, theret is just one
real scalar in the basig€. 1). The same is fok = n, there is just onelement with the graden in

the basiswhich gave rise to theerm ¢pseudoscalar €ow that the number of elements in the Clifford
basis forn -dimensional vector space equats 2".
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An important concept is thearity of multivector and refers to the parity of gradesAll
elements with even gradegefine the subalgebrégeometrc product of any two of these elements
even, tog showthat!), while this is notrue for the oddpart of the algebra

Grades of multivectoM are usually written a§M )r , Wherer isthe grade For the grade 0
we use just(M), for examplea® €ab). Grade0 is a real numberandit does not depend on the
order of multiplicationso we have{ AB) = ( BA) , which leads tdhe possibility of cyclical changdiike

(ABC) =(CAB . This is beneficial relatigtior example consider the inner produca(® and ask

ourselves what would happen if we apply the transformatians nanand b- nbn (nis a unit
vector). Note that the result osuchtransformation is a vectofresolve thevector a on component
parallel and cthogonalto n). The inner product of two vectors isstthe zero grade ofheir geometrc
product, so we have, usingyclical changes

(nan)@nbr) Enannbp (=nabn ( =abhn( B@b &

Such aransformaion R 2 S &lyafgé theinner product, so we have amxample ofan orthogonal
transformation (this oneis a reflection) Transformation X - nXn (nis a unit vector)generally
R2 S ay Q ithe grcde FoBeRampleif we have X = ab then

nabn= nannbn¥ naj{ nb,

i.e. we have a geometric product of two vectors ag@ims is a very important conclusiofo see that
it is generally validrecall that eachmultivector is a linear combination of elements 6Glifford bais

So we havgfor exampleq(elg) €= e e = -g4 D,grade is stilR. If grade of element is changed by
alNI yaT2NXYlFaGAzy GKSy ¢S 200F Ay (GKS yS#.RatketJS
frequentlywe want transfornvectors to vectorshivectorsto bivectors, etc.

Let us nowdiscusssome important formulas in whichixed products appear For example,

let's look at the product
a(b@c) =a(bc <h/2 (=bc acph2.

We can take advantage of the obviofamdusefu) relation ab=2a ® beand show that(left to the

reade
a(bdc) (b ga 2taho2(af,

Here we have a situation in which grade of bivector is downgrasteitl is customary to write such a
relationship aghe inner producti.e. a kind otontraction

aB faB Bj/2,
(B is abivector) or,
adb @ (aphO(agb &bc=ac,

where it is understood that the inner product is executed fifdtis is a useful and important formula
It is not difficult to show that

a@B {aB B3/2,
aB=a® a E
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Finde §ee) and g B(gg).
Here is one more useful relation (without proof)

ela, @ @ &1 )"q a(a0.. 3@..03),
k=1
where EiK meansthat factor @, ismissing in the outer productind qQa ﬁi) .

It is straightforward to fingorojectionandrejection(we announced this possibility earliefyr
example of vector@ usingthe orientation of the unit vector n

a=ma =n(n O n+3 @nn=a nd ar a &

wheregeometric product is to be executed lasFor general formulaffor any elementsf algebra see
literature.

Important concepts

Before we dive ito CB let's look at some more general terms

a) versor - geometricproduct of any number ofectors
b) blade - outer product of any humber of vectors
c) involuion - anyfunction with thepropertyf (f(x)) = f(x)

d) inverse- for elementxit iselementy such thatxy=1, y= X'
e) nilpotent- x2=0

f) idempotent- x2=x

g) zerodivisors

Let's explairthose termsin moredetails.

a) Example of versor isabc, if factors are vectord=or geometric product of two vectors we
have generally grades 0 and=r verification techniques that some multivector is a versor
see Boumaand [19]. Show thatgeometric product ofversorand itsreverse isa real
number.

b) Example ofbladeisa@b @& , if factors are vectorg-or verification techniques that some
multivector is ebladeseeBoumaand[19]. Bladeis simpleif it can be reduced to the outer
product of bagsvectors (ip to the real factor)

While versor ab generally have grade8 and 2, blade a@b has grade 2and
defines the2D subspaceShow that anynomogeneousersor (hassinglegrade only) is a
blade Show that anyblade can be transformed to a versor witithogonalvectors as
factors Any blade inCB which is outer producbf three linearly independent vectsris
proportionalto the unit pseudosalar (show that if you have notlone italready).

Consider the arbitrary set of indicesuniit vectors of orthonormal basissome of
which can be repeated-ind an algorithm for sorting indicesp as to take into account
skewsymmetry for different inctes The goal is to finthe overall signAfter sorting the
unit vectors of the same index are multipliehd thusreduce to one unit vector or a real

number. Example 6,6§6= €£££= -6E8E =4

16



c)

Elemens of Clifford basis are simpleblades We have
seen thatin CB any linear combination of the unit

rea bivectors defines a plane (i.e. can be represented as an
outer product oftwo vectors) Multiply everyelement
of the Clifford basis bypseudosalar j. What you ge?
F=epe, Figurep. 3 can help inthinking You ca use GAViewer

andseehow your products lookke.

Ingeometrcalgebi the most commonly usedrethree involuions, and allof themcome
down to change the sign of ttmmponentsn the Clifford basis

Grade involutiors obtained by changing the sign of eachigasctorof the vector

space In this way all even elements remainchangedwhile odd oneschange thesign
Considegeneral multivectorM in CB:

M=t & %¢ %§¢ B¢ Bf Bg

where €, €8. Grade involutiorgives

M=t xe xe %¢ Be Bg Bg

Grade involutioris anautomorphism(show tha), which means

(MN)? = NN .

Hements (M + I\E)/z M), and (M - |\E)/2 M) giveevenand odd part of the
multivector M (find them fa M ).

Reveseinvoluion is ananti-automorphism((MN)A = N*M ’, show thaj:

M=t xg %e %6 X8 X8 X8

EIements(M +|\E)/2 1<m>R and (M - |\E)/2 1<|\/|>I give realandimaginay part

of multivector M (see belowfind them forM ).

Clifford conjugation (involution) is an antiautomorphism(MN = NM , show
that):

M=t xg %8 %€ X%& X£ X8

Elements(l\/l +|\lq=:)/2 1<|\/|>S and (|\/| - |\h=:)/2 1<M>V give (complex)scalar and

(complex)vector part of multivector M (see belowfind them for M).
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d)

9)

What we get applying all three involutions on multivegtaind what we get
applyinganytwo of them? Eachinvolution changessign of somegrades If overallsignof
the gradeis given in the forn§-1)©, r is grade find function f for eachinvolution. Often
we need to check the properties of some product, swtc. What is multivectorif

M= inv(M), where NV stands for any of threelefined involutions? Show that for
versorsV relationV =vv,..y Y& £ y)( )..( y)isvalid Show that multivector
VA is avector if X is avector.

An important consequence of the geometric multiplication of vectors is the existence of

the inverse of vector (and many othelements of algebra).e. we candivide byvector.
For vectorgnull-vectors do not have annverse) we have

al=zal &,

which means that the unit vector is inverse to himsg&lie existence of the inverse has
far-reaching consequenceand significantly distinguishes geometric product from
ordinary scalar androssproduct Nowwe can solve the equation

ab=c Y a =bc?,

etc. We can define the inverses of other multivectdier example|t is easy to seavhat
the inverse of versor is

(ee)'= ee/(eeep = e .=

Here we are using the fact that geometric product of versor and his reverse sk
number.There exismultivectorswithout the inverse we will see it a little laterExistence
anddefinition of aninverseA & y Q (i sinhpfeandioBvibus butin CBthat task igelatively
easy It is important to note that existence of danverse depends on possibility to define
module (norm)of multivector, and that is not always uniqu&or general approach see
references cited

Geometrt product allowsexistence ofmultivectorsdifferentfrom zero but whose square
is zero They aranilpotentsin algebraandhaveanimportantrole here for examplewhen

formulated inCB, an electromagneic wavein vacuum igust a nilpotent in the algebra

For example, we have

(a+ee)’ =¢1 ® 1 § o X1 )<

Nilpotenta R 2 y @ninvefse IO, 0 is anilpotentand M isits inverse than
from NM =1 we haveN?M = N,i.e. 0=N.

Idempotens have the simpleroperty p2 = P. Show that multivector (1+ q)/Z is the

idempotent. In fact,everymultivector of the form (1+ f ) /2, f? =], is anidempotent

Later in text wewill find the general form of idempotent irCB. Trivial idempotentis 1.
Show that triviaidempotentis the only one with thénverse.

Multiply (1 +e1)(1 ¢ e1). There aremultivectors different from zerothat multiplied give
zero (zero divisorp Although it differs from the properties of real numbers, it turns out to
be veryuseful in many applications
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We should mention that the additioof quantities like X and jn (or other expressions of

differentgradegis not a problemassome people complainye add objects of differergradesso, as
with complex numberssuch a sum preserves separation of gradtere sum is to be understood as a
relation between different subspaceset us clarify this a little bfor CB. Realnumbershavegrade
zeroand define subspace of "pointsVectors define oriented lines bivectors define oriented plains
and pseudosalars define oriented volumes. For examplebivector B defines oriented plane by
relation B@x =0. In that plane we can find a unit bivectd® which has a number of interesting
properties squares to-1, it is oriented rotates the vectors in the plane etc. As example,

B=gg t6¢ =% (@ & sovectors €, and € - € span the planeRelation B@x = gives

vectorsx as linear combinations ofectors €, and € - §. Find BB*. We see, the(unit) bivector

&= B/ J2 has a clear geometric interpretatiphut it is also the operatowhich rotates vectors in

the planeit defines. It can also serve as an imaginary unit for complex numbers defirtbé planeit

defines Multivector of the forma + B is the sum of different grade§, dzi G KSNB Aa y2 g1 &
real scalars and bivectors in sums: they are alwaymrs¢ed. But together, as a sum, they are

powerful, asrotors or spinors for examplgsee below)

Finally, any multivector can be expressed as a list of coefficients in Clifford basis. As an example

we can usehe multivector 3- € €€ in 2D, list of coefficients iéS,O,- 1,]). It is clear that we can
add and subtract such listsnd a rule to multiply them, etc.

Examples of solving equations

Let'sfind realnumbers @ and & suchthatx =aa + & in A®. We have

Xda =aa @ A agd b g
XOb ma @ b b a& L

Note thatbivectors X @a and b@a define the same planand both are proportional to the unit
bivector in that plane i.e. their ratio is real number (unit bivector divided byitself givesl). Therefore
we have

X @b X @
X = +——Db.
adb b @a

Let's usehe GAVieweto show it graphically
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X~a
b.a

xrb
a~b

Now let's look the quadratic equation
X*+x 4 6.

Show thatx= €3, i=€#g,, is the solution Can you finda solution for an arbitrary quadratic

equatior? Pay attention to the fact that thexpressionx® + x 4, with the above solutionwe can
interpret asthe operatorwhichactingon somevector v giveszero That meanshat we havesum of
vector(v), rotadedvector ( xv) andtwice rotadedvector ( x*v), three vectorsthat we canarangein
the triangle About rotations and exponertial form see below here you canfeel free to treat

expressionsike complex numberswith the imaginay unit | =€,€, (i.e. you carusetrigonometric form
of the complex numbér In the next chapter you will find an explanation for this approach

Geometric product ofectorsin the trigonometric form

Let's look at the product iA" (for other signaturesee literature, main ideas are the sajne
(adb)(a @) Fab a h(CGa b I
-ab’a {a P a#{ ad bh +
(aC'iz))2 £ = dsin’g,

where we usedalh)® & I cos’ g . We see that irA"the square of bivector is negative real number.
Now we can definéhe moduleof a bivector as

a2t 4| tising.

We got a general expression for the square of bivedorwe see that the geometric product of two
vectors can be written as

ab=|d|H 85 + 4 i £F aEh B [alfoosy Egin+ E%; BE

or

ab= 1} &
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Notice that we have a similar formula for complex numbérd the situation is quite differenhere:

unit bivector B is not just arvimaginay unitd iEdefines theplanespanned byectors a andb. This
is a great advantage compared to ordinary complex numligosings the clear geometric meaning to
expressiongFor exampleformulation of quantum mechanicsin geometrc algebra usesrealnumbers
there is no need for/-1, and in every expression we can see the geometric meadiiegtly. This
makes the new formulation more powerful provides newnsights, whiclwould otherwise be hidden
or difficult to reach

Here we have the opportunity to answer tlygiestion about multiplication tablesVe have
seen how the multiplication tables for scalar acissproduct are almostcomplement We know,
geometric product of two vectors can be decomposed into symmetric anesgntmetricparts,then
we canfind their modules, they have functiorsine and cosne as factors and thal A @S & dza @ dzy A |

multiplication table Here it is(note that, for example®, = -j€8)

© 8 8 8 e & 8 GP & & g
e 100 A & 0 & -8 e 1 ee &g
e 010 e -& 0 ¢ e -e¢ 1 &g
e 0 0 0 & & -g§ 0 e -ee &g 1

and we ca seethat the new multiplication tabléhas bivectorsasnon-diagonal element§A is just
for fun). In fact, looking at those tables one can get nice insights about our 3D space and geometric
algebra in general.

Refletions rotations, spinos, quaterniorns X

The reader is nowperhaps convinced that the geometric product igally natural and,
actually, inevitable wayto multiply vectors. One way or anothermagic is still to come

Considemow powerful formalism of geometric algebra applied to reflections and rotations
(we are still inA", details of the other signatures can be found in the literajuF®rthe vector a and
the unit vector N in A?® (just to imagine hings easiergeneralizatioris straightforward we canfind

projection(parallel tol) and rejection(orthogonal ton) of vectora, sq 8=8 4 . Now we have

ai= nan =rfa afn (& -a) nn a

which means that vectof isreflected on the planeorthogonal ton (generally ahyper planefigure
p.4). We can omit the minus sigthen reflection i®n the vectorn. Recall, eflection does not change
the grade of reflected object.
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£la.a")=2¢ a’

i ] = ‘\'ﬂ‘\'

N=jn “—

p.6

We should mention that in physics we are often interested in
p.7 reflections on surfaces in 3D, so we can slightly adjuspitterres

(p. 6, p. 7). We use the fatttat }° = 4, so

ai= fan Fnan jAgn NaN

where the unit bivectorN defines the reflection plane.

What if we apply two consecutive reflectignssingtwo unit vectors m and N? There is a
well-kknowntheorem, which states that two consecutive reflections provide rotatiarfigurep. 5 we
seethat after reflection onn we havea- @i, then by reflection onm we haveaj- a . If the
angle between unit vectorfn and N is/ thenthe rotation angle of vectoB is 2/ . Respectively

if we want to rotate the vectoby angle/ we need to use the unit vectors the angle between which
is equal toj /2. We see how the half angle appeas® characteristic in the description of spin in
guantum mechanicHere we see that there is nothing "quantum" in half anglés simplya part of
the geometry of our 3D spac&his will be discussed later

Now we can write an expression for the rotation as
ai 5 m( nar) m=mnant,

Another way to rotate the vector is to construct an operator which rotates and operates from the left
Thanks to the existence of amverseof the vectorthisis easy to achieve

aiq(aa'l)a 10g O =ad.

But the method thatuses reflectios isvery general and elegaftotates any element of the algebra)
has a "sandwich" form, which is actually comnaord preferable in geometric algebyaspecially for
generalization to higher dimensioniset's look more closelthe term mnani. Geometric product

of two unit vectors consist generally ojrades0 and 2, so,it belongs to theeven part ofthe algebia

and makes subalgeb, which means that the product of any two of these elements will result in an
element of theevenpart of algebraWe denote it asR = mn (rotor in text). Now we have

ai3RaR, RR =mnnmt R
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where R*= R “meansreveise(mn- nm). For therotation angle/ we needunit vectors with the
angle/ /2 between them We have

mn=ma@ m 1

where|m@n =sin(j /2) . Using theunit bivector 2 @n/|n @ (note the order of vectorswe have
mn=m®& m nZosy /2 I;_Bsilﬁ(j 12 exézEE/ )E

minus sign here is due the convention(positive rotation iscounter clockwisg In CB we can write
unit bivector B as jw , whereWw is the unit vector defining the axis of rotatioRotor inverse is

R'=nm :exp( E’/Z)
sorotation is finally

. L& /B
aj5RaR =e2 ae .
This is the general formulé a8 commutes with B rotation transformation has neffect on a. If a
anti-commuteswith B we have operator form

aive’"a
For examplefor = € € vector € commutes with i, while vector € anti-commutes
Bivector EF definesthe rotation planeand it isclearthat vectors orthogonal to that planere
not changed by rotarNotice, we do not needotation matrices, Eulerangles or any other known
mechanismOnce you define a unit bivectdrwill do all the necessarpb. Youcan imagine it like a
small spinning toghat does exactly what we neefllotice thattwo different consecutive rotations

make the rotation agaifshow tha). This produces a group structyfgut here we willnot talk about
it.

Example Rotatevector € *+ € +€, in the plane €€ by angle/ . We have

L

e q92(

J
Zqq
é

g+¢ +g)

so take advantage of the fact that the vect8f commutes withbivector € €, , while € and €, anti-
commute

e_%%(q+g +g) éq@ :?é/w jyefﬁs ;éézs élé( e Je

e,+(coy -gesinj)(e € & ( geos/ gsin)j( esin j,ecod,
and for the vectors in the plang € we recognize the rotatiomatrix
acoy - siny
g%inj CcoSs/
where the columns represent the images of the unit vect®wstation by angle- / we get using the

bivector €, = -€€.

Considerotation

23



0.7p 0.7p,
-—Sae _ —5'ee
e 2 Tae?
andthe corresponding rotation matrix

3-0.588 -0.809
890.809 - 0.588

What can be said about the geometrical interpretatitimat is, what you can conclude looking at the
matrix? Try now to make a rotation matrix for an arbitrary plafiey to repeat all iftD. Theeashess
with whichwe perform rotations in geometric algebra is unseen befdneere are no special cases
vague matricesjust follow the simple application of the rotot® any multivector Many prefer
guaternions but they do not have the geomet clarity. And they are limited to3D! If only elegance
and power of rotations was the result of using geometric algebra it wouldidth of effort. But it
givesusmuch, much more

Notice how any rotor cabe factoredin small rotatiors
R=¢g//2 =¢/2 &/2
—_
n

which can be used in practicder example, when interpolating

Let's look at the rotation of vectof, for small anglen the plane €€ (p. 8, p.9)Recall the
definition

e~

o

im 4
¢

s Fx

andlet's constructthe operator 1+ €€€, ¢ isasmallrealnumber. Acting from the left we have

(1+eee) g =¢ 4

sowe get anapproximate small rotation of vecto®, . Note the sign othe numberé, for e<0 we
would have a counterclockwiseotation. Operator 1+ €66 rotatesall vectors in the planefor the

same angle so, by successive applicationon €, we get rotated €, first, then rotated newly

establishedvector, etc. This justifies the definition of exponentifdrm of the rotor. each rotation is
the composition of a large number sfmall successive rotation®f courseall this is well definedor

infinitely small rotationsand for bivector B we have
(}
Notice (or show i) that rotor will not changethe bivector IE, for example,soit is an invariantof

rotation. Thefact that the blade can be invariamirectly leads to the notion of thproper bladewith
real eigenvalueswhich is a generalization of ¢hcommon concept of eigenvectors and eigenvalues

31"00

(seein lineartransformationg. Rotatethe bivektor €€, in the planespanned byectors € and €, .
What do you notic@
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e ~(1+eae) e

Rotations are linear (orthogonatjansformationsthat are usually described by matrices in
linear algebraTo find the invariants of these transformations stedythe results of action amhatrices
on vectorsonly. Formatrix A (that represents a linear transformatiprmve seek for vectord such
that AX=/ X, which provides solutions for the eigenvalde'b C. Here we see that in geometric
algebrawe can find invariants with respect to a bivectdor any bladg. Instead ofthe concept of
eigenvector we can introduce the conceyitthe eigenblade (which includes eigenvectors)is allows
reducing of the set of eigenvalues of transformation to the setaf numbersandgivinga geometric
meaningto the concept ofeigenvalueslinear ransformations will be discussed later in the text

£ 0=0A"— OA

Roor - R has the sameffect asthe rotor R, but, the direction of rotation is not the same

for example vector € canberotated to - €, clockwiseby /2 or counter clockwisdy 30/2, so we
seethat rotor clearly shows the direction of rotatigftry it with matriced). For example

@iz gl rh G -/)/2’

minus disappearslue to the "sandwich" formFor each rotation we have two possible rotdfsd
what double covepf a group ik

2 G o
0 i o 3 .

Note that, due to the halfangle rotor

L -
e? =codj /19 -Bsi(/ /2
has periodicityof 4 instead of 2p . Often for such objects we are using the naongt spinor

Geometric algebra is an ideal framework to studyialisual properties of rotatiog) but it would take
a lot of space

Example Let's rotate (see[18]) someobject in 3Daround € by p/2, thenaround €, by p/2, what
we gef? Do that using matrices also
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\/E( Jl)\/i( Jz) 2 9 J \/é \/é '

so we haverotation by 2p /3 around thevector Vv .

Question What is the meaningf €” = 41?In 2Dfor | =€€, we have(V is a vector in the& &

plane you can choos& =€ if you like
grl2vei #2=

and usinganti-commutativity

erlvei 2=k g = v,
then multiplyingby v'* on the rightwe get aclear meaningRotor €”’? transforms the vecton to
the vector - v, i.e. rotates it by- 0 (sign is not important here)Of coursewe also recognize the
rotational properties of the imaginary unit the complex plane (selected in advancebut bivector
definesthe rotation planeandwe could writeidenticalrelations without changein anydimensionin

anyplane In fact, bivector in the exponent of the rotepuld depend on time, formulas are still valid,
rotation plane changes witthe bivector. Ty to do that with thedsquareroot of minus oné.

Let's say you want to finithe rotorin 3Dthat will transform the orthonormal coordinate bas

€ to orthonormal coordinate basisf; . We need a rotor with the propertyf, = Re R. Let's define

R=a - tﬁ, where B is aunit bivector, then R =a + 8. Notice two simple and useful relations in
3D

ae=3 and é_elgez E
(prove ii). It follows )
JeRe=3a -tB 4 a R,
and
4fe= AReRe=R4a -H 4= R1,
o)
1+a fe
RE——— =—, A ¥ g fe
l+é_ fig‘ AA i

Rotdion by £ can betreated as a special cas8how that the rotor can be expressed using Euler
angles as

e' elzflze' ezﬁIZ e'elzﬂz_

Let's comment the historical role of Hamilton, who in the 19th century found a similar
mechanism for rotationsquaternions There is a connection between quaternions and formalism
described herenamely, quaternions can be easily related to the ubitvectors inCB. However
guaternions are like extended complex numbehgy do not have a clear geometrical interpretation.
Moreover, they exist only ir8D. Hamilton wanted to givea geometric meaningo unit quaternions
and was trying to treat themsavectors which did not gve the expected resulidut unit vectors
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i, j, k inherited their nameslue tothese attempts) The formalism of geometric algebra is valid for

any dimension Every calculation in whictve use quaternions can be easily translated into the
language of geometric algehnahile the reverse is not trué¢dowever quaternions are still successfully
used in the applicatiomfor calculating rotationfor example in computers of military and space
vehicles as in roboticsIf you implement the geometric algebra on computer quaternions are not
needed

Unit quaternions have theproperty ijk = 4 andthe square of each of them K. It was
enough to come up witlobject that squares tel and anti-commute to describe the rotationgn 3D

successfullyThe reader can check that replacemetts -€,,] - €,K - -g, generatequaternion
multiplication table

Certainly it is good to understand that bivecto€, =€,& has a very clear geometrical

interpretation, while unit quaternion k (like imaginary unit or matrixpas not Unfortunately,the
concept of geometric objects like bivectsioften strange to traditionally oriented people.

Once we know how to rotate vectors we can rotate any elenwrgeometric algebraNote
especially nice feature of geometric algebohjects that perform transfomations6 & 2 LJS Ndreli 2 NB& € 0
also elements othe algebra Let's look at the rotatiomf versor

RabcR= RaR RbR RcR{ R3R RHR R,

which clearly shows how the rotation of versor can be reduced to the rotation of the individual vectors
and vice versaEvery multivector is a linear combination of elements of Cliffiasis whictelements

are simple blades, so, they are versors. We see thalastistatement is always true, due to lingty.

The reader is advised to dotations of different obpcts inCB. Findon Internet the i S Ngnbal

locks @

It is interesting to look at the unit
sphere in 3D and unit vectors
starting at the origin of the sphere
Each rotation of the unit vector
defines the arcon some main
circle Quch archesif we take into
account their orientation can
become a kind of vectors othe
sphere and composition of two
rotations can be reduced to a
(non-commutative) addition of
such vectorsSee[4].

If we take an arbitrary
element of even part of algebra
(for example in 3Dnot only the rotorswith the rotation we get the additional effentlilatation, which
is exactly the property of spinar§Spinors are closely associated with the even part of algebra
CGeometric algebrahides within itself an unusual amount of mathematigkich is branched out in
different disciplineslt's amazing how the redefinition of the multiplication of vectors integrates into
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a single formalisrmany different branches of mathematicSpinos, tensors, Lie goupsandalgebias
various theorems of integral and differential calcure united tebry of relativity (special and
general) quantum mechanicgheory of quantum informationX one almost cannot believeMany
complex results of physical theories here become simple and get a new mesliaingell's equations
are reduced to three letterswith the possibility of inverting the derivation operator over the Green
functions, hard problemsn electromagnetism become solvableeé [2]), the Kepler problem is
elegantly reduced to the problem of the harmonic oscillatbirac theory inCB or the minimal
standard modein CI7 arenicely formulated(34]), not to list further. Geometiic algebrahas a good
chance to become mathematics fofture. Unfortunately; it is difficult to break through the traditional
university(and especiallfigh schodl prograns.

. ) One can study following
4 =—H4n=nmann | pictures to better understand

------------------------------------ = RaR’ rotations.

—————— L ~-~~"~~~
/" circle parallel a AN
“.._ toplane e

-ﬂ-R r L
\ la|=la’|=|a
a =—mam \
\
\
mSAH
- m©@n definesthe plang
basic pl direction of rotationand the
asic atfe .
m ,ﬁ, rotation angle

- a, is invariant to rotation,

i ) only a, is rotated by2/
4 =—HdH = HMAHH . . o
- The same picture is valid in

- any dimension (in dimensions

(’/ circle parallel higher than 3 there is a

subspace invariant to
""“‘R ------------ rotation).

- Itis easy to obtain any
composition of rotations in the
same manner.

- Geometric product of vectors
gives us the possibility to
maintain rotations easy.

-
-
-
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~~a
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Contradions

We defined the inner producthat for vectorscoincides with the usual scalar multiplication of
vectors.In general, in geometric algebra we can define various productddahestr grades otlements
(outer product raises it)lt appearsthat the bestchoice ideft contraction. For the vectors it is just as
the inner product but generallyallows avoiding various special casgsch as, for example, the inner
product of vectowith the real numbe. Here we will mention just a few properties left contraction
see[19] for more details The idea is that for any twblades (includingreal numberg we define a
oscalara multiplication that will generally reduce the grade of the blade that is on the right in the
product

gradg Ai§ =grad¢ B -grade ),

whence immediately follows that the left contraction is zerograde( B) < grad¢ A. Forvectorswe
have
aub 1a b,
andgenerally foblades we have
(AzB) € A(EQ.

xi(a @) (x dd (x4 ¢
while in general we can write for anyultivector

A A (A (B)

k,l

Usefulrelation for vectorsis

where we have geometric product between homogeneous (of the same grade) parts of the
multivectors Theleft contraction for blades A and B ( AUB) isthe subspacén B orthogonal to

A. If vector X is orthogonalto all vectors from the subspace defined by the blade then
XUA 9B. The left contractiorcanhelp us todefine the anglebetween subspacesBecause of the
generality clear geometric interpretatiomnd benefits for use ooomputers(there are no exceptions
soif loopsare not needed) left contractionshould be used instead of "ordinaririner product You
can also define the right contractipmowever, due to the properties of duality, it is not really
necessary

Commutators andorthogonal transformations

Let's define thecommutatoras a new kind of product ofmultivectors (here we usethe
characterA to avoid possibleonfusion withthe cross product

AAB1(AB -BA/2.

Thisproduct is notassocative, i.e. (AA B) AC =A @B 8) is not valigbut we havelacobidentity

(AAB)AC {C A B (B QA AN.
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We have [frove i) general formula (A isbivector, not necessarily a blageX is multivector, a is
realscalar, X is avector)
ax=aeX

XX=XX »x A
AX=AX A XJ A+ Xx

Here we are particularly interested in commutators with bivector as one of the fadamely
commutators withthe bivector keep the grade of multivecto(if they do not commute with )t

grade( B=2 Y grad¢ XA B =grade ¥ X ABC,

Instead of proving it let us look tite examplesilf bivectoris B = g € , thenvector e, commuteswith
B, but for thevector € (grade 1)we have

BAg (ge¢ -pef/2 =,
grade 1 again.et us take the series expansion

e Xe?= X+X B (X B B (( X BAPBABRI: ..,

so if we take amall bivectorof the form elir:, Bt 41, we see that we can keep only twerms

e 2 xeBRo X o X K
Preservation of grades is important herfgecause we want to, after th&ransformation, have a
geometric object of the same typ&he last transformation we see as orthogonal transformation
which will slightly change the initial multivectétere we must mention that we lodkr the orthogonal
transformationconneded to the identity transformationwhich means that they can be implemented
inthe small stepsReflections do not meet this requiremente cannot perform "a littlef reflectiond ®
Such small transformations are called perturbatioterefore, we can conclude that the small
perturbations of elements of geoetric algebra are to be performed by rotors

Note that orthogonaltransformaions do not permit to just add a smallvector @X to the
vector X, orthogonaltransformaions must keep the vector length. So we must havex@/x 6.

Generallysuch arelement(aX) of geometrt algeba has the formax = x UdB, where dB is a smalll

bivector. We can shovit
xCéde) x:(XL’Jd% u x ¥ B820.

dx=xuB (x & BY/2 x= E

It follows nowthat

and we have the desired shape in the form of a commutdtanay seem that the restriction on the
rotations is too strictit looks as if we cannot do a simple translation of a vedtowever here it just
means that we need to find a way to describe translations by rotatitins possible in geometric
algebra, but we will not show it herésee[19)]).

Here we will stopbut noting thata small portion of formalism just showleads to Lie groups
and algebraslt can be shownthat every finite Lie group or algebcan be directly described in the
context of geometric algebrd.he infinite case is not yet absolutely cldaut it would be unusual for
a result to be differentAnyway another nice part of mathematics fits perfectly into the geometric
algebra Anyone who seriously studies the geometric algebra was initially probably astonished by the
fact that different branches of mathematics show a new lighthe language of geometric vector
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multiplication, but with time one gets usedo it and does not expect exception®ne cannot help
wonder what our scienceould look like that the power of this magical language of mathematics was
understood and accepted a century adand it was all at our fingertips

Complexnumbers

Let's specify the vector @D r = Xg +Y§. Let's use the existence of the inverse and write

r=e(x +yeg) = x i i g3

andwe can see that we get a complex numbgs yi, but with non-commutative "imaginary unit"
The first thing to complain aboutYsYeg but yourimaginary unitis notcommutative and quantum
mechanics cannot béermulated without imaginary unit X & Bnmediately you see that the "critic"
commented somethindie knows almost nothingbout, because first, quantum mechanics works
nicely (and even better) with real numbevgthout the imaginary unitbut one should learn geometric
algebrathen learn the formulation of quantum mechanics in the language of geometric aljfelidoa
only that we can without using imaginary unliut many relations obtain a clear geometric meaning
andthus provide a new insights into the thedrythe language of geoetric algebraAndsecondnon-
commutativity of our bivector i =€ e, actually becomes an advantagi enrichesthe theory of
complex numbersnd, as we argepeating until you get boredjives it a clear geometric meanirigpr

our complex numberz = er we have(due toanti-commutativity) z = re,so
zZ=gre=feg ¥ % § or
z+7Z =& e 2%r O,
z-7Z =& rre 2®r @,
etc. We see that the operations on complex numbers are, withooy aroblem, confined to the
operatiorsin geometric algebraDefine derivative operator ir2D
H H
Dle~ ¢,
pX M
andintroduce acomplexfield y =u v, i =ee,. Simple calculation showgo it) that derivation of
the field is
auu M 0 du uj
By = — 0% .
éﬁ& [ _@ y |
Sq if we want the derivative to be identically zeran@lyticity), CauchyRiemann equations
immediatelyfollow. Note how anti-commutativity of unit vectors givescorrect signs So,analyticity
condition in geometric algebra has a simple foByw =0, andwe can immediately generalizeto
higher dimensionsAnd yesthis is justa right moment to stop and think Let the advocates of the
traditional approach dall that usingjust commutative imaginary unitActually, it's amazing how this
old, good imaginary unliasmade a lot of work, given the modest possibilitiBsit, it is time to rest a
little, let bivectors, pseudoscalars .do the job.It should be notedto makeno confusion the choice
of the planee g is unimportant hereWe cantake the bivector like (g +¢&)( € - g), normalize it
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and we get thenew cimaginay unitd But in thenew plane We can do that irD also,and take, for
example =e,g,, all formulas will be validThe planegeg, is just one ofinfinity of them but

geometrical relationships in each of them are the salivie can solve theroblemin the plane g &,

andthen rotateallto the planewe want we havepowerfulrotorsin the geometric algebia. And when

it is saidapowerfuldthen it literally meanghat we do not have to be experts in the matrix calculations,
here something like that an advanced high sdnstadent can makeéWe can rotate any objechot
only the vectorsLinear algebra is the mathematics of vectors and operamesmetrc algebrais
mathematics osubspaceandoperaionsonthem. Anyone who uses mathematics should understand
how important it is

We will show here thabne can gesolutions of the equatiorDy =0 by usingseries inz.
Noticefirst aneasy elationfor vectors
abc+ bac £ ab ba c 2=a L,

wherein the inner product has priorityOperator B is acting asvector (expressions likerP are

possible but then weusuallywrite rb , which does not mean the time derivativieut indicates the
elementthe derivation operatoiacts on and givesdesired order in products of unit vectdrso take
advantage of the previous relatida very usefutalculatior)

bz = fer) 2¢ rOBr- 2d 2¢ C

Now we have
B(z-z) = (@ @(z " o

so, Taylor expansioabout z, automatically gives the analytical functioigain in anyplane in any

dimension It is not only that geometric algebra contains all the theory of functions of complex
variables (including integral theoremsas a special case of the fundamental theorem of integral
calculusin geometic algebm), but also extends and generalizes it to any dimenslemot ths a
miracle? And we were just wondering how to multiply vectotsyoustill havea desire to pronounce

the sentenceaYes but X gplease, go back to the beginning of the textd see how althis began
Time of geometric algebra yet to comehopefully. The children of Adam and Eve will again speak
one languagewe will have one language of mathematiBsark Ages of matrices and coordinates will
disappearand will be replaced by the time of synergy of algebra and intuitively clear geametry
Students will learn much faster and be superior to today's "expeftisti when we learn computers to
"think" in this magical languagdimagine a computer that knows how to perform operations on
subspaceschildren will be able to play with geometric shapes now play a car racingy other
computer gamesThe properties of triangs, circles, spheres and other shapes we will learn through
play, on computes, interactive Language of geometric algebra is so powerful that it'@artomate”
even the process of proving the theorerfitiere's still a lot of work to dobut the possibilities are
there). We have reasons to think that geometric algebra is not just "another formalism”, but it offers
the possibility of deep questioning the very concept of number

Spinos

Let's look at the elements of algebra which in the "sandwich" forms do not change the grade
of vector (i.e. vector transformto vector). Amongthem are the transformationsvhich rotate and
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dilate vectors we usually call thenspinoss. Let's look atmultivectors ) with the property (v is a
vector)
yvy'= RWR, I A RR"j§

which is precisely the rotation of the vector with dilatatidhwe define U 1 R’j/ , previous relation
becomes
Uw”=rv,

and we will find the elementJ . Show that pseudoscalars of odd dimensions comnauteé ofeven
dimensionsanti-commute with vectors. Other gradesdo not possess such a general property (real
scalars commute)We see thaelementU induces a pure dilation of the vector and that is possible

if it commutes or antcommutes withV , soit follows that elementU is, generally,real scalar, or

pseudosalar, or combinationof both: U =/, + /I . Now, using definition ofJ , we get
U=/ +{,[Iv &) # * v
INCB(p=3, q =0)pseudosalar | =) commutes with all elements of the algebaad reverse is

| A= -4 , middle termdisappearsso we have

15+ 5 =Y R( ., f4),
andit is easy to check

yVER(AH (L AR (3 T L] RRY( L= )RR T RE

In gener# note that
vAS()"™ R, v ARy A3

(prove it, at least forthe signatures (3, 0)and (1, 3) and we ca findolutions (find them) dependent
on the parity of number(n-1)(n 2) / 2.

Spinors in geometric algebra, as elsewhere, can be defined by (left) idehésadfebra but
here we will not deal with if[7]).

A little of "ordinary" physics

Let's see howve can solve the kinematic problem in its generality using simple calculations
and intuitively clearConsider the problem adccelerated motiorwith aconstant acceleration
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The problem is easily reduced to relations

vy, H, v+y, 2r/t,
wherein the second relation defines the average speed veé&terr /t, so we have
(Vv+y)(v -y) 2ra
V-V WV WY, VE -2ty 20 & 1 4,

where by comparison of the scalar and bivector parts we get

V- =2 ay,
vV, Qv = &,

i.e.the law ofconservation of energgnd thesurface of the parallelogram theorerfor theprojectile
motion problem (a = g ) we have (figure on theght)

@ 6 ¥ v M MOisn(Z) [r ¢ @

_ Vo o
r= : sin(2g) ,

andthisisthe known relationfor the range Notice how propeties of geometric product leai simple
manipulations Another example ithe Keplerproblem Immediatelyafter settingthe problem, after a

few lines we obtain nontrivial conclusionghat textbooks usually pugs hard part at the end
Examples here are to show how to obtain solutions without coordinate systems and coordinates
Unfortunately, research showg[21]) that many physics students see vectors mainly as a series of
numbers (coordinatesandit is a sad &flection of the current education systenregardless oplace

on the planetSuch "attitude" does not provide a good start for a seriprfessionalsThe connection

of linear algebra angeometry is usually quite neglected/ith the geometrc product algebraand
geometry go hand in handinstead of treating the vectors as the key elements of algelveahavea
whole range ofobjects that are not vectorsand have a very clear geometric @aning We are
calculating with the subspace&hd in any dimensiarsomething like that is impossible to achigust
manipulatingby coordinates Emphasize thjgmpossiblé Russian physicist Landdamous for math
skills ended up in Stalin's prisodfter his release from prisorhe said that his prison was welcome,
0S0OlFdzaS KS KFR f SINYySR { 2PhyNitizs ofiihs fyittir@ willbéroskiDedizt dza
than Landautheywill use linear transformations in geometric algebratead of tensor calculughey

will calcuate faster regardless of the dimension of spaeéthout using coordinateandwith a clear
geometric interpretation at every stepandau was also famous by the method of accepting students
He would said to the young candidate: "Here, solve the integMahy have failedin geometric
algebra, there is a theorem (fundamental theorem) about integration that combines all known integral
theorems used in physics, including complex adesat imagingLandau would be really surpriselde

was a typical representative of the mathematics of the 26émtury, although in his time already
existed the new mathematicét existed but almostcompletely neglected and forggen. Part of the

price paid(and we still payt) is a rediscovery of what is neglected and forgotteauli discovered its
matricesg we have continued to use matricéghey say that the geometric algebra is rymmutative
andthat thisdiscourages peopl&Vhat aboutmatrices? Not only that they are noicommutative, they

are unintuitive. ThenDiracdiscoveredhis matrices, ideal for geometric algebragain we continued

with matrices And many authors, on various occasionediscoveredspinors even giving them
different names Thenwe decided to makéast spaceraftsequipped with computerandfound that

we haveproblems with matrices Thenwe started to usequaterniors and improved thing in some
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extent We can find a number of other indicatigrand, after all, it is obvious that many of the problems
smply disappear when geometric product is introduciedtead of products ofsibbs.In spite of
everything one of the great authors in the field of geometric alggb@Garret Sobczykyrote inan e
mail:

ol am surprised that after 45 years working in this area, it is still not generally recognized in the
scientific community. But | think that you are right that it deserves general recognition ... Too bad
Clifford diedso young, or maybe things would be different niow

Words and sentences

Let's lookjustfor illustration how awordsiin geometiic algebiacan have a geometric content
For examplegworddabba.

abba=a’b® = al abA =
(ab & BlabG & @bh=(DYP -
(aCb)2 e té aziaz(coszq sirﬁrz)',

andwe have welknown trigonometric identityThis is, of course, just a ganbeit in geometric algebra
it is important to develop intuition about the geometric content writtémexpressions Due to the
properties of geometric product structure of expressions is quickly manifestedoraselations
betweenthe subspaces, to be an element of subspace, orthogonality, to be parallel, etc.

Let's compareexposel to the matrix approachWe have seen that iBDwe can represent
vectorsby Paulimatrices Try to imagine that we are not aware of tut we know about the Pauli
matrices (from quantum mechanicd)e could write the wordibbain the language of matricesve
couldresolvematricesin symmetric and antsymmetric partgit is custon), but try to derivethe sine
and cosine of the angle and the basic trigonometric idenlityousucceedit is possible)how would
you interpretthat angle? Andmore important,howto even come up with the idea to look for an angle
just looking at matrices? It is hard, for sure, but with vecibis natural andstraightforward.That is
the main idea: language of matrices hides important geometric conténie, physists knowthat
Pauli matrice have to do something with therientation of spin,but generally problem of geometric

interpretation still remainsHere is one morexample We have univectors m=(g +g)/~/2 and

n= (e2 +%)/x/§ in 3D It is not difficult to imagine or draw thenthere is theplane spanned and

bivector m@n in it (bivector defines the plane)lmage again that ware usingPauli matries, but, as
before, without awareness that they represent vectors in 8ie cannot even know it if we do not
accept the geometric product of vectgrSomeone could really investigate a linear combinations of
the Pauli matricesevencome to theidea to look atanti-symmetric part of products of matrices

something like(&£, sE s E}/ B, where £, =( sE+ 9EJ/2i I yiR=( sE+ 9E/2. We should
now calculate itso, we carcompare neededaalculation withmatricesand simplecalculation of the

outer product(in fact, there is no need to calculatiee outer product we have thegeometic picture
without effort). Whatever bivector is

m@n {e €) (@ g¥2 ( g2 ,eet ,e)éR.

Fortunately computer can help here witmatrices (pu see the problem?¥0,anti-symmetric part of
the matrix produd is
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Now, how,without connecting with vectors iBD,to interpret this matrix as theplane? Or findthe
anglebetween- what? It is easy to express formulas fra@B via Pauli matrices, but matrix form to

vectorsg it could betricky, especially for the blades of higher grades, or general multivedtarguage

of matrices blurs the geometric conténin quantum mechanics with Paulimatrices we need the

imaginay unit, and people say thatmaginay unit is necessario formulate the theories osubatomic

world. This often leads to a philosophical debase®l questions about thereal natured of the world

we livein. In the langage ofgeometrc algebia imaginay unit isabsolutelynot necessaryquantum

mechanics can be beautifully and elegantly formulatisthgreal numberswith the clear geometric
interpretation. Besideghe real numberscomplex numbers and quaternions could dkinterestin

guantum mechanis, but it is clear now, they all are natural part@B, as wediscussecarlier. In the

article[1], author commentséX instead of being distinct alternatives, real, complex and quaternionic

j dz yGdzyYy YSOKIFYyAOQO& | NB KNS STFhared® (séfdl re@afkohthed A y I€ S
FrobeniugSchur indicato in this article True, there is no geometric algebra in the cited article,
although there is$ NJvtWisign algebra Ay GKS (A Gf So wltliekedtdidedifriknmh y 02 Y Y
[28], onethat should be known to all mathematician and physiciststortunately; it is not.

oGeometric algebra is, in fact, the largest possible associative division algebra that integrates all
algebraic systems (algebra of complex numbers, vector algebra, ralggkra, quaternion algebra,

etc.) into a coherenmathematical language that augments the powerful geometric intuition of the
human mind with the precision of an algebraic systefio be honest, division algebra or npit is
unimportant. It unifies and it works!

Lineartransformdions

Often we are interested in the transformations of the elements of algebra (eg, vectors
0 A @S OJit@ dlier>elerdents in the same spacd&mong them are certainly the most interesting
lineartransformations Let's look linear transformatiof which translates vectors into vectonsith
property

F(aa+ &) = Ea) +FpH, ,a L

We can imagine that the result of such a transformation is, for example, the rotation wéther with
the dilatation For such a simple picture we do not need vector componékisther example may be
arotation:

F(a)=R(a) !RaR.
We have seen that the effect of rotation of the blade is the same as action of the rotatiagach

vector in the bladeso we require that all of our linear transformations have that property, which
means

F(a@b) =F(a) &b).

Considering the linearansformationthat gives back a vectave seethat the form of outer product
is preserved Suchtransformation have a special namsutermorphismThe action of two successive

transformations can be written aE(G(a)) 1 FG( a) , Which is handy for manipulating expressions
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If for linear transformation F:V - W there is an adequate linear transformation

F:W- V,we'll call ittransposedransformation(adjoint). Here we willrestrictto transformations
F:V - V. We say that they areransposed because we can always find a matrix representation in

some bais and seethat matrix of F is justtransposedmatrix of F (see[22]). Here isan implicit

definition of adjoint
adHb) #a) b,
for any two vectorsaand b . Define now reciprocal base vectoes with the property

dég d.
Herewe are using orthonormal base$ positive signatureso
d=g Ye @ ee (;
and definition is motivated by two facts: first, we want to use tBéstein summation convention
. n .
€e’ g ee
i=1

and, secondywe want the ability togeneralize easil\Explicit form of the transposed transformation
can be found using the orthonormal has

e ®(a) #(e) &
F(a)=€aHg),

where summation isinderstoodandthe inner product has priorityDesignationF is not common F'
or F* is, but sometimes we usé for linear transformationsso nice symmetry in expressionsould

so we have

occur if we use F. Furthermore I_:(a) is not amatrix or tensor, so designationhighlights the

difference There cannot be confusion witlifford conjugation in the textwe areconsistentlyusing
format italic for multivectors For transposed transformation of the "product” of transformations we
have

FG(a)=GHa),
(see literature). Transformaions with the property F=F are symmetric. Important symmetric
transformaions are FF and FF (show tha).
Let | to be the unitpseudosalar. Beterminant of lineatransformaion is defined as

F(1)* 1 detF, detFi ..

This definition is in full compliance with the usual definitidvotice that this relation looks like
eigenvalue relation. In fact, that is true, pseudoscalar is invatgigenblade) and determinant is an
eigenvalugreal!). An example is3D rotaion

R(j)=RjR* =jRR* YetR RR" 1= j g;

what we expecfor rotors (for rotation matrices too). Again, notice the power dbrmalism: without
components, without matrices, by simphaanipulation, we get an important resulPseudoscalar
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represents an oriented volume, so linear transformation of pseudoscalar is simply reduced to his
multiplication by real numbeDeterminantof transposed transformatiois

F(1)=1 detF Y
detF= HI)I* {RI) ) &H ) detr

where we take advantage of the fattat determinantis areal number, therefore has the grade zero
For thecomposition of transformations we have

(FG)(1)=FG(l) =HI detG (=det$ ) | =detFdel

and it iswell knownrule for determinantsbut recall how much effort we need to prove that in the
matrix theory Here,proof is almost trivial Beginner needpretty much time to becomekilled with
matrices Finally she(he) gets a tool that cannot effectively cope even with rotatibinat time he
could use to learn the basics of geometric algebra and get a powerful toohdoy branches of
mathematics And geometric algebra todathanks toGrassmann, Clifford, ArtitdestenesSobczyk
Baylisand many other smart and hardworking peopleee detailed list at the end of the textas
become a welbeveloped theory with applications in many areas of mathematics, physics,
engineering, including biology, studies of brain functions, computer graphic, robotics, etc

We will state without proofthe reader can prove )isome useful reltions Forbivectors we
have

B&(B,) #B) Bf.
This can be extended to arbitrary multi vectais
(AF(B))=(F(A B
Now we will define the inversef linear transformationFormultivector M we have
IM det F=H1 )M = KI KM )),

where we used the fact that inner product with pseudoscalar lwaneplaced by geometric product
namely, there isno additional grades igeometrc product (show ij). Let's take the multivector

A=1IM so we get
Adet F=H I'{1'A)),

and similar relation can be written foF . It follows

F(A)=IF(1 *A)(detR™

Fi(A)=IF(1 "A)(deth ™" .
For rotors in CB we have R(a) = RaR, applied to any multivectogives R(M)=RMR" and
R(M)=R"MR, and usingdet R=1

R*'(M)=jR4 MR =R MR R( M),

ie, the inverse of rotation is equal to the transposed rotatidhis is actually the definition of each
orthogonal transformation (transformation with determinaritl). For nice examples se&q].
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Egenvectors and eigenblades

Goncept of eigenvalues anetigernvectors should be known to the readeBriefly, for an
operator (matrk) m we candefine eigenvalueg, andeigenvectorsv; as follows

my=/y, [/ IC.

In geometiic algebm, we say thatlinear transformdion (function) haseigenvectore andeigenvalue
/1 Aif

which entails

det(~ /1) =C
so,we havea polynomial equatior(secular equatioh Generally, secular equation has roots over the
complex fieldbut, we have algebra over the field al numbers anda is not desirable to spread to
a complex areaFor example, how to interpret the produev’:Lel, which is not an element of the

algebra Fortunately this is not necessann geometrtc algebm, because we cagive a whole new

meaning to complex solution§or this purpose, we introduce the conceptafienblade Namely
vectorsarejustelemensof thealgebawith gradel,bdzii ¢S KI @S irpedm&rBaigebnY o3 X
which are not defined in the ordinampheory of vector spacest is therefore natural to extend the

definition of eigenvalue the other elements of algebré&orablade B, with grader we define
F(B)=/B, /I .

In fact, wealready have such a relationshigemely, for B, = | we have areigenvaluedet F, because

of F(I ) =1 det I Accordingly pseudosalars are eigenblades ofinear transformaions. To explain

the conceptof the eigenbladedt's look at the following examplésee[18]). Let's specify a linear
function with the property

Fle)=e, He) =&

(recognize rotatiof?) so, it is not difficult to find a solutiomising matricesMatrix oftransformation is

& -1
a o
with the eigenvalues®i, i =«/_-1, and eigervectors € ° ie, (use secular equation andprove). In

geometricalgebe, for the blade g @ e, we have (notice elegance)

Flede) =Fe) €e) ¢ (B - e =

so,blade g D¢, is eigenbladevith the (real) eigenvalué. Our blade is invariant, but we know that

from rotors formalisnh There is no need fdmaginal unit, we have our bladeNotice that vectors in

the plane defied by € e are changed by transformation, but bivectors are not. You see simple
mathematics and important resultn standard methods, usiny G NA OS&as> (GKSNB Aa y?2
Why?Simple there is no geometric produc§o, try to find suchresult using matrice. All those who

like to comment on geometric algebra by sentencea¥ass butimaginary unit inquantum mechanics

Xdashould think twice about this simple exampéand when they come to the conclusion thait does

not make sens& qwell, what to s? Just think againThis is the question of how do we understand
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the veryconcept of numberProbably Grassmanmand Clifforddirected uswell and their time is yet to
come

If orthonormalbasisvectors€ and e, areeigervectors oflinear transformaon F, then

e®(e) = (/%) /=

Apply the previous relation to the symmetric linear transformatiansl show that theireigernvectors
with different eigemvaluesmust be orthogonal.
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Euclidean 3D geometrc sum of two bivectors
algebra CB) ‘

Generallya multivector in CB can be rewritten as
M=t & j bjit tb | A ees,
where for threedimensional vectors we are usibgld format here. We have seen already that the
unit pseudoscalarj commuteswith all element of thealgebia andsquarego -1, making it an ideal
NELX  OSYSyid F2NJ GKS AYIl 3AYIl NEin GayPséudocalariwithsdgh NS Y I
propertieswill appearagainin CI7, Cm m ZHep¢ we usene more veryuseful form of multivector:
M=Z +, Z € b F X =n.

ElementZ obviously commutewith allelemensof thealgebia (belongs to thecenter of the algebra
This feature makes & complex scalar. Complex scalaris reallyacting asa omplex number, aswe shall
see belowThis is the reason that we wrifgl C , although obviouslywe have to change the meaning
of the symbolC , i.e. we replace the ordinary imaginary uniby pseudoscalaElementF is acomplex
vector, with the real vectors as componentsThe choice of designatioff ), as well as for complex
scalas, is not without significancenamely, due to a complex mixture of electric and magnetic field
electromagnetsm. | SNB>X 6KSy ¢S & lréal scaNfi IDévectorgd® thefiSdary
combination. When a real element is multiplied by pseudoscglave get an imaginary element, so,
sum of real and imaginary elemengives a complex one. For example, (vectol) is real, t + X
(paravecto) is real, t+ jn (spino)) is complex, jn (bivecto) is imaginary,F =X +n (complex
vector) is complex, etdNote that the multivectorcouldbe written as

M=t & jn b+t x jb ),

S0,it is just a complex number, with real componergaravector$. Useinvolution (which?)to extract
the real (imaginary)part of multivector. How aboutZ and F ?Or t+ jn ?

The reader is suggested to write all three described involutions in this new ¥wmcan use
a complex conjugdion. As anexamplewe look at Clifford involdion (i.e. Clifford conjugationmain

involuton) M =7 F
(M+M)/2 Z &M),, (scalarpart)

(M- M)/Z + (M), (vector part).

Due tocommutativity of the complex scalar Z we have
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MM=(zZ #)(z F) ZZ F* (ZF)(ZF) MM,
where
Z?=t> P> 2tbj, F?2=x* -n* Hxn nt) x’=n’ 2K n.

Here is result to remembesquare of thecomplex vector is a complex scalar. It meansthat element
MM is acomplexscalar. It can be shown thalMM is theonly elementof form MM (here M stands
for any involution of M , MM is referred as the square of the amplitudg that satisfies
MM =MM [C.We have

(z+F)(z ¥) 2z F E+FF,
sowe havetwo possibilities

Z=Z, F =F orZ= Z, F E,
which differ only in theoverallsign Anyinvolution that changes the complex vectibre other way
changegup to overallsign) bivector or vector part, so

2

FF=(x 4n)(x i) x& n’+j(mt xn) -x* n& 2 n,

and we gebuter product of realvectorswhichcannotbe canceledit is absent inZZ + ZF  +& . So,
must be M =M . We already found thatMM = MM , but we can show that from demand that the

amplitude (any) belongs to the center of the algebra follows commutativity
MMI C YM(MM) {MM)M & (MM) M (MM MM) O,

due toassociativityand distributivity. In a special case the expression in parentheses neetbriu
zero becausghere are zero divisori the algebrag but we need generatommutativity, so it must be

zera ScalaMM is referred as theamplitude of multivector (MA in text, in fact thisis the square of
amplitude, butthat will not make confusion.

UsingMA we candefine inverseof multivector, if MM , O:
M™*1M/MM .
To find1/ MM we usecomplex numbersechnique

1 (MM)*

MM MM (MM )

where * stands for complex conjugaion, which means j- - . Technique is the same but

interpretation is not, namely, pseudosalar j is oriented unit volume, it hasintuitive geometric
interpretation.

Example 1/(1+ j)? We havel/(1+i) 1 /2 Y 1/(1+j) 1 ) /2.

Of coursethis a (TN justified
1 1§ 1]
+j (L4)(2F) 2

We'll seethat this procedure sometimes is not enoutghfind all possible solutionis geometrc
algebi, e.g.solutions for the roots of a complex numbers can be extended to complex veators

simple example is/i =g.

Important concept islual of multivector M defined as
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M™ 1 M

(do not confuse with complex conjugatidn. Note that with the dual operatiomeal scalar becomes
pseudosalar, vector becorres bivector (and vice verspAs mentioneglelement jn is abivector. We

suggest reader to expres$n in orthonormal basis and interpret it. Also, take anytwo vectors in

orthonormal basis andnaketheir outer product. Thenfind the dual of obtained bivector andheck
that this dualis justcrossproduct of yourvectors. It followsthat cross product is

X2y = W

but, we can use it iBDonly, although the term orthe right canbe defined in any dimension

multivector in 3D

- diskrepresents an
oriented bivector

- transparent
sphererepresents
pseudosalar,
orientation is
given by color

From the generdlorm of multivector in CB
M=t & 0 b+ Z=F

we see that it is essentially determined byo realnumbers(t, b)and twovectors( X, n). Bivectors
are usually represented by oriented disisile pseudosalarcan berepresented byspherewith two
possible colors to give therientation, sowe can imagine a simple image that represantigtivector
(p. 10).1t helps a lot Figurep. 10is createdin the program Mathematica For the readerexcept
imagination we certainly suggesAViewer

2

Let's look at propertiesf complexscalar F? =x* -n> 2 n.In particular, fororthogoral

vectors (X 8)we have F?1 A, and values1,0and1 are of particular interest

Recalthat jnis abivector whichdefinesthe plane orthogonalto vector n, so, for x e

vector X belongs tothat plane This is often used situatiorfe.g. complex vector of the
electromagnetic fieldn empty spacg, soit is important to imagine a clegpicture. Note thatin this

case the real value df > = x> -n’ isdetermined bythe lengths of the vectos X and . On the next
picture you can see the situation describ&tere is naa special name for this kind of complex vector
in the literature(probably?), so wesuggest the termwhirl (short ofwhirligig).
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, Nilpotensanddualnumbers
x-n=0 n  Whirl

in 1) F?=0
This means thasuch acomplex vector isanilpotent[ S i Q &
find the general fornof nilpotentsin CB (recall, F 2| C):
(z+F) 2> 2 F+# 0=
Z=0 YF?2 0 ¥ m x n OO,

(we excludeal the trivial case F =0). Notice how often we use the fornZ + F here to draw
conclusionsgit is not a coincidencdt is good practice to avoidabits ofsome authorgo frequently
express multivectors by componentspformulas lookopaque Here thefocusis onthe structure of
multivector, and that structure reflectsgeometrical properties

One simple example afilpotent is € + je, (check i). Furttions with a nilpotent as an
argumentis easyto find using seriegxpansion almost allterms just disappearFor examplefrom
N?=0 follows e" =1 4N (see belov.

Nilpotentsarewelcomein physicsfor example electromagnetic wave in vacuuisanilpotent
in CBformulation, field is a complex vectdt =E +HB, E B, ¢ 1 here E and B arevectors
of electric and magneic field. We ca define thedirection of thenilpotent N =x +n as

== -jE P x= iz 3xE n2E=1,sowe have
BN = -NkEN,(1+l%N =ON .

All this is not difficult to prove whether weecallthat x~A n Y x @ =xn, £ >xJx, X n.

There are many othdnteresting relationgsee literature) These relations have a direct application in
electromagnetismfor example

Let us noncommentthe possibility of defining the dual numbefBSornilpotent N = x +n
we havex=n, x ® 0,4 2 fd&ie@dnity A { LIAniiftgnisdavezero MA

Ot Nx =Exj,En® &

Now we can define the dual numbeas a + #&] a b . Addition of these numbers is similar to
the complex numberswhile for multiplication we have

(a+ O( 2+, = aly ,a p)

so, ford; Q+ A, B9 it is areal number. If a,= 0, 4 0 product is zerpwhich distinguishes
dualandcomplex numbersFor adualnumber z specified asz=a + &) we define the conjugaion
Z=a - A (notice,it isagain just theClifford involdion), it follows

zz=(a +8)( a- P %

andthe module of dualnumber is|Z| =a (couldbe negatiw). Noticethat there is no dependence on
b .Fora , 0 we have the polar form

z=a +b) =@ N j EF,
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here / is anargumentof dual numberCheck that
(1+/9(1-/P0 2 and (1+/9" 41 m/ )2 n N.
Forpolynomialswe have(check i)

Plat+ &) =n, n( a +P..+p(+ a)'®
P(a)+ i( K

where Pij is the firstderivaion of the polynomial This maybe extenced to analytic functiongsee
below), or to maintain theautomatc derivation. Division bydual numbers is also definexs

av B)_(a+ B g Jo( =)B JoYd
g+ 8 (¢ v -9Ud 2 ’
1 1- ;0 o
o: oj- -U
1+/0 (1+ )1 -) U /

0.

Especially,

1 0O . oAn .
%—"‘T) 8:(1'/q Fny U

and we sed¢hat Moivre's formulais valid
2’=a"(1 +A" =41 n+ Q) n Z.

Dual nlqubers are of some interestghysicsfor examplef S definéthe speciatiualnumber
(cevent) t+ XU, where the coordinatesof time and position are introducednd theproper velocity
Omoosty asul 1 MU, ut =1.Speed' is theargumentof the dualnumber,; = x/t. It follows

(t+xJQu ft xM1 v Ot £x ) + 0 x:
which meanstj=t, Xj=X #t, so we have theGalilean transformatios Velocity addition rule
follows immediately

u=1w gy (vl v )01 (¢ vy

VRV S

Here we have a problem, nametselocity vectoris not defined properlythere is no orientation)but
if we recallnilpotent direction, we can use it to specify velocity vecter= -jvU. Proper velocity now

becomesu® 1 -jvC, ut =1. For anceventiwe then uset - jxLU. It follows
(t- XO(1 -jv P &= jfx vt & 3,
and we havehe Galilean transformatios again

Sq asfor Lorentz transformaions (hyperboic numbers vectors and complex vectors, see
below) androtors (complex numbers bivectors), Galilean transformatiosi(dualnumbers nilpotents)
also have @ommonplace in thegeomety of AZ. Becausaall this is apart of larger structurgCB),
one can get an idea thatGalilean transformatios are not just approximation of Lorentz
transformatiors for small velocitiesbut some deepephysicalcontent, independent of speedBut,
such aideais just due toour special choice ofoenponent ofdual number(x, t). Dualnumbers like
t+XU could beuseful innon-relativistic physics but certainlythey arenot in accordance with the
special theory of relativityn the chapter on special relativity it is shown that Galilean transformations
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(with rotations and Lorentz transformation&)llow from simplesymmetry assumptions about our
world (homogeneity andsotropy). If there is a deeper physics behind this formalidran it certainly
does not include an explicit spatiene events But what if we choose differenthFor exampletypicd

nilpotentisthe electromagnetic wave in vacuuthwedefine f =E =B and U:( E4 )31’ onecould
investigatedual numberdike yy + AJ  yi 4 but then there is aquestion how to interpret )/ ?

According to the structuref expres#on it couldbe some sort of scalar fieJthut then we have another
guestion: what is amrgumentof such adual number, the ratio ofvector field (complex vector) and
scalarfield would be a'velocity'? Ok f S $tdp.&

Idempotentsand hyperboic structure

2) F?=1

2

For F2=x? -n®> Ewe can find a general form using the relatiéastj - sinfl j = so,

generally,we have F * f =costy jm sinhj,n° mé 1= m, where f is aunit complex

vectar. Example f =g costy +je, sinh/. Such aomplex vector can be obtained usindF_z , check

that multivector f 1 F /+/F ? has requestedproperties. Check thatp:(l + )/2 Yo P, so,
we have andempotent

Theorem 1. Allidempotentsin CB have the formp = (1 + ) /2.

Proof
(z+F) 2> 2& F+* zZ+ +7Z Y/2=F?* M/4 £ fVYL

Notice again the'Z, F " form. Thegeneral form ofdempotents isnow
p=(1 wicosh jmsinhy) /2,n* mE  Im m

Idempotenslike (1+ n) /2, n* =1(N is aunit vector) are referred asimple

Theorem2: Eachidempotentin CB can be expressed as the sunsgfipleidempotentandanilpotent.
Proof

For the simpledempotent p = (1 -FI) /2 and anilpotent N we have

(p+N) =p N Np p=N {nN +Nn)/2,

so we an see that the statement is correift NN + Nn =, which means that theector N mustto
anti-commutate with vectors which aredefining N, i.e. must beorthogonal tothem, or, pardlel to

the vector ofthe nilpotent direction = €. Theoremis proved andve found conditions for the
nilpotent.

Example p=(1 €)/2, N (& je)/z E=e % =
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Spetral decompasition andfuncdions ofmultivectors

[ S (edire quvF(l °f)/2,with the properties
u+u 4, u,u fsuu=uu D v=u.0-=u.

Note that idempotentsU. do not make a basis @B (for details aboutspectral basissee[33]), and

that we should write f =f (M) and U =u.(M), but we omit that.We canexpress ageneral
multivector with F? | 0 as
M=z & 2 JF2f z1zff? 1,

soif we define a complex scalM. =Z °Z we get a form
M=Mu, Mu.

We say that we havaspectral decompositioof multivector. Soectral decompositiogives usamagic
opportunity

M2=(M,u, M u) M2, Mu,
andwe can immediatelgeneralizethis to any positiveintegerin exponent, but to negatiwe integers
alsoif the inverse of multivector exists Prove thatin spectral basisform MM =M M s valid

Foranalytic functiongve canutilize series expansioto find

f(M)=f(M,)u, #(M )u.

Recallto find f (M) we use the complex numbers thegigwitch j - i :\/_-1 , find our function
and switch again - j.Formultivectors M =F =/F *f we have

M. = JF? Yf(M) 1’=(\/F2)u+ f( F-z)u.
Now for even functions follows

((F)=1(VF7)(u w) #(vF7) d,
f(F):f(\/F_Z)(u+ -u) i(\/F_Z)f .

Multivectorsofform M =z +, F2 N2 0K @Sy spétralidécdinposition, but using

and for odd functions

M"=(z N)" 2 n#'N,

we have
f(zen) =f( Sy,
We can look at some special cases ’
f(u)="f( 2u.



F(F)=f(u u) #Qu. H Du,
f(-jf) ( ju, ju) fEu- f(j.
For the inverse functionwe have
fr(y)=x YT(X =y Yf(x) 3 X% £(y)
If MM = 0 (light-like multivector) we have
M=z WFf=z+tzf, 2F? 9 (zz)( z+z),
sowe have twooptions
1) z=z YM 2z, M. & ¥Y(M f2z)u,
2 z= 2z WM, & M. 2z fwW) f=2z)u
Let us now sesomeexamples of elementary functions

Inverse ofmultivector (MM |, 0)is found easily

M-l_ l — M+U_+MU + Mu+ ‘!‘MU_ +li L_
Mu,+Mu  (Mu, tMu)(Mu Mu) = .MM | M M’
with the power
M™" = 1 = b L n N

Square roofs simple, toqsee[13] for different form)

JWM=s =5y 6u W My Mu (¥ u(.F+u sY/.32

or
M*™=sVvs £M)", n K.

Je= 1 &)z

Example

Exponential functioris

=évy + u,

sologarithmic function is obtained as

logM =X Y& =M M™,u, Mu _exg X)u .exgX)u _XY logM.

2

With definition | * F /|F | =F, %, logarithmic functiorhas a form(Chappell
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logM =logM| ¥ 1, j =arctar(|F| 2),
but we can show that these two formulase equivalent

log(M,)+log(M ) I+og(M ) -log(M )
- 2 2

f

log(M, )u +log(M )u

og|M |- it log=[EL i4F £ G1gFke  FiodM| 1 arctafk |20 lop 2
79918 G eTe g g v/
Examples

e®=X Yeloge dogX, (U =(1%)/2), qu = “u.
e =u, -u Yoge ®Jogl utlog 1 - jow
eloge = -pu. W exp jm) eqd j)m. u.

We leaveo the reader to explore the possibilitieand to find expressions for trigopnometric functions
We can now take the example of tipelynomialequation
M?+1 =0,
wheresolutions are all multivetors whose squarés-1. We could try
(z+F) ¢+ & # 2F F+1 68 Z & F2 VY,
and we know (see next chapterthe general solutionUsing thespectral decompostion we have

M?+1 {M.u, Mu) ur u+(ME Ju+(M au €

M2+1 =0, M2 * G

sowe gettwo equations withthe complex numbersThis was just a little demonstration of possibilities,
but reade should docomplete calculation.

We have already pointed out th&B has thecomplex andhyperboiic structures the complex
one due to | and otherelementsthat square to-1, and hyperboic due toelementsthat square tol,

unit vectors are hyperboic, for example.There are also dualumbers here (using nilpotentsit is
possibleto efficiently formulate thespecal relativitytheory usinghyperbolc (double split-compley
numbers so, it should not be a surprisi it turns out thatthe theoryis easy toformulate in CB (see
below). Unitcomplexvector f isthe most generatlementof the algebawith features othyperboiic

unit. For twomultivectorsthat have the same unitamplex vector f (the samecdirectiond)
M=z 4. f and M, =2, +2_f,
we candefine the square oflistance ofmultivectors as
MM, * (z -z f)(z &f) 7z zz (22 & hit
where h; and h, are hyperbolc inner and hyperboic outer products. If M, =M, =M we have the

multivector amplitude For h =0 we say thatmultivectors are h-paralel, while for h =0 are h-
orthogonal
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Lenma: Let MM, =0 for M,, 0 and M,, 0.7Then M,M, ., O and vice versa
I\/Ill\/|2:(|v|1+u+ -I.Nlll-'l )(MZ u+ +M2U) -Ml M2+u +M¢M2 U_,
|\le\/lzz('vlyu- +M1U)(M2 u, +M2U)- M M,u MtM,u,

sO My M,,=0 O MM, =0, Which means M, =0 && M, 9 oOr
M,, =0 && M, , 9, but both cases implym,M, , 0. The reversestatement is similar to

prove.
Whatisv-1?
3) F2= 1

Generally this kind of complex vector can be obtained bﬁ =JFE F|, we have
I1F/F| =j,1* 4 Generalformis
| =nsinhj +m coshj, n* m* E£n m.
Note that wehavea nontrivial solutionfor /- 1. In order to further substantiateve can look for all

possible solutions fon/_ = \/ c +jd, so weneed to solve the equatioriVl > = z. One solution is just
the ordinary square root of complex numbgor F =0), but more generdy

(z+F)" = Y2 2F F+% z=2Y0 ¥ Y zv w;
SO

Jetijd v jw & jb V=W -2V W,

andC=V -W, d 2vw Amazing, the square root of a compleamber is a complex vectgand

this is expected becaudbe square of a complex vector is a complex schldi)e reader is proposed
to explore the different possibilities

Trigonometre forms of multivectors

Recall that forF 2 = 0 we defined the dual numberg=a +4&J), #=0,a, 4 A and that
for @, O we foundthe polar form

z=a +b) =@ ) j EF,
where / is anargumentof the dual number

Elements f and | can be utilized talefine trigonometric forms ofgeneralmultivectors. To

take the advantages of the theory of complex numbers use | . So, wedefine the argumentof
multivector as
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o

. a|F |
J =argM ‘larctange—
cZ
Nowwe have(with the conditions of existenge|[M |t VMM ,
cosy/ :i sinj = |F|
Ml M|
which gives
M=Z + [M|(cog | siny).
Recalling thatl > = 4, generalizedVioivre's formulais valid
"gcos(ry ) 4 sin(ny) .

Notice that we have a form der complex numbersbut there is a substantial differencelement |
has a clear geometrimeaning it contains the properties that are determined by tkiectors which

M"=|M

define the vector part of the mulktiector. Using F =1 |F | and series expansion we have
¢ =& =46 B(cogF| I siF|),

whichis possibledue to commutativity of complex scalarZ . The caseF 2 =0 we discussed earlier
There isan interesting article where the multivector functiors aredefined starting right from the

properties of the complex vectdr ([13]).

Totakethe advantages of the theory tifyperbolicnumberswe use f :

57 7, 5 _
M=z + Z zf r%f— =g 6 Acosh jt sink)j, AMM=[Z Z.
(;, -

If MM =0 there is nopolar form (light-like multivectors), but then we haveM =Z (1 °f).[ § i Q&
define avelocityd J 1 tanh /, then follows

M=r(coshj + sinh) = (lg ) J * N3

If we define the propervelocity U= g(l +J ) , Ul 1 it followsavelocity addition ruléas

g di+v )L+, 5 ,@ 9, (47 )+

g 1+ (., &)@ +))IIY

9= 9,0+, Y J EI (LI %), JJ
which areformulas of special theory of relativityProper velocity irorest reference systenJ =0is
U, =1, sowe can transform to a new reference frame Byi=U, or, as in the previous example

u,uy, = uu, These formulas represent geometric relaticsrsd are more general than thosef the

special theory of relativity namely, for SRwe usualy need just thereal part of multivector
(paravectors, see next chaptér here we have bivectors too

Using thespectral decompositionve have
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M=r fl +1) ku, ke . KY. fg) ° K-
where (here we useln X * log, X)
K=J@v¥)/(1 9. / InK
isgeneralizedondifactor. It follows
(K1u++u-/ Kl)(K2u++U/- KZ) :KIKZU +LH-/(K1K2) W Kj.:KZv

which isthe exact fornulafrom the special theory of relativitandit is analogous t@elocities addition
rule.

It goes without saying that th@jeometrc product gave us the possibility of writing a
"relativistic" formulas without the use of Minkowski spacdf Einsteirky S ¢ (G K G X

Spealtheory ofrelativty

The reader coulthke advantage of the previouhapterandapplyit to multivectors ofform
t+ X (paravetors), and so immediately get the necessary formalAnyway, we have a lot to
comment

The Special Theory dRelativity (R) in its classic formis the theory of coordinatesand
especially important is the concept tife velocity If we findphysical phenomena in which the notion
of velocity becomes questionabl¢hen application of SRwould be questionabletoo. Geometric
algebra does not substantially depend on the specific coordinatbgch gives the opportunity to
consider thegeneralgeometric relationshipsnot only relations between the coordinateshich is
certainly desirabldecause physical processes do not depend on the coordinate systems in which they
are formulated Unfortunately, many authorswho use geometric algebraannot resistto use
coordinates and that makes formulagion-transpaent and blurs geometriccontent It's hard to get
rid of old habitsThere are ranytexts and commentabout SRthere is a lot obpponenstoo, which
often only show a lack of understanding of the thed®g for example they say that Einstein "wrote
nonsense'becausen formulasuses the dspeed of photongas € and C° V, not realizing important
and simple facthat speed ofthe photon is C in anyinertial reference systembut if we want to find
the time photon needs to reachthe wall of the wagon that runs away fromhoton (viewed fromthe
rails systemcollision time) we must useC+ V. Why? Because it is the relative velocity of the photon
and the wall of the wagon in the rails syste8peed of the pbton and speed of thewall are both
measuredn the samereference system, soadded simple, without relativistic addition rulk is quite
another matter when we have the man thewagonwhichwalksin the direction of movement of the
train with the speedU, relative to the train Velocity of the man as measuredtime rails systenis

(v+ u)/(l +uv/c2) , but here the speedu ismeasured irthe trainsystem, while the speedv (speed
of the train) is measured inthe rails systemSq relativistic velocity additionformulaswe usefor
velocitiesmeasuredn different frames of referenceQuantitiesfrom onesystem ofreferencewe are

not to transform, so there is no formulas that arise from transformations(here Lorentz
transformations.

Before we proceed it may be useful to clarify some terms. We say that laws of physics need to
be covariant meaningthat in different reference frames havine same form so, a formula A=B

leads to Aj = B . Aphysical quantity is constantif it does not depend on coordinates, for example,
number 3 or the charge of electrofhe speed of light isot a constantin that senseit is aninvariant
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It means that itdepends on coordinategdr / dt ), but has the same value in aimyertial reference
frame. The speed of light is a constant of nature in the sense that it is limiting speed, but related to
Lorentz transformations it is an invariant (scalar).

Another commormmisconceptioris about the postulates of the special theory of relativitet
the covariance postulate be first and invarianceahs speed of lighpostulatethe second onelFrom
the first we havefor example v = dx/ dtand vj= dx/dt. The secongostulateis mainlymotivated
by the Maxwellelectromagneic theory, which predicts invariance of the light velocity in inertial
reference framesNow, it isimportant to note that we needhe first postulate only to derive the
Lorentztransformaions (LT) (it is not hard to find the referencesso we highly recommend fo it,

see[26]). Once we have Limmediately followsthe existence of thenaximum speed ), invariant
oneLi YSIya {rfeédihe se®@ndpostyae to have that in the theoryAccordingly in
relativistic formulas we can us¥, instead ofC. Einsteinsimplyassumedhat V, = C, relaying mainly

on the MaxwelRQ theory. However the existence of the speed limit does not necessarily mézet

there must be an object that is movirg sucha speed We think that light is such an obje@&ut we

can imaginethat the limit speeds 1 mm/s larger tharf . What experiment could show the differenge

But, if that were sq photon would have to have a mas® matter how small it wasNe couldthen
imagine a reference system that moves along with the phpsonthat the photon is at rest in.iBut

light is a wavedoo, so,we would see a wave that is not movingave phase would be constamatus
(maximumamplitude ¥ 2 NJ SEI YLI S0 3 & dbratiofis NOW, withdutyfhe dhangeSobthel v &
electric field intime, there is nanagneic field, so we see arlectrostatic field. However there is no

a charge distribution ispace that could create suctfield (Einstei). So,instead ofV, we useC, but

that does not meaithat the assumption of the invariance of the speed of lightecessarfor validity

of R Our firstpostulate is certainly dedypnatural andtypicalfor Einstein who was among the first
whichstressed the importance of symmaegsin physicsand this is certainly the question of symmetry
True it is easier to make sense of the thought experimeantd derive formulas usinfpe postulate of
the speed of lightlt is donesoin almost all textbooksso students get the impression thtitere is no
the theory without the secondpostulate Let us also mention that there are numerous tests that
confirm SRand none (as far as is known to the authtivat refutes it, although many are trying to
show things differentlyeven m&e up stories aboutrelativists conspiracy. Let us mention two
important facts First quantum electromagnetic theorfQED)s deeply based on the special theory of
relativity, and it is known that the predictions dQED are inunusually good agreement with
experiments Secondwe have the opportunity almost every day to monitor what is happening at
speeds comparable to the speed of lighemely, we have particle acceleratar$hey are built using
formulasof special theory of relativityandit is reallyhard to imagine thatvould operate ifSRis not
valid

There is one more thing to bdiscussedUsuallyin textbooks is inertial coordinate system
defined agt ddy O O S f S NI (i stkhatdmplEshdnggeneity, irmgreementwith the first Newton
law only, not all Newton laws, as authors state. To include the third Newton law we have to introduce
the concept of isotropyof inertia) Why? Consider two protons at rest and let them to move freely.
Then we expecthat protons movean the oppositeorientations due to repulsion, but we also expect
that both protons have exactly the same kinematical properties. All orientations in space|aat
Without that we have nbthe third Newton law. Isotropy is directly connected to possibility to
synchronizehe clocks. It is also natural to expect that light speed is equall rossible orientations.
Then we have inertial coordinate syste(itsS)with the homogeneity and isotropy (of inertia) included.
Class of inertial coordinate systerfrstated, translated}that are not movingelative to some inertial
coordinate system we call inertial reference frame (IRByv, withhomogeneity andsotropy included
we do not need light speed postulate, symmetries are enough to obtain Lorentz transformations.
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Lets see how talo that. Due to linearity we expect transformations likeisarelative velocity
between systemps

Xj= Ax Bt t i Ex DA
For Xj= consiwe havedxj=0, so, B= «~A. Inverse transformations are
x = DXi- Bt i { = Cx At
AD- BC AD -BC '

then from X = CONSlwe haveB= vD, so,D = A. If we denote

d=+AD -BC and/ =A/ /

we have transformations

3. /-1
Xi:d/(X 'Vt) t |:(; WVX,
/ a /-1
X=—(xi Ht)ij t =46 +4——VX
d(' )i dgé NIE:

If we replaceV with -V these two transformationshould be exchangegdiue to isotropy) and we have
d =1(note that it means that transformation is orthogonalywe denote

/?-1
k:v2/2
we have
xi=/(x -vi) tiAt W,
x=/(x #t)i t At i%).

Now we have
[ =1/\J1 - K,
which gives general transformations in form
Xi= X- vt i _t-kvx.
V1- kVP V1 - &
Reader is encouraged to show (using three inertial coordinate systems)kt(w)Z consl. Using
appropriatephysical units we get only three interesting possibilities 4ot -1, 0, 1.Looksfamiliar?

Fork = 4dwe have purduclideanotation in the(X, t) plang by angletan'l(v) .Fork=0

we have Galilean transformationsor K =1we have the Lorentz transformations. Experiments in
physics teaching us that we have to use=1, but notice that Galilean relativity is the valid relativity
theory, all of this is consequence of our definition of the ICS. Directeqoesice of the Lorentz
transformations igxistenceof maximum speed, but we discussed this already.

Recall that wehavealreadyseen numbersl, 0, 1 here in text, we discussed rotations, dual
numbers and hyperbolic numbers obtained from general multiwecinCB.

Aparavetorsin CB, like t+ X (multivector with gradesD and 1), give paravector aga when
squared(check i), therefore moduleof paravector is to be defined differently For complex and
hyperbolic numbers(or quaternions)we have a similar obstacle, so wee conjugdions. For
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paravectos g S R 2 y Q (i adyhi& $dRjughtifids wealreadyhave the Cliffordinvolution, so we
define

pp=(t &)(t x) t= x-

which is exactly the desirddrm ofinvariant interval required in the special theory of relativigecall
that Clifford involution is combination afrade involution andreverse involution, so we can try to
interpret it geometricallyjin A®, namdy, grade involution meanspaceinversion while for thereverse
involution we have seethat it is related tothe fact that the Pauli matricesre Hermitian

To be clearif we specifyparavestor @ * @l,with elz =1 we have a naturathyperbolic unita
It follows

(a+ &) =% b +g,
so,we have gparavector again with the samediredion of vector, but

(a+ &) & ep = a? b.

Notice thatwith the Clifford involution there is no needor negaive signatue (Minkowsk).

According to the Minkowskormulation of SRve can define unitector cin time directiori &, % =1

andthree spacevectors €, (-;2 = -1, which means that we have a negative signat{fe-1, -1, -1).

Such an approach is possible in geomedtgebra too, we haveSTA (spacéme algebraHestenes
But, everythingyou can do withSTAyou can inCB alsg without the negati\e signatue (Sobczyk,
Bayli9. Those who argue that the negative signatuege necessaryn SR are maybewrong Some
authors write sentences liké The principle of relativitjorce usto consider thescalar product with
negatie square ofvectorsa brgettingthat their definition ofnorm of elementsrejudice such result
(Witte: Classical Physics with geometric alggbyat it is possible talescribegeometry in one space
using formalism of higher spacgo we carsaythat Minkowsk geometryformulation of SR ia 3D
problemdescribed iMdD. But inCB, all we need are three orthonormal vectors and one involution
Time is not adurth dimension any morgt is areal parametr (as isin quantum mechanigs|f there

is a fourth dimension of timhow it is that we cannot move througthe time as we move througthe
space& There are other interesting arguments in favor of the 3D spfceexample gravitational and
electrostatic faces depend on the square of the distanéad what aboutdefinition of velocity (we
useit also in the theory of relativily dx/ dt? If there is a time dimensiothen time is vectorwhich
means that the speed naturally bivector like magneic field, not avector. It does not matterif we
useproper time to define the four-velocity vectorthe space velocity is still defined by the previous
formula, up toafactor. Minkowsk gave us ite mathematical theoryhut his comlusion about fourth
time dimension was pure mathematical abstraction, widely accepted among phy#icisiat time,
the geometric idea®f GrassmannHamiltonand Clifford were largely suppressedhis begs us to
guestionwhat wouldEinsteinchoose if he knew thatAt the beginning of the 20th centugnother
important theorywasdevelopng, quantum mechanicsand Paulintroduces his matriceso formulate
the half spin we already commented .iDirad &atrices are also representation of or@ifford
algebg, I YR F3FAYyZ 5ANFO0QA (i KEB[BayB, asinitnal stahdarBmodieRirlNlY dzf | G A
ClF Baylig ... It is not without groundsto question the merits of introducing time as a fourth
dimension Usualargument is one that Minkowski gavi@ fact, this is not an argumentt is just the
observation thain special theory ofelativity invariant interval is notit> + dx* but dt* - dx*. But we
see that the invariant intervatit® - dx® iseasy to get irCB, with completely natural requirements for
multiplication of vectors Minkowskihasintroduced a fourth dimensioad hoc If his formalism was
undoubtedly theonly possible to formulate the special theory ofelativity then there would be a
solid base to believethat indeed there must be a fourth dimension of tim&hus, without that
condition, with the knowledge that there is a natural way formulate the theory without thefourth
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dimensionit is difficult toavoid the impression thathis widely accepted mantra éburth dimension
doesnot have a solid foundatiaiccording to some authorsne of the stumbling blocka the theory
of quantum gravityis probablythe existence of a fourth dimension of time formalism Herewe
develop formalism using paravectoshichdefine the4Dlinear spacebut time isidentified as a real
scalarwe say that time is eealparameter It would be interesting to investigate whether there is any
experimentthat would unambiguously prove the existence of a fourth dimension of.tiPnebably,
there is no such an experimentherefore, it is difficult to avoid the impressionow physicistsare
binding ritual cat during meditatiarBut the future will showperhaps the time dimension does exist
maybe more of then(if time existg. In any casegit is not true that the Minkowski spads the only
correctframework for the formulatiorof SREspeciallyit isnot true that in SRwe mustintroducethe
vectors whosesquareis negatiwe.

We'll pick a system of physical units in whistt =1. In geometric algeba we arecombining
different geometric objectsvhich may have different physical unihereforewe always choose the
systemof units such that alls reduced to the same physical unit (usua#ndth). So we study the
geometric relationshipsand that is the goal hereln the application to a particular situation
(experiment) physical units are converted (analysis of physical units), so that there is no pnebdem

Starting from thervariantintervalin R t2- x2 = 2, where! is theinvariant propertime
in the particle rest frameit follows

?-x* 2°(1 ) = ¥ £ /[ V-
where ¢ iswell knownrelativistic factor. Now, instead of the fowvelocity vectorwe define the proper

velocity(paravestor) Ut g(l +v/) which issimply Uy =1 in the rest frameNotice thatproper velocity

is notalist of coordinates, like four-velocity vectorbut plays the same rol®bviously uti =1. Let us
imagine that a bodjynitially at restwe wantto analyzein the new reference frama which the body
has avelocity V (boost) Recipe is very simpl@ust make geometric product of two propeelocities

Uy - UU= U. For the series of boostse havea series of transformations

Up - Lol - Guu= Ut

Notice that this is really easy to calculagad thatfrom the form of the proper velocityparavector
we immediately se theelativistic factor § and 3Dvelocity vectoV.C2 NJ SEI YLX S5 f S Qa

velocity vectors are parallel t&5 , then

a(1+ve) g1 we) =gl wy (v 8 glg(auvlv)aa NV

1+vy,
so, from the form of the paravectopérts arecolored in redwe immediately see that
) v, tV,

v=——=xg,
1+vy,

g= gz(gl RAS

known results of the special theory of relativity (relativistic velocity additididtice how the
geometrtc product makes derivation of formulas easand, as stated earligrobtained formulas are
just special cases of general formula€i® So, from the polar form of general multivector

M=r(coshj + sinh) = (lg #) J * bt 2,
reducing tothe real part of multivetor (paravector) we have

g=cosh ;, gv=sinh 5, u=coslty Hsinhj =oshf 1vEtany; ekpv).
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Using thespectral decompositionwve have

g(1+v %u, ku_ X . g y°cosh Jsinlr,

defining implicitly factork (Bondifactor) ; * Ink, and recallingdefinitions of hyperboic sine and
cosine we get

k*=cosly °sinhj, k=1 ~)/(1 v)., u=ku +'u.
Our earlier example with two "boost parallel to € now has the form
uw=(ku +/k)(ku, wll) kku, W kk
i.e.relativistic velocity additiomule is equivalent tahe multiplicationof the Bondi factorsk = klkz .

Example In the referent frameS, starship has velocity, in the referent frame of starshipnother
starship has velocity and so onall in the same directiarFind the velocityV, of the n-th starshipin
S, . Discuss solution foR - & 2

Solution

Let k, =,/(1 w)/(1 v), then k, =\/(1 ~)/(1 v) K= ( B v/[M \))n , Whence we

find the required velocityV,, .

If the velocity vectas does not lie in the same directiprin expressions appears versoV,,

which may seem like a complicatidyut actually provides new opportunities for elegant reseafoh
exampleit is rathereasy to gefThomagprecesion (see[14]), for sometime unnoticed but the scope
of this text seeks to stop here

Lorentztransformadions

We are now ready to comment on restrictdadrentztransformaions (LT). GenerallyL T

consists ofcboostsdB androtors R. We can write (se¢22]), quite generallyL =BR, LL =1 (
unimodulaity conditior). Here we can regard it as tloefinition of Lorentztransformaions, which is
well researched and justifiedf we define (see above)

B=coshj /23 #sinfj /2 &% R=coqq/d -pesif q/2 &'?
(unit vector iz definesthe rotation axig we canwrite LTof someelemert, sayvector, as
pi=Lpl* =BRpR'B.
There is a possibility to writd- as
L =g #2 w8z g yidgiw i

where we have to bearefuldue toageneralnon-commutativityof vectors in the exponer{see [L9]).
However it is alwaygossibleto find (using logarithmgthe vectors\g and Wi that satisfy

L - e(\HZ- iwig2 - y|/Ee—JW i
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It is convenient in application® resolvethe element tobe transformedto componens pardlel and
orthogonalto ¥ or Wicand take the advantage dfie commutation properties. For further details see
Baylis articlesbout APS (algebra of physical spa€8). In [22] you can find nice chapter abouhe
special theory of relativity.

We see that rotations are natural part of LT, so, geometric algebra formalism can provide a lot
of opportunitiesbecause of powerful rotatechniquesLater in the text we willliscuss some powerful
techniques with spinorse{genspinork

Extended_orentztransformaions. Speed limi?

This chapter ispeculative with interesting consequencesdw preserved quantities and
change othe speed limit in naturgd. Those faint heartedtan take this agista mathematical exercise

Earlier we definedMA as
MM =|M[* #* x* n% b*-2j(tb x n)- C,

and showd its propertiesNow we bok for generabilinear transforméion M j= XMY that
preserveMA (seeg[11]):

Mi=XMY YMM =XMYYMX [=Mf| X| V¥,
sowe havehepossibilities
X[=1" =1,
whichgives
X= V|X* =£Fé&F # g

and we will choose (for now) possibiltyandZ= 0 although we could consideZ = jp /2, too. Now
the general transformatioiis given with

Mi= XMY =19 Mé **,
so we havel2 parameersfrom 4 vectorsin exponents.

The question is whathe motive for the considetion of such transformationsve have
Elements of geometric algebeae linear combinatios of unit bladesof Clifford bass, each of which
actually defines the subspacdf we limit ourselves to the real part of the multivectors only
(paravectorsyve put in a privileged position space of real numbers (grade 0) and vectors (grate 1)
idea is that all subspaces we treat equdltyfact, this whole structure is based on a new multiplication
of vectors so, manipulating multivectors we actually manipulate subspaéeklition of vectors and
bivectors is actuallyraoperation that relatessubspacesandit is important to understandt well. If
subspaces are treated equally, then we must consider all pogs#rsformatiors of subspaceand
all possiblesymmetriesand they are more than what classicatstricted) Lorentz transformations
imply. The reader should be abl® stop a little and think carefully about thiRemember that
symmetries in the flow of time give the law of conservation of engiigyslational invariance gives
the law of conservation of impulsetc. Where we to stop, and widif we truly accept the naturalness
of the new multiplication of vectorsve must accept the consequences of such a multiplicatioo,
and they reveal amnusually rich structur@f our good old 3D Euclidean spaceBut true, the final
judgement will be given by experiments.

Consideringinvariant MA expressed intwo reference frameswe cancompare real and
imaginary part
t2_ X2 _|n2 b2 ti% X2_i n2+ib2,
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tb- x © tip ix N .
Differential of multivector
dX =dt +k +4ch jeb,
givesMA
dX[*=df -d¥ df dB 2 fdbdt x -,

and we can try to findhe conditionsfor existence of theeal proper time There are many reasons for
defining the real proper time, for example, makes it easy to define a generalized velygityallyjn
the special theory of relativityve will chose he rest frame. Here, due to the additional elements
(except velocity)it will not be enoughbecause we wan{f is a proper timg

dX|"=df -d¥ €f dB 2 fdbdt d -m) Qf =

The first condition, if we want the real proper time, is certainly the disappearance dimhginary

part of the MA in each system of reference (recall that the MA is invariant to our transformations, and
cannot have an imaginary part in one reference frame and not in the othiei3 means that in every
reference frame must be valid

dbdt- &k @ cf(db @ d)Od(Hh d i 0O hd iy db h,

with a common designatiordx/ dt? X, whichimplies hi=dx @ . If wedefine dX® v, nt w, it

follows h=w ¥. Vector W comes from thebivector part of the multivector, so weexpectit to be

relatedto angularmomentum-like quantities then h could be alow of such aguantity, much like
flow is defined for thdlowing of liquid through the tube The difference is that hereivectors do not
transform assurfaces (see[11]).

Gonsideringthe invarianceof MA and proper time asanreal numberwe have

dX|* =|dX|* =d? <t d¥ dA db

28 d¢ drf df &
1= gt df & 2w W),
dt2§é ¢ dE de ngéi v )

g=1\1+ W (wVOLNEV W whicod ¢

Note that now our relativistic factoy has contributions from all subspacdswould be naturally to
require thatorest frameai (with the condition v =0) be replaced byg =1, which would mean that
there is no esting particlesbut

V2w wAPcosta 0= WY wA 1 W eos a

It is not so difficult to accepthis, because what if the velocity of the particle may not be 2d¥or
example how to reconcile the principles of quantum mechanics and the afeampletely peaceful
electron® Including all subspacesd all quantitiesrelated to them it follows that a orest framed
becomes something likacenter of energy-impulseangularmomentum, etc. framea ®

Relativistt factor ¢ isdefinedas theratio of tworealtimes, so itmustbe arealnumber, which

gives ugondition
1- v W wvcosa 0 VY, 4/&
1+w cog a

This is a completely new resulimit speedis 1 for w=0 or cosa = °], otherwise, it is
greaterthan 1. Thisresultis notnewin geometrcalgeba(t | & skhgCalgebrasbut the author got
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