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αSo God made the people speak many different languages Χά 

Virus 

α¢ƘŜ World Health Organization has announced a world-wide epidemic of the Coordinate Virus in 

mathematics and physics courses at all grade levels. Students infected with the virus exhibit 

compulsive vector avoidance behavior, unable to conceive of a vector except as a list of numbers, and 

seizing every opportunity to replace vectors by coordinates. At least two thirds of physics graduate 

students are severely infected by the virus, and half of those may be permanently damaged so they 

will never recover. The most promising treatment is a strong dose of Geometric AlgebraάΦ όHestenes) 

Cat 

αWhen the spiritual teacher and his disciples began their evening meditation, the cat who lived in the 
monastery made such noise that it distracted them. So the teacher ordered that the cat be tied up 
during the evening practice. Years later, when the teacher died, the cat continued to be tied up during 
the meditation session. And when the cat eventually died, another cat was brought to the monastery 
and tied up. Centuries later, learned descendants of the spiritual teacher wrote scholarly treatises 
about the religious significance of tying up a cat for meditation practiceΦά  όZen story) 

Empty your cup 

αA university professor went to visit a famous Zen master. While the master quietly served tea, the 

professor talked about Zen. The master poured the visitor's cup to the brim, and then kept pouring. The 

professor watched the overflowing cup until he could no longer restrain himself. - It's overfull! No more 

will go in! - the professor blurted. - You are like this cup,- the master replied, - How can I show you Zen 

unless you first empty your cup?ά  (Zen story) 

 

Division algebra 

άDŜƻƳŜǘǊƛŎ ŀƭƎŜōǊŀ ƛǎΣ ƛƴ fact, the largest possible associative division algebra that integrates all 

algebraic systems (algebra of complex numbers, vector algebra, matrix algebra, quaternion algebra, 

etc.) into a coherent mathematical language that augments the powerful geometric intuition of the 

ƘǳƳŀƴ ƳƛƴŘ ǿƛǘƘ ǘƘŜ ǇǊŜŎƛǎƛƻƴ ƻŦ ŀƴ ŀƭƎŜōǊŀƛŎ ǎȅǎǘŜƳΦέ  

 (Sabbata: Geometric algebra and applications in physics [28]) 
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Preface 
 

 

The aim of this paper is to introduce the interested reader to the world of geometric 

algebra. Why?  

Alright , imagine the Neelix and Vulcan (from the starship Voyager) conversation. The goal 

is to sell a new product to the Vulcan (Tuvok) . This can be achieved so that Neelix quickly intrigue 

the Vulcan, giving him as little information as possible, and the ultimate goal is that Vulcan, after 

using it, be surprised by the quality of the product and recommend it to the others. Let's start. 

Neelix: ȰMr Vulcan, would you like to rotate objects without matri ces, in any dimensionȩȱ 

Vulcanȡ ȰMr Neelix, do you offering me quaternionsȩȱ 

Neelix: Ȱ.o, they only work in 3D, I have something much better. In addition you will be able to do 

spinors, too.ȱ 

Vulcanȡ ȰSpinors? Come on, mr Neelix, you're not going to say that I will be able to work with  

complex numbers, too?ȱ 

Neelixȡ ȰYes, mr Vulcan, the whole complex analysis, generalized to higher dimensions. And you 

will be able to get rid of tensors.ȱ 

Vulcanȡ ȰExcuse me, what? I'm a physicist, it will not pass ȣȱ 

Neelixȡ ȰIt will , you do not need the coordinates. And you will be able to do the special theory of 

relativity and quantum mechanics using the same tool. And all integral theorems that you know, 

including the complex area, become a single theorem.ȱ 

Vulcanȡ ȰCome on ȣ nice idea ȣ I work a lot with the Lie algebras and groups ...ȱ 

Neelixȡ ȰIn the package ȣȱ 

Vulcanȡ ȰAre you kidding me, mr Neelix? Ok, let's say that I believe you, how much would that 
product cost meȩȱ 

Neelixȡ ȰPennyworth, mr Vulcan, You must multiply vectors differently.ȱ 

Vulcanȡ ȰThat's all? All of this you offer me for such a small price? What's trapȩȱ 

Neelixȡ ȰThere is no one. But true, you will have to spend some time to learn to use the new toolȱȢ 

Vulcanȡ ȰTime? Just do not have ȣ And why would I ever forgo coordinates? You know, I am quite 

adept at juggling indices, I have my career ȣȱ 

Neelixȡ ȰDo physical processes you are studying depend on the coordinate systems you choose?ȱ 

Vulcanȡ ȰI hope notȢȱ 

Neelixȡ ȰThere. Does a rotation by matrices provides you a clear geometric meaning when you do 

it?ȱ 

Vulcanȡ Ȱ.o. I have to work hard to find it out.ȱ 

Neelixȡ ȰNow you will not have to, it will be available to you at each stepȢȱ 
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VulcÁÎȡ Ȱ-ÒȢ .ÅÅÌÉØȟ I'm curious, where did you get this new toolȩȱ 

.ÅÅÌÉØȡ ȰWell, mr Vulcan, it is an old tool from Earth, 19th century, I think, invented by humans 

Grassmann and #ÌÉÆÆÏÒÄȢȱ 

VulcÁÎȡ ȰWhat? How is that I'm not aware of it? )ÓÎȭÔ ÉÔ ÓÔÒÁÎÇÅȩȱ 

.ÅÅÌÉØȡ ȰWell, I think that human Gibbs and his followers had a hand in it. Allegedly, human 

Hestenes was trying to tell the other humans about it, but they did not listen to him.  You will 

agree, mr Vulcan, that humans are really funny sometimesȢȱ 

VulcÁÎȡ ȰMr Neelix, this is a rare occasion when I have to agree with youȢȱ 

Vulcan buys and lives long and prosper. And, of course, recommends the new tool to the 

captain ȣ 

This text is not intended as a textbook, it is more motivational ly ÄÉÒÅÃÔÅÄȟ ÔÏ ÓÅÅ ȵ×ÈÁÔͻÓ 

ÕÐȰȢ )Ô ÉÓ ÉÎÔÅÎÄÅÄ ÍÁÉÎÌÙ ÔÏ ÙÏÕÎÇ ÐÅÏÐÌÅȢ !ÌÓÏȟ Éntention here was to use simple examples and 

reader is referred to the independent problem solving. The active reading of the text is recommended, 

with paper and pencil in hand. There is a lot of literature, usually available at Internet , so, reader is 

referred to the independent research. The use of available computer programs is also recommended. 

There are reasons to think  that geometric algebra is mathematics for future. Paradoxically, it has 

been established since the mid-19th century, but was ignored as a result of a series of 

(unfortunate) circumstances. It's hard to believe that those who have made careers will easily accept 

something new, hence belief that this text is mainly for young people. The background in physics and 

mathematics at the undergraduate level is necessary for some parts of the text, but it is somewhat 

possible to follow the exposure using Internet to find explanation for the less familiar terms. A useful 

source is the book  [35], which can certainly help to those who are just starting with algebra and 

geometry. The book [20] is hard one and it is recommended to those who think seriously. But, 

read Hestenes' articles first. 

It is important for the reader to adopt the idea that the vector multiplication here exposed is 

natural and justified. The rest are the consequences of such a multiplication. The reader can 

independently come up with arguments to justify the introduction of the geometric product. The 

goal is to understand that the geometric product is not just a "neat trick", but that naturally arises 

from the concept of vector.  That changes a lot of mathematics. A simple setting that parallel vectors 

commute while orthogonal anti-commute produces an incredible amount of mathematics  and unites 

many different mathematical disciplines into the language of geometric algebra. 

You can send me comments or questions at: 

miroslav.josipovic@gmail.com 

 

Miroslav JÏÓÉÐÏÖÉç 

Zagreb, 2017. 

 

 

 

mailto:miroslav.josipovic@gmail.com
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Geometric product (of vectors) 
 

Vectors will generally be denoted in small letters in italic format, wherever there's no 
possibility of confusion. We will use bold format also, if necessary. We will use the Greek alphabet for 
real numbers. Multivectors are denoted in uppercase italic format. If we define the orthonormal base 
in the vector space then the number of unit vectors which square to 1 is denoted with p , the number 

of those with square -1 with q  and the number of those with square  0 with r . Then the common 

designation for such a vector space is ( , , )p q rÁ  or , ,p q rÁ , while triplet ( , , )p q r  is referred as the 

signature (in literature it is also the sum p q+ ). For geometric algebra of 3D Euclidean vector space 
3Á  we use the abbreviation Cl3, which is motivated by the surname Clifford.  

IŜǊŜΣ ǿƘŜƴ ǿŜ ǎŀȅ άǾŜŎǘƻǊέΣ ǿŜ Řƻ ƴƻǘ ǊŜŦŜǊ ǘƻ ŜƭŜƳŜƴǘǎ ƻŦ ŀƴ ŀōǎǘǊŀŎǘ ǾŜŎǘƻǊ ǎǇŀŎŜΣ ǿŜ ǊŀǘƘŜǊ 
take that concept as άƻǊƛŜƴǘŜŘ straight lineέΦ To add vectors we use the parallelogram rule.  Vectors  

a  and b  that satisfy the relation  ,   ,   0b aa a a= ÍÁ ,̧ are parallel. For parallel vectors we say that 

they have the same direction (attitude), but could have the same or opposite orientation. We can 

resolve any vector b   into the component in the direction of the vector  a   (projection) and the 
component without any part parallel to the vector a  (rejection) 

,     ,   ,   0b b b b aa a a^= + = ÍÁ ¸. 

Here we can immediately anticipate objections, likeΥ αYes, but if we talk about orthogonal vectors we 

need a scalar producǘ ΧάΦ Although we use the character α̂ ά, here we are not talking about the 

orthogonality of vectors, yet. Simple, by the fact that vectors can be added, we conclude that any 

vector can be written as a vector sum of two vectors, in an infinite number of ways. One of these 

possibilities is just given by the previous relation, so it can be seen as a question of existence, and not 

how to practically implement it. Namely, for b b b b aa^= - = -, if we assume that the vector b^

contains a component parallel toa we can write  b a b ab a¡̂+ = - , but then vector b¡̂ is our 

rejection. If there is no b¡̂ then vector b  is parallel to the vector a . After, eventually, we succeed to 

define the product of vectors, we can return to the question how to find b^ practically, and that is 

what the new product of vectors should certainly enable to us. 

Let's ask the question: how to multiply vectors? We will need to "forget" everything we have 

learned about the multiplication of vectors (i.e. scalar and cross products). Well, before we "forget" 

them, let's look at some of their properties. Can we uniquely solve the equation aÖ =a x  (here Öa x  

is a scalar product)? The answer is, clearly, we cannot, because if we imagine a plane perpendicular to 

the vector a  and passing through the vector endpoint, each vector whose start point coincides with 

the start point of the vector a  and ending on the plane will be the solution. What about the equation  

³ =a x b(cross product)? It cannot be uniquely solved, because if x  is a solution then each vector of 

form b+x a  is a solution, too. But, interesting, if we take into account both equations then we can 

find a unique solution. Notice that scalar product is commutative, while cross product is anti-

commutative. For two unit vectors  m and n  in 3D we have 

cosaÖ =m n   and    sina³ =m n , 

which suggests that these two products are somehow related, because of  

2 2sin cos 1a a+ =. 
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An interconnection could be anticipated if we look at multiplication tables in 3D ( ie  are orthonormal 

basis vectors): 

1 2 3

1

2

3

1 0 0

0 1 0

0 0 1

e e e

e

e

e

                        

1 2 3

3 2

3 1

1

2 3 1

2

0

0

0

e e e

e

e

e e

e e

e ee

³

-

-

-

 

We see that scalar product has a values different from zero only on the diagonal, while cross product 
has zeros on diagonal (due to anti-commutativity). Multiplication tables simply lure us to unite them. 
The form of both products suggests similarity with complex numbers that can be elegantly written in 
the trigonometric form, but for this we need a quantity which gives -1 squared, like imaginary unit. 
But, it is not clear how to naturally relate the cross product to the imaginary unit like quantity. On the 
other hand, cross product is anti-commutative, which suggests that it "should" have the feature to give  
-1 when squared. Namely, if we imagine any quantities that give positive real values when squared and 
whose products are anti-commutative and associative we would have  

( )
2 2 2 0AB ABAB ABBA A B= =- =- <. 

Let's look at an orthonormal basis in 3D, we can say that the vector 1
e  is polar vector, while 2 3 1

e e e³ =  

is axial vector. So, what is 1
e  like? Of course, we could play with more general definitions invoking 

tensors, but it is strange that in such an elementary example we immediately have a problem. 
Mathematicians would argue that the cross product can generally be defined in the dimensions 
different from 3, but if you think about it a little and require a natural and simple definition, some 
questions arise immediately.  

 

Let's look at a 2D world where flatbed physicists want to define the torque. If they do not wish 
to look for the new dimensions outside "their world", they will not even try to define a cross product, 
there is no vector orthogonal to their world. But, we can see that the torque makes sense in 2D world: 
it is proportional to the amount of both force and force arm, the two possible orientations of rotation 
are clearly defined, therefore, how to multiply a force arm vector and a force vector to provide the 
desired torque? The answer to that question is found already in 19th century by great mathematician 
Grassmann, underestimated and neglected in his time. He defined the anti-commutative exterior 
product of vectors and so got a bivector, an object contained in a plane, with orientation and module, 
so, it is ideal for our 2D problem. In addition, it can be easily generalized to higher dimensions. 

Cross product lives in 3D 

and have a lot of 

problems.  

Bivector is an oriented 

part of plane, lives in all 

dimensions greater than 1 

and is almost magical. 
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Grassmann himself and Clifford a little later managed to unite scalar and outer (exterior) product into 
one: geometric product, exactly what we are talking here about. The scalar product of vectors is not 
changed, but the cross product is replaced by outer product and artificial difference between άaxialέ 
and άpolarέ vectors disappeared. !ƭƭ άŀȄƛŀƭέ ǾŜŎǘƻǊǎ ŀǊŜ ōƛǾŜŎǘƻǊǎ όmagnetic field vector, for example, 
see in text). 

Alright, now "forget" scalar and cross product and let's find how to define a new one. It is 
reasonable to require associativity and distributivity of the new multiplication (like for real numbers), 
i.e.  

( )( )a bc ab c=  and ( ) ,  b c a ba cab g b g+ = + ( ) ,   ,a b c ab acb g b g b g+ = + ÍÁ. 

Of course, we do not expect commutativity of vector multiplication, except for scalars (real numbers). 
After all, definition of the cross product is motivated by the need for such a non-commutative 
constructs (like torque, or Lorentz forceΣ Χύ.  

1) Let's consider the term 2a  first (a  is a vector). We will assume that 2a ÍÁ. Clarify 

immediately that we do not imply that ab a b¹ Ö, as usual, where we have the scalar product 
denoted by dot. This is important to note, as it would lead to confusion otherwise. We expect 
that the square of the vector does not depend on the vector direction, but depends on its 
length (we exclude the possibility of nonzero vectors with the length zero, for now).  
 

2) We expect that the multiplication of the vector by real scalar is commutative, which 
immediately results in that the multiplication of parallel vectors  (a b) is commutative: 

,    .a a ab a a aa bal l l l l= Ý = = = ÍÁ. 

Actually, we could call the principles of symmetry to help us, we immediately see that multiplication 

of parallel vectors must be commutative, because we have no criterion to distinguish which vector is 

the "first" and which is the "second". It is obvious if vectors have the same orientation, but if vectors 

have the opposite orientations we can refer to the fact that all the orientations in space are equal 

(isotropy). Our new product should also include multiplication of reals by reals. 

 

3) Due to the independence of the square of the vector on direction we have (recall, b^  has no 

component in the direction of a ) 

( ) ( ) ( )
2 2

0 2b a b a b a ab^ ^ ^ ^+ - - = = +, 

meaning that vectors b^and a   anti-commute. You can design other "arguments", but recall, 

we do not assume scalar or cross product, we are looking for properties of the new product of 
vectors "from scratch". This example is not the proof, just an idea how we could think about 
it. In figure p. 1 we can easily see what we demanded: that the square of vectors does not 
depend on the direction.  
 

 
We can, of course, after we assumed non-commutative multiplication, just use 

( )
2 2 2a b a b ab b a^ ^ ^ ^+ = + + + 
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and immediately conclude that it must be 0ab b a
^ ^
+ =  because we expect the Pythagorean 

theorem is true. But figure p. 1 show us that we have symmetry here, namely, vectors a   and 
a-  ŘŜŦƛƴŜ ŀ άǎǘǊŀƛƎƘǘ ƭƛƴŜέΣ ƘŜǊŜ άǊƛƎƘǘέ ŀƴŘ άƭŜŦǘέ ƛǎ ƴƻǘ ƛƳǇƻǊǘŀƴǘ concept and we see that 

direction of vector b^  suggests the symmetry in accordance with our intuitive concept of 

orthogonality. Without this symmetry we enter the άǎƪŜǿ landέ, but let pure mathematicians 
to go there.   
 

4) Let us show now that, according to 3), 2a  commutes with b (without any assumption what 2a

is): 
 

( )2 2 2 2 2 2a b a b b b a ab a b a b a ba^ ^ ^= + = - = + =, 

 

which justifies our (previous) assumption that 2a ÍÁ. Again, it is important to understand 
that we are not giving proofs, we are to justify the new product of vectors. It follows 

immediately that ab  commutes with b, because of ,   b aa a= ÍÁ. Now we have  

 

2 2ab ba ab b a ab ab^ ^+ = + + =, 

 

so ab ba+  commutes with  b. It is clear that commutes with a  also, which means that 
commutes with any vector. 
 

We can always decompose any non-commutative product into symmetric and anti-
symmetric part: 

2 2

ab ba ab ba
ab

+ -
= + . 

Symmetric part, we have seen, commutes with all vectors. It is also seen from  
 

( )
22 2ab ba a b a b+ = + - +, 

 
because the square of a vector is commutative. Note that we have not defined yet precisely 

what 2a  is, but it is obvious that regardless of explicit value of 2a  we have for vectors a and 

b
^   

( )
2 2 2 2 2 2 2a b a b ab b a a b ab ab a b^ ^ ^ ^ ^ ^ ^ ^+ = + + + = + + - = +, 

 
i.e. we have the Pythagorean theorem, here expressed through the new multiplication of 
vectors. If we define the term " orthogonal" as the relation between vectors in which the 

projection of one on the other is zero (b a b
^
= -), we get the Pythagorean theorem, which 

now applies to orthogonal vectors regardless of the specific value of 2a , if we accept the 
arguments from the part 3). Let us recall that the Pythagorean theorem is, as a rule, expressed 
over the scalar product of vectors and that in this way we have a problem with negative 
signature (meaning that there are vectors whose square is negative), as is customary in the 
special theory of relativity. For any two vectors, the relation  
 

( )
2 2 2a b a b ab ba+ = + + + 
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can be taken as the scalar theorem, because the symmetric part of the new product commutes 
with all vectors, and thus is the "scalar", that is easily justified here, because the symmetric 
part of the product of vectors depends only on squares of vectors.  

We assumed that  2a  is real number equal to 
2
,a°   where  a  is the absolute length 

of the vector a   (we say that we are introducing metrics). Now we can write for the symmetric 
part  

( )/ 2a b ab baÖ ¹ + , 

 
that we call the inner product. We see that it coincides with the usual scalar product of vectors, 
but here we need a little bit of caution: in geometric algebra we generally distinguish several 
types of "scalar" products, one of them is scalar product (generally different than that of 
Gibbs), and there are more: dot product, left contraction, etc. For vectors, all types of "scalar" 
products coincide, but generally they are a little different (see literature). Here we are to work 
with the inner product and the left contraction (see in text).  

For the unit vectors of the orthonormal basis we have 
2

1
i

e =° (null-vectors are not 

included here), which means 

2i j j i ije e e e d+ =°  . 

Caution: do not confuse i j
e e  with i j

e eÖ ! If you are wondering what is  i j
e e  the answer is: a 

completely new type of object, we will see it in the text. 
 

Let's look at a 2D examples: 
 

( )

( )

22 2 2 2 2

1 2 1 2 1 2 2 1 1 2

21,1 2 2 2 2

1 2 1 2 1 2 2 1 1 2

:    1 1 1 2 ,

:   1 1 1 0 ,

e e e e e e e e e e

e e e e e e e e e e

Á = = Ý + = + + + = = +

Á =- = Ý + = - + + = = +
 

 
we see that in both cases the Pythagorean theorem is valid, but with the new multiplication of 
vectors.  
 

For 3Á  we have: 
2 2 2

1 2 3 1,    2i j j i ije e e e e e e d= = = + =, 

 
but, here's a magic, there are known mathematical objects that meet precisely these relations: 
Pauli matrices, discovered in the glorious years of the development of quantum mechanics. 

We can say that the Pauli matrices are 2D matrix representation of the unit vectors in  3Á , we 
only need vectors to be multiplied in a new manner, just described. That is to say, the Pauli 
matrices have the same multiplication table as orthonormal basis vectors. Let's make sure of 
that. Pauli matrices are defined as  
 

1 2 3

0 1 0 1 0
Ĕ Ĕ Ĕ,  ,   

1 0 0 0 1

i

i
s s s

-å õ å õ å õ
= = =æ ö æ ö æ ö

-ç ÷ ç ÷ ç ÷
 , 

so, for example 

2 2 1 2 2 1

1 0 0 0
Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ ,   

0 1 0 0
s s ss s s

å õ å õ
= + =æ ö æ ö
ç ÷ ç ÷

. 
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Designation Ĕi
s  is often used for Pauli matrices, so here we use i

s  for unit vectors in 3Á . Pauli 

matrices are important to describe the spin in quantum mechanics, so we see that vectors 
could serve to this purpose as well, but with our new product of vectors. Indeed, quantum 
mechanics can be nicely formulated by such mathematics, without matrices and  imaginary 
unit  (see below).  
 

Note that by transposition followed by complex conjugation of Pauli matrices we get 
again the same matrix (Hermitian adjoint), for example 

 

*

2

0 0 0
Ĕ 

0 0 0

T
i i i

i i i
s

- -å õ å õ å õ
= ½½­ ½½­æ ö æ ö æ ö

-ç ÷ ç ÷ ç ÷
, 

 

or simply 
À

2 2
Ĕ Ĕs s= . Also we have, for example, ( )

À

2 3 3 2
Ĕ Ĕ Ĕ Ĕs s s s=  (antiautomorphism, show 

that). This exactly matches the operation reverse (see below) on vectors, for example 

1 2 3 3 2 1
e e e e e e­ . Therefore, the character À is often used to denote the reverse operation (we 

will do so here).  

 
Here we can immediately spot the important feature of the new multiplication of 

vectors. The vector is geometrically clear and intuitive concept, and the new product of vectors 
also has a clear geometric interpretation (see below). For example, we can clearly 

geometrically present the product 1 2
e e  as the oriented area, it has the ability to rotate, 

unambiguously defines the plane spanned by vectors  1
e  and 2

e , etc. All this we can 

immediately conclude at a glance. For comparison, consider now the matrix representation of 

vectors 1
s  and 2

s  with their product: 

1 2

0 1 0 0
Ĕ Ĕ .

1 0 0 0

i i

i i
ss

-å õ å õ å õ
= =æ ö æ ö æ ö

-ç ÷ ç ÷ ç ÷
. 

 
Can we derive similar conclusions about geometric interpretation just by looking into the 
resultant matrix? Just looking certainly not, it would take a lot of effort, but we will often fail 
to get the clear geometrical interpretation. Which plane the resultant matrix defines (if any is 
to be defined)? Pauli matrices cannot do all that vectors can. In this text we will, hopefully, 
illuminate such a things in order to get an idea of the importance of the new multiplication of 
vectors. 
  

It is time for the new multiplication of vectors to get the name "officially"  (Clifford, 
HestenesΣ ΧύΥ geometric product. Symmetric and anti-symmetric parts of the geometric 

product of vectors have special insignia: a bÖ and a bØ   (a bÖ is inner and a bØ  is outer 
product), so we can write for the vectors 

ab a b a b= Ö + Ø. 
 

An important concept, that we will often use, is the grade. Real numbers have grade 
zero, vectors have grade 1, all elements that are linear combinations of products 

,   i je e i jØ ,̧ have grade 2, and so on. Notice that geometric product of two vectors is a 

combination of grades 0 and 2, it is even, because its grades are even. What grades generally 
has the geometric product of three vectors? 
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A vector space over the real field with geometric product (GP in text) becomes an 
algebra (geometric algebra, GA in text). Elements of geometric algebra obviously are not the 
vectors only. Note that inner product is zero for orthogonal vectors, for example, for 
orthonormal basis vectors we have 

 

1 1 1 1 1 2 2 1
1 1 1 2 1,   0

2 2

e e e e e e e e
e e e e

+ +
Ö = = Ö = = Ý1 2 1 2 1 2 1 2e e e e e e e e= Ö + Ø = Ø, 

 
so for orthogonal vectors geometric product is the same as outer product. How about the anti-
symmetric part? We have 
 

1 2 2 1 1 2 1 2 1 1 1 1
1 2 1 2 1 1,   = 0

2 2 2

e e e e e e e e e e e e
e e e e e e

- + -
Ø = = = Ø =, 

 

Obviously, 1 2
e e  is not a scalar, ƛǘ ŘƻŜǎƴΩǘ ŎƻƳƳǳǘŜ ǿƛǘƘ ŀƭƭ ƻǘƘŜǊ ǾŜŎǘƻǊǎ, for example 

 

( ) ( ) ( )1 2 1 1 2 1 1 1 2 1 1 2e ee e e e e e e e e eØ = =- =- Ø, 

 

but is neither a vector in 3Á , it squares to -1: 
 

( )
2

1 2 1 2 1 2 1 1 2 2 1e e e e e e e e e e= =- =-, 

 
so, we have a new type of mathematical object, it is like imaginary unit, except that is non-
commutative. The name for this object is bivector. Generally, we will define a bivector as 

element of algebra of form a bØ . Let's look at some more properties of the bivector 1 2
e e . 

We have 

( ) ( )1 2 1 1 1 2 2 1 2 2 1e ,    ee e e e e e e e e=- =- =, 

 
so, acting from the left on vectors it rotates them by / 2p- . How it rotates vectors if acting 
from the right? 
 

Recall the reverse operation on geometric product of vectors: ...x abc d=   ­  
À...d cba x= , so we have 

( )( ) ( )( ) ( )
À 2

1 2 1 2 1 2 2 1 1 2 1e e e e e e e e e e= =- =, 

 
therefore we call it a unit bivector.  Generally, it is possible to find a module of bivectors, so, 

bivectors have the module and orientation. Furthermore, unit bivectors, like 1 2
e e , except for 

the module, orientation ( 1 2 2 1 1 2
e e e e e e¸ =- ) and the ability to rotate vectors, have another 

important feature, which imaginary unit does not have, namely, it defines the plane spanned 

by vectors (here 1
e  and 2

e ). Later we will see how this is implemented in practice by outer 

product.  
 

Now let's see how we can graphically present (unit) bivector. The obvious option is to 

try with oriented parallelogram (square for 1 2
e e ). But, the shape of area which represents 
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bivector is not important, we should keep the amount of area and orientation, therefore it is 

often a practical choice an oriented circle of radius  
1 2

/e e p. To justify our claims, look at  

 

( )1 2 1 2 1 2 2 1 2e e e e e e e e e= Ø Ý + Ø =, 

 
it can illustrate the fact that shape is not important.   
 

 
Notice immediately that two vectors, except that define a plane, generally define a 
parallelogram, too. The outer product of such vectors (bivector) has module  just equal to the 
parallelogram area (see below), while direction we define as in figure p. 2. Find the area of the 

leftmost parallelogram in p. 2. Notice that bivector is just 1 2
e e , but show that formula  

 

1 2 1 2 21 sine e e e e a= = +  

 
gives the area of the parallelogram.  
 

Let's look at three vectors in 3Á which sum is zero (triangle), from 0+ + =a b c  it 
follows that  

Ø = Ø = Øa b b c c a, 
 

to see this it is enough to look at expressions 

( )+ + Øa b c a and ( )+ + Øa b c b (check), but we can 

see it easy without calculation, it is enough to look at the 
figure on the left: each pair of vectors defines the 
parallelogram of area equal to the double area of the 
triangle, and all pairs give the same orientation of bivector. 
This is important, often we can draw conclusions simply 
from the geometric observations, without calculation. In 
the formula for the area of a parallelogram appears the 
sine function, so we see that the previous equalities are 
just the sine theorem. If we recall that bivector is not shape 
depended, we see that all three our bivectors have the 

same factorI  (the unit bivector). Now we have  
 

sin sin sinIab Ibc Iacg a b= = . 
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Bivectors define a plane. Consider the outer product in Cl3 
 

( )( )( )( )1 2 1 1 2 2 3 3 1 2 1 1 2 2 3 3 3 1 2 3e e a e a e a e e e a e a e a e a e e eØ Ø + + = Ø Ø + + =, 

 
so, we can see that outer product of bivector with a vector gives the possibility to eliminate 
the components of vector that do not belong to the plane defined by the bivector. Therefore, 

the plane of the bivector B  is defined by the relation    
 

0B xØ =. 
 

In our example, this would be all vectors of form 1 1 2 2
x a e a e= + .  

 
Imagine a unit bivector in Cl3. It defines a plane and have the properties of (non-

commutative) imaginary unit (in that plane). It is powerful: we can use the formalism of 

complex numbers in any plane, in any dimension. How? Let's take back our bivector 1 2
e e and 

the vector 1 2
xe ye+ . If we multiply our vector by 1

e  from the left we get 

 

( )1 1 2 1 2 1 2,   e xe ye x ye e x yI I e e+ = + = + =, 

 
so, we have a complex number.  What we get if we multiply from the right? For more details 
see below. 
 

The reader may show that any linear combination of unit bivectors in Cl3 can be 
expressed as an outer product of two vectors.  This is not necessarily true in 4D, take for 

example 1 2 3 4
e e e e+ . Prove that there are no two vectors in 4D with the property 

1 2 3 4
a b e e e eØ = + . In 3D, for each plane we have exactly one orthogonal unit vector (up to the 

sign), while that is not true in the higher dimensions. For example, in 4D, plane defined by 

bivector 1 2
e e  has orthogonal unit vectors 3e  and 4

e  (their linear combinations too). Take the 

bivector 1 2
e e  in 3Á   and multiply it by 1 2 3 1 2 3

:   e e e j e e j e- ¹- - =, one can see that we get 

exactly the cross product of vectors 1
e  and 2

e , or, for arbitrary vectors 

 
 j³ =- Øa b a b. 

This is valid in 3D, but expression I- Øa b is valid in any dimension, where I  is a general pseudoscalar. 

In 2D I- Øa b is just a real scalar, while in 4D or higher we can take advantage of the concept of duality. 

The cross product of vectors (Gibbs) requires the right hand rule and use of perpendiculars to the 

surfaces. With bivectors it will not be necessary, so, for example, we can completely omit objects such 

as "rotation axis ", etc. Find the geometric product of two vectors 
3

1

i i

i

a e
=

=äa  and 
3

1

i i

i

b e
=

=äb in 3Á  and 

show that it can be expressed as  

( ) ( )1 2 3 .e e e j= Ö + ³ = Ö + ³ab a b a b a b a b  

 



 14 
 

Algebra 
 

Let's look again at 2D example. All possible outer products of vectors expressed in the 

orthonormal basis can provide a linear combination of "numbers" 1, 1
e , 2

e  and 1 2 1 2
e e e eØ =  (any 

linear combination of these "numbers" we will refer as multivector). Outer product is anti-

commutative, so, all terms that have some unit vector repeated disappear.  άNumbersά мΣ 1
e , 2

e  and 

1 2
e e  form the basis of 22 ς dimensional linear space. In fact, we have the basis of the algebra (Clifford 

algebra). When geometric meaning is in the forefront we refer it as geometric algebra (due to Clifford 

himself). Element 1 is a real scalar.  We have two vectors and one bivector (in the terminology of 

geometric algebra it is referred as  pseudoscalar in algebra, namely, member of the algebra with the 

maximum grade). In 3Á  we have the basis of the algebra (Cl3): 

 

1, 1e , 2e ,  3e , 1 2e e , 1 3e e , 2 3e e ,  1 2 3e e e, 

here 1 2 3 1 2 3
j e e e e e e¹ Ø Ø =  is the unit pseudoscalar.  Show that j commutes with all elements of Clifford 

basis in Cl3 and that 
2

1j = -. Pseudoscalars in any dimension are all proportional to some unit 

pseudoscalar. Prove it, at least for j .  So, pseudoscalar j  is a perfect  (commutative) imaginary unit in 

Cl3. Such a pseudoscalar will appear also in Cl7, ClммΣ Χ This has far-reaching consequences. But here 
one should be careful, commutativity property of pseudoscalar means geometric product, while in 
terms with other products one should be cautious. Real scalars do not have this "problem", they can 
"walk" through all products. For pseudoscalar we have, for example 

( ) ( )1 3 1 3 1 3 1 3 1 3je e e je e e j e j e e je= = = = , 

i.e. geometric product allows "walking", but this is not generally valid with the, say, inner product  

( ) ( ) ( )1 3 1 3 1 1 20e e j e je e e eÖ = ¸ Ö = Ö, 

here we have a mixed product (see below). 
 
In 3D, for arbitrary four vectors we have  0.Ø Ø Ø =a b c d  Outer product has distributivity 

and associativity properties also (see literature or prove itself).  If any two vectors here are parallel, 
relation is true due to anti-commutativity of outer product. Otherwise we have, for example, 

,   , ,a b g a b g= + + ÍÁd a b c , so, our statement is true due to distributivity and anti- 

commutativity. 
 

Maximum grade of multivector cannot be larger than the dimension of the vector space (show 

that). Show that number of elements in Clifford basis with the grade k   equals to binomial coefficient  

n

k

å õ
æ ö
ç ÷

 , 

where  n  is the dimension of the vector space. For real scalars we have 0k= , so, there it is just one 

real scalar in the basis (i.e. 1). The same is for k n= , there is just one element with the grade n   in 
the basis, which gave rise to the term άpseudoscalarέΦ Show that the number of elements in the Clifford 
basis for n -dimensional vector space equals to  2n.  
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An important concept is the parity of multivector and refers to the parity of grades. All 
elements with even grades define the subalgebra (geometric product of any two of these elements is 
even, too, show that!), while this is not true for the odd part of the algebra.  

 

Grades of multivector M  are usually written as 
r

M , where r is the grade. For the grade 0 

we use just M , for example a b abÖ = . Grade 0 is a real number and it does not depend on the 

order of multiplication, so we have AB BA= , which leads to the possibility of cyclical changes, like 

ABC CAB= . This is beneficial relation, for example, consider the inner product a bÖ   and ask 

ourselves what would happen if we apply the transformations a nan­  and b nbn­  (n is a unit 
vector). Note that the result of such transformation is a vector (resolve the vector a  on components 
parallel and orthogonal to n ). The inner product of two vectors is just the zero grade of their geometric 
product, so we have, using cyclical changes 

 

( )( )nan nbn nannbn nabn abnn ab a bÖ = = = = = Ö. 

 
Such a transformation ŘƻŜǎƴΩǘ change the inner product, so we have an example of an orthogonal 
transformation (this one is a reflection).  Transformation X nXn­  (n is a unit vector) generally 

ŘƻŜǎƴΩǘ ŎƘŀƴƎŜ the grade. For example, if we have X ab=  then 
 

( )( )nabn nannbn nan nbn= = , 

 
i.e. we have a geometric product of two vectors again. This is a very important conclusion.  To see that 
it is generally valid, recall that each multivector is a linear combination of elements of Clifford basis. 

So we have, for example ( )1 1 3 1 3 1 1 3
e e e e e e e e= =- , so, grade is still 2. If grade of element is changed by 

a ǘǊŀƴǎŦƻǊƳŀǘƛƻƴ ǘƘŜƴ ǿŜ ƻōǘŀƛƴ ǘƘŜ ƴŜǿ ǘȅǇŜ ƻŦ ŜƭŜƳŜƴǘΣ ōǳǘ ǿŜ ŘƻƴΩǘ ǿŀƴǘ ǘƘŀǘ ƎŜƴŜǊŀƭly. Rather, 
frequently we want transform vectors to vectors, bivectors to bivectors, etc.  

 
Let us now discuss some important formulas in which mixed products appear. For example, 

let's look at the product 

( ) ( ) ( )/ 2 / 2a b c a bc cb abc acbØ = - = - . 

We can take advantage of the obvious (and useful) relation 2ab a b ba= Ö - and show that (left to the 
reader)  

( )( ) ( ) ( )2 2a b c b c a a b c a c bØ - Ø = Ö - Ö, 

Here we have a situation in which grade of bivector is downgraded, so it is customary to write such a 
relationship as the inner product, i.e. a kind of contraction  

( )/ 2a B aB BaÖ = - , 

( B  is a bivector) or,  

( )( ) ( )a b c a b c a c b a bc a cbÖ Ø = Ö - Ö = Ö - Ö, 

where it is understood that the inner product is executed first. This is a useful and important formula.  
It is not difficult to show that  

( )/ 2a B aB BaØ = + , 

aB a B a B= Ö + Ø. 
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Find ( )1 1 2
e e eÖ  and ( )1 1 2

e e eØ .  

 
Here is one more useful relation (without proof)  

( ) ( ) ( )
1

1 1 1 1

1

... 1 ... ...
n

k

n k k n

k

e e
+

=

Ö Ø Ø = - Ö Ø Ø Ø Øäa a a a a a , 

where k
a means that factor k

a  is missing in the outer product. Find ( )1
eÖ Øa b . 

 
It is straightforward to find projection and rejection (we announced this possibility earlier), for 

example of vector a  using the orientation of the unit vector n  
 

( )2a n a n n a n a nn a nn a a â= = Ö + Ø = Ö + Ø = +, 

where geometric product is to be executed last. For general formulas (for any elements of algebra) see 
literature. 

Important concepts 
 

Before we dive into Cl3 let's look at some more general terms.  

a) versor  ­ geometric product of any number of vectors 

b) blade  ­ outer product of any number of vectors 

c) involution  ­ any function with the property f (f(x)) = f(x) 

d) inverse ­ for element x it is element y  such that 1xy= , 
1

y x
-

=   

e) nilpotent ­ x2 = 0  

f) idempotent  ­ x2 = x  
g) zero divisors 

Let's explain those terms in more details. 

a) Example of versor is  abc, if factors are vectors. For geometric product of two vectors we 
have generally grades 0 and 2. For verification techniques that some multivector is a versor 
see Bouma and [19]. Show that geometric product of versor and its reverse is a real 
number. 
 

b) Example of  blade isa b cØ Ø , if factors are vectors. For verification techniques that some 
multivector is a blade see Bouma and [19]. Blade is simple if it can be reduced to the outer 
product of basis vectors (up to the real factor).  
 

While versor ab generally have grades 0 and 2, blade a bØ  has grade 2 and 
defines the 2D subspace. Show that any homogeneous versor (has single grade only) is a 
blade. Show that any blade can be transformed to a versor with orthogonal vectors as 
factors. Any blade in Cl3 which is outer product of three linearly independent vectors is 
proportional to the unit pseudoscalar (show that, if you have not done it already). 

 
Consider the arbitrary set of indices of unit vectors of orthonormal basis, some of 

which can be repeated. Find an algorithm for sorting indices, so as to take into account 
skew-symmetry for different indices. The goal is to find the overall sign. After sorting, the 
unit vectors of the same index are multiplied  and thus reduce to one unit vector or a real 

number. Example: 2 3 1 2 1 2 3 2 1 2 2 3 1 3
e e e e e e e e e e e e e e= =- =-. 
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Elements of Clifford basis are simple blades. We have 
seen that in Cl3 any linear combination of the unit 
bivectors defines a plane (i.e. can be represented as an 
outer product of two vectors). Multiply every element 
of the Clifford basis by pseudoscalar j . What you get? 

Figure p. 3 can help in thinking. You can use GAViewer 
and see how your products look like.  
 
 

 
c) In geometric algebra  the most commonly used are three involutions, and all of them come 

down to change the sign of the components in the Clifford basis.  
 

Grade involution is obtained by changing the sign of each basis vector of the vector 
space. In this way all even elements remain unchanged, while odd ones change the sign. 

Consider general multivector  M   in Cl3: 
 

1 1 2 2 3 3 1 12 2 13 3 23M t x e x e x e B e B e B e bj= + + + + + + +, 

 

where 12 1 2
e e e¹ . Grade involution gives 

 

1 1 2 2 3 3 1 12 2 13 3 23
ĔM t x e x e x e B e B e B e bj= - - - + + + -. 

 
Grade involution is an automorphism  (show that), which means  
 

( ) Ĕ ĔMN MN
Ø
= . 

 

Elements ( )Ĕ/ 2M M M
+

+ ¹  and ( )Ĕ/ 2M M M
-

- ¹  give even and odd part of the 

multivector M  (find them for M ). 
 

Reverse involution  is an anti-automorphism  (( )
À À À

MN N M= , show that): 

 
À

1 1 2 2 3 3 1 12 2 13 3 23M t x e x e x e X e X e X e bj= + + + - - - -. 

 

Elements ( )Ĕ/ 2
R

M M M+ ¹  and ( )Ĕ/ 2
I

M M M- ¹  give  real and imaginary part 

of multivector M  (see below, find them forM ). 
 

Clifford conjugation (involution) is an anti-automorphism (MN NM= , show 
that): 

1 1 2 2 3 3 1 12 2 13 3 23M t x e x e x e X e X e X e bj= - - - - - - +. 

 

Elements ( )Ĕ/ 2
S

M M M+ ¹  and ( )Ĕ/ 2
V

M M M- ¹  give (complex) scalar  and 

(complex) vector part of multivector M  (see below, find them for M ). 
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What we get applying all three involutions on multivector, and what we get 
applying any two of them? Each involution changes sign of some grades. If overall sign of 
the grade is given in the form (-1)f(r), r is grade, find function f  for each involution. Often 
we need to check the properties of some product, sum, etc. What is multivector if 

( )M inv M= , where inv  stands for any of three defined involutions? Show that for 

versors V  relation ( )( )( )1 2 1 2
Ĕ... ...

k k
V v v v V v v v= Ý = - - - is valid. Show that multivector 

ÀĔVxV  is a vector if x  is a vector. 
 

d) An important consequence of the geometric multiplication of vectors is the existence of 
the inverse of vector (and many other elements of algebra), i.e. we can divide by vector. 
For vectors (null-vectors do not have an inverse) we have 
 

1 2/a a a- = , 
 

which means that the unit vector is inverse to himself. The existence of the inverse has 
far-reaching consequences and significantly distinguishes geometric product from 
ordinary scalar and cross product. Now we can solve the equation: 
 

1ab c a bc-= Ý = ,  
 

etc. We can define the inverses of other multivectors, for example, it is easy to see what 
the inverse of versor is: 

( )
1

1 2 1 2 1 2 2 1 1 2 2 1/ ( )e e e e e e e e e e e e
-
=- =- =. 

 
Here we are using the fact that geometric product of versor and his reverse is just a real 
number. There exist multivectors without the inverse, we will see it a little later. Existence 
and definition of an inverse ƛǎƴΩǘ ŀƭǿŀȅǎ simple and obvious, but in Cl3 that task is relatively 
easy. It is important to note that existence of an inverse depends on possibility to define 
module (norm) of multivector, and that is not always unique. For general approach see 
references cited. 
 

e) Geometric product allows existence of multivectors different from zero, but whose square 
is zero. They are nilpotents in algebra and have an important role here, for example, when 
formulated in Cl3, an electromagnetic wave in vacuum is just a nilpotent in the algebra. 
For example, we have  

( ) ( )( ) ( )( )
2

1 1 2 1 2 1 2 1 1 2 21 1 1 1 0e e e e e e e e e e e+ = + + = - + =. 

 

Nilpotentǎ ŘƻƴΩǘ ƘŀǾŜ an inverse. If 0N¸  is a nilpotent and M  is its inverse, than 

from 1NM =  we have 2N M N= , i.e.  0 N= . 
 

f) Idempotents have the simple property 
2

p p= . Show that multivector ( )11 / 2e+  is the 

idempotent. In fact, every multivector of the form  ( ) 2
1 / 2,    1+ =f f , is an idempotent. 

Later in text we will find the general form of idempotent in  Cl3. Trivial idempotent is 1. 
Show that trivial idempotent is the only one with the inverse. 
 

g) Multiply (1 + e1)(1 ς e1). There are multivectors different from zero that multiplied give 
zero  (zero divisors). Although it differs from the properties of real numbers, it turns out to 
be very useful in many applications.  
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We should mention that the addition of quantities like x  and jn  (or other expressions of 

different grades) is not a problem, as some people complain, we add objects of different grades, so, as 

with complex numbers, such a sum preserves separation of grades. Here sum is to be understood as a 

relation between different subspaces. Let us clarify this a little bit for Cl3. Real numbers have grade 

zero and define subspace of "points". Vectors define oriented lines, bivectors define oriented plains 

and pseudoscalars define oriented volumes. For example, bivector B  defines oriented plane by 

relation 0BØ =x . In that plane we can find a unit bivector ĔB  which has a number of interesting 

properties: squares to -1, it is oriented, rotates the vectors in the plane, etc. As example,  

( )1 2 2 3 2 3 1
B e e e e e e e= + = Ø -, so vectors  2

e  and 3 1
e e-  span the plane. Relation 0BØ =x  gives 

vectorsx  as linear combinations of vectors 2
e  and 3 1

e e- . Find ÀBB . We see, the (unit) bivector 

Ĕ / 2B B=  has a clear geometric interpretation, but it is also the operator which rotates vectors in 

the plane it defines. It can also serve as an imaginary unit for complex numbers defined in the plane it 

defines. Multivector of the form Ba+  is the sum of different grades, ōǳǘ ǘƘŜǊŜ ƛǎ ƴƻ ǿŀȅ ǘƻ άōƭŜƴŘέ 

real scalars and bivectors in sums: they are always separated. But together, as a sum, they are 

powerful, as rotors or spinors, for example (see below). 

 

Finally, any multivector can be expressed as a list of coefficients in Clifford basis. As an example 

we can use the multivector 2 1 2
3 e e e- +  in 2D, list of coefficients is ( )3,0, 1,1- . It is clear that we can 

add and subtract such lists, find a rule to multiply them, etc. 

  

Examples of solving equations  
 

 

Let's find real numbers  a and b such that a b= +x a b in 3Á . We have 

 

a b bØ = Ø + Ø = Øx a a a b a b a, 

a b aØ = Ø + Ø = Øx b a b b b a b. 

 

Note that bivectors Øx a  and Øb a define the same plane and both are proportional to the unit 

bivector in that plane, i.e. their ratio is real number (unit bivector divided by itself gives 1). Therefore 

we have 

Ø Ø
= +
Ø Ø

x b x a
x a b

a b b a
. 

 

Let's use the GAViewer to show it graphically: 
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Now let's look the quadratic equation: 
2 1 0x x+ + =. 

Show that /3ix e p°=- , 1 2
i e e= , is the solution. Can you find a solution for an arbitrary quadratic 

equation? Pay attention to the fact that the expression 2 1x x+ +, with the above solution, we can 

interpret as the operator which acting on some vector v   gives zero. That means that we have sum of 

vector (v ), rotaded vector ( xv) and twice rotaded vector ( 2x v ), three vectors that we can arange in 

the triangle. About rotations and exponential form see below, here you can feel free to treat 

expressions like complex numbers with the imaginary unit 1 2
i e e=  (i.e. you can use trigonometric form 

of the complex number). In the next chapter you will find an explanation for this approach. 

 

Geometric product of vectors in the trigonometric form 
 

Let's look at the product in nÁ  (for other signatures see literature, main ideas are the same),  

( )( )( )( )

( ) ( )

( )

22

2 2 2 2 2 2sin ,

a b a b ab a b a b ba

ab a a b a b ab ba

a b a b a b q

Ø Ø = - Ö Ö - =

- - Ö + Ö + =

Ö - =-

 

where we used ( )
2 2 2 2

cosa b a b qÖ = . We see that in nÁ the square of bivector is negative real number. 

Now we can define the module of a bivector as 

sina b a b qØ = . 

We got a general expression for the square of bivector, so we see that the geometric product of two 
vectors can be written as  

( ) ( ) 2
ĔĔĔ Ĕ Ĕ Ĕ Ĕ ĔĔ Ĕ Ĕ cos sin ,   ,   1
ĔĔ

a b
ab a b ab a b a b a b a b B B B

a b
q q

Ø
= = Ö + Ø = + = =-

Ø
 , 

or 
ĔBab a b eq= . 
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Notice that we have a similar formula for complex numbers, but the situation is quite different here: 

unit bivector ĔB  is not just an αimaginary unitάΣ it defines the plane spanned by vectors a   and b .  This 
is a great advantage compared to ordinary complex numbers, it brings the clear geometric meaning to 
expressions. For example, formulation of quantum mechanics in geometric algebra uses real numbers, 

there is no need for 1- , and in every expression we can see the geometric meaning directly. This 
makes the new formulation more powerful, it provides new insights, which would otherwise be hidden 
or difficult to reach. 

Here we have the opportunity to answer the question about multiplication tables. We have 
seen how the multiplication tables for scalar and cross product are almost complement. We know, 
geometric product of two vectors can be decomposed into symmetric and anti-symmetric parts, then 
we can find their modules, they have functions sine and cosine as factors and that ƎƛǾŜǎ ǳǎ άǳƴƛǘŜŘέ 

multiplication table. Here it is (note that, for example, 3 1 2
e je e=- ) 

1 2 3

1

2

3

1 0 0

0 1 0

0 0 0

e e e

e

e

e

         Ä       

1 2 3

3 2

3 1

1

2 3 1

2

0

0

0

e e e

e

e

e e

e e

e ee

³

-

-

-

     ­          
1 2 1 3

1 2 2 3

1 2

1 3 2 3

3

1

2

3

GP

1

1

1

e e e e

e e e e

e e

e e e

e

e

e e e

-

- -

 

and we can see that the new multiplication table has bivectors as non-diagonal elements (Ä is just 
for fun).  In fact, looking at those tables one can get nice insights about our 3D space and geometric 
algebra in general. 

 

Reflections, rotations, spinors, quaternions Χ 
 

 

The reader is now, perhaps, convinced that the geometric product is really natural  and, 
actually, inevitable way  to multiply vectors. One way or another, magic is still to come.  

Consider now powerful formalism of geometric algebra applied to reflections and rotations 

(we are still in nÁ , details of the other signatures can be found in the literature). For the vector a   and 

the unit vector n   in 3Á  (just to imagine things easier, generalization is straightforward) we can find 

projection (parallel to n ) and rejection (orthogonal to n ) of vector a , so, a a â= + . Now we have 

( ) ( )a nan n a a n a a nn a a^ ^ ^
¡=- =- + =- - = -,  

which means that vector a  is reflected on the plane orthogonal to n  (generally a hyper plane, figure 
p. 4). We can omit the minus sign, then reflection is on the vector n . Recall, reflection does not change 
the grade of reflected object. 
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We should mention that in physics we are often interested in 
reflections on surfaces in 3D, so we can slightly adjust the pictures 

(p. 6, p. 7). We use the fact that 
2

1j = -, so    

2j j j¡=- = = =a nan nan na n NaN, 

where the unit bivector N   defines the reflection plane. 

What if we apply two consecutive reflections, using two unit vectors m  and n? There is a 
well-known theorem, which states that two consecutive reflections provide rotation. In figure p. 5 we 

see that after reflection on n  we have a a¡­ , then by reflection on m  we have a a¡ ¡¡­ . If the 
angle between unit vectors m  and n  is j  then the rotation angle of vector a    is 2j. Respectively, 

if we want to rotate the vector by angle j we need to use the unit vectors the angle between which 

is equal to / 2j . We see how the half angle appears, so characteristic in the description of spin in 

quantum mechanics. Here we see that there is nothing "quantum" in half angle, it is simply a part of 
the geometry of our 3D space. This will be discussed later.   

Now we can write an expression for the rotation as 

( )a m nan m mnanm¡¡= = . 

Another way to rotate the vector is to construct an operator which rotates and operates from the left. 
Thanks to the existence of an inverse of the vector this is easy to achieve: 

( )1 1,     a a a a Oa O a a- -¡¡ ¡¡ ¡¡= ¹ = .  

But the method that uses reflections is very general and elegant (rotates any element of the algebra), 
has a "sandwich" form, which is actually common and preferable in geometric algebra, especially for 
generalization to higher dimensions. Let's look more closely the term mnanm. Geometric products 
of two unit vectors consist generally of grades 0 and 2, so, it belongs to the even part of the algebra 
and makes subalgebra, which means that the product of any two of these elements will result in an 

element of the even part of algebra. We denote it as R mn=  (rotor in text). Now we have 

À À À, 1a RaR RR mnnm R R¡¡= = = = , 
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where À 1R R-=  means reverse (mn nm­ ). For the rotation angle j we need unit vectors with the 

angle / 2j  between them. We have 

mn m n m n= Ö + Ø, 

where ( )sin / 2m n jØ = . Using the unit bivector Ĕ /B n m n m¹ Ø Ø  (note the order of vectors), we have 

( ) ( ) ( )Ĕ Ĕcos / 2 sin / 2 exp 2mn m n m n B Bj j j= Ö + Ø = - = -, 

minus sign here is due to the convention (positive rotation is counter clockwise). In Cl3 we can write 

unit bivector ĔB  as jw  , where w  is the unit vector defining the axis of rotation. Rotor inverse is 

( )À Ĕexp 2R nm Bj= = , 

so rotation is finally 
Ĕ Ĕ

À 2 2
B B

a RaR e ae
j j
-

= =¡¡ . 

This is the general formula. If a   commutes with ĔB  rotation transformation has no effect on a . If a  

anti-commutes with ĔB  we have operator form 

ĔBa e aj-¡¡= , 

For example, for 1 2
ĔB e e=   vector 3

e   commutes with ĔB , while vector 1
e   anti-commutes.  

Bivector ĔB  defines the rotation plane and it is clear that vectors orthogonal to that plane are 
not changed by rotor. Notice, we do not need rotation matrices, Euler angles, or any other known 
mechanism. Once you define a unit bivector it will do all the necessary job. You can imagine it like a 
small spinning top that does exactly what we need. Notice that two different consecutive rotations 
make the rotation again (show that). This produces a group structure, but here we will not talk about 
it.  

Example. Rotate vector 1 2 3
e e e+ +  in the plane 1 2

e e  by angle j. We have 

( )
1 2 1 2

2 2
1 2 3

e e e e

e e e e e
j j
-

+ + , 

so take advantage of the fact that the vector 3
e  commutes with bivector 1 2

e e , while 1
e  and 2

e anti-

commute: 

( ) ( )
1 2 1 2 1 2 1 2 1 2 1 22 2 2 2 2 2

1 2 3 3 1 2

e e e e e e e e e e e e

e e e e e e e e e e e e
j j j j j j
- - - -

+ + = + + = 

( )( ) ( )( )3 1 2 1 2 3 1 2 1 2cos sin cos sin sin cose e e e e e e e e ej j j j j j+ - + = + + + - +, 

and for the vectors in the plane 1 2
e e  we recognize the rotation matrix 

cos sin

sin cos

j j

j j

-å õ
æ ö
ç ÷

, 

where the columns represent the images of the unit vectors. Rotation by angle j-  we get using the 

bivector 2 1 1 2
e e e e=- .  

 

Consider rotation 
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1 2 1 2
0.7 0.7

2 2
e e e e

e ae
p p

-
 

and the corresponding rotation matrix 

0.588 0.809

0.809 0.588

- -å õ
æ ö

-ç ÷
. 

What can be said about the geometrical interpretation, that is, what you can conclude looking at the 
matrix? Try now to make a rotation matrix for an arbitrary plane. Try to repeat all in 4D. The easiness 
with which we perform rotations in geometric algebra is unseen before. There are no special cases, no 
vague matrices, just follow the simple application of the rotors to any multivector. Many prefer 
quaternions, but they do not have the geometric clarity. And they are limited to 3D! If only elegance 
and power of rotations was the result of using geometric algebra it would be worth of effort. But it 
gives us much, much more.  

Notice how any rotor can be factored in small rotations  

/2 /2 /2...I I n I n

n

R e e ej j j= =  , 

which can be used in practice, for example, when interpolating.  

Let's look at the rotation of vector 2
e  for small angle in the plane 1 2

e e  (p. 8, p.9). Recall the 

definition   

lim 1

n

x

n

x
e

n­¤

å õ
= +æ ö

ç ÷
 , 

 

and let's construct the operator 1 2
1 e ee+ , e is a small real number. Acting from the left we have 

( )1 2 2 2 11 e e e e ee e+ = + , 

so we get an approximate small rotation of vector 2
e . Note the sign of the number e, for 0e<  we 

would have  a counterclockwise rotation. Operator 1 2
1 e ee+  rotates all vectors in the plane for the 

same angle, so, by successive application  on 2
e we get rotated 2

e  first, then rotated newly 

established vector, etc. This justifies the definition of exponential form of the rotor: each rotation is 
the composition of a large number of small successive rotations. Of course, all this is well defined for 

infinitely small rotations, and for bivector B  we have  

lim 1

n

B

n

B
e

n­¤

å õ
= +æ ö

ç ÷
. 

Notice (or show it) that rotor will not change the bivector ĔB , for example, so it is an invariant of 
rotation. The fact that the blade can be invariant  directly leads to the notion of the proper blade with 
real eigenvalues, which is a generalization of the common concept of eigenvectors and eigenvalues 

(see in linear transformations). Rotate the bivektor 1 2
e e  in the plane spanned by vectors 1

e  and 2
e . 

What do you notice?  
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Rotations are linear (orthogonal) transformations that are usually described by matrices in 

linear algebra. To find the invariants of these transformations we study the results of action of matrices 

on vectors only. For matrix A  (that represents a linear transformation) we seek for vectors x  such 

that Ax xl= , which provides solutions for the eigenvalueslÍ . Here we see that in geometric 
algebra we can find invariants with respect to a bivector  (or any blade). Instead of the concept of 
eigenvector we can introduce the concept of the eigenblade (which includes eigenvectors). This allows 
reducing of the set of eigenvalues of transformation to the set of real numbers and giving a geometric 
meaning to the concept of eigenvalues. Linear transformations will be discussed later in the text. 
 

Rotor R-  has the same effect as the rotor R, but,   the direction of rotation is not the same, 

for example, vector 1
e  can be rotated to 2

e-  clockwise by / 2p  or counter clockwise by 3 / 2p , so we 

see that rotor clearly shows the direction of rotation (try it with matrices!). For example 

( )2 /2/2 /2 II I Ie e e e
p jj p j - --- = =  , 

minus disappears due to the "sandwich" form. For each rotation we have two possible rotors (find 
what double cover of a group is). 

 

Note that, due to the half-angle, rotor  

( ) ( )
Ĕ

2 Ĕcos / 2 sin / 2
B

e B
j

j j
-

= -  

has periodicity of 4p instead of 2p. Often for such objects we are using the name unit spinor. 
Geometric algebra is an ideal framework to study all unusual properties of rotations, but it would take 
a lot of space. 

Example: Let's rotate  (see [18]) some object in 3D around  1
e  by / 2p , then around  2e  by / 2p , what 

we get? Do that using matrices also.  



 26 
 

( ) ( ) /31 2 3 1 2 3

1 2
1 2/4 /4

2

1 1 1 1
1 1 ... 3 ,     

2 22 3 3

jje je e e e e e e
je je j ee e pp p + - + -
+ + = = + = == v

v  , 

so we have rotation by 2 /3p  around the vector v . 

Question: What is the meaning of 1iep=-? In 2D for 1 2i e e=  we have (v  is a vector in the 1 2
e e  

plane, you can choose 1
e=v   if you like) 

/2 /2i ie ep p- =-v v, 

and using anti-commutativity 
/2 /2i i ie e ep p p- = =-v v v, 

then multiplying by 1-
v  on the right we get a clear meaning. Rotor /2iep  transforms the vector v  to 

the vector -v , i.e. rotates it by p-   (sign is not important here). Of course, we also recognize the 

rotational properties of the imaginary unit in the complex plane (selected in advance), but bivector  

defines the rotation plane and we could write identical relations, without change, in any dimension, in 

any plane. In fact, bivector in the exponent of the rotor could depend on time, formulas are still valid, 

rotation plane changes with the bivector. Try to do that with the άsquare root of minus oneέ. 

Let's say you want to find the rotor in 3D that will transform the orthonormal coordinate basis 

i
e   to orthonormal coordinate basis if . We need a rotor with the property 

À

i i
f Re R= . Let's define 

ĔR Ba b= - , where ĔB  is a unit bivector, then 
À ĔR Ba b= + . Notice two simple and useful relations in 

3D 
2

3
i

i

e =ä       and    Ĕ Ĕ
i i

i

e Be B=-ä , 

(prove it). It follows  
À ÀĔ3 4

i i

i

e R e B Ra b a= - = -ä , 

and 

( )À À
4 4 1

i i i i

i i

f e Re R e R R Ra a= = - = -ä ä , 

so 

1

,    1

1

i i

i

i i

i

i i

i

f e
A

R A f e
AA

f e

+

= = = +

+

ä
ä

ä
. 

Rotation by p  can be treated as a special case. Show that the rotor can be expressed using Euler 
angles as 

2312 12/2/2 /2ee e
e e e

qf y-- -
. 

 

Let's comment the historical role of Hamilton, who in the 19th century found a similar 

mechanism for rotations: quaternions. There is a connection between quaternions and formalism 

described here, namely, quaternions can be easily related to the unit bivectors in Cl3. However, 

quaternions are like extended complex numbers, they do not have a clear geometrical interpretation. 

Moreover, they exist only in 3D. (Hamilton wanted to give a geometric meaning to unit quaternions, 

and was trying to treat them as vectors, which did not gave the expected results, but unit vectors 
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,  ,  i j k  inherited their names due to these attempts.) The formalism of geometric algebra is valid for 

any dimension. Every calculation in which we use quaternions can be easily translated into the 

language of geometric algebra, while the reverse is not true. However, quaternions are still successfully 

used in the applications for calculating rotation, for example, in computers of military and space 

vehicles, as in robotics. If you implement the geometric algebra on computer quaternions are not 

needed. 

Unit quaternions have the property 1=-ijk  and the square of each of them is -1. It was 

enough to come up with object that squares to -1 and anti-commute to describe the rotations in 3D 

successfully. The reader can check that replacements 23 13 12
,  ,  e e e­- ­ ­-i j k  generate quaternion 

multiplication table. 

Certainly it is good to understand that bivector 12 2 1
e e e- =  has a very clear geometrical 

interpretation, while unit quaternion k  (like imaginary unit or matrix) has not. Unfortunately, the 
concept of geometric objects like bivector is often strange to traditionally oriented people. 

Once we know how to rotate vectors we can rotate any element of geometric algebra. Note 
especially nice feature of geometric algebra: objects that perform transformations όάƻǇŜǊŀǘƻǊǎέύ are 
also elements of the algebra. Let's look at the rotation of versor 

( )( )( )À À À À À À ÀRabcR RaR RbR RcR RaR RbR RcR= = , 

which clearly shows how the rotation of versor can be reduced to the rotation of the individual vectors 
and vice versa. Every multivector is a linear combination of elements of Clifford basis which elements 
are simple blades, so, they are versors. We see that our last statement is always true, due to linearity. 
The reader is advised to do rotations of different objects in Cl3.  Find on Internet the ǘŜǊƳ αgimbal 
lockάΦ 

It is interesting to look at the unit 
sphere in  3D and unit vectors 
starting at the origin of the sphere. 
Each rotation of the unit vector 
defines the arc on some main 
circle. Such arches, if we take into 
account their orientation, can 
become a kind of vectors on the 
sphere, and composition of two 
rotations can be reduced to a 
(non-commutative) addition of 
such vectors. See [4].  

 

 

 

 

If we take an arbitrary 
element of even part of algebra 

(for example in 3D), not only the rotors, with the rotation we get the additional effect: dilatation, which 
is exactly the property of spinors. Spinors are closely associated with the even part of algebra. 
Geometric algebra hides within itself an unusual amount of mathematics which is branched out in 
different disciplines. It's amazing how the redefinition of the multiplication of vectors integrates into 
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a single formalism many different branches of mathematics. Spinors, tensors, Lie groups and algebras, 
various theorems of integral and differential calculus are unitedΣ ΧΣ theory of relativity (special and 
general), quantum mechanics, theory of quantum information, Χ one almost cannot believe. Many 
complex results of physical theories here become simple and get a new meaning. Maxwell's equations 
are reduced to three letters, with the possibility of inverting the derivation operator over the Green 
functions, hard problems in electromagnetism become solvable (see [2]), the Kepler problem is 
elegantly reduced to the problem of the harmonic oscillator, Dirac theory in Cl3 or the minimal 
standard model in Cl7 are nicely formulated ([34]), not to list further. Geometric algebra has a good 
chance to become mathematics of future. Unfortunately, it is difficult to break through the traditional 
university (and especially high school) programs.  

 
One can study following 

pictures to better understand 
rotations. 
 
 
 

 

- Øm n  defines the plane, 

direction of rotation and the 

rotation angle 

- ^a is invariant to rotation, 

only a  is rotated by 2j 

- The same picture is valid in 

any dimension (in dimensions 

higher than 3 there is a 

subspace invariant to 

rotation). 

- It is easy to obtain any 

composition of rotations in the 

same manner. 

- Geometric product of vectors 

gives us the possibility to 

maintain rotations easy. 
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Contractions 
 
We defined the inner product  that for vectors coincides with the usual scalar multiplication of 

vectors. In general, in geometric algebra we can define various products that lower grades of elements 
(outer product raises it). It appears that the best choice is left contraction. For the vectors it is just as 
the inner product, but generally allows avoiding various special cases, such as, for example, the inner 
product of vector with the real number.  Here we will mention just a few properties of left contraction, 
see [19] for more details. The idea is that for any two blades (including real numbers) we define a 
αscalarά multiplication that will generally reduce the grade of the blade that is on the right in the 
product: 

 

( ) () ()grade A B grade B grade Aú = - , 

 

whence immediately follows that the left contraction is zero if  () ()grade B grade A< . For vectors we 

have 

a b a bú ¹ Ö, 

and generally for blades we have 

( ) ( )A B C A B CØ ú = ú ú. 

Useful relation for vectors is 

( ) ( ) ( )x a b x a b x b aú Ø = Ö - Ö, 

 
while in general we can write for any  multivector 

,
k l l k

k l

A B A B
-

ú =ä , 

where we have geometric product between homogeneous (of the same grade) parts of the 

multivectors. The left contraction for blades A and B  ( A Bú )   is the subspace in B  orthogonal to 

A.   If vector x   is orthogonal to all vectors from the subspace defined by the bladeA   then  

0x Aú =. The left contraction can help us to define the angle between subspaces. Because of the 
generality, clear geometric interpretation and benefits for use on computers (there are no exceptions, 
so if loops are not needed) left contraction should be used instead of "ordinary" inner product. You 
can also define the right contraction, however, due to the properties of duality, it is not really 
necessary. 
 

Commutators and orthogonal transformations 
 

Let's define the commutator as a new kind of product of  multivectors (here we use the 
character Ã to avoid possible confusion with the cross product) 

 

( )/ 2A B AB BAÃ ¹ - . 

This product is not associative, i.e. ( ) ( )A B C A B CÃ Ã = Ã Ã is not valid, but we have Jacobi identity  

 

( ) ( ) ( ) 0A B C C A B B C AÃ Ã + Ã Ã + Ã Ã =. 
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We have (prove it)   general formulas  ( A  is bivector, not necessarily a blade, X  is multivector, a is 
real scalar, x  is a vector) 

X Xa a= Ø  

            xX x X x X= ú + Ø 

                               AX A X A X A X= ú + Ø + Ã. 

 

Here we are particularly interested in commutators with bivector as one of the factors. Namely, 
commutators with the bivector keep the grade of multivector  (if they do not commute with it): 

() ( ) ( )2 ,    0grade B grade X B grade X X B= Ý Ã = Ã .̧ 

Instead of proving it let us look at the examples. If bivector is 1 2B e e=  , then vector 3e  commutes with 

B , but for the vector 1e (grade 1) we have 

( )1 1 2 1 1 1 2 2/ 2B e e e e e e e eÃ = - =-, 

grade 1 again. Let us take the series expansion 

( ) ( )( )/2 /2 / 2 / 3!  ...B Be Xe X X B X B B X B B B- = + Ã + Ã Ã + Ã Ã ³ + , 

so if we take a small bivector of the form  2Ĕ Ĕ,   1B Be =- , we see that we can keep only two terms  

Ĕ Ĕ/2 /2 ĔB Be Xe X X Be e e- º + Ã. 

Preservation of grades is important here, because we want to, after the transformation, have a 
geometric object of the same type. The last transformation we see as an orthogonal transformation 
which will slightly change the initial multivector. Here we must mention that we look for the orthogonal 
transformation connected to the identity transformation, which means that they can be implemented 
in the small steps. Reflections do not meet this requirement, we cannot perform "a little of reflectionάΦ 
Such small transformations are called perturbations. Therefore, we can conclude that the small 
perturbations of elements of geometric algebra are to be performed by rotors.  

Note that orthogonal transformations do not permit to just add a small vector xd  to the 

vector x ,  orthogonal transformations must keep the vector length. So we must have 0x xdÖ =. 

Generally, such an element ( xd ) of geometric algebra has the form x x Bd d= ú , where Bd  is a small 
bivector. We can show it 

( ) ( )( ) 0x x B x x B x x Bd d dÖ ú = ú ú = Ø ú =. 

It follows now that 

( )/ 2x x B x B Bx x Bd d d d d= ú = - = Ã, 

and we have the desired shape in the form of a commutator. It may seem that the restriction on the 
rotations is too strict, it looks as if we cannot do a simple translation of a vector. However, here it just 
means that we need to find a way to describe translations by rotations. It is possible in geometric 
algebra, but we will not show it here  (see [19]).  

Here we will stop, but noting that a small portion of formalism just shown  leads to Lie groups 

and algebras. It can be shown  that every finite Lie group or algebra can be directly described in the 

context of geometric algebra. The infinite case is not yet absolutely clear, but it would be unusual for 

a result to be different. Anyway, another nice part of mathematics fits perfectly into the geometric 

algebra. Anyone who seriously studies the geometric algebra was initially probably astonished by the 

fact that different branches of mathematics show a new light in the language of geometric vector 
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multiplication, but with time one gets used to it and does not expect exceptions. One cannot help 

wonder what our science would look like that the power of this magical language of mathematics was 

understood and accepted a century ago. And it was all at our fingertips. 

 

Complex numbers 
 

Let's specify the vector in 2D 1 2xe ye= +r . Let's use the existence of the inverse and write  

( ) ( )1 1 2 1 1 2,    e x ye e e x yi i e e= + = + =r , 

and we can see that we get a complex number x yi+ , but with non-commutative "imaginary unit". 

The first thing to complain about isΥ αYes, but your imaginary unit is not commutative, and quantum 

mechanics cannot be formulated without imaginary unit  ΧάΦ  Immediately you see that the "critic" 

commented something he knows almost nothing about, because, first, quantum mechanics works 

nicely (and even better) with real numbers, without the imaginary unit, but one should learn geometric 

algebra, then learn the formulation of quantum mechanics in the language of geometric algebra Χ Not 

only that we can without using imaginary unit, but many relations obtain a clear geometric meaning  

and thus provide a new insights into the theory in the language of geometric algebra. And second, non-

commutativity of our bivector 1 2i e e=  actually becomes an advantage, it enriches the theory of 

complex numbers and, as we are repeating until you get bored, gives it a clear geometric meaning. For 

our complex number 1z e= r  we have (due to anti-commutativity) 
1z e*=r , so 

2 2 2 2

1 1 1 1zz e e r e e r x y*= = = = +rr ,      or 

1 1 12 2z z e e e x*+ = + = Ö =r r r , 

1 1 12 2z z e e e yi*- = - = Ø =r r r , 

 etc. We see that the operations on complex numbers are, without any problem, confined to the 

operations in geometric algebra. Define derivative operator in  2D 

1 2e e
x y

µ µ
Ð¹ +

µ µ
, 

and introduce a complex field u ivy= + , 1 2i e e= . Simple calculation shows (do it) that derivation of 

the field is  

1 2

u v v u
e e

x y x y
y

å õ å õµ µ µ µ
Ð = - + +æ ö æ ö

µ µ µ µç ÷ ç ÷
. 

So, if we want the derivative to be identically zero (analyticity), Cauchy-Riemann equations 

immediately follow. Note how anti-commutativity of unit vectors gives correct signs. So, analyticity 

condition in geometric algebra has a simple form 0yÐ = , and we can immediately generalize it to 

higher dimensions. And yes, this is just a right moment to stop and think. Let the advocates of the 

traditional approach do all that using just commutative imaginary unit. Actually, it's amazing how this 

old, good imaginary unit has made a lot of work, given the modest possibilities! But, it is time to rest a 

little, let bivectors, pseudoscalars ... do the job. It should be noted, to make no confusion, the choice 

of the plane 1 2e e is unimportant here. We can take the bivector like ( )( )1 2 1 3e e e e+ - , normalize it 
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and we get the new αimaginary unitάΣ but in the new plane. We can do that in 4D also, and take, for 

example 3 4i e e= , all formulas will be valid. The plane 1 2e e  is just one of infinity of them, but 

geometrical relationships in each of them are the same. We can solve the problem in the plane 1 2e e , 

and then rotate all to the plane we want, we have powerful rotors in the geometric algebra. And when 

it is said  α powerfulά then it literally means  that we do not have to be experts in the matrix calculations, 

here something like that an advanced high school student can make. We can rotate any object, not 

only the vectors. Linear algebra is the mathematics of vectors and operators, geometric algebra is 

mathematics of subspaces and operations on them. Anyone who uses mathematics should understand 

how important it is. 

We will show here that one can get solutions of the equation 0yÐ =  by using series in z . 

Notice first an easy relation for vectors  

( ) 2abc bac ab ba c a bc+ = + = Ö, 

 wherein the inner product has priority. Operator Ð is acting as vector (expressions like Ðr are 

possible, but then we usually write Ðr , which does not mean the time derivative, but indicates the 

element the derivation operator acts on, and gives desired order in products of unit vectors), so take 

advantage of the previous relation (a very useful calculation) 

 

( )1 1 1 1 12 2 2 0z e e e e eÐ =Ð = ÖÐ - Ð = - =r r r . 

Now we have 

( ) ( )( )
1

0 1 0 0 0
n n

z z n e z z z
-

Ð - = Ð - - =r , 

so, Taylor expansion about 0z  automatically gives the analytical function. Again, in any plane, in any 

dimension. It is not only that geometric algebra contains all the theory of functions of complex 

variables  (including integral theorems, as a special case of the fundamental theorem of integral 

calculus in geometric algebra), but also extends and generalizes it to any dimension. Is not this a 

miracle? And we were just wondering how to multiply vectors. If you still have a desire to pronounce 

the sentence  αYes, but Χά, please, go back to the beginning of the text and see how all this began. 

Time of geometric algebra is yet to come, hopefully. The children of Adam and Eve will again speak 

one language, we will have one language of mathematics. Dark Ages of matrices and coordinates will 

disappear and will be replaced by the time of synergy of algebra and intuitively clear geometry. 

Students will learn much faster and be superior to today's "experts". And when we learn computers to 

"think" in this magical language  (imagine a computer that knows how to perform operations on 

subspaces) children will be able to play with geometric shapes as now play a car racing or other 

computer games. The properties of triangles, circles, spheres and other shapes we will learn through 

play, on computers, interactive. Language of geometric algebra is so powerful that it can "automate" 

even the process of proving the theorems (there's still a lot of work to do, but the possibilities are 

there).  We have reasons to think that geometric algebra is not just "another formalism", but it offers 

the possibility of deep questioning the very concept of number.  

 

Spinors 
 
Let's look at the elements of algebra which in the "sandwich" forms do not change the grade 

of vector  (i.e. vector transform to vector). Among them are the transformations which rotate and 
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dilate vectors, we usually call them spinors. Let's look at multivectors  y with the property (v  is a 

vector) 
À À À,    ,    1R R RRy y r r= ÍÁ =v v , 

which is precisely the rotation of the vector with dilatation. If we define ÀU Ry¹ , previous relation 

becomes  
ÀU U r=v v, 

and we will find the element U . Show that pseudoscalars of odd dimensions commute and of even 
dimensions anti-commute with vectors. Other grades do not possess such a general property (real 
scalars commute).  We see that element U  induces a pure dilation of the vector v  and that is possible 
if it commutes or anti-commutes with v , so it follows that element U  is, generally, real scalar, or 

pseudoscalar, or combination of both: 1 2U Il l= + . Now, using definition of U , we get 

( )2 À 2 À

1 1 2 2U I I I Il ll l r= + + + =v v v v v. 

In Cl3 ( 3,    0p q= = ) pseudoscalar I j=  commutes with all elements of the algebra and reverse is
ÀI j=-, middle term disappears, so we have 

( )2 2

1 2 1 2R jl l r y l l+ = Ý = + , 

and it is easy to check  

 

( )( ) ( )( ) ( )À À À 2 2 À À

1 2 1 2 1 2 1 2 1 2R j j R j j R R R R R Ry y l l l l l l l l l l r= + - = + - = + =v v v v v . 

 

In general, note that   

( ) ( )
( )( )

( )
1 1 2 /2À À À À1 ,    1 ,    1

n n n q
I I I I II

- - -
= - = - = -v v v v , 

 

(prove it, at least for the signatures (3, 0) and (1, 3)) and we ca find solutions  (find them) dependent 

on the parity of number  ( )( )1 2 / 2n n- - . 

Spinors in geometric algebra, as elsewhere, can be defined by (left) ideals of the algebra, but 
here we will not deal with it ([7]). 

A little of "ordinary" physics 
 

Let's see how we can solve the kinematic problem in its generality using simple calculations 
and intuitively clear. Consider the problem of accelerated motion with a constant acceleration.  
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The problem is easily reduced to relations  
 

0 t= +v v a ,   0 2 / t+ =v v r , 

wherein the second relation defines the average speed vector  / t=v r , so we have  

( )( )0 0 2+ - = Ýv v v v ra  

( )2 2 2 2

0 0 0 0 02 2v v v v- + - = - + Ø = Ö + Øv v vv v v r a r a , 

where by comparison of the scalar and bivector parts we get  

2 2

0 2v v- = Ör a , 

0Ø = Øv v r a , 

i.e. the law of conservation of energy and the surface of the parallelogram theorem. For the projectile 
motion problem, ( =a g ) we have (figure on the right)  

( )

( )

2 2 2

0 0 0

2

0

0 sin 2

sin 2 ,

v v v rg

v
r

g

q

q

Ö = Ý = Ý Ø = = Ø = Ý

=

r g v v r g

 

and this is the known relation for the range. Notice how properties of geometric product lead to simple 
manipulations. Another example is the Kepler problem. Immediately after setting the problem, after a 
few lines, we obtain non-trivial conclusions that textbooks usually put as hard part at the end. 
Examples here are to show how to obtain solutions without coordinate systems and coordinates. 
Unfortunately, research shows ([21]) that many physics students see vectors mainly as a series of 
numbers (coordinates) and it is a sad reflection of the current education systems, regardless of place 
on the planet. Such "attitude" does not provide a good start for a serious professionals. The connection 
of linear algebra and geometry is usually quite neglected. With the geometric product  algebra and 
geometry go hand in hand. Instead of treating the vectors as the key elements of algebra  we have a 
whole range of objects that are not vectors and have a very clear geometric meaning. We are 
calculating with the subspaces! And in any dimension. Something like that is impossible to achieve just 
manipulating by coordinates. Emphasize this, impossible! Russian physicist Landau, famous for math 
skills, ended up in Stalin's prison. After his release from prison, he said that his prison was welcome, 
ōŜŎŀǳǎŜ ƘŜ ƘŀŘ ƭŜŀǊƴŜŘ ǘƻ Ǌǳƴ ǘŜƴǎƻǊ ŎŀƭŎǳƭǳǎ άƛƴ ǘƘŜ ƘŜŀŘέ. Physicists of the future will be more skilled 
than Landau, they will use linear transformations in geometric algebra instead of tensor calculus. They 
will calculate faster, regardless of the dimension of space, without using coordinates and with a clear 
geometric interpretation at every step. Landau was also famous by the method of accepting students. 
He would said to the young candidate: "Here, solve the integral." Many have failed. In geometric 
algebra, there is a theorem (fundamental theorem) about integration that combines all known integral 
theorems used in physics, including complex area. Just imagine, Landau would be really surprised! He 
was a typical representative of the mathematics of the 20th century, although in his time already 
existed the new mathematics. It existed, but almost completely neglected and forgotten. Part of the 
price paid (and we still pay it) is a rediscovery of what is neglected and forgotten. Pauli discovered its 
matrices ς we have continued to use matrices. They say that the geometric algebra is non-commutative 
and that this discourages people. What about matrices? Not only that they are non-commutative, they 
are unintuitive. Then Dirac discovered his matrices, ideal for geometric algebra. Again, we continued 
with matrices. And many authors, on various occasions, rediscovered spinors, even giving them 
different names. Then we decided to make fast spacecrafts equipped with computers and found that 
we have problems with matrices. Then we started to use quaternions and improved things in some 
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extent. We can find a number of other indications, and, after all, it is obvious that many of the problems 
simply disappear when geometric product is introduced instead of products of Gibbs. In spite of 
everything, one of the great authors in the field of geometric algebra, Garret Sobczyk, wrote in an e-
mail:  

αI am surprised that after 45 years working in this area, it is still not generally recognized in the 
scientific community. But I think that you are right that it deserves general recognition ... Too bad 
Clifford died so young, or maybe things would be different now.ά  

 

Words and sentences  
 

Let's look, just for illustration, how αwordsά in geometric algebra can have a geometric content. 
For example, αwordά abba. 

( )

( )( ) ( ) ( )

( ) ( )

À2 2

2 2

22 2 2 2 2cos sin ,

a b

a b q q

= == =

Ö + Ø Ö - Ø = Ö - Ø =

Ö + Ø = +

abba ab ab

a b a b a b a b a b a b

a b a b

 

and we have well known trigonometric identity. This is, of course, just a game, but in geometric algebra 
it is important to develop intuition about the geometric content written in expressions. Due to the 
properties of geometric product structure of expressions is quickly manifested, as for relations 
between the subspaces, to be an element of subspace, orthogonality, to be parallel, etc. 

Let's compare exposed to the matrix approach. We have seen that in 3D we can represent 
vectors by Pauli matrices. Try to imagine that we are not aware of it, but we know about the Pauli 
matrices (from quantum mechanics). We could write the word abba in the language of matrices, we 
could resolve matrices in symmetric and anti-symmetric parts (it is custom), but try to derive the sine 
and cosine of the angle and the basic trigonometric identity. If you succeed (it is possible), how would 
you interpret that angle? And more important, how to even come up with the idea to look for an angle, 
just looking at matrices? It is hard, for sure, but with vectors it is natural and straightforward. That is 
the main idea: language of matrices hides important geometric content. True, physicists know that 
Pauli matrices have to do something with the orientation of spin, but generally, problem of geometric 

interpretation still remains. Here is one more example. We have unit vectors ( )1 2 / 2m e e= +   and 

( )2 3 / 2n e e= +  in 3D. It is not difficult to imagine or draw them, there is the plane spanned and 

bivector m nØ  in it (bivector defines the plane). Image again that we are using Pauli matrices, but, as 
before, without awareness that they represent vectors in 3D (we cannot even know it if we do not 
accept the geometric product of vectors). Someone could really investigate a linear combinations of 
the Pauli matrices, even come to the idea to look at anti-symmetric part of products of matrices, 

something like ( )Ĕ Ĕ Ĕ Ĕ/ 2
m n n m
s s s s- , where  ( )1 2

Ĕ Ĕ Ĕ/ 2
m
s s s= + ɨŀƴŘ ( )2 3

Ĕ Ĕ Ĕ/ 2
n
s s s= + . We should 

now calculate it, so, we can compare needed calculation with matrices and simple calculation of the 
outer product (in fact, there is no need to calculate the outer product, we have the geometric picture 
without effort). Whatever, bivector is 

( )( ) ( )1 2 2 3 1 2 1 3 2 3/ 2 / 2m n e e e e e e e e e eØ = + Ø + = + +. 

Fortunately, computer can help here with matrices (you see the problem?), so, anti-symmetric part of 
the matrix product is 
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1
/ 2

1

i i

i i

- +å õ
æ ö
+ -ç ÷

. 

Now, how, without connecting with vectors in 3D, to interpret this matrix as the plane? Or find the 
angle between - what? It is easy to express formulas from Cl3 via Pauli matrices, but matrix form to 
vectors ς it could be tricky, especially for the blades of higher grades, or general multivectors. Language 
of matrices blurs the geometric content! In quantum mechanics with Pauli matrices we need the 
imaginary unit, and people say that imaginary unit is necessary to formulate the theories of subatomic 
world. This often leads to a philosophical debates and questions about the αreal natureά of the world 
we live in. In the language of geometric algebra imaginary unit is absolutely not necessary, quantum 
mechanics can be beautifully and elegantly formulated using real numbers, with the clear geometric 
interpretation. Besides the real numbers, complex numbers and quaternions could be of interest in 
quantum mechanics, but it is clear now, they all are natural part of Cl3, as we discussed earlier.  In the 
article [1], author comments: άΧ instead of being distinct alternatives, real, complex and quaternionic 
ǉǳŀƴǘǳƳ ƳŜŎƘŀƴƛŎǎ ŀǊŜ ǘƘǊŜŜ ŀǎǇŜŎǘǎ ƻŦ ŀ ǎƛƴƎƭŜ ǳƴƛŬŜŘ ǎǘǊǳŎǘǳǊŜΦέ There are useful remarks on the 
FrobeniusςSchur indicator in this article. True, there is no geometric algebra in the cited article, 
although there is tŜǊƳΣ άdivision algebraέ ƛƴ ǘƘŜ ǘƛǘƭŜΦ wŀǘƘŜǊ ǘƘŀƴ ŎƻƳƳŜƴǘΣ ƘŜǊŜ ƛǎ the sentence from 
[28], one that should be known to all mathematician and physicists. Unfortunately, it is not. 

άGeometric algebra is, in fact, the largest possible associative division algebra that integrates all 
algebraic systems (algebra of complex numbers, vector algebra, matrix algebra, quaternion algebra, 
etc.) into a coherent mathematical language that augments the powerful geometric intuition of the 
human mind with the precision of an algebraic systemΦέ To be honest, division algebra or not ς it is 
unimportant. It unifies and it works! 

 

Linear transformations 
 
 

Often we are interested in the transformations of the elements of algebra (eg, vectors, 
ōƛǾŜŎǘƻǊǎΣ Χ) to other elements in the same space. Among them are certainly the most interesting 

linear transformations. Let's look linear transformation F  which translates vectors into vectors, with 
property 

( ) () ()F F F ,   ,  a b a ba b a b a b+ = + ÍÁ. 

We can imagine that the result of such a transformation is, for example, the rotation of the vector with 
the dilatation. For such a simple picture we do not need vector components. Another example may be 
a rotation:  

() () ÀF Ra a RaR= ¹ . 

We have seen that the effect of rotation of the blade is the same as action of the rotation on each 
vector in the blade, so we require that all of our linear transformations have that property, which 
means 

( ) () ()F F Fa b a bØ = Ø . 

Considering the linear transformation that gives back a vector we see that the form of outer product 
is preserved. Such transformation have a special name: outermorphism. The action of two successive 

transformations can be written as ()( ) ()F G FGa a¹ , which is handy for manipulating expressions.  
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If for linear transformation F: WV­   there is an adequate linear transformation 

F :W V­ , we'll call it transposed transformation (adjoint). Here we will restrict to transformations 

F:V V­ . We say that they are transposed because we can always find a matrix representation in 

some basis and see that matrix of F is just transposed matrix of F  (see [22]). Here is an implicit 
definition of adjoint 

() ()a F Fb a bÖ = Ö, 

for any two vectors a and b . Define now reciprocal base vectors 
ie  with the property 

i

j ije e dÖ =. 

Here we are using orthonormal bases of positive signature, so 

i i i

j j j ije e e e e e d= Ý Ö = =, 

and definition is motivated by two facts: first, we want to use the  Einstein summation convention 

1

n
i i

i i

i

e e e e
=

¹ä , 

and, second, we want the ability to generalize easily. Explicit form of the transposed transformation 
can be found using the orthonormal basis 

() ()F Fi ie a e aÖ = Ö, 

so we have 

() ()F F ,i

ia e a e= Ö  

where summation is understood and the inner product has priority. Designation F  is not common, TF  

or ÀF  is, but sometimes we use F  for linear transformations, so nice symmetry in expressions could 

occur if we use F. Furthermore, ()F a  is not a matrix or tensor, so designation highlights the 

difference. There cannot be confusion with Clifford conjugation in the text, we are consistently using 

format italic for multivectors.  For transposed transformation of the "product" of transformations we 

have  

() ()FG GFa a= , 

 (see literature). Transformations with the property F F=  are symmetric. Important symmetric 

transformations are FF and FF (show that). 

Let I  to be the unit pseudoscalar. Determinant of linear transformation is defined as 

()F det F,  det FI I¹ ÍÁ. 

This definition is in full compliance with the usual definition. Notice that this relation looks like 
eigenvalue relation. In fact, that is true, pseudoscalar is invariant (eigenblade) and determinant is an 
eigenvalue (real!). An example is 3D rotation 

() À À À

123R det R 1,    j RjR jRR RR j e= = Ý = = =, 

what we expect for rotors (for rotation matrices, too). Again, notice the power of formalism: without 

components, without matrices, by simple manipulation, we get an important result. Pseudoscalar 
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represents an oriented volume, so linear transformation of pseudoscalar is simply reduced to his 

multiplication by real number. Determinant of transposed transformation is  

()

() () ( )1 1 1

F det F

det F F F F det F,

I I

I I I I I I- - -

= Ý

= = = =
 

where we take advantage of the fact that determinant is a real number, therefore has the grade zero. 
For the composition of transformations we have 

( )() () ( )( )()FG FG F det G det G F det Fdet GI I I I I= = = = , 

and it is well known rule for determinants, but recall how much effort we need to prove that in the  

matrix theory. Here, proof is almost trivial. Beginner needs pretty much time to become skilled with 

matrices. Finally she(he) gets a tool that cannot effectively cope even with rotations. That time he 

could use to learn the basics of geometric algebra and get a powerful tool for many branches of 

mathematics. And geometric algebra today, thanks to Grassmann, Clifford, Artin, Hestenes, Sobczyk, 

Baylis and many other smart and hardworking people (see detailed list at the end of the text) has 

become a well-developed theory, with applications in many areas of mathematics, physics, 

engineering, including biology, studies of brain functions, computer graphic, robotics, etc. 

We will state without proof (the reader can prove it) some useful relations. For bivectors we 
have 

( ) ( )1 2 1 2F FB B B BÖ = Ö . 

This can be extended to arbitrary multi vectors as 

() ()F FA B A B= . 

Now we will define the inverse of linear transformation. For multivector M  we have 

() ( )( )det F=F F FIM I M I M= , 

where we used the fact that inner product with pseudoscalar can be replaced by geometric product, 
namely, there is no additional grades in geometric product (show it). Let's take the multivector 

A IM=  so we get 

( )( )1det F=F FA I I A- , 

and similar relation can be written for F. It follows 

() ( )( )

() ( )( )

11 1

11 1

F = F det F ,

F = F det F .

A I I A

A I I A

-- -

-- -
 

For rotors in Cl3 we have () ÀR a RaR= , applied to any multivector gives ( ) ÀR M RMR=  and  

( ) ÀR M R MR= , and using det R=1 

( ) ( )1 À 1 ÀR RM jR j MR R MR M- -= = = , 

ie, the inverse of rotation is equal to the transposed rotation. This is actually the definition of each 
orthogonal transformation (transformation with determinant 1° ). For nice examples see [18]. 
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Eigenvectors and eigenblades 
 

Concept of eigenvalues and eigenvectors should be known to the reader. Briefly, for an 

operator (matrix) m  we can define eigenvalues iland eigenvectors iv  as follows   

,    i i i imv vl l= Í . 

In geometric algebra, we say that linear transformation (function) has eigenvector e  and eigenvalue 
lÍÁ if 

()F e el= , 

which entails 

( )det F 0Il- =, 

so, we have a polynomial equation (secular equation). Generally, secular equation has roots over the 
complex field, but, we have algebra over the field of real numbers and it is not desirable to spread to 

a complex area. For example, how to interpret the product 11e- , which is not an element of the 

algebra. Fortunately, this is not necessary in geometric algebra, because we can give a whole new 
meaning to complex solutions. For this purpose, we introduce the concept of eigenblade. Namely, 
vectors are just elements of the algebra with grade 1, bǳǘ ǿŜ ƘŀǾŜ ƎǊŀŘŜǎ нΣ оΣ Χ in geometric algebra, 
which are not defined in the ordinary theory of vector spaces. It is therefore natural to extend the 

definition of eigenvalues to the other elements of algebra. For a blade rB  with grade r  we define 

( )F ,    r rB Bl l= ÍÁ. 

In fact, we already have such a relationship, namely, for rB I=  we have an eigenvalue det F, because 

of  ()F det FI I= . Accordingly, pseudoscalars are eigenblades of linear transformations. To explain 

the concept of the eigenblade let's look at the following example (see [18]). Let's specify a linear 
function with the property  

() ()1 2 2 1F ,    Fe e e e= =-, 

(recognize rotation?) so, it is not difficult to find a solution using matrices. Matrix of transformation is  

0 1

1 0

-å õ
æ ö
ç ÷

 , 

with the eigenvalues i°, 1i= -, and eigenvectors 1 2e ie°  (use secular equation and prove). In 

geometric algebra, for the blade 1 2e eØ  we have (notice elegance) 

( ) () () ( )1 2 1 2 2 1 1 2 F  F Fe e e e e e e eØ = Ø = Ø - = Ø, 

so, blade 1 2e eØ  is eigenblade with the (real) eigenvalue 1. Our blade is invariant, but we know that 

from rotors formalism! There is no need for imaginary unit, we have our blade. Notice that vectors in 

the plane defined by 1 2e eØ are changed by transformation, but bivectors are not. You see simple 

mathematics and important result. In standard methods, using ƳŀǘǊƛŎŜǎΣ ǘƘŜǊŜ ƛǎ ƴƻ άōƭŀŘŜǎέ ŀǘ ŀƭƭΦ 
Why? Simple, there is no geometric product. So, try to find such a result using matrices.  All those who 
like to comment on geometric algebra by sentences as αYes, but imaginary unit in quantum mechanics 
Χά should think twice about this simple example, and when they come to the conclusion that αit does 
not make sense Χά, well, what to say? Just think again. This is the question of how do we understand 
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the very concept of number. Probably, Grassmann and Clifford directed us well and their time is yet to 
come.  

If orthonormal basis vectors ie  and 
je  are eigenvectors of linear transformation F , then 

() ( )Fi j i j j j i je e e e e el lÖ = Ö = Ö. 

Apply the previous relation to the symmetric linear transformations and show that their eigenvectors 
with different eigenvalues must be orthogonal. 
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Euclidean 3D geometric 

algebra (Cl3) 
 

 

 

 

 

 

 

 

Generally, a multivector in Cl3  can be rewritten as   

1 2 3,    , ,     M t j bj t b j e e e= + + + ÍÁ =x n , 

where for three-dimensional vectors we are using bold format here. We have seen already that the 
unit pseudoscalar  j   commutes with all elements of the algebra and squares to -1, making it an ideal 

ǊŜǇƭŀŎŜƳŜƴǘ ŦƻǊ ǘƘŜ ƛƳŀƎƛƴŀǊȅ ǳƴƛǘ όǘƘŜǊŜ ŀǊŜ Ƴŀƴȅ άƛƳŀƎƛƴŀǊȅ ǳƴƛǘǎέ in GA). Pseudoscalar with such 
properties will appear again in Cl7, ClммΣ Χ  Here we use one more, very useful, form of multivector: 

,    ,    M Z Z t bj j= + = + = +F F x n . 

Element Z  obviously commutes with all elements of the algebra (belongs to the center of the algebra). 
This feature makes it a complex scalar. Complex scalar is really acting as a complex number, as we shall 

see below. This is the reason that we writeZÍ , although, obviously, we have to change the meaning 

of the symbol , i.e. we replace the ordinary imaginary unit by pseudoscalar. Element F  is a complex 

vector, with the real vectors as components. The choice of designation (F ), as well as for complex 
scalars, is not without significance, namely, due to a complex mixture of electric and magnetic field in 
electromagnetism. IŜǊŜΣ ǿƘŜƴ ǿŜ ǎŀȅ άǊŜŀƭέΣ ǿŜ ƳŜŀƴ real scalar, or 3D vector, or their linear 
combination. When a real element is multiplied by pseudoscalar j  we get an imaginary element, so, 

sum of real and imaginary elements gives a complex one. For example, x  (vector) is real, t+x

(paravector) is real, t j+n (spinor) is complex, jn (bivector) is imaginary, j= +F x n (complex 

vector) is complex, etc. Note that the multivector could be written as  

( )M t j bj t j b= + + + = + + +x n x n ,  

so, it is just a complex number, with real components (paravectors). Use involution (which?) to extract 
the real (imaginary) part of multivector. How about Z  and F ? Or  t j+n ? 

The reader is suggested to write all three described involutions in this new form. You can use 
a complex conjugation. As an example we look at Clifford involution (i.e. Clifford conjugationɨ main 

involution) M Z= -F  

( )/ 2
S

M M Z M+ = ¹ ,   (scalar part) 

( )/ 2
V

M M M- = ¹F   (vector part). 

 

Due to commutativity of the complex scalar Z   we have 

sum of two bivectors 
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( )( ) ( )( )2 2MM Z Z Z Z Z MM= + - = - = - + =F F F F F , 

where 
2 2 2 2Z t b tbj= - + ,    ( )2 2 2 2 2 2x n j x n j= - + + = - + ÖF xn nx x n . 

Here is result to remember: square of the complex vector is a complex scalar. It means that element

MM is a complex scalar. It can be shown that MM  is the only element of form MM (here M  stands 

for any involution of M , MM is referred as the square of the amplitude) that satisfies 

.MM MM= Í We have 

( )( )Z Z ZZ Z Z+ + = + + +F F F F FF , 

so we have two possibilities 

,    Z Z= =-F F   or ,    Z Z=- =F F , 

which differ only in the overall sign. Any involution that changes the complex vector the other way, 
changes (up to overall sign) bivector or vector part, so 

( )( ) ( )2 2 2 2 2j j x n j x n j= + - = + + - = + - ØFF x n x n nx xn x n , 

and we get outer product of real vectors which cannot be canceled, it is absent in ZZ Z Z+ +F F . So, 

must be M M= . We already found that MM MM= , but we can show that from demand that the 
amplitude (any) belongs to the center of the algebra follows commutativity  

( )( ) ( ) ( ) 0MM M MM MM M M MM M MM MMÍ Ý = = Ý - =, 

due to associativity and distributivity. In a special case the expression in parentheses need not to be 
zero because there are zero divisors in the algebra, but we need general commutativity, so it must be 

zero. ScalarMM is referred as the amplitude of multivector (MA in text, in fact this is the square of 
amplitude, but that will not make confusion).  

Using MA we can define inverse of multivector, if 0MM ¸ : 

1 /M M MM- ¹ . 

To find 1/ MM  we use complex numbers technique 

( )

( )

*

*

1 MM

MM MM MM
= , 

where * stands for complex conjugation, which means j j­- . Technique is the same, but 

interpretation is not, namely, pseudoscalar j  is oriented unit volume, it has intuitive geometric 
interpretation.  

Example: ( )1/ 1 j+ ?  We have ( )( )1/ 1 1 / 2i i+ = -   Ý   ( )( )1/ 1 1 / 2j j+ = - . 

Of course, this αǘǊƛcƪά is justified 

( )( )
1 1 1

1 1 1 2

j j

j j j

- -
= =

+ + -
, 

 We'll see that this procedure sometimes is not enough to find all possible solutions in geometric 
algebra, e.g. solutions for the roots of a complex numbers can be extended to complex vectors. A 

simple example is 11 e= . 

Important concept is dual of multivector M  defined  as  
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M jM*¹-  

 
(do not confuse with complex conjugation * ). Note that with the dual operation real scalar becomes 
pseudoscalar, vector becomes bivector (and vice versa). As mentioned, element jn  is a bivector.  We 

suggest reader to express jn  in orthonormal basis and interpret it. Also, take any two vectors in 

orthonormal basis and make their outer product. Then find the dual of obtained bivector and check 
that this dual is just cross product of your vectors. It follows that cross product is 
 

j³ =- Øx y x y , 

but, we can use it in 3D only, although the term on the right can be defined in any dimension.  

 

From the general form of multivector in Cl3 

M t j bj Z= + + + = +x n F  

we see that it is essentially determined by  two real numbers ( t , b ) and two vectors ( ,  x n ).  Bivectors 

are usually represented by oriented disks, while pseudoscalar can be represented by sphere with two 
possible colors to give the orientation, so we can imagine a simple image that represents multivector 
(p. 10). It helps a lot. Figure p. 10 is created in the program Mathematica. For the reader, except 
imagination, we certainly suggest GAViewer. 

Let's look at properties of complex scalar 2 2 2 2x n j= - + ÖF x n . In particular, for orthogonal 

vectors  ( 0Ö =x n ) we have  
2ÍÁF , and values -1, 0 and 1 are of particular interest.  

Recall that jn is a bivector which defines the plane orthogonal to vector n , so, for 0Ö =x n

vector x  belongs to that plane. This is often used situation (e.g.  complex vector of the 
electromagnetic field in empty space), so it is important to imagine a clear picture. Note that in this 

case the real value of 
2 2 2x n= -F  is determined by the lengths of the vectors x  and n . On the next 

picture you can see the situation described. There is no a special name for this kind of complex vector 
in the literature (probably?), so we suggest the term whirl (short of whirligig). 

 

 

multivector in 3D: 

- disk represents an 

oriented bivector 

-  transparent  

sphere represents 

pseudoscalar, 

orientation is 

given by color 
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Nilpotents and dual numbers 
 

1) 
2 0=F  

This means that such a complex vector is a nilpotent. [ŜǘΩǎ 

find the general form of nilpotents in Cl3 (recall, 
2ÍF ): 

( )
2 2 2

2

2 0

0 0 ,   0,

Z Z Z

Z x n

+ = + + = Ý

= Ý = Ý = Ö =

F F F

F x n
 

(we excluded the trivial case  0=F ). Notice how often we use the form Z+F  here to draw 
conclusions, it is not a coincidence. It is good practice to avoid habits of some authors to frequently 
express multivectors by components,  so formulas look opaque. Here the focus is on the structure of 
multivector, and that structure reflects geometrical properties.  

One simple example of nilpotent is 1 2e je+  (check it). Functions with a nilpotent as an 

argument is easy to find using series expansion, almost all terms just disappear. For example, from  
2 0=N  follows 1e = +N N  (see below). 

Nilpotents are welcome in physics, for example, electromagnetic wave in vacuum is a nilpotent 

in Cl3 formulation, field is a complex vector ,   ,    1j E B c= + = =F E B , here E  and B  are vectors 

of electric and magnetic field. We ca define the direction of the nilpotent j= +N x n  as 

2 2Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ,   1j=- Ø = ³ = =k x n x n x n , so we have 

Ĕ Ĕ=- =kN Nk N , ( )Ĕ1 2+ =k N N . 

All this is not difficult to prove whether we recall that Ĕ ,    / ,    x x n^ Ý Ø = = =x n x n xn x x . 

There are many other interesting relations (see literature). These relations have a direct application in 
electromagnetism, for example. 

Let us now comment the possibility of defining the dual numbers. For nilpotent j= +N x n  

we have ,   0x n= Ö =x n , ǎƻ ƭŜǘΩǎ  define a αunit ƴƛƭǇƻǘŜƴǘά (nilpotents have zero MA) 

2Ĕ Ĕ/ ,   0x j¹ = + =Ů N x n Ů. 

Now we can define the dual numbers as ,   ,a b a b+ ÍÁŮ . Addition of these numbers is similar to 

the complex numbers, while for multiplication we have 

( )( ) ( )1 1 2 2 1 2 1 2 2 1a b a b aa ab a b+ + = + +Ů Ů Ů, 

so, for 1 2 2 1 0a b a b+ = it is a real number. If  1 20,  0a a= = product is zero, which distinguishes 

dual and complex numbers. For a dual number z   specified as z a b= +Ů we define the conjugation  

z a b= -Ů (notice, it is again just the Clifford involution), it follows   

( )( ) 2zz a b a b a= + - =Ů Ů , 

and the module of dual number is z a=  (could be negative). Notice that there is no dependence on 

b. For 0a¸  we have the polar form 

( )1 ,   /z a b a j j b a= + = + =Ů Ů , 

 whirl  
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here j is an argument of dual number. Check that  

( )( )1 1 1j j+ - =Ů Ů    and    ( ) ( )1 1 ,   
n

n nj j+ = + ÍŮ Ů . 

 
For polynomials we have (check it) 

( ) ( ) ( )

() ()

0 1 ...

,

n

nP p p p

P P

a b a b a b

a b a

+ = + + + + + =

¡+

Ů Ů Ů

Ů
 

where P¡ is the first derivation of the polynomial. This may be extended to analytic functions (see 
below), or to maintain the automatic derivation. Division by dual numbers is also defined as 

( )( )

( )( )

( )( )
2

,   0
a b g d a b g da b

g
g d g d g d g

+ - + -+
= = ¸

+ + -

Ů Ů Ů ŮŮ

Ů Ů Ů
. 

Especially,  

( )( )

( )

1 1
1

1 1 1

1
1 1 ,

1

n

n
n

j
j

j j j

j j
j

-
= = - Ý

+ + -

å õ
= - = -æ ö

+ç ÷

Ů
Ů

Ů Ů Ů

Ů Ů
Ů

 

and we see that Moivre's formula is valid 

( ) ( )1 1 ,   
nn n nz n na j a j= + = + ÍŮ Ů . 

Dual numbers are of some interest in physics, for example, ƭŜǘΩǎ define the special dual number 

(αeventά) t x+Ů, where the coordinates of time and position are introduced, and the proper velocity 

όαboostάύ as 1u v¹ +Ů,  1uu= . Speed v   is the argument of the dual number, /x tj= . It follows 

( ) ( )( ) ( )1t x u t x v t x vt t x¡ ¡+ = + + = + + = +Ů Ů Ů Ů Ů, 

which means t t¡= , x x vt¡= + , so we have the Galilean transformations. Velocity addition rule 
follows immediately 

( )( ) ( )1 2 1 2 1 2

1 2

1 1 1 1

.

u v u u v v v v

v v v

= + = = + + = + + Ý

= +

Ů Ů Ů Ů
 

Here we have a problem, namely, velocity vector is not defined properly (there is no orientation), but 
if we recall nilpotent direction, we can use it to specify velocity vector jv=-v Ů. Proper velocity now 

becomes 1u jv¹ -Ů, 1uu= . For an αeventά we then use t jx- Ů. It follows 

( )( ) ( )1t jx jv t j x vt t jx¡ ¡- - = - + = -Ů Ů Ů Ů, 

and we have the Galilean transformations again.  

So, as for Lorentz transformations (hyperbolic numbers, vectors and complex vectors, see 
below) and rotors (complex numbers, bivectors), Galilean transformations (dual numbers, nilpotents) 

also have a common place in the geometry of  3Á . Because all this is a part of larger structure (Cl3), 
one can get an idea that Galilean transformations are not just approximation of Lorentz 
transformations for small velocities, but some deeper physical content, independent of speed. But, 
such an idea is just due to our special choice of components of dual number (x, t). Dual numbers like 
t x+Ů could be useful in non-relativistic physics, but certainly they are not in accordance with the 
special theory of relativity. In the chapter on special relativity it is shown that Galilean transformations 



 46 
 

(with rotations and Lorentz transformations) follow from simple symmetry assumptions about our 
world (homogeneity and isotropy). If there is a deeper physics behind this formalism then it certainly 
does not include an explicit space-time events. But what if we choose differently? For example, typical 

nilpotent is the electromagnetic wave in vacuum. If we define E Bf= =  and ( )/j f= +Ů E B  one could 

investigate dual numbers like ,   y f y+ ÍÁŮ , but then there is a question: how to interpret y? 

According to the structure of expression it could be some sort of scalar field, but then we have another 
question: what is an argument of such a dual number, the ratio of vector field (complex vector) and 
scalar field would be a "velocity"? Ok, ƭŜǘΩǎ stop. 
 

Idempotents and hyperbolic structure  
 

2)  2 1=F  

For 2 2 2 1x n= - =F  we can find a general form using the relation 
2 2

cosh sinh 1j j- =, so, 

generally, we have 
2 2

cosh sinh ,    1,    jj j¹ = + = = ^F f n m n m n m , where f  is a unit complex 

vector.  Example: 1 2
cosh sinhe jej j= +f . Such a complex vector can be obtained using  

2

F , check 

that multivector 
2/¹f F F  has  requested properties. Check that ( ) 21 / 2p p p= + Ý =f , so, 

we have an idempotent.  

Theorem 1. All idempotents in Cl3 have the form ( )1 / 2.p= +f  

Proof: 

( )
2 2 2 22 1/ 2 1/ 4 / 2Z Z Z Z Z+ = + + = + Ý = Ý = Ý =F F F F F F f . 

Notice again the " ,  "Z F  form. The general form of idempotents is now 

( ) 2 21 cosh sinh / 2,    1,    p jj j= + + = = ^n m n m n m. 

Idempotents like ( ) 21 / 2,    1+ =n n  (n  is a unit vector) are referred as simple. 

Theorem 2: Each idempotent in Cl3 can be expressed as the sum of simple idempotent and a nilpotent.  

Proof: 

For the simple idempotent ( )1 / 2p= +n  and a nilpotent N we have 

( ) ( )
2

/ 2p p p p p+ = + + = + + +N N N N nN Nn , 

so we can see that the statement is correct if  0+ =nN Nn , which means that the vector n  must to 
anti-commutate with vectors which are defining ,N  i.e. must be orthogonal to them, or, parallel to 

the vector of the nilpotent direction: ĔĔ=°n k .  Theorem is proved and we found conditions for the 
nilpotent. 

Example: ( ) ( )1 2 31 / 2,    / 2p e e je= + = +N , 2 3 1
Ĕ e e e= ³ =k . 
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Spectral decomposition and functions of multivectors 
 

[ŜǘΩǎ Řefine ( )1 / 2u°= °f , with the properties  

1,    ,u u u u+ - + -+ = - =f 0u u u u+ - - += =, 
2u u° °= , u u+ -= . 

Note that idempotents u°do not make a basis in Cl3 (for details about spectral basis see [33]), and 

that we should write ( )M=f f  and ( )u u M
° °
= , but we omit that. We can express a general 

multivector with 2 0̧F   as  
2 2,   1fM Z Z Z Z= + = + ¹ + =F F f f f , 

so if we define a complex scalars 
f

M Z Z
°
= °  we get a form 

M M u M u
+ + - -

= + . 

We say that we have a spectral decomposition of multivector. Spectral decomposition gives us a magic 
opportunity  

( )
22 2 2M M u M u M u M u+ + - - + + - -= + = + , 

and we can immediately generalize this to any positive integer in exponent, but to negative integers 

also if the inverse of multivector exists. Prove that in spectral basis form MM M M
+ -

=  is valid. 

For analytic functions we can utilize series expansion to find 

( ) ( ) ( )f M f M u f M u
+ + - -

= + . 

Recall, to find ( )f M
°  we use the complex numbers theory, switch 1j i­ = - , find our function 

and switch again i j­ . For multivectors 
2

M = =F F f we have 

( ) ( ) ( )2 2 2
M f M f u f u
° + -
=° Ý = + -F F F . 

Now for even functions follows 

() ( )( ) ( )2 2
f f u u f

+ -
= + = ÍF F F , 

and for odd functions 

() ( )( ) ( )2 2
f f u u f

+ -
= - =F F F f . 

Multivectors of form 2 2,   0M z= + = =F F N  ƘŀǾŜƴΩǘ ǘƘŜ spectral decomposition, but using 

( ) 1nn n nM z z nz-= + = +N N , 

we have 

( ) ()
()df z

f z f z
dz

+ = +N N . 

We can look at some special cases 

( ) ( )1f u f u° °= ° , 
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() ( ) () ( )1 1f f u u f u f u+ - + -= - = + -f , 

( ) ( ) ( ) ()f j f ju ju f j u f j u+ - + -- = - + = - +f . 

For the inverse functions we have 

() () ( ) ( )1 1f y x f x y f x y x f y- -

° ° ° °= Ý = Ý = Ý = . 

 

If 0MM =  (light-like multivector) we have 

( )( )2 2=z+z ,  z - 0 z-z z+zM z= + = =F F FF f f F , 

so we have two options: 

1) ( ) ( )2 ,   0 2z z M z M f M f z u+ - += Ý = = Ý =F F F , 

2) ( ) ( )0,   2 2z z M M z f M f z u+ - -=- Ý = =- Ý = -F F F . 

Let us now see some examples of elementary functions.  
 

Inverse of multivector ( 0MM ¸ ) is found easily 
 

( )( )
1 1 M u M u M u M u u u

M
M u M u M u M u M u M u M M M M

- + - - + + - - + + -

+ + - - + + - - + - - + + - + -

+ +
= = = = +

+ + +
, 

 

with the power 

( ) ( ) ( )

1
,    n

n n n

u u
M n

M u M u M M

- + -

+ + - - + -

= = + Í
+

. 

 

Square root is simple, too (see [13] for different form) 

 

( ) ( )
2 2

M S S u S u M M u M u S u S u S M+ + - - + + - - + + - - ° °= = + Ý = + = + Ý =°, 

or 

( )
1/1/ ,   

nnM S S M n
°°

° °= Ý = Í. 

Example: 

( )/ 2
i i

j j=° +e e . 

 
Exponential function is 

M MMe e u e u+ -

+ -= + , 

 
so logarithmic function is obtained as 

 

( ) ( )log exp exp logXM X e M M u M u X u X u X M+ + - - + + - - ° °= Ý = = + = + Ý =. 

With definition 
2

/ ,    1j¹ =- =-I F F f I , logarithmic function has a form (Chappell)  
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log logM M j= +I ,    ( )arctan /Zj= F , 

but we can show that these two formulas are equivalent: 

( ) ( )
( ) ( ) ( ) ( )log log log log

log log
2 2

M M M M
M u M u

+ - + -

+ + - -

+ -
+ = + =f  

log log 1 / / 1 / log arctan / log .M j j z j z M z M j
å õ
è ø è ø å õå õ å õæ ö

æ ö æ ö æ öé ù é ùæ öç ÷ ç ÷ ç ÷ê ú ê úç ÷

- - + = + = +I F F I F I  

Examples: 

log logX X= Ý =1e

1 1 1
e e e ,   ( ( )1 / 2u

°
= °

1
e ),   

1e u u° °=° , 

                ( )log log1 log 1u u u u j up+ - + - -= - Ý = + - = Ý1 1e e  

                ( ) ( )log exp expj u X j u j u up p p- - - -=- Ý = - = - =-1 1e e . 

We leave to the reader to explore the possibilities, and to find expressions for trigonometric functions. 

We can now take the example of the polynomial equation  

2 1 0M + =, 

where solutions are all multivectors whose square is -1. We could try  

( )
2 2 2 21 0 2 1 0 0 1Z Z Z Z+ + = Ý + + + = Ý = Ý =-F F F F , 

and we  know (see next chapter) the general solution. Using the spectral decomposition we have 

( ) ( ) ( )
22 2 21 1 1 0M M u M u u u M u M u+ + - - + - + + - -+ = + + + = + + + = Ý 

2 21 0,  1 0M M+ -+ = + =, 

so we get two equations with the complex numbers. This was just a little demonstration of possibilities, 
but reader should do complete calculation. 

We have already pointed out that Cl3 has the complex and hyperbolic structures, the complex 
one due to  j  and other elements that square to -1, and hyperbolic due to elements that square to 1, 

unit vectors are hyperbolic, for example. There are also dual numbers here (using nilpotents). It is 
possible to efficiently formulate the special relativity theory using hyperbolic (double, split-complex) 
numbers, so, it should not be a surprise if it turns out that the theory is easy to formulate in Cl3 (see 
below). Unit complex vector f  is the most general element of the algebra with features of hyperbolic 

unit. For two multivectors that have the same unit complex vector f  (the same αdirectionά) 

1 1 1
M z z= +

F
f  and  2 2 2

M z z= +
F

f , 

we can define the square of distance of multivectors as 

( )( ) ( )1 2 1 1 2 2 1 2 1 2 1 2 2 1 i oM M z z z z z z z z z z z z h h¹ - + = - + - ¹ +F F F F F Ff f f f , 

where hi and ho are hyperbolic inner and hyperbolic outer products. If 1 2
M M M= =  we have the 

multivector amplitude. For 0
o

h =  we say that multivectors are h-parallel, while for 0
i

h =  are h-

orthogonal.  
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Lemma: Let 1 2
0M M =   for  1

0M ¸   and  2
0M ¸ . Then 

1 2 0M M ¸  and vice versa. 

( )( )1 2 1 1 2 2 1 2 1 2 ,M M M u M u M u M u M M u M M u+ + - - + + - - + + + - - -= + + = +
 

( )( )1 2 1 1 2 2 1 2 1 2M M M u M u M u M u M M u M M u+ - - + + + - - - + + + - -= + + = + , 

so 
1 2 0M M- +=  or 

1 2 0M M+ -= , which means 
1 20  &&  0M M- -= = or  

1 20  &&  0M M+ += =, but both cases imply 
1 2 0M M ¸ . The reverse statement is similar to 

prove. 

 

What is 1-? 
 

3)  2 1=-F  

 

Generally, this kind of complex vector can be obtained by 2
- = ¹F FF F , we have

2
/ ,    1j¹ =- =-I F F f I . General form is 

2 2
sinh cosh ,    1,    jj j= + = = ^I n m n m n m . 

Note that we have a non-trivial solution for 1- .  In order to further substantiate we can look for all 

possible solutions for z c jd= + , so we need to solve the equation  2M z= . One solution is just 

the ordinary square root of complex number (for 0=F ), but more generally 

( )
2 2 22 0Z z Z Z z Z z j+ = Ý + + = Ý = Ý = = +F F F F v w , 

so 
2 2 2c jd j c jd v w j+ = + Ý + = - + Öv w v w, 

 and 
2 2

,    2c v w d= - = Öv w. Amazing, the square root of a complex number is a complex vector (and 

this is expected because the square of a complex vector is a complex scalar)!  The reader is proposed 
to explore the different possibilities.  
 

Trigonometric forms of multivectors 
 

Recall that for 2 0=F  we defined the dual numbers z a b= +Ů, 2 0=Ů , ,a bÍÁ  and that 

for 0a¸  we found the polar form 

( )1 ,   /z a b a j j b a= + = + =Ů Ů , 

where j is an argument of the dual number. 

Elements f  and I  can be utilized to define trigonometric forms of general multivectors. To 

take the advantages of the theory of complex numbers we use  I . So, we define the argument of 
multivector as 
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argM arctan
Z

j
å õ

= ¹ æ ö
ç ÷

F
 . 

Now we have (with the conditions of existence), M MM¹ ,  

cos
Z

M
j=  , sin

M
j=

F
, 

which gives 

( )cos sinM Z M j j= + = +F I . 

 Recalling that 2 1=-I , generalized Moivre's formula is valid 

( ) ( )cos sin
nnM M n nj j= +è øê úI . 

Notice that we have a form as for complex numbers, but there is a substantial difference: element I  
has a clear geometric meaning, it contains the properties that are determined by the vectors which 

define the vector part of the multivector. Using  =F I F   and series expansion we have 

( )cos sinM Z Z Ze e e e e+= = = +F F
F I F , 

which is possible due to commutativity of complex scalar Z . The case 2 0=F  we discussed earlier. 
There is an interesting article where the multivector functions are defined starting right from the 

properties of the complex vector I  ([13]). 

To take the advantages of the theory of hyperbolic numbers we use f : 

( ) 2 2cosh sinh ,    
f

f f

ZZ
M Z Z Z MM Z Zr r j j r

r r

å õ
= + = + = + = + = = -æ ö

ç ÷
F f f f . 

If 0MM =  there is no polar form (light-like multivectors), but then we have ( )1M Z= °f . [ŜǘΩǎ 

define αvelocityά tanhJ j¹ , then follows 

( ) ( ) 1 2cosh sinh 1 ,    1M r j j rg J g J-= + = + = -f f . 

If we define the proper velocity  ( )1 ,   1u uug J= + =f , it follows αvelocity addition ruleά as 

( )( ) ( )( )

( ) ( )( )( )

( ) ( )( )

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 1

1 1 / 1

1 ,     / 1 ,

g g J J g g JJ J J

g g JJ J J JJ

g g g JJ J J J JJ

+ + = + + + =

+ + + + Ý

= + = + +

f f f

f  

which are formulas of special theory of relativity. Proper velocity in αrest reference systemά 0J= is 

0
1u = , so we can transform to a new reference frame by 0

u u u= , or, as in the previous example 

0 1 2 1 2
u u u u u= . These formulas represent geometric relations and are more general than those of the 

special theory of relativity, namely, for SR we usually need just the real part of multivector 
(paravectors, see next chapter), here we have bivectors too.  
 

Using the spectral decomposition we have 
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( ) ( ) 11 1M k u k u k Krg J rg J r°

+ + - - °= + = + Ý = ° =f , 

where (here we use ln log
e

x x¹ ) 

( )( )1 / 1 ,    lnKK J J j= + - =, 

is generalized Bondi factor. It follows 

( )( ) ( )1 1 2 2 1 2 1 2 1 2/ / /K u u K K u u K K K u u K K K K K+ - + - + -+ + = + Ý = , 

which is the exact formula from the special theory of relativity  and it is analogous to velocities addition 
rule.  

It goes without saying that the geometric product gave us the possibility of writing a 
"relativistic" formulas  without the use of Minkowski space. If Einstein kƴŜǿ ǘƘŀǘ Χ 

 

Special theory of relativity 
 

 

The reader could take advantage of the previous chapter and apply it to multivectors of form 

t+x  (paravectors), and so immediately get the necessary formulas. Anyway, we have a lot to 
comment. 

The Special Theory of Relativity (SR), in its classic form, is the theory of coordinates, and 
especially important is the concept of the velocity. If we find physical phenomena in which the notion 
of velocity becomes questionable then application of SR would be questionable, too. Geometric 
algebra does not substantially depend on the specific coordinates, which gives the opportunity to 
consider the general geometric relationships, not only relations between the coordinates, which is 
certainly desirable because physical processes do not depend on the coordinate systems in which they 
are formulated. Unfortunately, many authors who use geometric algebra cannot resist to use 
coordinates, and that makes formulas non-transparent and blurs geometric content. It's hard to get 
rid of old habits. There are many texts and comments about SR, there is a lot of opponents too, which 
often only show a lack of understanding of the theory. So, for example, they say that Einstein "wrote 

nonsense" because in formulas uses the άspeed of photonsέ as  c  and c v° , not realizing important 
and simple fact that speed of the photon is c  in any inertial reference system, but if we want to find 
the time photon needs to reach the wall of the wagon that runs away from photon  (viewed from the 
rails system, collision time ) we must use c v+ . Why? Because it is the relative velocity of the photon 
and the wall of the wagon in the rails system. Speed of the photon and speed of the wall are both 
measured in the same reference system, so added simple, without relativistic addition rule. It is quite 
another matter when we have the man in the wagon which walks in the direction of movement of the 
train with the speed u , relative to the train. Velocity of the man as measured in the rails system is 

( )( )2/ 1 / cv u uv+ + , but here the speed  u  is measured in the train system, while the speed v  (speed 

of the train) is measured in the rails system. So, relativistic velocity addition formulas we use for 
velocities measured in different frames of reference. Quantities from one system of reference we are 
not to transform, so there is no formulas that arise from transformations (here Lorentz 
transformations).  

Before we proceed it may be useful to clarify some terms. We say that laws of physics need to 

be covariant, meaning that in different reference frames have the same form, so, a formula A B=  

leads to A B¡ ¡= . A physical quantity is a constant if it does not depend on coordinates, for example, 
number 3 or the charge of electron. The speed of light is not a constant in that sense, it is an invariant. 
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It means that it depends on coordinates ( /d dtr  ), but has the same value in any inertial reference 
frame. The speed of light is a constant of nature in the sense that it is limiting speed, but related to 
Lorentz transformations it is an invariant (scalar).  

Another common misconception is about the postulates of the special theory of relativity. Let 
the covariance postulate be first and invariance of the speed of light postulate the second one. From 

the first we have, for example, /v dx dt=  and /v dx dt¡ ¡ ¡= . The second postulate is mainly motivated 
by the Maxwell electromagnetic theory, which predicts invariance of the light velocity in inertial 
reference frames. Now, it is important to note that we need the first postulate only to derive the 
Lorentz transformations (LT)  (it is not hard to find the references, so we highly recommend to do it, 

see [26]). Once we have LT immediately follows the existence of the maximum speed ( gv ), invariant 

one. Lǘ ƳŜŀƴǎ ǘƘŀǘ ǿŜ ŘƻƴΩǘ need the second postulate to have that in the theory. Accordingly, in 

relativistic formulas we can use gv instead of c . Einstein simply assumed that gv c= , relaying mainly 

on the MaxwellΩǎ theory. However, the existence of the speed limit does not necessarily mean  that 
there must be an object that is moving at such a speed. We think that light is such an object. But we 
can imagine  that the limit speed is 1 mm/s  larger thanc . What experiment could show the difference? 
But, if that were so, photon would have to have a mass, no matter how small it was. We could then 
imagine a reference system that moves along with the photon, so that the photon is at rest in it. But 
light is a wave too, so, we would see a wave that is not moving. Wave phase would be constant to us 
(maximum amplitude, ŦƻǊ ŜȄŀƳǇƭŜύΣ ǎƻ ǿŜ ŎƻǳƭŘƴΩǘ ǎŜŜ ŀƴȅ Ǿibrations. Now, without the change of the 
electric field in time, there is no magnetic field, so we see an electrostatic field. However, there is no 

a charge distribution in space that could create such a field (Einstein). So, instead of gv  we use c , but 

that does not mean that the assumption of the invariance of the speed of light is necessary for validity 
of SR. Our first postulate is certainly deeply natural  and typical for Einstein, who was among the first 
which stressed the importance of symmetries in physics, and this is certainly the question of symmetry. 
True, it is easier to make sense of the thought experiments and derive formulas using the postulate of 
the speed of light. It is done so in almost all textbooks, so students get the impression that there is no 
the theory without the second postulate.  Let us also mention that there are numerous tests that 
confirm SR, and none (as far as is known to the author) that refutes it, although many are trying to 
show things differently, even make up stories about "relativists conspiracy". Let us mention two 
important facts. First, quantum electromagnetic theory (QED) is deeply based on the special theory of 
relativity, and it is known that the predictions of QED are in unusually good agreement with 
experiments. Second, we have the opportunity almost every day to monitor what is happening at 
speeds comparable to the speed of light, namely, we have particle accelerators. They are built using 
formulas of special theory of relativity, and it is really hard to imagine that would operate if SR is not 
valid. 

There is one more thing to be discussed. Usually in textbooks is inertial coordinate system 
defined as άǳƴ-ŀŎŎŜƭŜǊŀǘŜŘ ǎȅǎǘŜƳέ, but that implies homogeneity, in agreement with the first Newton 
law only, not all Newton laws, as authors state. To include the third Newton law we have to introduce 
the concept of isotropy (of inertia). Why? Consider two protons at rest and let them to move freely. 
Then we expect that protons move in the opposite orientations due to repulsion, but we also expect 
that both protons have exactly the same kinematical properties. All orientations in space are equal. 
Without that we have not the third Newton law. Isotropy is directly connected to possibility to 
synchronize the clocks. It is also natural to expect that light speed is equal in all possible orientations. 
Then we have inertial coordinate systems (ICS) with the homogeneity and isotropy (of inertia) included. 
Class of inertial coordinate systems (rotated, translated) that are not moving relative to some inertial 
coordinate system we call inertial reference frame (IRF). Now, with homogeneity and isotropy included 
we do not need light speed postulate, symmetries are enough to obtain Lorentz transformations.  
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Let's see how to do that. Due to linearity we expect transformations like (v  is a relative velocity 
between systems) 

                 x Ax Bt t Cx Dt¡ ¡= + = +. 

For x const¡=  we have 0dx¡= , so, B vA=- . Inverse transformations are 

               
Dx Bt Cx At

x t
AD BC AD BC

¡ ¡ ¡ ¡- - +
= =

- -
 , 

then from x const=  we have B vD=- , so, D A= . If we denote  

AD BCd= -  and /Al k=  

we have transformations 

( )
2

2 2
         

1
    x x vt t t vx

v

l

l
dl dl

å õ
¡ ¡= - = -æ ö

ç ÷

-
 , 

( )
2

2 2
     

1
        x x vt t

v
t vx

l l

d

l

ld

å õ
¡ ¡ ¡ ¡= + =

-
+æ ö

ç ÷
. 

If we replace v  with v-  these two transformations should be exchanged (due to isotropy) and we have 

1d= (note that it means that transformation is orthogonal). If we denote 

2

2 2

1

v

l
k

l

-
=  

we have  

( ) ( )             x x vt t t vxl l k¡ ¡= - = - , 

( ) ( )             x x vt t t vxl l k¡ ¡ ¡ ¡= + = + . 

Now we have  

21/ 1 vl k= - , 

which gives general transformations in form 

2 2
           

1 1

x vt t vx
x t

v v

k

k k

- -
¡ ¡= =

- -
. 

Reader is encouraged to show (using three inertial coordinate systems) that ()v constk = . Using 

appropriate physical units we get only three interesting possibilities for k: -1, 0, 1. Looks familiar? 

For 1k=-we have pure Euclidean rotation in the ( ),x t  plane, by angle ()1tan v-
.  For 0k=  

we have Galilean transformations. For 1k= we have the Lorentz transformations. Experiments in 

physics teaching us that we have to use 1k= , but notice that Galilean relativity is the valid relativity 
theory, all of this is consequence of our definition of the ICS. Direct consequence of the Lorentz 
transformations is existence of maximum speed, but we discussed this already. 

Recall that we have already seen numbers -1, 0, 1 here in text, we discussed rotations, dual 
numbers and hyperbolic numbers obtained from general multivectors in Cl3. 

A paravectors in Cl3, like  t+x (multivector with grades 0 and 1), give paravector again when 
squared (check it), therefore module of paravector is to be defined differently. For complex and 
hyperbolic numbers (or quaternions) we have a similar obstacle, so we use conjugations. For 
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paravectors ǿŜ ŘƻƴΩǘ ƴŜŜŘ ŀƴȅ ad hoc conjugation as we already have  the Clifford involution, so we 
define 

( )( ) 2 2pp t t t x= + - = - ÍÁx x , 

which is exactly the desired form of invariant interval required in the special theory of relativity. Recall 
that Clifford involution is combination of grade involution and reverse involution, so we can try to 

interpret it geometrically in 3Á , namely, grade involution means space inversion, while for the reverse 
involution we have seen that it is related to the fact that the Pauli matrices are Hermitian. 

To be clear, if we specify paravector 1ea b+ , with 
2

1 1e =   we have a natural αhyperbolic unitά. 

It follows 

( )
2 2 2

1 1e ea b a b ab+ = + + , 

so, we have a paravector again, with the same direction of vector, but 

( )( ) 2 2

1 1e ea b a b a b+ - = - ÍÁ. 

Notice that with the Clifford involution there is no need for negative signature (Minkowski). 

According to the Minkowski formulation of SR we can define unit vector αin time directionά 
2

0 0,    1e e =  

and three space vectors 
2,    1i ie e =-, which means that we have a negative signature  (1, -1, -1, -1). 

Such an approach is possible in geometric algebra, too, we have STA (space-time algebra, Hestenes). 
But, everything you can do with STA you can in Cl3 also, without the negative signature (Sobczyk, 
Baylis). Those who argue that the negative signatures are necessary in SR are maybe wrong.  Some 
authors write sentences likeΥ αThe principle of relativity force us to consider the scalar product with 
negative square of vectorsάΣ forgetting that their definition of norm of elements prejudice such result 
(Witte: Classical Physics with geometric algebra). Yet, it is possible to describe geometry in one space 
using formalism of higher space, so we can say that Minkowski geometry formulation of SR is a 3D 
problem described in 4D.  But in Cl3, all we need are three orthonormal vectors and one involution. 
Time is not a fourth dimension any more, it is a real parameter (as is in quantum mechanics). If there 
is a fourth dimension of time how it is that we cannot move through the time as we move through the 
space? There are other interesting arguments in favor of the 3D space, for example, gravitational and 
electrostatic forces depend on the square of the distance. And what about definition of velocity (we 

use it also in the theory of relativity): /dx dt? If there is a time dimension then time is vector, which 
means that the speed is naturally bivector, like magnetic field, not a vector. It does not matter if we 
use proper time to define the four-velocity vector, the space velocity is still defined by the previous 
formula, up to a factor. Minkowski gave us nice mathematical theory, but his conclusion about fourth 
time dimension was pure mathematical abstraction, widely accepted among physicist. At that time, 
the geometric ideas of Grassmann, Hamilton and Clifford were largely suppressed. This begs us to 
question what would Einstein choose if he knew that? At the beginning of the 20th century another 
important theory was developing, quantum mechanics, and Pauli introduces his matrices to formulate 
the half spin, we already commented it. DiracΩǎ matrices are also representation of one Clifford 
algebra, ŀƴŘ ŀƎŀƛƴΣ 5ƛǊŀŎΩǎ ǘƘŜƻǊȅ Ƙŀǎ ƴƛŎŜ ŦƻǊƳǳƭŀǘƛƻƴ ƛƴ Cl3 (Baylis), as minimal standard model in 
Cl7 (Baylis) ... It is not without grounds to question the merits of introducing time as a fourth 
dimension. Usual argument is one that Minkowski gave, in fact, this is not an argument, it is just the 

observation that in special theory of relativity invariant interval is not 2 2
dt dx+  but 2 2

dt dx- . But we 

see that the invariant interval 2 2
dt dx-  is easy to get in Cl3, with completely natural requirements for 

multiplication of vectors. Minkowski has introduced a fourth dimension ad hoc. If his formalism was 
undoubtedly the only possible  to formulate the special theory of relativity  then there would be a 
solid base  to believe that indeed there must be a fourth dimension of time. Thus, without that 
condition, with the knowledge that there is a natural way to formulate the theory without the fourth 
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dimension, it is difficult to avoid the impression that  this widely accepted mantra of fourth dimension 
does not have a solid foundation. According to some authors, one of the stumbling blocks in the theory 
of quantum gravity is probably the existence of a fourth dimension of time in formalism. Here we 
develop formalism using paravectors which define the 4D linear space, but time is identified as a real 
scalar, we say that time is a real parameter. It would be interesting to investigate whether there is any 
experiment that would unambiguously prove the existence of a fourth dimension of time. Probably, 
there is no such an experiment. Therefore, it is difficult to avoid the impression  how physicists are 
binding ritual cat during meditation. But the future will show, perhaps the time dimension does exist, 
maybe more of them (if time exists). In any case, it is not true that the Minkowski space is the only 
correct framework for the formulation of SR. Especially, it is not true that in SR we must introduce the 
vectors whose square is negative.  

We'll pick a system of physical units in which is 1c= . In geometric algebra we are combining 
different geometric objects which may have different physical units. Therefore we always choose the 
system of units such that all is reduced to the same physical unit (usually length). So we study the 
geometric relationships, and that is the goal here. In the application to a particular situation 
(experiment) physical units are converted (analysis of physical units), so that there is no problem here.   

Starting from the invariant interval in SR  2 2 2t x t- = ,  where t is the invariant proper time 
in the particle rest frame, it follows  

( ) ( )2 2 2 2 2 2 2 2 21 / 1/ 1t x t v t vt t g- = - = Ý = - =, 

where g is well known relativistic factor. Now, instead of the four-velocity vector, we define the proper 

velocity (paravector) ( )1u g¹ +v  which is simply 0 1u =  in the rest frame. Notice that proper velocity 

is not a list of coordinates, like four-velocity vector, but plays the same role. Obviously, 1uu= . Let us 
imagine that a body initially at rest we want to analyze in the new reference frame in which the body 

has a velocity v  (boost). Recipe is very simple: just make geometric product of two proper velocities

0 0u u u u­ = . For the series of boosts we have a series of transformations 

0 0 1 0 1 2 1 2u u u u u u u u­ ­ = . 

 Notice that this is really easy to calculate, and that from the form of the proper velocity paravector 

we immediately se the relativistic factor g and 3D velocity vector v . CƻǊ ŜȄŀƳǇƭŜΣ ƭŜǘΩǎ ǎǇŜŎƛŦȅ ǘƘŀǘ ŀƭƭ 

velocity vectors are parallel to  1e , then 

( ) ( ) ( )( ) ( )1 1 1 2 2 1 1 2 1 2 1 2
1 2

1 2

1

1 1 12

2

1 1 1 1
1

1v e v e v v v v e
v v

v v
v v

eg g g g gg
+

+
å õ

+ + = + + + = +æ ö
ç ÷+

, 

so, from the form of the paravector (parts are colored in red) we immediately see that 

( )1 2 1 21 v vg gg= + ,    
1 2

1

1 21

v v
e

v v

+
=
+

v , 

known results of the special theory of relativity (relativistic velocity addition). Notice how the 
geometric product makes derivation of formulas easy, and, as stated earlier, obtained formulas are 
just special cases of general formulas in Cl3.  So, from the polar form of general multivector 

( ) ( ) 1 2cosh sinh 1 ,    1M r j j rg J g J-= + = + = -f f , 

reducing to the real part of multivector (paravector) we have  

coshg j=  , sinhvg j= ,   ( ) ( )Ĕ Ĕ Ĕcosh sinh cosh 1 tanh expu j j j j j= + = + =v v v . 
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Using the spectral decomposition we have 

( ) ( )Ĕ1 1 cosh sinhv k u k u k vg g j j+ + - - °+ = + Ý = ° = °v , 

defining implicitly factor k  (Bondi factor)  ln kj¹ , and recalling definitions of hyperbolic sine and 

cosine we get 
1 cosh sinhk j j°= ° ,   ( )( )1 / 1k v v= + -,     

1u ku k u-+ -= + . 

Our earlier example with two "boosts"  parallel to 1e  now has the form 

( )( ) ( )1 2 1 1 2 2 1 2 1 2/ / /u u k u u k k u u k k k u u k k+ - + - + -= + + = + , 

i.e. relativistic velocity addition rule is equivalent to the multiplication of the Bondi factors: 1 2k k k= .  

Example: In the referent frame 1
S  starship has velocity v , in the referent frame of starship another 

starship has velocity v  and so on, all in the same direction. Find the velocity nv  of the n-th starship in 

1S . Discuss solution for n­¤? 

Solution: 

Let ( )( )1 1 / 1k v v= + -, then ( )( ) ( )( )( )11 / 1 1 / 1
n

n

n n nk v v k v v= + - = = + - , whence we 

find the required velocity nv .  

If the velocity vectors does not lie in the same direction,  in expressions appears versor  1 2v v , 

which may seem like a complication, but actually provides new opportunities for elegant research, for 
example, it is rather easy to get Thomas precession (see [14]), for some time unnoticed, but the scope 
of this text seeks to stop here.  

 

Lorentz transformations 
 

We are now ready to comment on restricted Lorentz transformations (LT). Generally,  LT 

consists of αboostsάB  and rotors R . We can write (see [22]), quite generally L BR= , 1LL=  ( 
unimodularity condition). Here we can regard it as the definition of Lorentz transformations, which is 
well researched and justified. If we define (see above)  

( ) ( ) Ĕ/2Ĕcosh / 2 sinh / 2B ejj j= + =v
v ,   ( ) ( ) Ĕ/2Ĕcos / 2 sin / 2 jR j e qq q -= - =w

w , 

(unit vector Ĕw  defines the rotation axis) we can write LT of some element, say vector, as 

À À Àp LpL BRpR B¡= = . 

There is a possibility to write L as 

Ĕ Ĕ Ĕ Ĕ/2 /2 /2 /2j jL e e ej q j q- -= ¸v w v w , 

where we have to be careful due to a general non-commutativity of vectors in the exponent (see [19]). 

However, it is always possible to find (using logarithms) the vectors Ĕ¡v and Ĕ¡w  that satisfy  

Ĕ Ĕ Ĕ Ĕ/2 /2 /2 /2j jL e e ej q j q¡ ¡- -= =v w v w . 
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It is convenient in applications to resolve the element to be transformed to components parallel and 

orthogonal to Ĕv  or Ĕw and take the advantage of the commutation properties. For further details see 
Baylis articles about APS (algebra of physical space, Cl3). In [22] you can find nice chapter about the 
special theory of relativity. 

We see that rotations are natural part of LT, so, geometric algebra formalism can provide a lot 
of opportunities because of powerful rotor techniques. Later in the text we will discuss some powerful 
techniques with spinors (eigenspinors).  

 

Extended Lorentz transformations. Speed limit? 
 

This chapter is speculative, with interesting consequences (new preserved quantities and 
change of the speed limit in nature). Those faint hearted  can take this as just a mathematical exercise.  

Earlier we defined  MA as 

( )
2 2 2 2 2 2MM M t x n b j tb= = - + - + - Ö Íx n , 

and showed its properties. Now we look for general bilinear transformation M XMY¡=  that 

preserves MA (see [11]): 
2 2 2

M XMY M M XMYYMX M X Y¡ ¡ ¡= Ý = = , 

so we have the possibilities 

2 2
1X Y= =°, 

which gives 
2 2 1Z Z Z ZX e X e e e+ + -= Ý = = =°F F F , 

and we will choose (for now) possibility 1 and Z = 0, although we could consider  / 2Z jp= , too.  Now 

the general transformation is given with  

j jM XMY e Me+ +¡= =p q r s , 

so we have  12 parameters from 4 vectors in exponents.  

The question is what the motive for the consideration of such transformations we have. 
Elements of geometric algebra are linear combinations of unit blades of Clifford basis, each of which 
actually defines the subspace. If we limit ourselves to the real part of the multivectors only 
(paravectors) we put in a privileged position space of real numbers (grade 0) and vectors (grade 1). The 
idea is that all subspaces we treat equally. In fact, this whole structure is based on a new multiplication 
of vectors, so, manipulating multivectors we actually manipulate subspaces. Addition of vectors and 
bivectors is actually an operation that relates subspaces and it is important to understand it well. If 
subspaces are treated equally, then we must consider all possible transformations of subspaces and 
all possible symmetries and they are more than what classical (restricted) Lorentz transformations 
imply. The reader should be able to stop a little and think carefully about this. Remember that 
symmetries in the flow of time give the law of conservation of energy, translational invariance gives 
the law of conservation of impulse, etc. Where we to stop, and why? If we truly accept the naturalness 
of the new multiplication of vectors  we must accept the consequences of such a multiplication, too, 
and they reveal an unusually rich structure of our good old  3D Euclidean space. But true, the final 
judgement will be given by experiments. 

Considering invariant MA expressed in two reference frames we can compare real and 
imaginary part 

2 2 2 2 2 2 2 2t x n b t x n b¡ ¡ ¡ ¡- + - = - + -, 
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                                                        tb t b¡ ¡ ¡ ¡- Ö = - Öx n x n . 

Differential of multivector 

dX dt d jd jdb= + + +x n , 

gives MA 

( )
2 2 2 2 2 2dX dt dx dn db j dbdt d d= - + - + - Öx n , 

and we can try to find the conditions for existence of the real proper time. There are many reasons for 
defining the real proper time, for example, makes it easy to define a generalized velocity. Typically, in 
the special theory of relativity we will chose the rest frame. Here, due to the additional elements 
(except velocity), it will not be enough, because we want (t is a proper time) 

( )
2 2 2 2 2 22dX dt dx dn db j dbdt d d dt= - + - + - Ö = ÍÁx n . 

The first condition, if we want the real proper time, is certainly the disappearance of the imaginary 
part of the MA in each system of reference (recall that the MA is invariant to our transformations, and 
cannot have an imaginary part in one reference frame and not in the other). This means that in every 
reference frame must be valid  

( ) ( )2 2 0 ,dbdt d d dt db d d dt h d d h d d- Ö = - Ö = - Ö = Ý = Öx n x n x n x n    db h¹ ,  

with a common designation  /dx dt x¹ , which implies  h d d¡ ¡ ¡= Öx n . If we define d ¹x v , ,¹n w  it 

follows h= Öw v. Vector w  comes from the bivector part of the multivector, so we expect it to be 

related to angular momentum-like quantities, then h   could be a flow of such a quantity, much like 
flow is defined for the flowing of liquid through the tube.  The difference is that here bivectors do not 
transform as surfaces (see [11]). 

Considering  the invariance of MA and proper time as an real number we have 

2 2 2 2 2 2 2dX dX d dt dx dn dbt¡= = = - + - Ý 

( )
2 2 2 2

2 2 2 2

2 2 2 2
1 1 1

å õ
= - + - = - + -æ ö

ç ÷

dt dx dn db
v w h

d dt dt dt
g

t
, 

( )
22 2 2 2 2 2 21/ 1 1/ 1 cosv w v w w vg a= - + - Ö = - + -w v . 

 Note that now our relativistic factor  g has contributions from all subspaces. It would be naturally to 

require that αrest frameά (with the condition 0v= ) be replaced by 1g= , which would mean that 

there is no resting particles, but  

2 2 2 2 2 2 2cos 0 / 1 cosv w w v v w wa a- + - = Ý = + . 

It is not so difficult to accept this, because what if the velocity of the particle may not be zero? For 
example, how to reconcile the principles of quantum mechanics and the idea of completely peaceful 
electrons? Including all subspaces and all quantities related to them it follows that a αrest frameά 
becomes something like αcenter of energy-impulse-angular momentum, etc.  frameάΦ  

Relativistic factor g  is defined as the ratio of two real times, so it must be a real number, which 

gives us condition 
2

2 2 2 2 2

max 2 2

1
1 cos 0

1 cos

+
- + - > Ý <

+

w
v w w v v

w
a

a
. 

This is a completely new result: limit speed is 1 for 0w=  or cos 1a=°, otherwise, it is 
greater than 1. This result is not new in geometric algebra (tŀǾǑƛŏ, using C-algebras, but the author got 


































