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Abstract 

This paper is telling essentials of the story of the Hilbert Book Test Model without applying the 

mathematical formulas. The paper cannot avoid the usage of mathematical terms, but these terms 

will be elucidated such that mathematical novices can still understand most of the story. The Hilbert 

Book Test Model is a way to investigate the part of the foundation of physical reality that cannot be 

observed. This foundation is necessarily simple and it can easily be comprehended by skilled 

scientists. However, this paper is targeted to readers that are not skilled in math. 

1 Introduction 
This paper relies on the content of “The Hilbert Book Test Model”. That paper contains all the 

formulas that are filtered from this paper. In fact the formulas are no more than a very compact 

piece of language. Thus this paper is intended to tell in essence the same story as “The Hilbert Book 

Test Model” paper does. The reader is expected to be interested in the subject. Nobody claimed that 

this is easy reading. 

1.1 The author’s predestination 

The interest of the author in the foundation of physical reality awakened during his physics study at 

the TUE when he was for the first time confronted with quantum physics. I was astonished by the 

fact that quantum mechanics was done in a completely different way than classical mechanics was 

done. I asked my very wise lecturer why this difference exists. His answer was that in quantum 

physics the superposition principle plays a major role. This principle states that linear combinations 

of solutions of an equation that describes the movement of a quantum mechanical system are again 

solutions of that same equation. I was not very happy with that answer because the superposition 

principle plays indeed an important role in quantum physics, but for me it was difficult to 

comprehend why this was the reason of the huge differences between the two approaches. I told 

him about my concern, but he answered that this was the best answer that he could give.  

I decided to perform my own research and dived into literature. After a while I encountered an at 

that time recent booklet of Peter Mittelsteadt with the title “ Philosophische Probleme der 

Modernen Physik” (1963). That booklet contained a chapter about “quantum logic”. After reading 

this chapter I concluded that quantum logic formed a more appropriate answer to my dilemma. 

Nature appeared to obey a logic that differs from classical logic, which is the logic system that we 

humans use in order to reason about our environment. This fact raised my interest in quantum logic 

and I studied everything what was available on this structure at that time. In 1936 quantum logic was 

discovered by Garret Birkhoff and John von Neumann. In mathematics this structure is now known as 

an orthomodular lattice. Lattices are relational structures. They prescribe what kind of relations can 

exist within that structure. The duo called their discovery “quantum logic” because its relational 

structure is quite similar to the relational structure of classical logic. Much later I discovered that 

attaching this name to the orthomodular lattice was not a lucky decision. 



Another curious aspect of quantum physicists also intrigued me. Quantum physicists use Hilbert 

spaces as a storage medium for dynamic geometric data. Hilbert spaces are mathematical constructs 

whose elements are vectors and each pair of vectors is related by an inner product. The inner 

product is a number. The Hilbert space can only cope with numbers that are member of a division 

ring. In a division ring all non-zero numbers own a unique inverse. Only three suitable division rings 

exist. This significantly limits the possible choices. The choices consist of the real numbers, the 

complex numbers and the quaternions. Thus more exotic number systems such as octonions and bi-

quaternions are excluded.  

My lecturer taught me that all observable quantum physical quantities are eigenvalues of Hermitian 

operators. Operators map Hilbert vectors onto other vectors or onto themselves. If the operator 

maps a vector onto itself, then this vector is called eigenvector. In that case the operator attaches an 

eigenvalue to this eigenvector. Hermitian operators combine Hilbert eigenvectors with real number 

valued eigenvalues. Such numbers are scalars. When I looked around I saw a world that had a 

structure that was configured from a three dimensional spatial domain and a one dimensional time 

domain. In the quantum physics of that time, no operator represented the time domain and no 

operator was used to deliver the spatial domain in a compact fashion. After some research I 

discovered a four dimensional number system that could provide an appropriate normal operator 

with an eigenspace that represented the full four dimensional representation of my living 

environment. At that moment I had not yet heard from quaternions, but an assistant professor told 

me about the discovery of Rowan Hamilton that happened more than a century earlier in 1854. 

Hamilton’s quaternions appeared to be the numbers that I had rediscovered. I was astonished that 

quantum physics did not apply these numbers. Instead quantum physics extensively used complex 

numbers. Quite probably the reason was that complex function theory was far more mature than 

quaternionic function theory. 

My university, the TUE, targeted applied physics and there was not much time nor support for diving 

deep into the fundamentals of quantum physics. After my study I started a career in high-tech 

industry where I joined the development of image intensifying devices. There followed my 

confrontation with optics and with the actual behavior of elementary particles. See: What image 

intensifiers reveal. I took part in the specification of two standards that concern the quality of the 

imaging process in which photons and elementary particles play the role of information transporters. 

One standard concerned the Optical Transfer Function (OTF) and its modulus, the Modulation 

Transfer Function (MTF). The OTF is the Fourier transform of the Point Spread Function (PSF). This 

Fourier transform is the spatial spectrum of the image of a point-like object. The other standard 

concerned the Detective Quantum Efficiency (DQE). This qualifier treats the generator of the image 

as a stochastic Poisson process. Combined with the Point Spread Function as a binomial attenuation 

process it creates a Poisson process that spreads its efficiency over a spatial region. 

In 1987 my career switched from physical research to scientific software generation. In that period 

another incident strongly influenced my current insight in quantum physics. In 1995 I got the request 

to advise my employer about an improved way of software generation. The costs of the generation 

of complicated embedded software was growing in an uncontrollable way and would soon pass the 

costs of development and construction of the hardware that must use this software. The hardware 

was constructed in a modular way and that construction method was supported by a vivid and 

healthy component market. This construction method was far more efficient and delivered far more 

robust results than the existing software generation process. Thus, I decided to advice my employer 

that software should be constructed in a similar modular way. The next few years I designed a 

demonstration of the methodology and the tools that must enable this way of modular software 

http://www.e-physics.eu/#_What_image_intensifiers
http://www.e-physics.eu/#_What_image_intensifiers


generation. The estimate was that in this way the efficiency of the software generation process could 

be improved by several orders of magnitude. The modular construction methodology is a champion 

in the reduction of the number of relevant relations that the designers and system configurators 

must handle. Reducing the relational complexity appears to be the most influential and therefore the 

most important issue.  

This indicates that relational structures must be qualified by the measure at which their relational 

complexity can be reduced. Thus quantum logic was important because its relational structure 

appeared to be such that compared to a monolithic structure its relational complexity can be 

reduced with several orders of magnitude. This insight stimulated me to interpret the orthomodular 

lattice as part of a recipe for modular construction and not as a logical system as its discoverers did. 

Above is shown that initially I made the same mistake as the discoverers did. Thus, the elements of 

the orthomodular lattice are modules or modular systems and not logical propositions. 

In 2001, during the dot-com bell, the modular software generation research project was stopped 

because my employer did not want to invest any longer in a long term project. Instead he decided to 

transport the software generation process to low wage countries. There the software generation 

landed in the same exponentially growing cost condition. Currently software is still generated in a 

non-modular way. The cost is a little bit reduced by applying open source software. This choice does 

not reach the targeted efficiency and robustness of the modular system generation process. 

Through this experience, I learned to see the universe as one big collection of modular systems. 

Contrary to the software generation industry, physical reality appears to apply the modular design 

and construction methodology. For me this leads to the most influential and most basic law of 

physics. It cannot be stated in terms of a formula, because formulas tend to use numbers and the 

orthomodular lattice does not support numbers. Instead the law can be stated in the form of a 

commandment: “Thou shalt construct in a modular way”. 

Only after my retirement I got sufficient time to dive deep into the foundations of physical reality. In 

2009 I started my personal research project that in 2011 got its current name “The Hilbert Book 

Model”. 

1.2 The paper 
This document will offer the interested reader a scientifically justified view on the foundation and 

the lower level structure of physical reality. The lower levels of the structure of physical reality are 

not accessible for observation by human senses or by advanced measuring equipment. The only way 

that is left for investigating this subject is the application of mathematical test models. The 

foundation and the lower levels of the structure are necessarily simple and for that reason they are 

easily comprehensible for skilled scientists. However, this paper is addressed to an audience that is 

not skilled in advanced mathematics. In fact, this paper will not contain mathematical formulas. Still, 

a pure mathematical model will underlay this presentation. It is impossible to completely avoid the 

usage of mathematical terminology. These terms will be elucidated as much as is possible. Dutch and 

not English is the native language of the author. As a consequence the descriptions may not be 

optimal. Where the author fails, the reader may call the online services such as Google and Wikipedia 

to the rescue.  

The paper will be based on the content of “The Hilbert Book Test Model”. Aside from its foundation, 

this test model will only cover a few extension levels. The model will be called “test model” because 

it is principally impossible to prove the validity or invalidity of the applied model as a correct 

description of the lower levels of the structure of physical reality. What is described in the test model 



is not accessible for observation. Thus experimental verification is impossible. Still the reader will 

recognize many structures and phenomena that were discovered via experiments. 

  



2 The foundation 
The model will be based on a structure that does not yet contain numbers. Concepts such as space 

and time need numbers in order to specify their value and in order to describe the way that these 

values change. Thus in this lowest level of the model notions such as time and space do not yet exist. 

The structure at the lowest level is a relational structure. Only a certain kind of relations are tolerated 

to exist in this structure and a set of about 25 axiomatic rules precisely define which relations and 

which combinations of relations are acceptable. Many kinds of relational structures exist and the 

selected foundation is only one kind of these relational structures. For that reason we give the 

selected relational structure a name. We call it an “orthomodular lattice”. This is the name that 

mathematicians use for this structure. In 1936 this structure was discovered by Garret Birkhoff and 

John von Neumann. Garret Birkhoff was an expert in lattice theory and John von Neumann was a 

very broadly oriented scientist that was highly interested in the structure of quantum physics. The 

relational structure of the orthomodular lattice happens to be very similar to the relational structure 

of classical logic and for that reason the duo named their discovery “quantum logic”. This was an 

unlucky decision, because the orthomodular lattice has little in common with a system of logical 

propositions. Still several scientists keep investigating the suitability of logical systems as foundations 

of physical theories. 

  



3 Hilbert space  
The duo that discovered “quantum logic” could have known that this structure does not represent a 

logical system, because in their introductory paper they showed that a substructure of a more 

complicated structure showed exactly the structure of an orthomodular lattice. This more extended 

structure was discovered a few decades earlier by David Hilbert and others. For that reason it was 

named “Hilbert space”. The Hilbert space is a multidimensional collection of objects that are related 

by what is called an inner product and it is certainly not a collection of logical propositions. Instead 

the Hilbert space can be used as a storage medium for dynamic geometric data. For that reason the 

Hilbert space can cope with objects that consist of a scalar and a three dimensional vector that points 

to the geometric location. The scalar represents the corresponding progression instant. The elements 

of the Hilbert space are called Hilbert vectors. The Hilbert vectors must be distinguished from the 

dynamic geometric data that can be stored in the Hilbert space. These dynamic geometric data 

objects are quaternions and together these quaternions form a number system. The inner products 

that interrelate the Hilbert vectors have a value that is taken from that same number system. The 

Hilbert space can only cope with number systems that are division rings. In a division ring every non-

zero element has a unique inverse. Only three suitable division rings exist. These are the real 

numbers, the complex numbers and the quaternions. In the test model we select the most elaborate 

version of these number systems. Depending on their dimension the number systems exist in 

multiple versions that differ in the way that they are ordered. 

Thus, from the selected relational structure follows in a straightforward way the next level of the 

model as a storage medium for dynamic geometric data. As a consequence, quite early in the 

development of the model notions of time and location already enter the model in a well-defined 

way. In this way, mathematics stringently restricts the manner in which the selected foundation can 

be extended to a higher level of the model. Mathematics prevents the generation of a fantasy. 

3.1 Atoms 
Now let us go back to the lowest level, which was defined as an orthomodular lattice. That lattice is 

an atomic lattice. Atoms are elements that are not constituted from other elements. In their 

representation in the Hilbert space, the atoms are constituted from single elements that cannot be 

subdivided. These elements are called Hilbert vectors and each Hilbert vector spans a one-

dimensional subspace. Attached to this Hilbert vector belongs a single stored dynamic geometric 

data element. A thing that we will call “operator” administers the combination of the Hilbert vector 

and the corresponding eigenvalue. The Hilbert vector will be called the eigenvector that belongs to 

the eigenvalue and the operator can combine many different eigenvalues with their own 

eigenvectors. The Hilbert vectors that belong to different eigenvalues will be mutually independent. 

Mutually independent means that these vectors are directed perpendicular to each other. Their 

inner product equals zero. Thus N different eigenvalues correspond to an N dimensional subspace of 

the Hilbert space. 

4 Modules 
Again we go back to the foundation. We already claimed that the foundation is not a logic system. 

This raises the question were the foundation then stands for. The author suggests that the 

foundation is part of a recipe for modular construction. In fact this suggests that the most 

fundamental law that governs the model is the instruction to construct all discrete items in a 

modular way. Modular construction is known to use its resources in a very economical fashion and 

this way of system generation can significantly reduce the relational complexity of complicated 



systems. It enables reuse and eases system configuration. Thus this suggestion is not an arbitrary 

choice. 

The atoms of the lattice represent elementary modules and these elementary modules are 

represented by a single Hilbert vector and a single dynamic geometric value. However, this choice 

reduces the validity of the representation to a single progression instant and a single geometric 

location. Thus, in order to achieve a more persistent elementary module, we must somewhat widen 

the concept of the elementary module. On another progression instant the same elementary module 

is represented by another Hilbert vector and another spatial location. After ordering of the 

progression instants the elementary object appears to hop along a path and the landing locations will 

form a swarm. The hopping path as well as the location swarm will now represent the point-like 

elementary module. Here we assume that at the same instant an elementary module cannot 

correspond to two different landing locations. 

5 Coherence 
In the described way a set of elementary modules will easily represent a quite chaotic model. In 

contrast to this primitive model, our experience with physical reality shows a far more coherent 

picture. In order to fix this, we postulate the existence of mechanisms that control the coherence of 

the generated location swarms. The effect of the mechanism is that after a huge number of hops the 

location swarm can be characterized by a continuous location density distribution and that in 

addition this function owns a Fourier transform. This is a very stringent requirement and it is far 

from straightforward, but let us see what these requirements mean. The first requirement can be 

met by a stochastic process that generates the locations where the hops will land. After a while the 

statistical properties of the swarm will mature such that the form of the location density distribution 

will stabilize. The existence of the Fourier transform means that the swarm owns a displacement 

generator such that at first approximation the swarm appears to move as one unit. Thus the swarm 

follows its own path, which has its own kinematics. With other words the point-like elementary 

object is now represented by a more feature-rich swarm that is generated by the dynamic hopping 

dance. This dance is performed under the control of a dedicated stochastic mechanism. The fact that 

having a Fourier transform corresponds to owning a displacement generator is a mathematical fact 

that goes beyond the scope of this paper. It is an essential ingredient of the reasoning that is 

exploited here. A stochastic Poisson process that is combined with a binomial process, which is 

implemented by a spatial spread function can generate the suggested coherence conditions. If the 

process produces a normal distribution that approaches a Gaussian distribution, then a typical swarm 

is generated. The location density distribution of this test swarm forms a smooth test function, which 

equals an error function that is divided by its argument. Reality need not be exactly like this example, 

but it also will not be far off. 

 



 

 

Figure 1. Close to the geometric center the singularities are converted in a smooth function. Further 

from the center the form of the Green’s function (1/r) is retained. 
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6 Continuums 
The current state of the model does not support a storage medium for continuums. In fact we 

already met a continuum in the form of the description of the swarm by a location density 

distribution, which is required to be a continuous function. The function describes a dynamic set of 

discrete locations. Thus, these locations influence the form of the function. In some sense they 

deform an originally flat continuum in a curved continuum that describes the location density 

distribution. The flat continuum plays the role of the parameter space of the function. This view can 

also be reversed. The continuum which is represented by the function follows the raw location 

density distribution, which on its turn is generated by the elements of the swarm. If many of such 

swarms are present, then the continuum forms a kind of smooth “landscape” that represents the 

description of a large series of swarms. 

The infinite dimensional separable Hilbert space can store all elements of all swarms, but it has no 

means to store the smooth description of these swarms. However, every infinite dimensional 

separable Hilbert space owns a companion in the form of a non-separable Hilbert space, which is 

capable of storing these smooth descriptions in the continuum eigenspaces of corresponding 

operators. 

Paul Dirac introduced a nice method for the notation of Hilbert vectors, which is known as the bra-

ket notation. This notation gives every Hilbert vector a name and places this between a | bar and a 

〉sign. Thus the Hilbert vector with name John is indicated as |𝐽𝑜ℎ𝑛〉. The inner product that relates 

vector |𝐽𝑜ℎ𝑛〉 and vector |𝑊𝑖𝑙𝑙〉 is indicated by 〈𝐽𝑜ℎ𝑛|𝑊𝑖𝑙𝑙〉. We will not go into further details, but 

this notation can be applied to create relations between functions and operators and the same 

continuous function can relate an operator in the separable Hilbert space to a corresponding 

operator in the non-separable Hilbert space. Thus it can relate the swarms that are stored in the 

separable Hilbert space with the continuous descriptors of that swarm that are stored in the non-

separable Hilbert space. 

This means that this methodology is capable of relating the elementary modules that represent the 

atoms of the orthomodular lattice with fields that offer a smooth description of their presence. 

7 Parameter spaces 
Number systems can also be interpreted as flat continuums and their rational values can be 

interpreted as evenly spread swarms. However, these objects are better interpreted as a kind of 

functions of which the target values equal their parameter values. With other words, these objects 

are parameter spaces. In the Hilbert spaces these continuums and sets are eigenspaces of so called 

reference operators. The Hilbert spaces can house several of such reference operators and 

corresponding parameter spaces in parallel. It is possible that a kind of such parameter spaces float 

over another kind of parameter space. Different parameter spaces can differ in the way that they are 

ordered. A parameter space can be ordered by selecting a particular Cartesian coordinate system. In 

fact it is possible to select on a given center, one of eight mutually independent Cartesian coordinate 

systems. Thus the corresponding parameter spaces exist in eight symmetry flavors. A polar 

coordinate system is usually specified relative to a Cartesian coordinate system. The polar 

coordinates may start with the polar angle or the polar coordinate system can start with the azimuth 

and each of these angles can increase or decrease. The floating polar coordinate systems will be 

called symmetry centers. The symmetry flavors of symmetry centers influence the contributions that 

the inhabitants of the symmetry center deliver to an integral that collects the properties of the 

inhabitants. This fact attaches a charge property to the symmetry center. 



8 Elementary modules 
Elementary modules typically live on top of a selected symmetry center. The description of the raw 

swarm and the description of the hopping path use the corresponding polar coordinate system. The 

elementary modules perform their hopping dance within the realm of their private symmetry center. 

This categorises the elementary modules with respect to their symmetry flavor. Thus elementary 

modules exists in a set of categories that differ in their symmetry flavor. In addition they can float 

over a background coordinate system. With respect to the smooth description of their location 

swarm these elementary modules act as artifacts that deform the fields that act as the smooth 

description of these elementary modules. 

The point-like elementary object can be caught by a detection process or another kind of conversion 

process. The location density distribution describes the probability of detecting the concerned 

module at the location that is represented by the local parameter value. 

The mechanism that controls the coherence of the behavior of the elementary module ensures that 

the location density distribution, which describes the swarm of landing locations, owns a Fourier 

transform. Aside from providing a displacement generator, this fact also allows the swarm to be 

represented by a wave package. Usually a moving wave package disperses. That is not the case for 

this representation because the location density distribution is continuously regenerated. However, 

the consequence of having a Fourier transform is that the swarm can form detection patterns in the 

form of interference patterns. These interference patterns may suggest that the swarm is constituted 

from a set of waves. 

A single hop represents a small displacement in configuration space and it represent a factor which is 

close to unity in Fourier space. This fact is exploited by a methodology which is called “path integral”. 

This method puts all multiplication factors in a sequence and since these factors are close to unity, 

the multiplications can be replaced by summations of the logarithms of these factors. The result 

describes the displacement of the swarm as a whole unit. The multiplication factors are more closely 

representing the more stable displacement generator of the swarm and do not represent the 

vigorous hops that determine the elements of the swarm. The result forms a proper qualification of 

the coherence that is installed by the governing mechanism. 

8.1 Symmetry flavors 
Elementary modules live on top of symmetry centers. The symmetry centers act as spatial parameter 

spaces that are ordered by a selected polar coordinate system. The center of the coordinate system 

floats over a background parameter space, which is ordered by a selected Cartesian coordinate 

system. Both types of parameter spaces are eigenspaces of corresponding reference operators. Apart 

from their relative movement with respect to the background parameter space the symmetry 

centers are static items. This part of their properties can be characterized by an anti-Hermitian 

operator. The polar coordinate system is defined relative to a Cartesian coordinate system, which 

specifies the Cartesian ordering of the symmetry center. This Cartesian ordering specifies the 

symmetry flavor of the symmetry center. It is possible to distinguish eight independent versions of 

Cartesian coordinate systems. This corresponds with the fact that due to its four dimensions, the 

quaternionic number system exist in sixteen different versions. If the real part is kept fixed then still 

eight different versions result. An important fact is that with respect to multiplication the 

quaternions exist in left handed and right handed versions. Thus, the ordering influences the 

arithmetic properties of quaternions. But the ordering has more influences. The ordering of the 

parameter space influences the contribution that the symmetry center delivers to an overall integral 

that covers the whole background parameter space. This influence can be estimated by 



encapsulating the symmetry center by a cubic boundary that follows the directions of the applied 

coordinate systems. The influences can be expressed by factors that are determined by the number 

of discrepant directions. This factor must include the sign of the direction. This results in a short list 

of factors: -3,-2-1,0,1,2,3. This list corresponds to a set of symmetry related charges. The directions 

can be indicated with colors. The isotropic cases -3,0,3 get neutral colors. The other values get 

corresponding R,G,B values. This characterization corresponds with the charges that are attached to 

the elementary particles, which are contained in the Standard Model. 

The charges are artifacts that influence a corresponding field that we will give the name of 

“symmetry related field”. The model locates the charges at the center of the corresponding 

symmetry centers. The elementary module that lives on top of the symmetry center inherits the 

symmetry related charges of the symmetry center. 

Two views are possible. One view interprets the deformation of the field as an influence that is 

caused by the symmetry related charge of the symmetry center. The other view interprets the action 

that the field exerts onto the elementary module, which resides on top of the symmetry center. If 

multiple symmetry centers are present, then this second view can be used to explain the mutual 

influences that the elementary modules pose onto each other. 

8.2 Quaternionic rotations and symmetry flavor switches 
In multiplications quaternions do not generally commute. This is due to the arithmetic behavior of 

the imaginary part. The multiplication of two imaginary quaternions results in a quaternion that has a 

real part and an imaginary part. Any of the two parts may be zero and the imaginary part is directed 

perpendicular to both multiplication factors. The sign of the result depends on the handedness of the 

participating quaternions. This has a particular effect when the result is subsequently multiplied with 

the reverse of the second quaternion. In that case the piece of the imaginary part of the first 

quaternion that is perpendicular to the first quaternion gets rotated over an angle that is twice the 

angle that the real and the imaginary part of the first quaternion form. 

 

 



 

Figure 2: Quaternionic rotation 

A special kind of quaternions have real parts that have the same size as the size of their imaginary 

part. These quaternions shift the rotated part of the subject to another dimension. Thus these kind of 

quaternions can shift the symmetry flavor of anisotropic elementary modules. 
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9 The dynamic model 
The base model is formed by an infinite dimensional separable quaternionic Hilbert space and its 

non-separable companion. It is possible to construct a category of operators that use the elements of 

the quaternionic number system as its eigenvalues. In the separable Hilbert space the eigenspace of 

the operators must be countable. This means that the eigenvalues that constitute these eigenspaces 

must be rational quaternions. If all rational quaternions of a quaternionic number system are used, 

then the corresponding eigenvectors form an orthonormal base that spans the complete separable 

Hilbert space. A similar procedure can be followed in the non-separable companion Hilbert space, 

but there the eigenspaces of the corresponding operators are continuums. This procedure shows 

that it is possible to embed or map the complete separable Hilbert space inside its non-separable 

companion. The operators that are constructed in this way are reference operators. The symmetry 

centers that are mentioned above are eigenspaces of a special kind of reference operators. They 

float over a selected background reference operator. 

The swarms of the elementary modules are stored in eigenspaces of operators that reside in the 

separable Hilbert space. The elementary modules live on the symmetry centers. These symmetry 

centers are carriers of symmetry related charges and with their elementary module they float over a 

background parameter space. The smoothed location density distributions that describe the swarm 

form part of a more extended continuum for which the background parameter space acts as a 

covering parameter space. The extended continuum can be interpreted as an embedding field, but it 

can as well be interpreted as a describing field. The charges are the artifacts of a second continuum 

that we will indicate as the symmetry related field. 

Now construct a boundary that splits the continuum eigenspace of a selected background reference 

operator such that it divides the real part of the quaternionic eigenspace into two parts. The 

boundary is characterized by a progression value. Let this value increase such that the boundary 

moves as a function of progression. The subspace that is spanned by the corresponding Hilbert 

eigenvectors moves as a vane through both Hilbert spaces. 

The vane scans over both fields and this boundary can be interpreted as the present static status quo 

that splits past from future. 

This view introduces the concept of creation. It is possible to view the Hilbert spaces as 

unchangeable items that are already completely filled with data. In this view both past and future are 

completely determined. However, it is also possible to take the view that the information about the 

current static status quo is created at the progression instant that is attached to the scanning vane. 

This second view is used by current physical theories. From a mathematical point of view the first 

interpretation is as valid. Both interpretations describe the same mathematical model. However, the 

selected interpretation significantly affects the description of the mechanism that control the 

coherence of the swarm, which characterizes an elementary module. Previously this description is 

given in terms of a dynamic stochastic process that generates the landing locations of the hops that 

constitute the swarm. 

10 Fields 
Fields are continuum eigenspaces of operators that reside in the non-separable Hilbert space. The 

model distinguishes two basic fields.  

One is the embedding field. This field describes the hopping behavior of the elementary modules. As 

a consequence this field plays a role in the interaction between the location swarms that represent 



the hopping elementary particles. The embedding field describes both the rational values that 

constitute the background parameter space and it treats the landing locations of the hopping 

elementary modules as artifacts that are taken from a discrepant parameter space, which is formed 

by the symmetry center on which the elementary particle resides. In this way the embedding field 

covers all of universe and this occurs always and everywhere. In this way the field acts as an ideal 

transporter for information that travels in the form of vibrations of this field. Information messengers 

are solutions of the differential equations, which describe the dynamic behavior of this field. 

The second basic field is the symmetry related field. It describes the influences of the symmetry 

related charges that characterize the symmetry centers on which the elementary modules reside. 

This field relies on the nearby presence of symmetry centers that carry the charges that keep the 

field in existence. This does not make this field a proper carrier of messengers that transport 

information over long ranges. 

The discrete players and the fields interact in a complicated way. The behavior of the fields is 

governed by differential equations. Partial differential equations indicate in which direction the 

changes of the fields take place. The influence of point-like artifacts is covered by first and second 

order partial differential equations. In quaternionic differential calculus two different 

inhomogeneous second order partial differential equations exist. One of these equations can be split 

into two first order partial differential equations and the other cannot be split. It is based upon a 

differential operator, which is known as d’Alembert’s operator. Both second order partial equations 

also exist as homogeneous equations. These versions hold in the absence of artifacts that disturb the 

continuity of the corresponding field. 

Both basic fields obey the same homogeneous second order partial differential equations. This fact 

indicates that the difference between the two basic fields is located in the artifacts that disturb their 

continuity.  

The homogeneous second order partial differential equations have many different solutions that can 

exist in parallel. The d’Alembert’s equation supports waves as part of its set of solutions and for that 

reason this equation is called “wave equation”. In an odd number of participating spatial dimensions, 

both second order partial differential equations offer solutions that keep their shape when they 

travel through space. The one dimensional solutions also keep their amplitude. They can travel huge 

distances and still keep their integrity. The three dimensional solutions diminish their amplitude with 

increasing distance from the source. The shape keeping solutions can be interpreted as information 

carriers. These solutions are not waves. If these solutions occur in strings, then they get many 

characteristics in common with waves. One of them is the frequency of the sequence. 

This part of field behavior concerns point-like artifacts, such as elementary modules and the centers 

of symmetry centers. Other, more extensive artifacts are also possible. For example it is possible that 

for certain regions of the background parameter space the embedding field does not exist. The field 

cannot exchange information with these regions. At the border of these regions the field can still 

show a coherent behavior. The inside of the region is “black”.  
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