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 Let 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) be respectively the initial velocity and initial 

pressure of the three-dimensional incompressible (∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0) Navier-

Stokes equations without external force 

    

(1)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡),3

𝑗=1  

 

 1 ≤ 𝑖 ≤ 3, 𝑋 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, 𝑥1 ≡ 𝑥,  𝑥2 ≡ 𝑦,  𝑥3 ≡ 𝑧, 𝑥𝑖 , 𝑡 ∈ ℝ, 𝑡 ≥ 0. 

 

 Then in 𝑡 = 0 is valid, for each integer 𝑖 belongs to 1 ≤ 𝑖 ≤ 3, 

(2)  
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 + ∑ 𝑢𝑗

0(𝑋)
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 =  ∇2𝑢𝑖

0(𝑋). 

 Supposing that 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) =

𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) is a solution (𝑢, 𝑝) for (1), we have 

(3)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
=  ∇2𝑢𝑖

0(𝜉)3
𝑗=1 ,  

where 𝜉 = (𝜉1, 𝜉2, 𝜉3) and 𝜉𝑖 = 𝜉𝑖(𝑋, 𝑡) = 𝑥𝑖 + 𝑡, 1 ≤ 𝑖 ≤ 3. 

 For 𝑡 = 0 the equations (2) and (3) are equals, because in 𝑡 = 0 we have 

𝜉𝑖 = 𝑥𝑖 and therefore  𝜉 = (𝜉1, 𝜉2, 𝜉3)  = (𝑥1, 𝑥2, 𝑥3) = 𝑋.  

 For 𝑡 > 0, if (2) is valid for any 𝑋 = (𝑥, 𝑦, 𝑧) ∈ ℝ3 then (3) is valid for any 

𝜉 ∈ ℝ3 substituting 𝑥 ↦ 𝜉1 = 𝑥 + 𝑡, 𝑦 ↦ 𝜉2 = 𝑦 + 𝑡, 𝑧 ↦ 𝜉3 = 𝑧 + 𝑡, 𝑥, 𝑦, 𝑧 ∈

ℝ, 𝑡 ≥ 0, so 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥 + 𝑡, 𝑦 +

𝑡, 𝑧 + 𝑡), i.e., 𝑢(𝑋, 𝑡) = 𝑢0(𝜉) and 𝑝(𝑋, 𝑡) = 𝑝0(𝜉), solve equation (3) and therefore 

the Navier-Stokes equation (1). 

 The initial motivation to prove it is as follows. Let 𝐴(𝑥), 𝐵(𝑥), 𝐶(𝑥) and 

𝐷(𝑥)  functions such that is always valid, for any 𝑥 ∈ ℝ, the relation 
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(4)  𝐴(𝑥) + 𝐵(𝑥) +  𝐶(𝑥) = 𝐷(𝑥). 

 Then, as (𝑥 + 𝑡) ∈ ℝ, 𝑥, 𝑡 ∈ ℝ, 𝑡 ≥ 0, need be valid too the relation   

(5)  𝐴(𝑥 + 𝑡) + 𝐵(𝑥 + 𝑡) +  𝐶(𝑥 + 𝑡) = 𝐷(𝑥 + 𝑡). 

 The same argument can be used for functions of two and three spatial 

dimensions (or better, for 𝑛 spatial dimensions), for example, ∀𝑥, 𝑦, 𝑧, 𝑡 ∈ ℝ, 𝑡 ≥ 0,   

(6)  𝐴𝑖(𝑥, 𝑦, 𝑧) + 𝐵𝑖(𝑥, 𝑦, 𝑧) + 𝐶𝑖(𝑥, 𝑦, 𝑧) = 𝐷𝑖(𝑥, 𝑦, 𝑧) 

  ⟹ 𝐴𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) + 𝐵𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) +  

                 + 𝐶𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = 𝐷𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡).  

 Applying the previous relation (6) to the Navier-Stokes equations (2) for 

𝑡 = 0, if 

(7.1)  𝐴𝑖(𝑥, 𝑦, 𝑧) =
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
 ,  

(7.2)  𝐵𝑖(𝑥, 𝑦, 𝑧) =
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0, 

(7.3)  𝐶𝑖(𝑥, 𝑦, 𝑧) = ∑ 𝑢𝑗
0(𝑋)

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 ,  

(7.4)  𝐷𝑖(𝑥, 𝑦, 𝑧) =  ∇2𝑢𝑖
0(𝑋), 

(7.5)  𝐴𝑖(𝑥, 𝑦, 𝑧) + 𝐵𝑖(𝑥, 𝑦, 𝑧) + 𝐶𝑖(𝑥, 𝑦, 𝑧) = 𝐷𝑖(𝑥, 𝑦, 𝑧), 

𝑋 = (𝑥, 𝑦, 𝑧), then, using 𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), need be valid 

too the equalities 

(8.1)  𝐴𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) =
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
 ,  

(8.2)  𝐵𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = (
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0)(𝜉), 

(8.3)  𝐶𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = ∑ 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝑥𝑗

3
𝑗=1 ,  

(8.4)  𝐷𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) =  ∇2𝑢𝑖
0(𝜉), 

(8.5)  𝐴𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) + 𝐵𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) +  

            + 𝐶𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) = 𝐷𝑖(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡). 
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The expression (
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0)(𝜉) in (8.2) means that first is calculated the value 

of  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
, next we assign the value 𝑡 = 0 in this result and then we substitute 

𝑥 ↦ 𝜉1 = 𝑥 + 𝑡, 𝑦 ↦ 𝜉2 = 𝑦 + 𝑡, 𝑧 ↦ 𝜉3 = 𝑧 + 𝑡, i.e., 𝑋 ↦ 𝜉. 

 Note that the right side of the relations (8.1) to (8.4) corresponds to each 

parcel of the Navier-Stokes equations (8.5) with the solution (𝑢, 𝑝) such that 

(9.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉), 

(9.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), then (9) is a solution for (1) if 

𝑢0(𝑋) and 𝑝0(𝑋) are initial conditions. 

 We will now prove that if the variables (9.1) and (9.2) solve (1) for 𝑡 ≥ 0 

then 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) solve (1) for 𝑡 = 0, i.e., then both 𝑢0(𝑥, 𝑦, 𝑧) and 

𝑝0(𝑥, 𝑦, 𝑧) solve (2). This is an important result of this section. We'll use the chain 

rule[1].  

Proof: Starting from (1), the three-dimensional incompressible Navier-Stokes 

equations, where ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0,  

(10)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡),3

𝑗=1  

1 ≤ 𝑖 ≤ 3, 𝑋 = (𝑥, 𝑦, 𝑧), if a solution (𝑢, 𝑝) for them is (9), i.e.,  

(11.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉), 

(11.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), then we have, according (3), 

(12)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
=  ∇2𝑢𝑖

0(𝜉)3
𝑗=1 . 

 How 𝜉𝑖 = 𝑥𝑖 + 𝑡 then 
𝜕𝜉𝑖

𝜕𝑥𝑖
=

𝜕𝜉𝑖

𝜕𝑡
= 1 and 

𝜕𝜉𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, so using the chain 

rule[1] we have, for each parcel in (10) and (12), 

(13.1)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
=

𝜕𝑝0(𝜉)

𝜕𝑥𝑖
= ∑

𝜕𝑝0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑥𝑖
=

𝜕𝑝0(𝜉)

𝜕𝜉𝑖
 

(13.2)   
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
=

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1  

(13.3)  𝑢𝑗(𝑋, 𝑡)
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
= 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
= 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
= 



4 
 

   = 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗
 

(13.4)  ∇2𝑢𝑖(𝑋, 𝑡) = ∇2𝑢𝑖
0(𝜉) = (

𝜕

𝜕𝑥1

𝜕

𝜕𝑥1
+

𝜕

𝜕𝑥2

𝜕

𝜕𝑥2
+

𝜕

𝜕𝑥3

𝜕

𝜕𝑥3
) 𝑢𝑖

0(𝜉) = 

  = ∑ (
𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗

𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1 ∑ (

𝜕

𝜕𝜉𝑗

𝜕

𝜕𝜉𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1  

  = ∇𝜉
2𝑢𝑖

0(𝜉) 

 Adding the parcels (13), with (13.3) for each integer 𝑗 = 1, 2, 3 and the 

multiplication of (13.4) by viscosity coefficient , we come to 

(14)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 =  ∇𝜉

2𝑢𝑖
0(𝜉), 

which is equivalent to previous Navier-Stokes equations (10) and (12) with the 

solution (11), although it is not a conventional Navier-Stokes equation because the 

time derivative disappears, i.e., 

(15)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
↦ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 . 

Note that the right side of (15) is not 
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 , because here 𝑢𝑖

0 is, 

initially, a function only of   𝜉 = (𝜉1, 𝜉2, 𝜉3), not including 𝑡, but each 𝜉𝑖 is a function 

of 𝑡 and for this reason here is  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
=

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
=

∑
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 , with 𝜉𝑗 = 𝑥𝑗 + 𝑡,

𝜕𝜉𝑗

𝜕𝑡
= 1. 

 In 𝑡 = 0, when 𝜉𝑖 = 𝑥𝑖 , the equation (14) became 

(16)  
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
+ ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝑋)
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 =  ∇2𝑢𝑖

0(𝑋). 

 If this equation is equivalent to (2) then 

(17)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 ,  

which is thereby a good manner of define or choose the temporal derivative of 

velocity at 𝑡 =  0 when the solution for velocity is 𝑢(𝑋, 𝑡) = 𝑢0(𝜉).   

 Similarly, for 𝑡 > 0 we have   

(18)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 , 
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𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = (𝜉1, 𝜉2, 𝜉3), 𝜉𝑖 = 𝜉𝑖(𝑋, 𝑡) = 𝑥𝑖 + 𝑡, 1 ≤ 𝑖 ≤ 3. 

 Concluding, assuming that (9), identical to (11), is a solution for (1), 

identical to (10), we come to (16) for 𝑡 = 0, which is equivalent to (2) with the 

additional initial condition (17) and it has a solution (𝑢0(𝑋), 𝑝0(𝑋)). This is what 

we wanted to prove.         □ 

 Next, we will prove the opposite way of the previous demonstration: if 

𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) solve (1) for 𝑡 = 0, i.e., if both 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) 

solve (2), then the variables (𝑢, 𝑝) given in (9.1) and (9.2) solve (1) for 𝑡 ≥ 0. This 

is the fundamental result of this section. The proof basically follows what we write 

from beginning of this section until the equations (9), increasing the 

transformations (13) and the conditions (17) and (18). We'll use the chain rule[1] 

again.  

Proof: If 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧) solve the three-dimensional incompressible 

(∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0) Navier-Stokes equations  

(19)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇2𝑢𝑖(𝑋, 𝑡)3

𝑗=1  

for 𝑡 = 0,  with 1 ≤ 𝑖 ≤ 3, 𝑋 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, 𝑥1 ≡ 𝑥,  𝑥2 ≡ 𝑦,  𝑥3 ≡ 𝑧, 𝑥𝑖 , 𝑡 ∈ ℝ,

𝑡 ≥ 0,  then in 𝑡 = 0 is valid, for each integer 𝑖 belongs to 1 ≤ 𝑖 ≤ 3, 

(20)  
𝜕𝑝0(𝑋)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 + ∑ 𝑢𝑗

0(𝑋)
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 =  ∇2𝑢𝑖

0(𝑋). 

 Supposing that 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) =

𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) is a solution (𝑢, 𝑝) for (19), we have 

(21)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝑥𝑗
=  ∇2𝑢𝑖

0(𝜉)3
𝑗=1 ,  

using 𝜉 = (𝜉1, 𝜉2, 𝜉3) and 𝜉𝑖 = 𝜉𝑖(𝑋, 𝑡) = 𝑥𝑖 + 𝑡, 1 ≤ 𝑖 ≤ 3. 

 For 𝑡 = 0 the equations (20) and (21) are equals, because in 𝑡 = 0 we have 

𝜉𝑖 = 𝑥𝑖 and therefore  𝜉 = (𝜉1, 𝜉2, 𝜉3)  = (𝑥1, 𝑥2, 𝑥3) = 𝑋.  

 For 𝑡 > 0, if (20) is valid for any 𝑋 = (𝑥, 𝑦, 𝑧) ∈ ℝ3 then (21) is valid for any 

𝜉 ∈ ℝ3 substituting 𝑥 ↦ 𝜉1 = 𝑥 + 𝑡, 𝑦 ↦ 𝜉2 = 𝑦 + 𝑡, 𝑧 ↦ 𝜉3 = 𝑧 + 𝑡, 𝑥, 𝑦, 𝑧 ∈

ℝ, 𝑡 ≥ 0, according transformations (22) below, so 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 +

𝑡, 𝑧 + 𝑡) and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡), i.e., 𝑢(𝑋, 𝑡) = 𝑢0(𝜉) and 

𝑝(𝑋, 𝑡) = 𝑝0(𝜉), solve equation (21) and therefore the Navier-Stokes equation 

(19). 

 How 𝜉𝑖 = 𝑥𝑖 + 𝑡 then 
𝜕𝜉𝑖

𝜕𝑥𝑖
=

𝜕𝜉𝑖

𝜕𝑡
= 1 and 

𝜕𝜉𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, so using the chain 

rule[1] we have, for each parcel in (21), 
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(22.1)  
𝜕𝑝0(𝜉)

𝜕𝑥𝑖
=

𝜕𝑝(𝜉(𝑋,𝑡))

𝜕𝑥𝑖
= ∑

𝜕𝑝0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑥𝑖
=

𝜕𝑝0(𝜉)

𝜕𝜉𝑖
 

(22.2)   
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
=

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1  

(22.3)  𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝑥𝑗
= 𝑢𝑗(𝜉(𝑋, 𝑡))

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑥𝑗
= 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
= 

   = 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗
 

(22.4)  ∇2𝑢𝑖
0(𝜉) = ∇2𝑢𝑖(𝜉(𝑋, 𝑡)) = ∑ (

𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
)3

𝑗=1 𝑢𝑖
0(𝜉(𝑋, 𝑡)) = 

  = ∑ (
𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗

𝜕

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1 ∑ (

𝜕

𝜕𝜉𝑗

𝜕

𝜕𝜉𝑗
) 𝑢𝑖

0(𝜉) =3
𝑗=1  

  = ∇𝜉
2𝑢𝑖

0(𝜉) 

 The equation (21) transformed through by (22) gives 

(23)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗
=  ∇𝜉

2𝑢𝑖
0(𝜉)3

𝑗=1 , 

that is, we transform 𝑋 ⟼ 𝜉 and from 𝜉𝑖 = 𝑥𝑖 + 𝑡 we have 
𝜕𝜉𝑖

𝜕𝑥𝑖
= 1 and therefore 

𝜕𝑥𝑖 = 𝜕𝜉𝑖. 

 The unexpected transformation is  

(24)  
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
=

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 ,   

making (23) not be in the form of a standard Navier-Stokes equation. In 𝑡 = 0 the 

transformation (24) becomes    

(25)  
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
|𝑡=0 =

𝜕𝑢𝑖(𝜉(𝑋,𝑡))

𝜕𝑡
|𝑡=0 =

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 ,  

𝜉𝑗 = 𝑥𝑗 , 𝜉 = 𝑋, for 𝑡 = 0, thus we need to assume the additional initial condition  

(26)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1  

when the solution for Navier-Stokes equation (1), identical to (19), is given by (9), 

i.e.,  

(27.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉), 

(27.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 
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𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = 𝜉(𝑋, 𝑡) = (𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡). 

 Concluding, if (𝑢0(𝑋), 𝑝0(𝑋)) solve (2), identical to (20), substituting in 

(20) the transformation 𝑋 ↦ 𝜉, 𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = (𝜉1, 𝜉2, 𝜉3),  𝜉𝑖 =  𝑥𝑖 + 𝑡, we come 

to (23), 

(28)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 + ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗
=  ∇𝜉

2𝑢𝑖
0(𝜉)3

𝑗=1 , 

assuming the additional initial condition (26) 

(29)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝑋)

𝜕𝑥𝑗

3
𝑗=1  

due to transformation (24),   

(30)  
𝜕𝑢𝑖

0(𝜉)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 . 

 Using (30) in (28) we come to 

(31)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+

𝜕𝑢𝑖
0(𝜉)

𝜕𝑡
+ ∑ 𝑢𝑗

0(𝜉)
𝜕𝑢𝑖

0(𝜉)

𝜕𝜉𝑗
=  ∇𝜉

2𝑢𝑖
0(𝜉)3

𝑗=1 , 

the Navier-Stokes equations with the solution (𝑢0(𝜉), 𝑝0(𝜉)), i.e., (𝑢(𝑋, 𝑡), 𝑝(𝑋, 𝑡)), 

according (27), identical to (9).  

 Using (27) and 𝜕𝜉𝑖 = 𝜕𝑥𝑖 in (31) we come finally to 

(32)  
𝜕𝑝(𝑋,𝑡)

𝜕𝑥𝑖
+

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
+ ∑ 𝑢𝑗(𝑋, 𝑡)

𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑥𝑗
=  ∇𝑋

2 𝑢𝑖(𝑋, 𝑡)3
𝑗=1 , 

the Navier-Stokes equations (1) with the solution (𝑢(𝑋, 𝑡), 𝑝(𝑋, 𝑡)). This is what we 

wanted to prove.           □ 

 

 What we see in the two previous proofs can be applied, with the obvious 

adaptations, to solutions of the form 

(33.1)  𝑢(𝑋, 𝑡) = 𝑢0(𝜉),  

(33.2)  𝑝(𝑋, 𝑡) = 𝑝0(𝜉), 

𝑋 = (𝑥, 𝑦, 𝑧), 𝜉 = (𝜉1, 𝜉2, 𝜉3),  𝜉𝑖 =  𝑥𝑖 + 𝑇𝑖(𝑡), 𝑇𝑖(0) = 0, 1 ≤ 𝑖 ≤ 3, 

with the conditions 

(34)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1

𝜕𝜉𝑗

𝜕𝑡
= ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′(𝑡),  

and   
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(35)  
𝜕𝑢𝑖(𝑋,𝑡)

𝜕𝑡
|𝑡=0 = ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′(0) = ∑
𝜕𝑢𝑖

0(𝑋)

𝜕𝑥𝑗

3
𝑗=1 𝑇𝑗

′(0), 

being the functions 𝑇𝑖(𝑡) differentiable of class 𝐶1([0, ∞)). In this case the 

equations (23) and (28) are 

(36)  
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′(𝑡) + ∑ 𝑢𝑗
0(𝜉)

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗
=3

𝑗=1  

  =
𝜕𝑝0(𝜉)

𝜕𝜉𝑖
+ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 [𝑇𝑗

′(𝑡) + 𝑢𝑗
0(𝜉)] =  ∇𝜉

2𝑢𝑖
0(𝜉). 

 Note that the equation (34) implies 

(37)  𝑢𝑖(𝑋, 𝑡) = 𝑢𝑖
0(𝑋) + ∫ ∑

𝜕𝑢𝑖
0(𝜉)

𝜕𝜉𝑗

3
𝑗=1 𝑇𝑗

′
(𝑡) 𝑑𝑡

𝑡

0
= 

     = 𝑢𝑖
0(𝜉1, 𝜉2, 𝜉3) = 𝑢𝑖

0(𝑥1 + 𝑇1(𝑡), 𝑥2 + 𝑇2(𝑡), 𝑥3 + 𝑇3(𝑡)), 

that must be true for all differentiable function 𝑢𝑖
0(𝜉) with  𝜉𝑖 =  𝑥𝑖 + 𝑇𝑖(𝑡), 𝑇𝑖(𝑡) 

differentiable, 𝑇𝑖(0) = 0, 1 ≤ 𝑖 ≤ 3. 

 It is clear that in the Eulerian description[2] the computational and analytical 

challenges will be, more than solving the Navier-Stokes equations for 𝑡 >  0, solve 

these equations for 𝑡 =  0, the initial instant. Unfortunately, it is not for all pair of 

values (𝑢0, 𝑝0) that exists solution to the equation (28) and related equations, so 

or 𝑢0 is a function of 𝑝0, or 𝑝0 is a function of 𝑢0, or both 𝑢0 and 𝑝0 are functions of 

another functions. Nevertheless, must have at least one solution to these equations, 

what is easy to resolve transforming (28) and similar equations in the Lagrangian 

formulation[2] for velocity, assuming that the correspondent derivatives and 

integrations are possible. 

NOTE: A few days ago I realized the possibility of proving the invariance of waves 

and Maxwell's equations with respect to Galilean transformations with this 

method, without the need to introduce the famous coefficient √1 −
𝑣2

𝑐2
 of Einstein, 

including the Schrodinger equation. This also seems to be able to reach to the 

General Relativity.  
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