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Abstract 

The Hilbert book test model is a purely mathematical test model that starts from a solid foundation 

from which the whole model can be derived by using trustworthy mathematical methods. What is 

known about physical reality is used as a guidance, but the model is not claimed to be a proper 

reflection of physical reality. The mathematical toolkit still contains holes. These holes will be 

encountered during the development of the model and suggestions are made how those gaps can be 

filled. Some new insights are obtained and some new mathematical methods are introduced. The 

selected foundation is interpreted as part of a recipe for modular construction and that recipe is 

applied throughout the development of the model. This development is an ongoing project. The 

main law of physics appears to be a commandment: “Thou shalt construct in a modular way”. 
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1 Foreword of the author 
The “Hilbert Book Model” is the name of my personal research project. My interest in the structure 

and phenomena of physical reality started in the third year of my physics study when I was first 

confronted with how quantum mechanics was configured. I was quite astonished by the fact that its 

methodology differed fundamentally from the way that classical mechanics was done. So I asked my 

very wise lecturer on what origin this difference is based. His answer was that this difference was 

caused by the superposition principle. I was not very happy with this answer, because the 

superposition principle was indeed part of the methodology of quantum mechanics, but in those 

days I did not comprehend how that could present the main cause of the difference between the two 

methodologies. I decided to dive into literature and after some search I encountered the booklet of 

Peter Mittelsteadt, “ Philosophische Probleme der Modernen Physik” (1963). This booklet contained 

a chapter about quantum logic and that appeared to me a more appropriate answer. Garret Birkhoff 

and John von Neumann published in 1936 a paper that published their discovery of what they called 

“quantum logic”. Quantum logic is since then in mathematical terminology known as an 

orthomodular lattice. The relational structure of this lattice is quite similar to the relational structure 

of classical logic. That is why the duo gave their discovery the name “quantum logic”. This was an 

unlucky choice, because no good reason exist to consider the orthomodular lattice as a system of 

logical propositions. In the same paper, the duo indicated that the set of closed subspaces of a 

separable Hilbert space has exactly the relational structure of an orthomodular lattice. That appears 

to be the reason why quantum physicists prefer Hilbert spaces as a realm in which they do their 

modeling of quantum physical systems. Another habit of quantum physicists also intrigued me. My 

lecturer thought me that all observable quantum physical quantities are eigenvalues of Hermitian 

operators. When I looked around I saw a world that had a structure that was configured from a three 

dimensional spatial domain and a one dimensional time domain. In the quantum physics of that time, 

no operator represents the time domain and no operator was used to deliver the spatial domain in a 

compact fashion. After some research I discovered a four dimensional number system that could 

provide an appropriate normal operator with an eigenspace that represented the full four 

dimensional representation of my living environment. At that moment I had not yet heard from 

quaternions, but an assistant professor quickly told me about the discovery of Rowan Hamilton that 

happened more than a century earlier. My university, the TUE, targeted applied physics and there 

was not much time nor support for diving deep into the fundamentals of quantum physics. After my 

study I started a career in high-tech industry where I joined the development of image intensifier 

devices. There followed my confrontation with optics and with the actual behavior of elementary 

particles. See: http://www.e-physics.eu/#_What_image_intensifiers reveal. 

Only after my retirement I got sufficient time to dive deep into the foundations of physical reality. In 

2009 I started my personal research project that in 2011 got its current name “The Hilbert Book 

Model”. The author takes the freedom to upgrade the papers in a steady rate. 

I use vixra.org as my personal e-print archive: http://vixra.org/author/j_a_j_van_leunen . Vixra 

provides full two sided open access and has a flexible revision service, which I use extensively. I put 

preliminary papers on my website http://www.e-physics.eu . There my papers are available in .pdf 

and also in .docx format. I do not request copyright on these documents. I try to avoid the burden of 

peer review publishing. Instead I try to keep the quality of my papers at a high standard. The most 

recent versions of the author’s papers will appear on his website. Most of the older papers are 

superseded by newer ones that got different names. Older papers started with knowledge that was 

lectured in universities and or could be found in literature. Newer papers also contain corrections 

and discoveries that are made by the author.  

http://www.e-physics.eu/#_What_image_intensifiers
http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/
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2 Introduction 
The Hilbert Book Test Model 𝓜 is based on a foundation that has the relational structure of an 

orthomodular lattice [1] [2]. Nearly a century ago, the discovery of this lattice was published by the 

duo Garret Birkhoff and John von Neumann in a paper in which they also explained its relation to the 

notion of a separable Hilbert space [3] [4]. The orthonormal lattice does not contain the notion of 

number systems. Thus, this foundation cannot represent the concepts that define dynamic geometric 

data, such as time and location. These notions emerge by extending this foundation in the direction 

of the separable Hilbert space. By selecting this extension of the foundation, the freedom of the 

selection of the derived concepts is restricted. The separable Hilbert space provides operators that 

have countable eigenspaces that are filled with eigenvalues that must be members of division rings 

[5]. Only three suitable division rings exist. These are the real numbers, the complex numbers and 

the quaternions. The separable Hilbert space can only cope with the rational versions of these 

number systems. These restrictions appear very favorable for the pursued model building process. It 

strongly limits the range of choices. Still the resulting possibilities appear to be flexible enough to 

generate a powerful base model. 

𝓜 interprets the orthomodular lattice as part of a recipe for modular construction. Modular 

construction represents a very beneficial strategy that strongly reduces relational complexity of 

the target system. For very complex systems the modular construction strategy is orders of 

magnitude more efficient than a monolithic approach. Reality offers huge resources in available 

time and in numbers of building components. In this way even stochastic design as is applied by 

nature can reach high levels of complexity. 𝓜 applies modular construction as a general 

strategy.  

In advance the model will apply a stochastic design an generation strategy. This will change 

when the model has achieved a level in which intelligent species appear. From that instant on 

the efficiency of the modular construction strategy will increase significantly. Intelligent design 

and construction will use far less design and generation time and other required resources. This 

will clearly affect the evolution of the model. Due to limited speed of information spread, these 

effects will appear at isolated locations. 

𝓜 applies the fact that the set of closed subspaces of a separable Hilbert space has the relational 

structure of an orthomodular lattice. Not all closed subspaces of a separable Hilbert space 

represent modules or modular systems, thus the notion of a module must be further restricted. 

𝓜 applies the fact that separable Hilbert spaces can only cope with number systems that are division 

rings. We use the most elaborate category of these division rings. That category is formed by the 

quaternionic number systems [6]. Quaternionic number systems exist in multiple versions, that differ 

in the way that they are ordered. This ordering may influence the arithmetic properties of the 

number system. For example right handed multiplying quaternions and left handed multiplying 

quaternions exist. Further, as will be shown in this paper, it appears that ordering influences the 

behavior of quaternionic functions under integration. This fact has astonishing consequences. 

Another important fact is that every infinite dimensional separable Hilbert system owns a companion 

Gelfand triple, which is a non-separable Hilbert space [7]. 𝓜 uses both kinds of Hilbert spaces as 

structured storage media, in which discrete quaternionic data and quaternionic manifolds can be 

archived. By applying Hilbert spaces 𝓜 accepts that the model uses a storage medium in which all of 

its activities are precisely archived. 

𝓜 uses a separable Hilbert space ℌ in order to archive countable sets of discrete quaternionic 

data and 𝓜 uses the companion Gelfand triple ℋ in order to archive continuous quaternionic 
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manifolds. ℋ also contains an image of the content of ℌ. 𝓜 Uses this fact in order to describe the 

embedding of the separable Hilbert space into its Gelfand companion. 𝓜 considers the embedding 

as an ongoing process. In taking this view 𝓜  selects between two possible views. The view taken 

classifies the model as a dynamic model. The alternative view accepts that besides the historic data 

the Hilbert spaces already contains the future data. In this alternative view a boundary splits the 

Hilbert space into three parts:  

 The past history part of the model 

 The current static status quo, which is represented by the boundary 

 The future part of the model 

This second view treats these three parts as sections of a model that is created as one whole system. 

𝓜 introduces the reverse bra-ket method and uses this method in order to relate operators and 

their eigenspaces to pairs of functions and their parameter spaces [8]. In this way, subspaces act as 

Hilbert space domains in relation to which manifolds are defined. 

In the first view, the base version ℳ of 𝓜 consists of the foundation, a quaternionic separable 

Hilbert space, its companion Gelfand triple and a set of mechanisms {𝔐𝑛
𝑥} that control the dynamic 

split of this base version ℳ in a historic part, a part that represents the present static status quo and 

a part that represents the future.  

The first view shifts the equivalent of the mystery of the origin of the dynamics of physical reality to 

the mysteries of a set of mechanisms that control the coherence of the dynamics of the model. 

𝓜 applies an extended version of the generalized Stokes theorem in order to describe the split of 

the Hilbert space into these three parts [9] [10]. The generalized Stokes theorem enforces the 

encapsulation of artifacts that disrupt the continuity of the manifolds. This introduces an extra 

splitting of the base model in which elementary artifacts and domain cavities are set apart from the 

domains of the continuous parts of the manifolds.  

Via the reverse bra-ket method smoothing operators are introduced that convolute the defining 

function of a primary operator with a blurring function. With an appropriate selection of the blurring 

function, the eigenspace of the smoothing operator will represent the “observable” version of the 

primary manifold. Here “observable” means the way that discrete objects sense the influence of the 

local disruptions of the continuity of the primary  manifold that are caused by other discrete objects. 

In this way 𝓜 introduces notions such as the wave function, the uncertainty principle and the 

equivalent of the gravitation potential. 

The fact that 𝓜 steps with model wide steps in the separable Hilbert space ℌ and flows in the 

companion Gelfand triple ℋ is the reason to use the name Hilbert Book Model for 𝓜. In order to 

warn that 𝓜 is not meant to be a physical model, but instead 𝓜 is a pure mathematical test 

model that is used to investigate the mathematical tools and methods that can be use in order to 

describe a physical model, the name of 𝓜 is extended to Hilbert Book Test Model. 
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3 The orthomodular lattice 
In this paper lattices are the most primitive structures that exist in the pursued model. Lattices are 

sets of relations and the lattice describes which kind of relations belong to the lattice and how they 

are mutually related. In short a lattice is a relational structure. The foundation of the model is an 

orthomodular lattice. This is a short name for a weak modular orthocomplemented lattice. Lattices 

are treated in detail in the appendix. 

The orthocomplemented lattice was discovered by Garret Birkhoff and John von Neumann. Due 

to the strong similarity to the lattice that describes classical logic the duo gave it in their 

introductory paper the name “quantum logic”. This was the reason that since its introduction many 

scientists since this introduction have investigated the value of this structure as a logic system. 

For comprehensible reasons this was not very successful. In the same introductory paper the duo 

proved that the set of closed subspaces of a separable Hilbert space has exactly the relational 

structure of the orthocomplemented lattice. The closed subspaces have little in common with 

logical propositions. That is why this paper prefers a different interpretation of  the orthomodular 

lattice. This paper sees the orthomodular lattice as part of a recipe for modular construction. In 

fact the relational structure stimulates modular construction of the systems that occur in the 

pursued model. 

The effect of the orthomodular lattice can be expressed in the most basic and therefore most 

important law:  

“Thou shalt construct in a modular way”. 

 

This law is intentionally expressed in the form of a commandment. It is not possible to express this 

law in the form of a formula, such as 𝐾 = 𝑚 𝑎 or 𝐸 =  𝑚 𝑐2. The impact of the commandment is far 

more influential, than the impact of these famous formulas. 

The orthomodular lattice does not yet cover number systems. Thus this structure cannot implement 

notions such as space and time. These concepts emerge with the extension of this foundation to the 

separable Hilbert space. The separable Hilbert space can only cope with numbers that are elements 

of a division ring. Together with its stimulation of modular construction this restriction of the 

tolerable number systems has a healthy influence on the simplicity and the efficiency of model that 

will be designed.  
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4 Modular construction of dynamical systems 

4.1 Modular construction 
Modular construction is a very beneficial construction design method.  

 It can reduce relational complexity with orders of magnitude.  

o It standardizes module access. 

o It standardizes information transfer between modules. 

o It encapsulates relations that are only used inside the module, such that they are not 

disturbing information exchange outside the module.  

 It uses its resources in a very economical way.  

o It promotes reuse.  

o It uses standard module types. 

 It makes system configuration very simple. 

Most importantly, dynamic modular system construction enables stochastic modular system 

generation. This is what drives model evolution in the first phase of the generation of modules and 

modular systems. In a later phase intelligent design and intelligent construction and configuration 

can take over at isolated regions. 

4.2 Binding 
Modules are bounded together in higher level modules. 

 In loose binding each constituent module keeps its own encapsulation. 

 In strong binding the modules join their encapsulations. 

 Hybrid binding is a combination of loose and strong binding. 

Elementary modules are not constructed from lower order modules.  

4.3 Relation to a separable Hilbert space 
The Hilbert space distinguishes modules in a restricted set of categories. Differentiation based on 

ordering of content is used to distinguish between elementary module types. Configuration of 

modular subsystems is used as another criterion for grouping into categories. 

 Each closed subspace of the considered separable Hilbert space is a potential module or a 

potential modular system.  

 The orthomodular lattice restricts the relational structure of the set of potential modules.  

 Not every closed subspace of this Hilbert space is an actual module or an actual modular 

system.  

 Actual modules are encapsulated and contain discrete content. 

Hilbert spaces can house several parameter spaces that are represented by eigenspaces of normal 

operators and are spanned by a version of the quaternionic number system. Elementary modules 

feature their own private parameter space. Types of elementary modules correspond to types of 

parameter spaces. These private parameter spaces are categorized as symmetry centers. 

4.4 Dynamics 
The modular systems are controlled by mechanisms that regulate information transfer such that no 

blockings, such as dead locks or race conditions obstruct the dynamic behavior of the modular 

system. This means that the model applies a stochastic real time operating system (RTOS) for 

controlling the activity of its lowest level modules. 
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4.5 Implementation 
The describing data of both the discrete modules and the fields are stored in the Hilbert spaces. The 

modules are embedded in one or more basic fields. Basic fields are generated by the influences of 

mechanisms that are not part of the Hilbert spaces ℌ and ℋ. Other fields are derived from data that 

are already stored in the combined Hilbert spaces. Often fields are functional parts of other more 

basic fields. The Hilbert spaces own some model-wide basic fields. Part of this set represent 

parameter spaces. Symmetry centers are directly coupled to a set of basic fields that are private to 

corresponding modules. 

Encapsulation is implemented by a closed skin that acts as a boundary, which corresponds to a form 

that can be described using a parameter space that has one dimension less than the space that it 

encapsulates. The skin has no fixed form or size. Its main characteristic is that it is defined in a region 

where the considered field is continuous. This enables the application of the generalized Stokes 

theorem. This theorem defines integral balance equations. These integral balance equations 

correspond to differential continuity equations. 

Two different views of the model are possible. The first view is a creation based view. In this view 

mechanisms create new data at the rim between history and future. This new data is then stored in 

the Hilbert spaces ℌ and ℋ. The second view is a panning view in which the splitting boundary is 

panning over existing data without changing these data. In this view the only dynamic object in the 

model is the panning boundary.  

The model is not touched by these views. However, each of the views corresponds to a different 

interpretation of the model. We take the first view as the main description of the model, because it 

conforms better with the current physical models. 

In the selected view, dynamics is implemented by a boundary that splits the Hilbert spaces into three 

parts: 

 A fixed and precisely defined history that is archived in the eigenspaces of operators that 

reside in the involved Hilbert spaces. 

 A present status quo whose description exist of the data that are delivered by controlling 

stochastic mechanisms and are archived in the eigenspaces that re archived in the 

eigenspaces of operators that reside in the separable Hilbert space. 

o This part represents the splitting boundary. 

o The mechanisms that provide new data have a stochastic nature and in that way they 

prevent blockings, such as dead locks and race conditions. 

o This stochastic nature also provides the stochastic nature of the RTOS that schedules 

the activity of the lower level modules. 

 A future that is inaccessible to the objects that are archived in the previous parts. 

o No information leaks from the future part to the boundary or to the historic part. 

o However, when the boundary proceeds, information and objects may enter and pass 

through the boundary from the future part of the model to the historic part of the 

model. This restriction is in correspondence with the panning view. 

 Creation and annihilation processes take place in the direct surround of the part that 

represents the static status quo. These processes take a standard number of progression 

steps. This assumption means that the panning boundary travels with constant or very slowly 

varying number of participating progression steps. 
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The creation based view involves stochastic mechanisms that provide new data. In the panning view 

the future part already contains these data but these data cannot be accessed until it is reached by 

the moving boundary. The model is not affected by these interpretations. However, the description 

of the model is certainly affected by the selected interpretation. 

The combination of both views resolves Einstein’s dilemma that it is unbelievable that the creator 

throws dices in order to generate his elementary modules. In the first view the creation is a 

stochastic process that occurs in in huge number of subsequent steps . In the second view the 

creation of the model took a single step, but still the modules are created in a stochastic way. 

Information transfer occurs via ripples in the field that pass the panning boundary. Information 

carrying messengers transport information in the form of quantized packages of energy. These 

messengers are solutions of homogeneous second order differential equations. Thus information 

transfer is restricted by the properties and capabilities of the involved fields. The capabilities are 

described by the integral and differential field equations. 

Observation by information receivers is blurred by the blurring, which is caused by the objects that 

emit and absorb the information messengers. 
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5 Quaternion geometry and arithmetic 
Quaternions and quaternionic functions offer the advantage of a very compact notation of items that 

belong together [11]. 

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real 

coefficients. The vector forms the imaginary part of the quaternion. Quaternionic number systems 

are division rings. Other division rings are real numbers and complex numbers. The separable Hilbert 

space only uses the rational subsets of these number systems. 

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex 

coefficients. Octonions and bi-quaternions do not form division rings. This paper does not use them. 

However, one exception is tolerated, in considering the Dirac equation, bi-quaternionic functions and 

bi-quaternionic differential operators are used. The Dirac equation is treated in the appendix. 

5.1 Notation 
We indicate the real part of quaternion 𝑎 by the suffix 𝑎0. 

We indicate the imaginary part of quaternion 𝑎 by bold face 𝒂. 

 

𝑎 = 𝑎0 + 𝒂 

 

We indicate the quaternionic conjugate by a superscript in the form of a star. 

𝑎∗ = 𝑎0 − 𝒂 

 

We introduce the complex base number 𝕚 via 

𝕚 ∙ 𝕚 =  −1 

 

𝕚 commutes with all quaternions. 

 

𝕚 ∙ 𝑎 = 𝑎 ∙ 𝕚 

 

However, the product is no longer a quaternion. Instead, it is a bi-quaternion. Bi-quaternions are 

indicated by a beret. 

 

𝑐⏞ = 𝑎 + 𝕚 ∙ 𝑏 

 

Here 𝑎 and 𝑏 are both regular quaternions. Complex conjugation is acting as: 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝕚• = − 𝕚 

Complex conjugation is indicated with a superscript in the form of a filled circle. 

 

𝑐⏞
•
= 𝑎 − 𝕚 ∙ 𝑏 

 

Here we see bi-quaternions as hyper-complex numbers with quaternionic coefficients. These 

numbers do not form a division ring. These numbers are not equivalent to octonions. This paper does 

not apply Clifford algebra, Jordan algebra or other than the pure division ring algebra’s, because the 

author considers them to conceal more than they elucidate. 

5.2 Quaternionic sum 
 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

 

𝑐0 = 𝑎0 + 𝑏0 

 

𝒄 = 𝒂 + 𝒃 

 

5.3 Quaternionic product 
 

𝑓 = 𝑓0 + 𝒇 = 𝑑 ∙ 𝑒 

 

𝑓0 = 𝑑0 ∙ 𝑒0 − ⟨𝒅, 𝒆⟩ 

 

𝒇 = 𝑑0 ∙ 𝒆 + 𝑒0 ∙ 𝒅 ± 𝒅 × 𝒆 

 

Thus the product contains five parts. The ± sign indicates the influence of right or left 

handedness of the number system.  

 

⟨𝒅, 𝒆⟩ is the inner product of 𝒅 and 𝒆. 

𝒅 × 𝒆 is the outer product of 𝒅 and 𝒆. 

We usually omit the multiplication sign ∙ . 

 Handedness 

We introduce by superscript  ≬ a switch in handedness of the quaternion. This does not touch the real 

part. 

(6) 

(7) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 
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𝑓≬ = 𝑑≬ ∙ 𝑒≬ = 𝑑0 ∙ 𝑒0 − ⟨𝒅≬, 𝒆≬⟩ + 𝑑0 ∙ 𝒆≬ + 𝑒0 ∙ 𝒅≬ ∓ 𝒅≬ × 𝒆≬ 

 

𝒅≬ × 𝒆≬ = −𝒅 × 𝒆 

 

𝑑 ∙ 𝑒≬ and  𝑑≬ ∙ 𝑒 𝒂𝒓𝒆 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅! 

Thus a right handed quaternion cannot be multiplied with a left handed quaternion. Quaternionic 

conjugation switches the handedness. In addition: 

 

(𝑎 ∙ 𝑏)∗ = 𝑏∗ ∙ 𝑎∗ 

 

A continuous quaternionic function does not switch its handedness. Embedding a conflicting quaternion in the target space 

of a function produces a local artifact that produces a local discontinuity. This also holds for other aspects of the quaternion 

symmetries. 

5.4 Norm 
 

|𝑎| = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 = √𝑎 ∙ 𝑎∗ 

 

5.5 Norm of quaternionic functions 
Square-integrable functions are normalizable. The norm is defined by: 

 

‖𝜓‖2 = ∫|𝜓|2 𝑑𝑉
𝑉

 

= ∫{|𝜓0|
2 + |𝝍|2 }𝑑𝑉

𝑉

 

 

= ‖𝜓0‖
2 + ‖𝝍‖2 

 

  

(1) 

(2) 

(3) 

(1) 

(1) 
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6 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This inner 

product relates each pair of Hilbert vectors. The value of that inner product must be a member of a 

division ring [5]. Suitable division rings are real numbers, complex numbers and quaternions. Model 

𝓜 uses quaternionic Hilbert spaces. 

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [8]. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 and 〈𝑥|𝑦〉 are quaternions. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for the 

storage of such data. Quaternionic Hilbert spaces are more extensively described in “Quaternions 

and quaternionic Hilbert spaces” [11]. Of course, the quaternions may also have other meanings than 

the representation of geometric data. But representing geometric data will cover the majority of the 

application of the quaternionic data in model 𝓜. 

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert space 

and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces and child subspaces the definition of dimension loses its sense. 

6.1 Representing operators and their eigenspaces by continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. For all Hilbert vectors |𝑦〉 holds 

〈𝑇𝑥|𝑦〉 = 〈𝑧|𝑦〉 ⇒  〈𝑇𝑥| = 〈𝑧| 

Via the inner product, the operator 𝑇 may be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≝ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

If 𝑇 is a normal operator, then 𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an 

imaginary normal operator. Self adjoint operators are also Hermitian operators. Imaginary normal 

operators are also anti-Hermitian operators. 

By using what we will call reverse bra-ket notation, special types of operators that reside in the 

Hilbert space and correspond to continuous functions, can easily be defined by starting from an 

orthonormal base of vectors. In this base the vectors are normalized and are mutually orthogonal. 

The vectors span a subspace of the Hilbert space. We will attach eigenvalues to these base vectors 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 
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via the reverse bra-ket notation. In this way the base vectors become eigenvectors of the target 

operator. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.  

The reverse bracket method is discovered by the author. It appears to be a very powerful tool that couples a category of 

operators to corresponding defining functions and couples operators in the separable Hilbert space to corresponding 

operators in the non-separable Hilbert space. 

We start with a very simple defining function ℛ(𝑞) = 𝑞 and the corresponding operator ℛ.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are the eigenvectors of a normal operator ℛ. Here we 

enumerate the base vectors with index 𝑖. 

ℛ ≝ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| = |𝑞𝑖〉ℜ(𝑞𝑖)〈𝑞𝑖|  

ℛ is the configuration parameter space operator. ℜ(𝑞) is a quaternionic function, whose target 

equals its parameter space. The definition (5) also covers the situation where the dimension of the 

(sub) space is infinite. 

This reverse bra-ket notation must not be interpreted as a simple outer product between a ket 

vector |𝑞𝑖〉, a quaternion 𝑞𝑖 and a bra vector 〈𝑞𝑖|. Actually, it involves a complete set of eigenvalues 

{𝑞𝑖} and a complete orthomodular set of Hilbert vectors {|𝑞𝑖〉}. It implies a summation over these 

constituents, such that for all bra’s 〈𝑥| and all ket’s |𝑦〉: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

Thus formula (6) represents the full definition for the shorthand (5). ℜ is a special operator. It can be 

considered as a property of the combination of the separable Hilbert space ℌ and one of the existing 

versions of the quaternionic number system. 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the 

eigenvectors by enumerating them with the real eigenvalues. The ordered eigenvalues can be 

interpreted as progression values.  

𝓡 = (ℛ − ℛ†)/2 is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several 

ways. For example eight independent ways exist to order the 3D spatial domain by using Cartesian 

coordinates. 

 

Let 𝑓(𝑞) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines 

operator 𝑓 as: 

𝑓 ≝ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values of 𝑓 

belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation (7) is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

(5) 

(6) 

(7) 

(8) 
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Alternative formulations for the reverse bra-ket definition are: 

𝑓 ≝ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖〉〈𝑓(𝑞𝑖)𝑞𝑖| = |𝑞𝑖〉〈𝑓𝑞𝑖| = |𝑓∗(𝑞𝑖)𝑞𝑖〉〈𝑞𝑖| = |𝑓†𝑞𝑖〉𝑞𝑖〈𝑞𝑖| 

Here we used the same symbol for the operator 𝑓 and the function 𝑓(𝑞𝑖). For this operator the 

eigenvalues of the Hermitian part 𝑓0 = (𝑓 + 𝑓†)/2 are not interpreted as progression values. 

Often (not always!), these values can be interpreted as dynamic location density descriptors. 

The left side of (8) only equals the right side when domain over which the summation is taken is 

restricted to the region of the parameter space ℛ where 𝑓(𝑞) is sufficiently continuous. 

6.2 Symmetry centers 
We can define a category of anti-Hermitian operators {𝕾𝑛

𝑥}that have no Hermitian part and that are 

distinguished by the way that their eigenspace is ordered by applying a polar coordinate system. We 

call them symmetry centers 𝕾𝑛
𝑥. A polar ordering always start with a selected Cartesian ordering. The 

geometric center of the eigenspace of the symmetry center floats on a background parameter space 

of the normal reference operator ℛ, whose eigenspace defines a full quaternionic parameter space. 

The eigenspace of the symmetry center 𝕾𝑛
𝑥  acts as a three dimensional spatial parameter space. The 

super script  𝑥 refers to the symmetry flavor of 𝕾𝑛
𝑥. The subscript  𝑛enumerates the symmetry 

centers. Sometimes we omit the subscript. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥†
= −𝕾𝑥 

 

It must be noticed that the eigenvalues of the symmetry center operator have no real part! However, 

when mapped to another parameter space,  the center location of the symmetry center eigenvalues 

can be a function of progression. 

6.3 Continuum eigenspaces 
In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. We start with defining a 

continuum parameter space. 

 

ℜ = |𝑞〉𝑞〈𝑞| = |𝑞〉ℜ(𝑞)〈𝑞| 

 

The next definition relates the separable Hilbert space and its companion Gelfand triple. 

 

ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. This 

operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space. 

(9) 

(1) 

(2) 

(1) 

(2) 
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The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that is 

spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space of 

function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the parameter. 

If no conflict arises, then we will use the same symbol for the defining function, the defined operator 

and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉ℱ(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖=∞

𝑖=0

≈ ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

The integral only equals the sum sufficiently close when the function ℱ(𝑞) is sufficiently continuous 

in the domain over which the integration takes place. Otherwise the left side only equals the right 

side when domain is restricted to the region of the parameter space ℜ where ℱ(𝑞) is sufficiently 

continuous. The section that treats the generalized Stokes theorem explains the consequences of 

existing discontinuities. The parameter space operator ℜ does not encounter these discontinuities. 

The section that treats the generalized Stokes theorem also reveals the consequences of ordering of 

the used number systems. 

An important fact is that ℜ can be split into a retarded (historic) part ℜ− and an advanced (future) 

part ℜ+. The region between these two parts forms a boundary (rim) in which the parameter 

space(s) change the sign of their real parts. Domains that feature further differences in their 

parameter spaces must also be encapsulated and form floating islands. Within these islands 

integration makes no sense. Inside those regions only summation is acceptable. Elementary islands 

form modules that will be called symmetry centers. Symmetry centers have a fixed type of parameter 

space ordering. These symmetry centers will be later treated in more detail. An extended version of 

the Stokes theorem can properly describe the situation. 

Smoothed versions of operators can use defining functions that are integrable over most regions 

where the original operator cannot be represented by the original defining function. The defining 

function of the smoothed operator equals the convolution of the original defining function and a 

suitable blurring function. 

The blur is picked such that it represents the fundamental observation blur that is sensed by discrete 

objects. 

Remember that quaternionic number systems exist in several versions, thus also the operators 𝑓 and 

ℱ exist in these versions. The same holds for the parameter space operators. When relevant, we will 

use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 = |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥.  

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and continuum 

ℱ𝑥 use parameter space ℜ𝑥. If the operator ℱ𝑥 that resides in the Gelfand triple ℋ uses the same 

(3) 
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defining function as the operator ℱ𝑥 that resides in the separable Hilbert space, then both operators 

belong to the same quaternionic ordering version. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be considered 

as quaternionic functions that also have a representation in the corresponding infinite dimensional 

separable Hilbert space ℌ. Both representations use a flat parameter space ℜ𝑥 or ℛ𝑥 that is 

spanned by quaternions. ℛ𝑥 is spanned by rational quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖
𝑥} that occur as eigenvalues of the reference operator ℛ𝑥 in the separable Hilbert 

space map onto the rational quaternionic eigenvalues {𝑞𝑖
𝑥} that occur as subset of the quaternionic 

eigenvalues {𝑞𝑥} of the reference operator ℜ𝑥 in the Gelfand triple. In this way the reference 

operator ℛ𝑥 in the infinite dimensional separable Hilbert space ℌ relates directly to the reference 

operator ℜ𝑥, which resides in the Gelfand triple ℋ. This renders the reverse bra-ket method to an 

ideal tool in the coupling of the separable Hilbert space ℌ to its non-separable companion ℋ. 

All operators that reside in the Gelfand triple and are defined via a mostly continuous quaternionic 

function have a representation in the separable Hilbert space. 

In the sketched way the reverse bra-ket method and the extended generalized Stokes theorem 

complement each other in the description of the base model. 

6.4 Types of operators 
Only a special category of operators can directly be handled by the reverse bra-ket method. In that 

case the defining function must be available within the realm of the Hilbert space. All operators that 

are defined in the separable Hilbert space and that can be represented by a sufficiently continuous 

function, possess a smoothing companion in the non-separable Hilbert space. The integration 

process that is used by the reverse bra-ket method can handle point-like discontinuities and closed 

cavities in the parameter space of the defining function, where the defining function does not exist. 

These artifacts are handled by separating them from the validity domain. 

Other types of operators are: 

 Stochastic operators 

o These operators get their eigenvalues via mechanisms that reside outside of the 

realm of the Hilbert space and use stochastic processes in order to generate the 

eigenvalues. 

 Density operators 

o If a stochastic operator generates a coherent swarm of eigenvalues that can be 

characterized by a continuous location density distribution, then the reverse bra-ket 

method can be used to define the corresponding density operator. 

 Function operators 

o Function operators act on functions and in that way they produce new functions that 

can be used as defining functions of the corresponding operator. 

 Partial differential operators 

o These are special kinds of function operators. 

o The existence of partial differentials of quaternionic functions create the existence of 

partial differential operators that work in combination with the operators that define 

the function of the related operator. 
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 Smoothing operators 

o The existence of the convolution of a mostly continuous quaternionic function with a 

continuous blurring function can be used to define a smoothed version of the mostly 

continuous quaternionic function that is everywhere continuous or that at least has a 

far greater validity domain. 

o Smoothing operators do not extend the validity domain over space cavities. 

o Density operators are extreme cases of smoothing operators. 

o Smoothing operators are the reason of existence of the wave function and of the 

uncertainty principle. 

o Potentials are represented by smoothing operators. 

In quaternionic differential calculus the differential operators work as multipliers. 

If 𝔇 is a partial differential operator and 𝒢 = 𝔇ℱ for a category of functions {ℱ}, where 𝒢 is 

sufficiently continuous, then for all bra’s 〈𝑥| and all ket’s |𝑦〉 hold: 

 

〈𝑥|𝒢 𝑦〉 = 〈𝑥|𝔇ℱ 𝑦〉 ≈ ∫〈𝑥|𝑞〉𝔇ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 = ∫〈𝑥|𝑞〉𝒢(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

Differential operators work on the category of operators that can be represented by defining 

functions, which can be differentiated. Especially the Hermitian kind of these operators appear to be 

of interest for application in physical theories. 

Some Hermitian partial differential operators do not mix scalar and vector parts of functions. These 

are: 

∇0 

∇0∇0 

〈𝛁, 𝛁〉 

These operators can be combined in additions as well as in products. Two particular operators are: 

∇∇∗= ∇∗∇ = ∇0∇0 + 〈𝛁,𝛁〉 

𝔒 = −∇0∇0 + 〈𝛁,𝛁〉 

The last one is the quaternionic version of d’Alembert’s operator. The first one can be split into ∇ and 

∇∗. The second one cannot be split into quaternionic first order partial differential operators. 

However, a biquaternionic split is possible. The biquaternionic differential operators will be treated 

in the appendix. 

The field 𝔉 is considered to be regular in spatial regions where the defining function 𝔉(𝑞) obeys 

 

〈𝛁, 𝛁〉𝔉 = 0 

 

Similar considerations hold for regions where: 

 

(1) 

(2) 
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∇∇∗𝔉 = (∇0∇0 + 〈𝛁,𝛁〉)𝔉 = 0 

 

𝔒𝔉 = (−∇0∇0 + 〈𝛁,𝛁〉)𝔉 = 0 

 

The quaternionic differential operators will be treated in dedicated chapters. 

Smoothing operators are defined by a convolution. 

The defining function 𝔘(𝑞) of operator 𝔘 is defined by the convolution of blurring function 𝔛 (𝑞)  

with function 𝔄(𝑞): 

 

𝔘(𝑞)  = 𝔛(𝑞) ∘ 𝔄(𝑞) 

 

In that way we can write for the corresponding operators: 

 

𝔘 = 𝔛 ∘ 𝔄 

It will be clear that equation (5) and thus equation (6) involves an integration operation. 

6.5 Tensor products 
The tensor product of two quaternionic Hilbert spaces is a real Hilbert space [5]. For that reason the 

quaternion based model cannot apply tensor products. As a consequence Fock spaces are not 

applied in this paper. 

Instead the paper represents the whole model by a single infinite dimensional separable 

quaternionic Hilbert space and its companion Gelfand triple. Elementary objects and their 

composites will be represented by subspaces of the separable Hilbert space. Their local living spaces 

coexist as eigenspaces of dedicated operators. These have been introduced as symmetry centers. 

6.6 Change of base 
In quaternionic Hilbert space a change of base can be achieved by: 

 

〈𝑥|ℱ̃ 𝑦〉 = ∫ 〈𝑥 |�̃�〉 {∫〈𝑞|𝑞〉ℱ(𝑞)〈𝑞|�̃�〉 𝑑𝑞
𝑞

} 〈�̃�|𝑦〉 𝑑�̃�
�̃�

 

= ∫〈𝑥|�̃�〉ℱ̃(�̃�)〈�̃�|𝑦〉
�̃�

 𝑑�̃� 

ℱ̃(�̃�) = ∫〈𝑞|𝑞〉ℱ(𝑞)〈𝑞|�̃�〉
𝑞

 𝑑𝑞  

ℜ̃(�̃�) = ∫〈𝑞|𝑞〉𝑞〈𝑞|�̃�〉
𝑞

 𝑑𝑞  

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 
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〈𝑥|ℜ̃ 𝑦〉 = ∫〈𝑥|�̃�〉ℜ̃(�̃�)〈�̃�|𝑦〉
�̃�

 𝑑�̃� 

ℜ̃ = |�̃�〉�̃�〈�̃�| 

However, as we see in the formulas this method merely achieves a rotation of parameter spaces and 

functions. In the complex number based Hilbert space it would achieve no change at all. 

6.7 Fourier transform 
A Fourier transform uses a different approach. It is not a direct transform between parameter 

spaces, but instead it is a transform between sets of mutually orthogonal functions, which are 

formed by inner products, which are related to different parameter spaces. In quaternionic space, 

the (quaternionic) Fourier transform exists in three versions. The first two versions have a reverse 

Fourier transform.  

The left oriented Fourier transform is defined by: 

 

ℱ̃𝐿(�̃�𝐿) = ∫〈�̃�𝐿|𝑞〉 ℱ(𝑞)
𝑞

 𝑑𝑞  

Like the functions 〈𝑞|𝑞′〉 and 〈�̃�𝐿|�̃�𝐿
′ 〉, the functions 〈�̃�𝐿|𝑞〉 and 〈𝑞|�̃�𝐿〉 form sets of mutually 

orthogonal functions, as will be clear from:  

〈𝑞|𝑞′〉 = 𝛿(𝑞 − 𝑞′) 

〈�̃�𝐿|�̃�𝐿
′ 〉 = 𝛿(�̃�𝐿 − �̃�𝐿

′ ) 

∫ 〈𝑞′|�̃�𝐿〉〈�̃�𝐿|𝑞〉  𝑑�̃�𝐿
�̃�𝐿

= 𝛿(𝑞 − 𝑞′) 

∫〈�̃�𝐿
′ |𝑞〉〈𝑞|�̃�𝐿〉  𝑑𝑞

𝑞

= 𝛿(�̃�𝐿 − �̃�𝐿
′ ) 

 

The reverse transform is: 

ℱ(𝑞) = ∫ 〈𝑞|�̃�𝐿〉ℱ̃𝐿(�̃�𝐿) 𝑑�̃�𝐿 =
�̃�𝐿

∫ ∫ 〈𝑞|�̃�𝐿〉〈�̃�𝐿|𝑞
′〉ℱ(𝑞′) 𝑑�̃�𝐿

𝑞′�̃�𝐿

𝑑𝑞′  

= ∫ {∫ 〈𝑞|�̃�𝐿〉〈�̃�𝐿|𝑞
′〉 𝑑�̃�𝐿

�̃�𝐿

}ℱ(𝑞′)
𝑞′

𝑑𝑞′ = ∫ 𝛿(𝑞 − 𝑞′)ℱ(𝑞′) 𝑑𝑞′ 
𝑞′

 

 

The reverse bra-ket form of the operator ℱ̃𝐿 equals: 

ℱ̃𝐿 = |�̃�𝐿〉ℱ̃𝐿(�̃�𝐿)〈�̃�𝐿|  

 

Operator ℜ̃𝐿 provides the parameter space for the left oriented Fourier transform ℱ̃𝐿(�̃�𝐿) of function 

ℱ(𝑞) in equations (1) and (6).  

ℜ̃𝐿 = |�̃�𝐿〉�̃�𝐿〈�̃�𝐿|  

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Similarly the right oriented Fourier transform can be defined. 

ℱ̃𝑅(�̃�) = ∫ℱ(𝑞′)〈𝑞′|�̃�〉
𝑞

 𝑑𝑞′  

The reverse transform is: 

ℱ(𝑞) = ∫ ℱ̃𝑅(�̃�𝑅)〈𝑞|�̃�𝑅〉 𝑑�̃�𝑅 =
�̃�𝑅

∫ ∫ ℱ(𝑞′)〈𝑞′|�̃�𝑅〉〈�̃�𝑅|𝑞〉 𝑑𝑞′ 𝑑�̃�𝑅
𝑞′�̃�𝑅

 

= ∫ ℱ(𝑞′) {∫ 〈𝑞′|�̃�𝑅〉〈�̃�𝑅|𝑞〉  𝑑�̃�𝑅
�̃�𝑅

}𝑑𝑞′

𝑞′
= ∫ ℱ(𝑞′) 𝛿(𝑞 − 𝑞′) 𝑑𝑞′ 

𝑞′
 

 

Also here the functions 〈𝑞|𝑞′〉, 〈�̃�𝑅|�̃�𝑅
′ 〉, 〈�̃�𝑅|𝑞〉 and 〈𝑞|�̃�𝑅〉 form sets of mutually orthogonal 

functions. 

The reverse bra-ket form of the operator ℱ̃𝑅 equals: 

ℱ̃𝑅 = |�̃�𝑅〉ℱ̃𝑅(�̃�𝑅)〈�̃�𝑅|  

 

Operator ℜ̃𝑅 provides the parameter space for the right oriented Fourier transform ℱ̃𝑅(�̃�𝑅) of 

function ℱ(𝑞) in equations (9) and (10).  

ℜ̃𝑅 = |�̃�𝑅〉�̃�𝑅〈�̃�𝑅|  

 

The third version of the Fourier transform is: 

ℱ̃(�̃�𝐿, �̃�𝑅) =
ℱ̃𝐿(�̃�𝐿) + ℱ̃𝑅(�̃�𝑅)

2
= ½∫{〈�̃�𝐿|𝑞〉ℱ(𝑞) + ℱ(𝑞)〈𝑞|�̃�𝑅〉} 𝑑𝑞

𝑞

  

In contrast to the right and left version, the third version has no reverse.  

  

(9) 

(10) 

(11) 

(12) 

(13) 



24 
 

7 Domains and parameter spaces 
The quaternionic domain Ω is supposed to be defined as part of the domain ℜ of a reference 

operator ℜ that resides in the non-separable quaternionic Hilbert space ℋ. The reverse bra-ket 

method relates the eigenspace {𝑞} of reference operator ℜ to a flat quaternionic function ℜ(𝑞). The 

target of function ℜ(𝑞) is its own parameter space {𝑞}. Here we explicitly use the same symbol ℜ for 

all directly related objects. In 𝕸 , ℜ(𝑞) is always and everywhere continuous. 

 

ℜ = |𝑞〉ℜ(𝑞)〈𝑞| = |𝑞〉𝑞〈𝑞| 

 

The domain ℜ is spanned by the eigenvectors {|𝑞〉} of operator ℜ.  

The reverse bra-ket method also relates the eigenspace ℜ to an equivalent eigenspace ℛ of a 

reference operator ℛ, which resides in the infinite dimensional separable Hilbert space ℌ. Both 

eigenspaces are related to the same version of the quaternionic number system. However, the 

second eigenspace ℛ only uses rational quaternions 𝑞𝑖.  

 

ℛ = |𝑞𝑖〉ℜ(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| 

 

Quaternionic number systems can be ordered in several ways. Operator ℛ corresponds with one of 

these orderings. ℛ is supposed to be Cartesian-ordered. ℛ is a normal operator and its eigenspace is 

countable. Cartesian ordering means that the set of eigenvectors of ℛ can be enumerated by the 

separate eigenvalues of ℛ. The eigenspace is the Cartesian product of four partially ordered sets in 

which the set, which represents the real part takes a special role. The eigenspace of the Hermitian 

part ℛ0 = ½(ℛ + ℛ†) of normal operator ℛ can be used to enumerate a division of ℌ into a 

countable number of disjunctive subspaces, which are spanned by eigenvectors of ℛ. Cartesian 

ordering means partial ordering of the eigenvalues of ℛ0 and additional ordering of the eigenvalues 

of the anti-Hermitian operator 𝕽 = ½(ℜ − ℜ†) by selecting a Cartesian coordinate system. Eight 

mutually independent Cartesian coordinate systems exist. ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint 

operator. The ordered eigenvalues of ℛ0 can be interpreted as progression values. The eigenvalues 

of 𝓡 can be interpreted as spatial values. This differs from the physical notions of time and space. 

Here we are talking about a mathematical test model. 

In this way, parameter spaces as well as domains correspond to closed subspaces of the Hilbert 

spaces. The domain subspaces are subspaces of the domains of the corresponding reference 

operators. The parameter spaces are ordered by a selected coordinate system. The Ω domain is 

represented by a part of the eigenspace of reference operator ℜ. The flat quaternionic function ℜ(𝑞) 

defines the parameter space ℜ. It installs an ordering by selecting a Cartesian coordinate system for 

the eigenspace of its anti-Hermitian part 𝕽 = ½(ℜ − ℜ†). Several mutually independent selections 

are possible. The chosen selection attaches a corresponding symmetry flavor to this parameter 

space. In the mathematical test model, this symmetry flavor will become the reference symmetry 

flavor. Thus, the symmetry flavor of parameter space ℜ⓪ may be distinguished by its superscript  ⓪. 

The manifold 𝜔 is also defined as the continuum eigenspace of a dedicated normal operator 𝜔 which 

is related to domain 𝛺 and to parameter space ℜ⓪ via function 𝔉. Within this parameter space 𝔉 

(1) 

(2) 
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may have discontinuities, but these must be excluded from the domain over which integration takes 

place. This exclusion will be treated below. 

Symmetry centers are described by anti-Hermitian operators and their geometric center can float on 

another parameter space as a function of progression. At every progression step only one location of 

the symmetry center is used. In combination this produces a well ordered operator where a single 

progression value corresponds with a single spatial location. The spatial location is determined by a 

stochastic mechanism. This mechanism produces coherent location swarms. The swarm can be 

described by a continuous location density distribution. Further, all swarm elements can be 

enumerated by a progression value and thus form a hopping path. 
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8 Stokes theorem without discontinuities 
The conventional generalized Stokes theorem is in fact a combination of two versions. One is the 

using the divergence part of the exterior derivative 𝑑𝜔. It is also known as the generalized 

divergence theorem. The other version uses the curl part of the exterior derivative. For quaternionic 

manifolds the two versions can be combined in one formula. The domains typically cover a static 

status quo. The static status quo is characterized by three changes, a divergence, a gradient and a 

curl. The other two changes concern what disappears into history and what comes in from the 

future. These part concerns the change of the scalar and vector density distributions. 

Without discontinuities in the manifold 𝜔 the conventional generalized Stokes theorem is 

represented by a simple formula [9]. 

 

∫ 𝑑𝜔
Ω

= ∫ 𝜔 (= ∮ 𝜔
𝜕Ω

)
𝜕Ω

 

 

The theorem can be applied when everywhere in Ω the derivative d𝜔 exists and when everywhere in 

𝜕Ω the manifold 𝜔 is continuous and integrable. The domain Ω is encapsulated by a boundary 𝜕Ω. 

 

Ω ⊂ 𝜕Ω 

 

In this paper, the manifolds 𝜔 and 𝑑𝜔 represent quaternionic fields 𝔉 and 𝑑𝔉, while inside 𝜕Ω the 

manifold 𝜔 represents the quaternionic boundary of the quaternionic field 𝔉. These fields and 

manifolds correspond to defining functions 𝔉(𝑞) and 𝑑𝔉(𝑞). 

𝑑𝜔 is the exterior derivative of 𝜔.  

This view is focusing onto the spatial part 𝕽 of the quaternionic parameter space ℜ. It uses only the 

spatial parts 〈𝛁, 𝒇〉 and 𝛁 × 𝒇 of the first order differential equation. 

 

∇𝑓 = ∇0𝑓0 − 〈𝛁, 𝒇〉 + ∇0𝒇 + 𝛁𝑓0 + 𝛁 × 𝒇 

 

Apparently in the conventional Stokes theorem the gradient 𝛁𝑓0 is neglected. In quaternionic space 

all five terms contribute to the balance and continuity equations. If both the historic and the future 

parts are taken into the view then a new extended Stokes theorem emerges. 

In particular formula (1) does not pay any attention to the what exists outside of the splitting 

boundary. If the parameter space ℜ is an eigenspace of a reference operator in a quaternionic 

Hilbert space then the ignored region concerns the other part of the Hilbert space. A proper balance 

equation must consider all participating parts. We will extend the Stokes equation in that direction. 

8.1 Interpreting the exterior derivative 
Via quaternionic defining functions, the reverse bra-ket method couples the separable Hilbert space 

to its non-separable companion.  

(1) 

(2) 

(3) 
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The defining function ℱ(q) links the integral over the full quaternionic 𝑞 numbers to the 

summation over the rational 𝑞𝑖numbers. 

 

〈𝑥|ℱ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉ℱ(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

≈ ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

This corresponds to: 

 

∮ ℱ
𝜕Ω

= ∫ ℱ ⟺ ∑〈𝑥|𝑞𝑖〉ℱ(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖𝜕Ω

 

 

∫ 𝑑ℱ ⟺ ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞
Ω

 

 

This divides the region over which the equation works into two parts. One in which summation 

equals integration and a region or a set of regions where integration does not work properly due to 

the existence of discontinuities of ℱ(𝑞) in those sub-regions. Exchanging ℱ(𝑞) against a smoothed 

version can completely or partly cure this problem. 

Another possibility is the split of the parameter space ℜ of ℱ(𝑞) into the parts ℜ− and ℜ+. This splits 

the parameter space in two parts that have different ordering of the real part of the parameter 

space. This split is treated later. If the two splits are combined, then the split between summation 

and integration can be interpreted as a leakage of the second split in which discrete objects pass 

though the sieve that splits ℜ− and ℜ+. A similar interpretation can be given to larger regions in 

which ℱ(𝑞) is not defined. 

Thus, the quaternionic extension of the Stokes theorem involves multiple splits: 

 The split between ℜ− and a history-side static status quo. 

 The slit between the future-side static status quo and ℜ+. 

 The split around point-like artifacts. 

 The split around other regions where the defining function is not integrable. 

The region between the two static status quos is not integrable. However, properly smoothed fields 

pass straight through this region. 

The conventional generalized Stokes theorem exists in the form of a divergence based version and in 

the form of a curl based version [10]. However, for quaternionic manifolds the definition of the 

exterior derivative requests extra attention. In this section we assume that the quaternionic manifold 

ω is represented by the target of a quaternionic function 𝔉(𝑞). Function 𝔉(𝑞) has a flat parameter 

space ℜ.  

ℜ is a flat quaternionic manifold, which is represented by the target of function ℜ(𝑞) ≝ 𝑞. 

We presume that the exterior derivative d𝔉 of 𝔉 can be interpreted by the following equations: 

(1) 

(2) 

(3) 
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d𝔉 = ∑ 𝑒𝜇
𝜕𝔉

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇𝑑𝑥𝜇 ∑ 𝑒𝜈
𝜕𝔉𝜈

𝜕𝑥𝜇

3

𝜈=0

3

𝜇=0

= 𝑒𝜇𝜈𝐷𝜇𝔉𝜈 

 

𝐷𝜇 ≝ 𝑑𝑥𝜇  
𝜕

𝜕𝑥𝜇
 

 

Thus d𝔉 is represented by a tensor. This is not a very attractive presentation. It is more convenient to 

treat the change along the directions in which change takes place according to the first order partial 

differential equations. 

The exterior derivative differs from the partial differentials that appear in partial differential 

equations. 

 

𝔊 = ∑𝑒𝜍𝔊𝜍 = 𝑒𝜍𝔊𝜍

3

𝜍=0

 

= ∇𝔉 = ∑ 𝑒𝜇
𝜕𝔉

𝜕𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇 ∑ 𝑒𝜈
𝜕𝔉𝜈

𝜕𝑥𝜇

3

𝜈=0

3

𝜇=0

= 𝑒𝜇𝑒𝜈𝜕𝜇𝔉𝜈 = 𝑒𝜇𝜈𝜕𝜇𝔉𝜈 

 

In the right parts of the above formulas, the summation rules for subscripts and superscripts are 

applied. 

We use the fact that quaternions can be considered as a combination of a real scalar and an 

imaginary vector. Further, we apply the fact that quaternionic partial differential operators act as 

multipliers. 

 

𝔉 = 𝔉0 + 𝕱 

 

𝔊 = ∇𝔉 = 𝔊0 + 𝕲 = (∇0 + 𝛁)(𝔉0 + 𝕱) 

 

𝔊0 = ∇0𝔉0 − 〈𝛁,𝕱〉 

 

𝕲 = ∇0𝕱 + 𝛁𝔉0 ± 𝛁 × 𝕱 

 

For some fields, some parts of 𝕲 may get special symbols. This is applied in Maxwell-like equations. 

(4) 

(5) 

(3) 

(4) 

(5) 

(6) 

(7) 
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𝕰 = −∇0𝕱 − 𝛁𝔉0 

 

𝕭 = 𝛁 × 𝕱 

 

Similar definitions are applied in Maxwell equations. However, despite these similarities, the derived 

fields 𝕰 and 𝕭 are not equivalent to the Maxwell fields E and B. The Maxwell equations are treated 

in the appendix. 

In general, there is no guarantee that 𝕰 and 𝕭 are perpendicular. Thus in general: 

 

〈𝕰,𝕭〉 ≠ 0 

 

However, a third vector 𝕻 is perpendicular to both 𝕰 and 𝕭. 

 

𝕻 = 𝕰 × 𝕭 

 

Equation (6) is not part of the Maxwell set of partial differential equations. However, the terms ∇0𝔉0 

and 〈𝛁,𝕱〉 are used in gauge equations. 

We may conclude that change covers five terms that do not represent four independent directions as 

is suggested by the conventional Maxwell differential equations. 

Please note that 

 

∇∗𝔉∗ = (∇0 − 𝛁)(𝔉0 − 𝕱) = 𝔊0 − ∇0𝕱 − 𝛁𝔉0 ± 𝛁 × 𝕱 

 

(∇𝔉)∗ = 𝔊∗ = ∇∗𝔉∗ ∓ 2𝛁 × 𝕱 

 

Thus the partial differential of a curl free function connects to a Hermitian operator! 

The ± sign indicates the fact that quaternionic parameter spaces and quaternionic functions exist in 

versions that differ in the handedness of their external vector product. 

 

In the integrals below some terms of ∇𝔉 are combined. 

 

𝛁𝕱 = −〈𝛁,𝕱〉 ± 𝛁 × 𝕱 

(8) 

 (8 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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𝛁𝔉 = 𝛁𝔉0 − 〈𝛁,𝕱〉 ± 𝛁 × 𝕱 

 

∇0𝔉 = ∇0𝔉0 + ∇0𝕱 

 

It must be noticed that  

 

d𝔉 ≠ ∑ 𝑒𝜇𝔊𝜇𝑑𝑥𝜇

3

𝜇=0

 

 

This is the reason that the generalized Stokes integral uses the wedge product 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝜏. 

These wedge products are merely a warning that a tensor is active. In the quaternionic version of the 

Stokes theorem, it is not a clear exposure of the mechanism.  

The Maxwell-like partial quaternionic differential equations differ from the Maxwell equations that 

are used in current physical theories. Thus, great care must be applied in comparing the two sets of 

partial differential equations. Especially equations (6) and (10) signal alarming differences. 

8.2 A special domain split 
In the special splitting case that is investigated here, the extended generalized Stokes theorem 

constructs a rim 𝔉(𝒙, 𝜏) between the past history of the field [𝔉(𝒙, 𝑡)]𝑡<𝜏 and the future [𝔉(𝒙, 𝑡)]𝑡>𝜏 

of that field. It means that the boundary 𝔉(𝒙, 𝜏) of field [𝔉(𝒙, 𝑡)]𝑡<𝜏 represents a universe wide 

static status quo of that field.  

More specifically, the form of the generalized Stokes theorem for the sketched situation runs as: 

 

∫ ∭d𝔉

𝑉

𝜏

𝑡=0

(𝑥) = ∫ (∭∇𝔉(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧

𝑉

) ∧ 𝑑𝜏

𝜏

𝑡=0

= [∭𝔉

𝑉

(𝒙)𝑑𝒙]

𝑡=𝜏

 

 

𝑥 = 𝒙 + 𝜏 

 

Here [𝔉(𝒙, 𝑡)]𝑡=𝜏 represents the static status quo of a quaternionic field at instance 𝜏. 𝑉 represents 

the spatial part of the quaternionic domain of 𝔉, but it may represent only a restricted part of that 

parameter space. This last situation corresponds to the usual form of the divergence theorem. 

As mentioned above great care must be taken by interpreting the wedge product in   

d𝔉(𝑥) = ∇𝔉(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝜏. 

(15) 

(16) 

(17) 

(1) 

(2) 

(3) 
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Due to the danger of misinterpretation, we will avoid the wedge products that appear in the middle 

part of equation (1). In the right part of the equation only the divergence, the curl and a gradient play 

a role. The split that has been selected, sets a category of operators apart that are all Cartesian-

ordered in the same way as operator ℛ is. It enables a space-progression model in which progression 

steps in the separable Hilbert space ℌ and flows in its non-separable companion ℋ. Via the reverse 

bra-ket method the Cartesian-ordering of ℛ can be transferred to ℜ. 

 Interpretation of the selected encapsulation 
The boundary 𝜕Ω is selected between the real part and the imaginary part of domain ℜ. But it also 

excludes part of the real part. That part is the range of the real part from 𝜏 to infinity. 𝜏 is interpreted 

as the current progression value.  

The boundary 𝜕Ω has one dimension less than the domain Ω. The failing dimension is taken by the 

form of the partition. In the special case the boundary is formed by most of the three dimensional 

spatial part of the parameter space. The theorem does not specify the form of the partition, but 

requires that the partition form does not traverse discontinuities or regions in which the defining 

function is not defined. Thus, if the partition wipes through the parameter space and encounters 

discontinuities or regions in which the defining function is not defined, then the partition must 

encapsulate these objects while it passes them. These encapsulating partitions become part of the 

boundary. In this way these objects stay outside of the boundary 𝜕Ω. Symmetry centers and space 

cavities become objects that float as encapsulated modules over the domain Ω. If they enter the 

partition, then they can be considered to be created. If they keep floating with the partition, then 

these objects are alive. If they have completely passed the partition, then they can be considered to 

have been annihilated. A long lifetime will correspond to a tube-like history and a corresponding 

tube-like future. 

The future ℜ − Ω is kept on the outside of the boundary 𝜕Ω. As a consequence, the mechanisms that 

generate new data, operate on the rim 𝜕Ω between past Ω and future ℜ − Ω. Two interpretations 

are possible. Either, the mechanisms generate data that was not yet present in the Hilbert spaces, or 

the mechanisms represent the data that are encountered during the passage of the partition. The 

observers cannot decide which of the two interpretations is correct. It is merely a question of what 

you want to belief. For 𝕸 this interpretation does not matter. This paper describes the model in 

accordance to the first interpretation. This avoids deliberation about why and how the creator of the 

model generated the data that are archived in 𝕸‘s Hilbert spaces. In 𝕸 the relevant observers live 

inside the wiping boundary. In the selected interpretation the creator of the model is throwing dices! 

The described split of quaternionic space results in a space-progression model that is to a significant 

extent similar to the way that physical theories describe their space time models. However, the 

physical theories apply a spacetime model that has a Minkowski signature. The quaternionic model, 

which is represented here, is strictly Euclidean.  

The paper does not claim that this quaternionic space-progression model reflects the structure and 

the habits of physical reality. The quaternionic space-progression model is merely promoted as a 

mathematical test model. 

What according to the selected interpretation happens in the mathematical test model can be seen 

as an ongoing process that embeds the subsequent static status quo’s of the separable Hilbert space 

into the Gelfand triple. 

Controlling mechanisms act as a function of progression 𝜏 in a stochastic and step-wise fashion in the 

realm of the separable Hilbert space. The results of their actions are stored in eigenspaces of 
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corresponding stochastic operators that reside in the separable Hilbert space. These stochastic 

operators differ from the kind of operators that are handled by the reverse bra-ket method. 

However, if the stochastic operators produce coherent swarms that feature a continuous density 

distribution, then that distribution corresponds with an operator that is defined by this distribution. 

The controlling mechanisms have no notion of the fields. They only work with discrete objects that 

appear in swarms. 

At the same instance this part of the separable Hilbert space is embedded into its companion 

Gelfand triple. The controlling mechanisms will provide all generated data with a progression stamp 

𝜏. This progression stamp reflects the state of a model wide clock tick. The whole model, including its 

“physical” fields will proceed with these progression steps. However, in the Gelfand triple this 

progression can be considered to flow.  

At the defined rim, any forecasting will be considered as mathematical cheating. Thus, at the rim, the 

uncertainty principle does not work for the progression part of the parameter spaces. Differential 

equations that offer advanced as well as retarded solutions must reinterpret the advanced solutions 

and turn them in retarded solutions, which in that case represent another kind of object. If the 

original object represents a particle, then the reversed particle is the anti-particle. Thus the tubes 

that represent elementary modules will appear to reflect on the boundary in one interpretation and 

will just pass the boundary in the other interpretation. In the panning view the tube just passes 

undisturbed through the boundary. 

As a consequence of the construct, the history, which is stored-free from any uncertainty-in the 

already processed part of the eigenspaces of the physical operators, is no longer touched. Future is 

unknown or at least it is inaccessible for observation. 

 Integrals over regular spatial domains 
If in a spatial domain, function 𝔉 obeys the homogeneous equation 

 

𝜵𝜵𝔉 = 0 

 

then the function 𝔉 and the corresponding field 𝔉 is considered to be regular in that domain. For 

functions 𝔉 that are this kind of regular in spatial domain 𝑉 hold: 

 

∭ 𝜵𝔉 = ∯𝒏𝔉
𝑆𝑉

 

 

∭ 𝜵𝔉0 = ∯𝒏𝔉0
𝑆𝑉

 

 

∭〈𝜵, 𝕱〉 = ∯〈𝒏,𝕱〉
𝑆𝑉

 

 

(1) 

(2) 

(3) 

(4) 
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∭ 𝜵 × 𝕱 = ∯𝒏 × 𝕱
𝑆𝑉

 

 

 Integrating irregular functions  
We can use the gradient of the inverse of the spatial distance |𝒒 − 𝒄|. 

 

𝜵
1

|𝒒 − 𝒄|
= −

𝒒 − 𝒄

|𝒒 − 𝒄|𝟑
 

 

The divergence of this gradient is a Dirac delta function. 

 

𝛿(𝒒 − 𝒄) = −
1

4𝜋
〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉 = −

1

4𝜋
〈𝜵, 𝜵〉

1

|𝒒 − 𝒄|
 

 

This means that: 

 

𝜙(𝒄) = ∭𝜙(𝒒)𝛿(𝒒 − 𝒄)
𝑉

= −
1

4𝜋
∭𝜙(𝒒)〈𝜵, 𝜵〉

𝑉

1

|𝒒 − 𝒄|
 

 

As alternative, we can also use the Green’s function 𝐺(𝒒) of the partial differential equation. 

 

𝜙(𝒄) = ∭𝜙(𝒒)𝐺(𝒒 − 𝒄)
𝑉

 

 

For the Laplacian 〈𝜵, 𝜵〉 this obviously means: 

 

〈𝜵, 𝜵〉𝔉 = 𝜙(𝒒) 

 

𝐺(𝒒 − 𝒄) =
1

|𝒒 − 𝒄|
 

 

However, when added to the Green’s function, every solution 𝑓 of the homogeneous equation 

 

〈𝜵, 𝜵〉𝑓 = 0 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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is also a solution of the Laplace equation. 

 

𝜙(𝒄) = ∭
𝜙(𝒒)

|𝒒 − 𝒄|𝑉

 

 

Function 𝜙(𝒄) can be interpreted as the potential that is raised by charge distribution 𝜙(𝒒). 

In pure spherical conditions the Laplacian reduces to: 

 

〈𝜵, 𝜵〉𝔉(𝑟) =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝔉(𝑟)

𝜕𝑟
) 

 

For the following test function 𝔗(𝑟) this means [12]: 

 

𝔗(𝑟) =
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔉(𝑟) =
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 

 

Thus, for a Gaussian location distribution 𝜌(𝑟) of point-like artifacts the corresponding contribution 

to field 𝔗(𝑟) equals an error function divided by its argument. At first sight this may look in 

contradiction with equations (4) − (8), but here the distribution of artifacts extends over the 

boundary of domain 𝑉. 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟

𝐸𝑅𝐹(𝑟)

𝑟
) =

1

𝑟2

𝜕

𝜕𝑟
(− 𝐸𝑅𝐹(𝑟) + 𝑟

2

√𝜋
exp(−𝑟2)) 

=
1

𝑟2
(−

2

√𝜋
exp(−𝑟2) +

2

√𝜋
exp(−𝑟2) − 2𝑟

2

√𝜋
exp(−𝑟2))  =

4

√𝜋
exp(−𝑟2) 

 

(8) 

(9) 

(10) 

(11) 
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Figure 1. Close to the geometric center the singularities are converted in a smooth function. Further 

from the center the form of the Green’s function (1/r) is retained. 
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9 The detailed generalized Stokes theorem 
We separate all point-like discontinuities from the domain Ω by encapsulating them in an extra 

boundary. Symmetry centers represent spherically ordered parameter spaces in regions H𝑛
𝑥 that float 

on a background parameter space ℜ. The boundaries 𝜕H𝑛
𝑥 separate the regions H𝑛

𝑥 from the domain 

Ω. The regions H𝑛
𝑥 are platforms for local discontinuities in basic fields [2]. These fields are 

continuous in domain Ω − H.  

 

𝐻 = ⋃H𝑛
𝑥

𝑛

 

 

The symmetry centers 𝕾𝑛
𝑥  are encapsulated in regions H𝑛

𝑥 and the encapsulating boundary 𝜕H𝑛
𝑥 is 

not part of the disconnected boundary which encapsulates all continuous parts of the quaternionic 

manifold 𝜔 that exist in the quaternionic model. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω∪𝜕H

= ∫ 𝜔
𝜕Ω

− ∑∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

If we take the unit normal to point outward on all of the boundary, this reverses the direction of the 

normal on 𝜕H𝑛
𝑥, which negates the integral. Thus, in this formula, the contributions of boundaries 

{𝜕H𝑛
𝑥} are subtracted from the contributions of boundary 𝜕Ω. This means that 𝜕Ω also surrounds 

the regions {H𝑛
𝑥}. This fact renders the integration sensitive to the ordering of the participating 

domains. 

Domain Ω corresponds to part of the reference parameter space ℜ⓪. As mentioned before the 

symmetry centers {𝕾𝑛
𝑥} represent encapsulated regions {H𝑛

𝑥} that float on parameter space ℜ⓪. 

The geometric center of symmetry center 𝕾𝑛
𝑥  is represented by a floating location on parameter 

space ℜ⓪. 

The relation between the subspace 𝑆Ω that corresponds to the domain Ω and the subspace 𝑆ℜ that 

corresponds to the parameter space ℜ⓪ is given by: 

 

Ω⏟
𝑆Ω

⊂ ℜ⓪⏟
𝑆ℜ

 

 

Similarly: 

 

(1) 

(2) 

(3) 

(4) 
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H𝑛
𝑥⏟

𝑆H𝑛
𝑥

⊂ 𝕾𝑛
𝑥⏟

𝑆𝕾𝑛
𝑥
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10 Symmetry flavors 

10.1 Ordering 
Quaternionic number systems exist in many versions that differ in the way that these number 

systems are ordered. For example it is possible to order the real parts of the quaternions up or down. 

A Cartesian coordinate system can be used to order the imaginary parts of the quaternions. If the 

orientation of the coordinate axes is kept fixed, then this Cartesian ordering can be done in eight 

mutually independent ways. It is also possible to apply spherical symmetric ordering by using a polar 

coordinate system. This can be done by starting with the azimuth and order it up or down and then 

order the polar angle and order it up or down. It is also possible to start with the polar angle. A 

spherical coordinate system starts from a selected Cartesian coordinate system. 

The reverse bra-ket method enables the attachment of these different symmetry flavors of the 

quaternionic number system to dedicated operators that reside in an infinite dimensional separable 

quaternionic Hilbert space. Separable Hilbert spaces can only handle countable eigenspaces. Thus 

the reverse bracket method can only use the rational subsets of the quaternionic number systems. 

Each infinite dimensional separable Hilbert space owns a companion Gelfand triple, which is a non-

separable Hilbert space and which also supports operators that feature continuums as their 

eigenspaces. The reverse bra-ket method relates operators in the separable Hilbert space o 

operators in the Gelfand triple. 

These representations of quaternionic number systems can act as parameter spaces of quaternionic 

functions that can also be represented by operators and their eigenspaces. The reverse bra-ket 

method establishes this link. 

Together, this means that the two companion quaternionic Hilbert spaces can represent ordered 

discrete sets and ordered fields via the eigenspaces of some of their operators and that these sets 

and fields can also be represented by pairs of quaternionic functions and their parameter spaces. 

The selection of a preferred Cartesian coordinate system sins against the cosmological principle. 

Thus, with respect to the definition of symmetry flavors, 𝕸 is in conflict with the cosmological 

principle. 

10.2 Defining symmetry flavors 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 

𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness is 

influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the superscripted subject. For the reference 

operator we neglect the superscript  ⓪. 

The reference operator ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| in separable Hilbert space ℌ maps into the reference operator 

ℜ = |𝑞〉𝑞〈𝑞| in Gelfand triple ℋ. 
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The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is 

determined by its Cartesian ordering and then compared with the reference symmetry flavor, which 

is the symmetry flavor of the reference operator ℛ.  

 

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of symmetry center 𝕾𝑥 with 

the spatial part of the symmetry flavor of reference operator ℛ. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

We use the names of the corresponding particles that appear in the standard model in order to 

distinguish the different symmetry flavor combinations. Elementary fermions relate to solutions of a 

corresponding second order partial differential equation that describes the embedding of these 

particles. Elementary bosons relate to solutions of a different second order partial differential 

equation. 

In a suggestive way, we use the names of the elementary fermions that appear in the standard 

model in order to distinguish the possible combinations of symmetry flavors. 

Fermion symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 

 

Elementary fermions switch their handedness when the sign of the real part is switched. Spherical 

ordering can be done by first starting with the azimuth and next proceeding by the polar angle. Both 

can be done up or down. Fermions and bosons appear to differ in this choice. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor of 

the parameter space {𝑞𝑦}.  
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If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of discrete 

objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real part 

describes the location density distribution and the imaginary part describes the displacement density 

distribution. 

This section shows that ordering of an embedded (parameter) space can represent specific properties of that space that 

distinguishes this embedded space from differently ordered embedded (parameter) spaces. This also hold for embedding 

fields. The consequences comes to the front in situations where differences in ordering play an essential role. We will 

encounter that situation where different parameter spaces are used in the integration procedure as occurs in the extended 

Stokes theorem. This is treated in chapter 13. First we take a look at modules and especially the elementary modules will be 

investigated. Elementary modules appear to possess their own private parameter space. 
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11 Modules 
Modules are represented by closed subspaces of the separable Hilbert space, but not every closed 

subspace represents a module or modular system. In fact only a small minority of the closed 

subspaces will act as actual modules. So, what renders a closed subspace into a module and what 

combines modules into subsystems or systems? The answers to these questions can only be found by 

investigating the contents of the closed subspaces. 

A special category of modules are elementary modules. Elementary modules are not constituted of 

other modules. They are the atoms of the orthomodular lattice, which describes the relations 

between modules and modular systems. This indicates that at every progression instant the 

elementary module is represented by a single Hilbert vector.  

A single Hilbert vector spans the smallest possible type of subspace. Thus it is the proper candidate for representing an 

elementary module, which forms an atom of the orthomodular lattice. This subspace cannot be split into smaller subspaces. 

As eigenvector of a corresponding normal operator ℴ the vector can only accept a single quaternionic eigenvalue. If the real 

value of that eigenvalue represents progression, then the Hilbert vector can only represent a single instant of the ‘life’ of 

the elementary module. The imaginary part of the eigenvalue then represents the spatial location of the elementary 

module at that instant. It is a precise (not blurred!) location. Each elementary particle owns a normal operator ℴ whose 

eigenvalues describe the ‘life’ of the elementary module. The operator ℴ is a private descriptor of the elementary module. 

At other instances another Hilbert vector represents the elementary module.  

The eigenvectors of a normal operator are all mutually orthogonal. Within a set of mutually orthogonal Hilbert vectors 

exists no notion of closest member. Only the corresponding eigenvalues may provide a notion of neighborhood. The normal 

operator that represents the elementary module has no means for controlling the nearness of the subsequent eigenvalues. 

The normal operator only acts as a descriptor. It does not act as a controller of the nearness of the eigenvalues! 

Thus, the elementary module hops along a series of eigenvectors of which the real values can be ordered with respect to 

increasing progression. Each of these values represent a location in an harmonica of sheets, that each represent a 

progression instant. Each elementary module takes only one spatial location in such a sheet. The sheets form subspaces of 

the separable Hilbert space that represent a static status quo. In that subspace the eigenvalues of the considered operators 

all feature the same real part. In this view the model steps with model-wide steps through the full separable Hilbert space. 

The quaternionic values that represent a single elementary module, all belong to Hilbert vectors that 

together span a subspace of the Hilbert space that corresponds to a symmetry center. We will 

indicate the operator that describes the symmetry center with symbol 𝕾. 

A symmetry center is described by an anti-Hermitian operator. This anti-Hermitian operator 𝕾 has only imaginary and thus 

spatial eigenvalues. The eigenvalues of the operator that describes the symmetry center are ordered by a Cartesian 

coordinate system. This means that in contrast to the operator ℴ, which describes the ‘life’ of the elementary module, this 

symmetry center operator 𝕾 controls the nearness of its eigenvalues. 

For the operator that describes via its eigenvalues the ‘life’ of the elementary module, each 

subsequent real progression value is accompanied by an imaginary part and together these parts 

form the eigenvalue that belongs to the Hilbert vector, which at this progression instant represents 

the elementary module. This single value has not much to say about the owner of this eigenvalue. 

Only a series of subsequent eigenvalues can do that job. A large series of these numbers can tell the 

types of elementary modules apart. These subsequent quaternionic numbers form a dynamic 

location swarm. At the same time these numbers form a hopping path. The spatial parts of these 

numbers are taken from the eigenspace of the anti-Hermitian operator 𝕾 that due to its role 

determines part of the properties of the elementary module. This operator defines a symmetry 

center. Thus, all elementary modules reside on a their own individual symmetry center. The 

symmetry center covers a closed subspace and the module covers a subspace of that subspace. The 

private symmetry center floats over a background space and its center location is a function of 
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progression. In each sheet that belongs to a progression value the symmetry center can be 

considered as an ordered region that acts as a “life space” for the elementary module. 

The location of the geometric center of the floating symmetry center is not part of the eigenspace of 

the anti-Hermitian operator 𝕾, which describes the symmetry center. This floating location is a 

property of the elementary module and is formulated in terms of a value of another parameter 

space. This parameter space is eigenspace of another reference operator ℜ. This second reference 

operator is a normal operator and provides full quaternionic eigenvalues that can represent 

progression values as well as spatial locations. 

Thus, symmetry centers represent regional platforms that possess an ordered pure spatial parameter 

space. We consider such operators as “physically relevant” when their eigenspaces are Cartesian-

ordered. Thus, closed subspaces of the Hilbert space can represent modules when they correspond 

to eigenspaces of which the spatial part is ordered by a Cartesian coordinate system. This is a 

narrower specification than the earlier specification that modules are represented by closed 

subspaces of a separable Hilbert space. 

11.1 Module content 
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an 

orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues 

characterize this closed subspace. 

Thus, it is possible to select a quaternionic normal operator ℴ for which a subset of the eigenvectors 

span the closed subspace and the corresponding eigenvalues describe the dynamic geometric data of 

this module. By ordering the real values of these eigenvalues, the geometric data become functions 

of what we already have called progression. The selected operator describes the module content.  

This operator only acts as a descriptor. The operator does not generate eigenvalues. It has eigenvalues that are generated 

by a mechanism 𝔐, which is not part of the Hilbert space. 

A companion reference operator 𝔗 provides a Cartesian coordinate base for this subspace. Its 

eigenspace corresponds to a subspace that encapsulates the eigenspace of the first operator. This 

second operator corresponds to the symmetry center 𝕾. On the other hand it also covers the 

progression window of the first operator. The symmetry center corresponds to an anti-Hermitian 

operator. The second operator 𝔗 is a normal operator. It can be considered as the capsule or the 

encapsulating operator of the elementary module. Its eigenspace can be viewed as a tube in which 

the elementary module travels. 

The operator 𝕾 that describes the symmetry center is only a descriptor. This also holds for the 

operator ℴ that describes the content of the corresponding elementary module. The real actor is the 

controlling mechanism 𝔐, which is responsible for establishing the characteristics that are typical for 

the elementary module. These characteristics are the statistical characteristics and the symmetry of 

the swarm and the dynamic characteristics of the corresponding hopping path. The mechanism 𝔐 

takes care of the fact that the swarm is a coherent swarm and stays that way. 

 Progression window 
Stochastic processes that are controlled by dedicated mechanisms provide the elementary modules 

with dynamic geometric data. Here we only consider elementary modules for which the content is 

well-ordered. This means that in the eigenspace of the selected operator every progression value is 

only used once. 
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For the most primitive modules the closed subspace may be reduced until it covers a generation 

cycle in which the statistically averaged characteristics of the module mature to fixed values. The 

resulting closed subspace acts as a sliding progression window. The sliding window covers a (large) 

series of sheets. 

The sliding window separates a deterministic history from a partly uncertain future. Inside the sliding 

window a dedicated mechanism 𝔐𝑛 fills the eigenspace of stochastic operator ℴ = |𝑎𝑗〉𝑎𝑗〈𝑎𝑗|. The 

mechanism is a function of progression. If it is a cyclic function of progression, then the module is 

recurrently regenerated by its private mechanism. 

The phrase “recurrently regenerated” is related to the interpretation of the model where mechanisms generate new 

eigenvalues in contrast to the alternative interpretation where the boundary is passing over data that already exist as 

eigenvalues in the Hilbert space. The model itself is not influenced by these interpretations. For describing the model, the 

paper follows the first interpretation. However, it is also good to keep the second interpretation in mind. It throws a slightly 

different light upon the model. 

11.2 Symmetry center as platform 
All elementary modules are supposed to reside in an individual symmetry center. However, at every 

progression instant the elementary module occupies only one location of the symmetry center. 

During the regeneration cycle of the module the occupied locations form a coherent location swarm 

and at the same time the locations form a hopping path. In the model the hopping path is 

represented by a hopping string that stays within its private tube. The hopping string passes through 

the boundary that splits the model in past part and a future part. The view of the hopping path is 

restricted to the spatial part of the corresponding eigenspace and uses a sliding window. The view of 

the hopping string uses the full quaternionic eigenspace. The view of the swarm integrates over the 

regeneration cycle. The swarm represents the projection of the hopping path onto the symmetry 

center. 

Symmetry centers float on a supporting medium. That supporting medium corresponds to a 

Cartesian-ordered normal reference operator ℛ⓪, whose eigenvectors span the whole infinite 

dimensional separable Hilbert space. 

11.3 Map into a continuum 
By imaging the discrete eigenvalues into a reference space, the discrete eigenvalues form a swarm 

{𝑎𝑗
𝑥}, which is a subset of the rational quaternions {𝖘𝑖

𝑥} that form the symmetry center on which the 

module resides. At the same time the discrete eigenvalues form a hopping path. With other words 

the swarm forms a spatial map of the dynamic hopping of the point-like object. The swarm and the 

hopping path conform to a stochastic operator ℴ𝑥 that is well ordered with respect to its progression 

values, but is not ordered in spatial sense like reference operators ℛ or 𝕾𝑛
𝑥. 

ℴ𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| 

This temporal ordering is installed via the quaternionic version of the screened Poisson equation. That equation involves a symmetry 

center wide clock that can synchronize the location generation process with the model wide progression steps that are oppressed by 

reference operator ℛ⓪. This will be explained later. 

Our plan is to construct a map of the elements {𝑎𝑗
𝑥} of the swarm onto the deformable continuum ℭ. 

The continuum ℭ deforms because this continuum is the result of a smoothing operation that is installed by a mathematical 

convolution with blurring functions. That convolution involves integration and this integration appears to be sensitive to the 

ordering of the involved integration domains. The tiniest blurring function is the Green’s function of the field ℭ. This 

corresponds to a single point-like disruption, which is due to the fact that the ordering of the parameter space of the 

disruption differs from the ordering of the surrounding integration domains. A coherent swarm of point-like disruptions will 

correspond to a much broader blurring function. The test function that was treated earlier is an example of broader blurring 
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function. Thus, the deformation of ℭ is due to the participation of non-conformant integration domains. For that reason we 

will mark the parameter spaces that act as integration domains with a superscript  𝑥 that identifies the type of ordering of 

the parameter space. The parameter spaces are not deformed. Only the smoothed fields get deformed by the disruptive 

embedding of artifacts. These artifacts represent local exceptions in an otherwise rather evenly distributed set of rational 

quaternions that is described by the smoothed field. 

We perform the construction of the map in a sequence of virtual steps. The first virtual step maps 

the location 𝑎𝑗
𝑥 in the symmetry center 𝕾𝑛

𝑥  onto a virtual location 𝑏𝑗
𝑥 in the reference parameter 

space ℛ𝑥. The following step maps the location 𝑏𝑗
𝑥 onto a virtual location 𝑐𝑗

𝑥 in the continuum 

parameter space ℜ𝑥. There it represents a rational number with corresponding symmetry flavor  𝑥. 

The last step maps 𝑐𝑗
𝑥 to an actual location 𝑑𝑗

𝑥 in the deformable continuum ℭ. Since the symmetry 

flavor  𝑥 of 𝑑𝑗
𝑥 conflicts with the reference symmetry flavor  ⓪ of ℭ, the embedding process causes a 

reaction of the embedding field ℭ. In chapter 13 we will explain the reason of this conflict in more 

detail. None of the eigenspaces of the parameter space operators are influenced by the mapping 

process. Only this last step causes space curvature in the deformable target field. During this map the 

swarm {𝑎𝑗
𝑥} gets spatially reordered into the swarm {𝑒𝑗

⓪
}. The embedding of each of the elements 

last only a short instant and is immediately released. What results is the impact on the smoothed 

field ℭ. Thus, field  is not only smoothed in spatial sense. It is also averaged over the progression 

window. 

11.4 Coherent elementary modules  
Coherent elementary modules are characterized by a coherent location swarm. The coherent 

elementary modules are directly related to an individual symmetry center. The elements of the 

coherent location swarm that characterizes the coherent elementary module are taken from this 

symmetry center. These elements are ordered with respect to progression, but spatially they are 

selected in a stochastic fashion. This selection is described by operator ℴ𝑥. In the map onto the 

reference continuum, coherent elementary modules feature a hopping path. Inside the symmetry 

center the hopping path is closed. Further, for coherent elementary modules, the map of the location 

swarm into the reference continuum corresponds to a density operator 𝜌 that is defined by a 

continuous function. That continuous function is a normalized location density distribution and it 

has a Fourier transform. As a consequence the swarm owns a displacement generator and as a 

further consequence in first approximation the swarm will move as one unit.  

The operator that conforms to the continuous location density distribution has a different ordering 

with respect to its spatial values. That new operator 𝜌 has ℛ and thus ℜ as its parameter space. It 

tends to describe the swarm as a whole unit. It no longer describes the hopping path. The 

operator 𝜌 is no more than a special descriptor. It does not affect the distribution of the density 

of the locations that is described by this operator and its defining function. 

The coherence is ensured by the private mechanism 𝔐𝑛 that selects the eigenvalues such that a 

coherent swarm is generated.  

This paper gives no explanation for this special habit of the mechanism. However, this habit is 

essential for the coherence of the whole model.  

Some guesses about the way that mechanism 𝔐𝑛 works are possible. A combination of a Poisson process and a binomial 

process that is implemented by a spatial spread function can establish a location density distribution, which approaches the 

Gaussian distribution, which underlies the described test function. This might provide a partial indication of how the 

mechanism works. A Poisson process that is combined with an attenuating binomial process can again be considered as a 

Poisson process that has a lower efficiency. Thus, in this interpretation, the spread function defines the spatial spread of the 

efficiency of the local Poisson processes. 
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The notion of coherent swarm will later be defined in more detail. Coherent elementary modules are 

also characterized by the symmetry flavor of their symmetry center 𝕾𝑛
𝑥. When mapped into a 

reference continuum that is eigenspace of reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| the module is 

characterized by a symmetry related charge, which is located at the center of symmetry. The 

symmetry related charge is a property of the local symmetry center 𝕾𝑛
𝑥. 

The size and the sign of the symmetry related charge depends on the difference of the symmetry 

flavor of the local symmetry center with respect to the symmetry flavor of the surrounding reference 

continuum ℛ⓪. The coherent swarm {𝑎𝑗
𝑥} inherits the symmetry flavor of the local symmetry center 

𝕾𝑛
𝑥. However, the controlling mechanism 𝔐𝑛 picks the elements of this set in a spatially stochastic 

way instead of in a spatially ordered fashion. Thus the stochastic operator ℴ𝑥that reflects the 

stochastic selection by 𝔐𝑛, corresponds with another operator, this time a density operator 𝜌𝑥 that 

reflects the spatial ordering and characterizes the coherent stochastic mechanism 𝔐𝑛 with respect 

to its achievement to establish spatial coherence.  

Symmetry related charges are the reason of existence of a symmetry related field 𝔄. This field will be 

treated later. 

11.5 The function of coherence 
Embedding of point-like objects into the affected embedding continuum spreads the reach of the 

separate embedding locations and offers the possibility to bind modules. The spread of the 

embedded point-like object is defined by the Green’s function of the non-homogeneous second 

order partial differential equation. However, spurious embedding locations have not enough 

strength and not enough reach to implement an efficient binding effect. In contrast, coherent 

location swarms offer enough locality, enough spread and enough embedding strength in order to 

bind two coherent swarms that are sufficiently close. 

For example, a Gaussian distribution of the location swarm would turn the very peaky Green’s 

functions into a rather broad spherical painting brush that can be described by the potential: 

 

𝜑(𝑟) =
𝐸𝑅𝐹(𝑟)

𝑟
 

 

This is a smooth function without a trace of a singularity. Thus the coherent swarm bends the 

embedding field in a smooth fashion!. We will give this particular function a name and call it test 

function. At the center location, the amplitude of the test function equals about 1,128379. The test 

function has a standard spread. The standard deviation is about 0,598758. A graph of function 𝜑(𝑟) 

was shown in figure 1. 

The actual location density distribution may differ from the Gaussian distribution. The amplitude of the resulting function 

will depend on the form of the density distribution will depend on the number of participating point-like obstructions. For 

large numbers of participating point-like obstructions, the coherence of the swarm ensures that the smoothed embedding 

field stays integrable, while each of the elements of the swarm would separately cause a singularity. The actual smoothness 

of the affected field will depend on the number of participating obstructions. This plays a greater role in the outskirts of the 

distribution. In that region the signal to noise ratio is much lower than in the center. This results in a larger local relative 

variance. We assumed that all obstructions have similar impact on the affected field. However, the process that governs the 

generation of the obstructions has a stochastic nature. The characteristics of this process depends on the properties of the 

controlling mechanism. The number of elements in the coherent swarms that corresponds to actual elementary modules 

depends on the type of the module. For most types this number is huge. If the generator of the obstructions is a Poisson 

(1) 
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process in combination with a binomial process that is implemented by a spatial spread function, then the local signal to 

noise ratio can be calculated at any location where the number of participating obstructions is still large enough. This is due 

to the fact that a Poisson process in combination with a binomial process is again a Poisson process with an attenuated 

efficiency. An object that will approach these outskirts will sense the local relative variance of the field and may act 

accordingly. As a consequence its behavior in response to the local field value may appear to show some turbulence. Closer 

to the center of the swarm the signal to noise is much larger and the behavior of the respondent will become more 

consistent. 

If for some reason the generation process is halted, then the controlling mechanism changes to another control mode and 

because of that the discrete nature of the swarm will becomes noticeable. In this case the last location in the location 

swarm indicates the exact location where the generation process was disrupted. After this instance the location density 

distribution has lost its validity and collapses. In physics the group of physicists that support the Copenhagen interpretation 

named this phenomenon “the collapse of the wave function”. 

Imaging of the location swarm onto the reference continuum is only used to define coherence and it 

is used to indicate the influence of the symmetry related charges. The embedding onto the affected 

continuum ℭ is used to exploit the corresponding potential binding effect of the swarm. The 

stochastic process that implements the stochastic location distribution under control of mechanism 

𝔐𝑛 is the de facto actuator in establishing the coherent swarm. The embedding field ℭ is not 

affected by symmetry differences. In contrast the symmetry related field 𝔄 is caused by these 

differences. Thus ℭ and 𝔄 differ fundamentally! For the elementary module the symmetry center 

couples the two fields. 

11.6 The effect of the blur 
The coherent swarm represents an effective blur of every observation of the spatial location of the 

corresponding object. All information about the swarm will be transmitted via the fields that are 

influenced by the presence of the swarm. The model does not support other information carriers. 

In this aspect the model differs from theories that postulate the existence of force carriers. This model does not support 

force carriers. Nor does it support the corresponding force fields. However, the basic fields can cause acceleration of the 

discrete objects that reside on symmetry centers. 

It means that every object that must be informed about the properties of the observed object will 

perceive this observed object with a blur that is defined by the actual location density distribution. 

This is not the smooth density distribution 𝜌. However, for coherent swarms the actual location 

density distribution will closely approach the smooth location density distribution 𝜌. 

Due to the blur, no observer will directly perceive the difference between an object that is 

constructed as a swarm of discrete elements and an object that has a more compact structure such 

as a sphere. This fact is increased if the observer itself has a similar structure. The swarm contains a 

huge number of elements. Only in this way the signal to noise ratio of the transferred information is 

large enough in order to tolerate reliable reactions of the observer on the signal that it receives via 

the surrounding fields. 

Thus, every interaction is afflicted with a certain signal to noise ratio. 
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12 The dynamic orthomodular base model 
We have achieved a level in which the major chain of mathematical structures does no longer offer 

an inescapable self-evident extension. The model uses separable and non-separable Hilbert spaces in 

order to store numeric data that can describe a series of discrete objects that are embedded in a 

continuum. The real parts of the parameters can be used to order the parameters and the target 

values of functions. If properly ordered these descriptions can represent a sequence of static status 

quos. However, without controlling mechanisms this model features no dynamics and contains no 

means to establish the coherence between the subsequent members of the sequence. This reflects 

our earlier decision to pick the interpretation that new data are generated by these controlling 

mechanisms. According to the other interpretation a virtual boundary travels over existing data and 

represents a static status quo that is defined by a single and increasing progression value. In both 

cases the boundary divides the model into a historic part and a future part. In both views the reason 

of the existence of the coherence of swarms is not (yet) explained. In this paper that explanation is 

not achieved. We just make use of the coherence that the mechanisms appear to establish. Thus, 

according to the view that is selected by this paper, the origin of the dynamics of the model is 

located in the mechanisms that generate the coherent swarms. 

12.1 The model 
In the selected view, the model describes the evolution of the embedding of a quaternionic infinite 

dimensional separable Hilbert space into its companion Gelfand triple. This is achieved by applying 

an extended version of the generalized Stokes theorem to an eigenspace of a normal operator in a 

non-separable quaternionic Hilbert space that embeds a separable Hilbert space. On the rim 

between the history and the future operate controlling mechanisms that fill eigenspaces of 

operators, which reside in the separable Hilbert space with new data, that subsequently will be 

embedded into a deformable eigenspace of an operator that resides in the Gelfand triple. The history 

is no longer touched and stays stored in eigenspaces of operators that reside in the separable Hilbert 

space. That storage is no longer afflicted by noise. All dynamic data are precisely known and stored 

as quaternionic values. In contrast, the future is not yet known and will be generated by the 

stochastic processes, which are owned/controlled by dedicated mechanisms that act as functions of 

progression. This description uses one of the possible interpretations of the base model. 

We will call this stage of the model development “The dynamic orthomodular base model”. Any 

further development of the model would involve the investigation of the mechanisms that ensure 

the coherence between the subsequent members of the sequence of static status quos. This paper 

will not perform that investigation. Instead, we use a detailed definition of what we mean by a 

coherent swarm of point-like obstructions of the embedding field ℭ. 

The orthomodular base model describes the relational structure of modular systems. Via the 

management mechanisms it can add characteristics to the modules. These characteristics are based 

on eigenvalues of normal operators that reside in the separable Hilbert space and have eigenvectors 

in the closed subspace that represents the module.  

The elementary modules are based on a huge number of rational quaternionic numbers. This number is about 237. It 

corresponds to a 37 dimensional binary valued space. The module does not use this huge amount of degrees of freedom. 

Instead it is characterized by a few statistical and symmetry characteristics.  

The Hilbert spaces only supports storage and description. Further, the Hilbert spaces restrict the type 

of the data that can be stored. The management mechanisms represent the actual drivers of the 

model. However, the Hilbert spaces pose restrictions on what the mechanisms can do. 
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The numeric data that occur in the orthonormal base model must be taken from division rings. The 

most elaborate choice for these data are quaternions.  

Quaternions and Hilbert spaces can represent a wider usage than just the storage of dynamic 

geometric data. Quaternions can implement rotations. In this way they can shift properties between 

dimensions. This is shown the appendix; Tri-state spaces. (still to-do) 

The peculiarities of these quaternions influence the features and the behavior of the discrete objects 

and the fields that occur in the orthonormal model. Many of these peculiarities are hardly known by 

scientists. As far as they apply to this paper these subjects are treated in the related sections. 

Concepts such as symmetry centers and coherent location swarms are not part of the orthonormal 

base model, but these features make use of the structure and the properties of the orthonormal 

base model. The same holds for the symmetry related field 𝔄 and the embedding continuum ℭ. 

However, the reference operators that can be applied as parameter spaces can be considered as 

standard properties of quaternionic Hilbert spaces. They can be considered to belong to the 

household of the orthomodular base model. 

12.2 The rim 
The past part of the model is fixed and is stored in exact values in the Hilbert spaces. The future part 

is inaccessible by the past part and does not yet influence the current static status quo. In the 

selected view of the model, all dynamics occurs in the direct vicinity of the splitting boundary. For 

that reason, the rim is the most interesting part of the model. It is a region in the direct vicinity of the 

splitting boundary and includes this boundary. The boundary itself concerns a static status quo of the 

model. The rim is constituted of a harmonica of such static status quos. Each of the sheets of this 

harmonica is represented by a Hilbert space in which the progression value is fixed. In fact these 

Hilbert spaces are subspaces of the encapsulating separable Hilbert space. The harmonica covers the 

regeneration cycle of the elementary modules. Within the harmonica each elementary module is 

represented by a tube and a hopping string that stays inside this encapsulating tube. Inside each of 

the sheets of the harmonica, each of the elementary modules has a different location. That location 

is determined by a corresponding management mechanism that works in a stochastic fashion, such 

that the subsequent locations form a coherent swarm. This means that the location swarm can be 

described by a continuous location density distribution, which on its turn possesses a Fourier 

transform. These conditions ensure that the swarm possesses a private displacement generator and 

it also means that at first approximation, the swarm can be considered as to move as one unit. As a 

consequence the module can be treated as an individual object that has its own kinematics. Despite 

the fact that at each harmonica sheet the elementary module has only one (exact!) position, the 

module can be characterized by its short term dynamic behavior. That behavior is obviously related 

to the ordering inside the symmetry center on which the elementary module resides. 

In comparison to string theory, which uses elastic strings, this model uses stochastic tubes that house hopping paths that 

proceed in the direction from past to future. In projection onto a static status quo boundary the hopping path forms a 

coherent swarm. 

The fact that for every individual module each sheet of the harmonica contains only one location, 

corresponds to the fact that all symmetry centers are enumerated with the separate progression 

values of the sheets and at every progression instance one location on each symmetry center 

represents only one location of the corresponding elementary module. The eigenspace of the 

operator that describes these locations is well ordered with respect to progression and is stochastic 

in the spatial domain.  
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It is interesting to try to estimate the number of sheets in the harmonica. This number is related to 

the inverse of Planck’s constant. With other words, it is a huge number. We already estimated it as 

237. Reality appears to be wastefully with its progression ticks! 

Apart from the obstructions, the rim also contains continuums. These continuums spread over the 

spatial parts of the domains. In these regions differentiation and integration makes sense. In these 

conditions the more conventional form of the Stokes theorem and the divergence theorem become 

applicable. 

Symmetry centers are defined by anti-Hermitian operators. This means that they fit inside the sheets 

of the harmonica. In that sheet each symmetry center carries only one location of the represented 

elementary module. That location does not coincide with the location of the geometric center of the 

symmetry center. 
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13 Symmetry centers as floating parameter spaces 
If we tolerate discontinuities inside quaternionic manifolds, then these artifacts must be 

encapsulated by boundaries 𝜕H𝑛
𝑥 and in that way they are separated from the main domain Ω. 

In this case the model may apply different parameter spaces, which have their own private way of 

ordering. A separable quaternionic Hilbert space can cope with series of coexisting parameter spaces 

and these parameter spaces are served by dedicated operators. The reverse bra-ket method relates 

the parameter space to a corresponding reference operator. Symmetry centers are examples of such 

parameter spaces. Symmetry centers use a version of the quaternionic number system in order to 

represent the ordering of the parameter space. This results in a parameter space that features a 

Cartesian coordinate system. In addition the parameter space is ordered by a polarnate system. The 

symmetry center uses only the rational quaternions. In this way the parameter space stays 

countable. 

13.1 Symmetry flavor and the origin of the symmetry related charge 
The symmetry center 𝕾𝑛

𝑥  is characterized by a private symmetry flavor. That symmetry flavor relates 

to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is 

fixed, then eight independent Cartesian orderings are possible. We use the Cartesian ordering of ℜ⓪ 

as the reference for the orientation of the axes. ℜ⓪ has the same Cartesian ordering as ℛ⓪ has. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

− ∑∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

In this formula the boundaries 𝝏𝜴 and 𝝏𝑯𝒏
𝒙  are subtracted from each other. This subtraction is 

controlled by the difference in ordering of the domains Ω and H𝑛
𝑥. 

Due to the smoothness of the embedding field, we have some freedom with the spatial placement of the encapsulating 

boundaries. We exploit that freedom by selecting a cubic, rather than a spherical encapsulation of the point-like 

discontinuities. This enables us to correctly determine the influence of the differences in ordering along the coordinate 

axes. 

The consequence of the differences of the symmetry flavor on the subtraction can best be 

comprehended when the encapsulation 𝜕H𝑛
𝑥 is performed by a cubic space form that is aligned along 

the Cartesian axes. Now the six sides of the cube contribute different to the effects of the 

encapsulation when the ordering differs from the Cartesian ordering of the reference parameter 

space ℜ⓪. Each discrepant axis ordering corresponds to one third of the surface of the cube. This 

effect is represented by the symmetry related charge and the color charge of the symmetry center. 

It is easily related to the algorithm which is introduced for the computation of the symmetry related 

charge. Also the relation to the color charge will be clear. Thus, this effect couples the ordering of 

the local parameter spaces to the symmetry related charge of the encapsulated elementary object. 

The differences with the ordering of the surrounding space determines the value of the symmetry 

related charge of the object that resides inside the encapsulation! 

The symmetry related charge and the color charge of symmetry center 𝕾𝑛
𝑥  are supposed to be 

located at the geometric center of the symmetry center. A Green’s function together with these 

charges can represent the local defining function 𝜑𝑥(𝑞) of the contribution 𝜑𝑥 to the symmetry 

related field 𝔄𝑥 within and beyond the realm of the floating region H𝑛
𝑥. 

(1) 



51 
 

Nothing else than the discrepancy of the ordering of symmetry center 𝕾𝑛
𝑥  with respect to the 

ordering of the parameter spaces ℛ⓪and ℜ⓪ causes the existence of the symmetry related charge, 

which is related to the symmetry center. Anything that resides on this symmetry center will inherit 

that symmetry related charge. 

13.2 Spin 
The extra spherical coordinate system is defined relative to the axes of the Cartesian coordinate 

system. This extra ordering introduces extra symmetry characteristics that become important when 

spherical integration is applied. These influence are related to the spin characteristics of the 

elementary module. 

13.3 Single symmetry center 
H𝑛

𝑥 is a spatial domain. The regions H𝑛
𝑥 that are combined in 𝐻 are excluded from domain Ω. The 

Stokes theorem does not hold for the separate regions H𝑛
𝑥. Instead, the difference between the 

integrals defines a potential. In case of isotropic symmetry flavor of the symmetry center 𝕾𝑛
𝑥  holds: 

 

𝑄𝑛
𝑥 = |𝒒 − 𝒄𝑛

𝑥| {∫ 𝑑𝜔
H𝑛

𝑥
− ∫ 𝜔

𝜕H𝑛
𝑥

} 

 

𝒄𝑛
𝑥  is the geometric center of symmetry center 𝕾𝑛

𝑥. 𝑄𝑛
𝑥 is the symmetry related charge. This 

corresponds to the symmetry related potential 𝜑𝑛
𝑥(𝑞) that exists at the outskirts of the 

encapsulation. 

 

𝜑𝑛
𝑥(𝒒) =

𝑄𝑛
𝑥

|𝒒 − 𝒄𝑛
𝑥|

= ∫ 𝑑𝜔
H𝑛

𝑥
− ∫ 𝜔

𝜕H𝑛
𝑥

 

 

The potential 𝜑𝑛
𝑥(𝒒 − 𝐜𝑛

𝑥) contributes to the symmetry related field 𝔄𝑥. 

13.4 Bounded center 
A locally a spatially connected union 𝐻⊎ of encapsulations H𝑛

𝑥 is defined by: 

 

𝐻⊎ = ⋃ H𝑛
𝑥

𝑁𝑥

𝑛=1

 

𝐻⊎ encapsulates multiple symmetry centers. In case that 𝐻⊎ exists, we consider the objects that 

reside within that encapsulation 𝜕𝐻⊎ as bounded by the symmetry related charges. 

 

𝜙𝑥(𝒒) = ∑
𝑄𝑛

𝑥

|𝒒 − 𝒄𝑛
𝑥|

𝑁𝑥

𝑛=1

 

 

(1) 

(2) 

(1) 

(2) 
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At large enough distance from this bounded center, all charges can be considered to be merged in a 

single charge with symmetry related potential function 𝜙(𝑞): 

 

𝜙(𝑞) =
∑ 𝑄𝑛

𝑥𝑁
𝑛=1

|𝒒 − 𝒓|
 

 

𝒓 =
1

𝑁
∑ 𝒄𝑛

𝑁

𝑛=1

 

 

13.5 Discrepant regions 
The symmetry centers correspond to point-like discontinuities. However, also large connected 

regions of ℜ⓪ may exist that disrupt the continuity of the manifold. For example a region that is 

surrounded by a boundary where the deformation is so strong that information contained in ω 

cannot pass the boundary of this region. These regions must also be separated from domain Ω. In 

this way these regions will correspond to cavities in the domain Ω. The information contained in the 

manifold cannot pass the surface of the cavity. The cavities act as information holes. Within the 

cavity the manifold can be considered to be non-existent. Within that region it has no defining 

function. 

Current mathematical integration technology appears to lack proper solutions for this situation. 

Discrepant regions cannot be hidden by applying a smoothing operator to the underlying field. 

The discrepant regions are the “black holes” of the model. 

  

(3) 

(4) 
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14 Fields 

14.1 Fields in contrast to sets of discrete objects 
Coherent sets of discrete quaternions have much in common with continuums that describe the 

density of these location swarms. The set of rational quaternions is densely embedded in the 

continuum of the corresponding quaternions. A continuous function can relate the coherent set that 

corresponds to the target of the rational quaternionic function and the corresponding smooth 

continuum. If you want to estimate the impact of point-like disruptions of the continuity, it makes 

more sense to investigate the set of rational target values of the relating function, than to try 

investigate the disrupted continuum. Putting the point-like disruptions in capsules will partly solve 

integration and differentiation problems. In this way smoothed versions of the fields can be derived 

that circumvent the problems that integration has with the existence of point-like disruptions. 

14.2 Differentiable and integrable basic fields 
By applying the reverse bra-ket method, a category of operators can represent quaternionic 

functions. This is applicable both in the separable Hilbert space and in the Gelfand triple.  

In this paper, fields are continuums that are target spaces of quaternionic functions that define 

eigenspaces of operators, which reside in the Gelfand triple. 

Quaternionic functions and their differentials can be split in real scalar functions and imaginary 

vector functions. Here we will only consider the not too violent disruptions of the continuity of the 

fields. We also restrict the validity range of the equations. With these restrictions the quaternionic 

nabla can be applied and the discontinuities restrict to point-like artifacts. The quaternionic nabla 

has the advantage that it works as a multiplying operator. It obeys quaternionic multiplication rules. 

Quaternionic functions can represent fields and continuums, but they can also represent density 

distributions of discrete dynamic locations. A point-like disruption then corresponds to a single 

exception in a large assembly of nearly equal values. The vector field that goes together with the 

scalar field may then represent the displacements of the discrete objects. Quaternionic 

differentiation of such fields is treated in the next chapter. 

Double differentiation of a basic field leads to a non-homogeneous second order partial differential 

equation that relates the basic field to the corresponding density distributions of discrete dynamic 

locations of the artifacts that cause the local discontinuities of the basic field. For quaternionic 

functions two different second order partial differential equations exist. They offer different views of 

the dynamic behavior of the same basic field and the two second order partial differential equations 

can offer views on different behavior of the investigated field. 

The symmetry related field 𝔄 and the embedding continuum ℭ are basic fields. This paper only 

investigates these two basic fields. In this paper, all other fields are derived from these two basic 

fields. 

The symmetry related field 𝔄 is based on the existence of symmetry centers. These symmetry 

centers float over a reference parameter space that acts as a background in the whole model. 

The embedding continuum ℭ is based on the existence of a dynamic deformable function ℭ that 

describes the embedding of discrete artifacts, which reside on symmetry centers and are mapped 

onto ℭ. The artifacts are selected by mechanisms 𝔐𝑛 that are dedicated to the symmetry center 𝕾𝑛
𝑥. 

The results of the activity of these mechanisms can be described by a corresponding stochastic 

operator ℴ. All stochastic operators have countable eigenspaces and can be considered to reside in 

the separable Hilbert space. 
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14.3 Subspace maps 
The orthomodular base model consist of two related Hilbert spaces.  

 A separable Hilbert space ℌ that acts as a descriptor of the properties of all discrete objects.  

 A non-separable Hilbert space ℋ that acts as a descriptor of the properties of all continuums. 

An ongoing process which is governed by dedicated mechanisms embeds a part of the separable 

Hilbert space ℌ into its non-separable companion Hilbert space ℋ. This ongoing process corresponds 

to a partition that moves through the reference parameter spaces ℛ⓪ and ℜ⓪ and splits them into 

three parts: history, present static status quo and future. We already introduced the harmonica that 

splits the vicinity of the boundary in a series of sheets. The middle sheet is the actual boundary. Thus. 

in the neighborhood of the boundary we treat progression as a discrete parameter. Further away, 

progression may be considered to flow. The mechanism 𝔐 that governs the embedding of an 

elementary module is active in the splitting boundary, but its control is influenced by historic and 

future sheets that belong to the harmonica, which covers the regeneration cycle that produces the 

coherent location swarm, which is characteristic for the elementary module. The behavior of the 

mechanism is stochastic and only determined by statistical and symmetry related characteristics. 

Nothing, not even the creator of the model, has deterministic insight in the decisions of the 

mechanism. 

This view corresponds to the interpretation of the model in which mechanisms generate new spatial data as a function of 

the progression value. An alternative interpretation suspects that the future data are already present in the Hilbert space 

and are encountered by the moving boundary. In that case the mechanisms must have been active as generators at the 

instance of the formation of the whole Hilbert space. Also in that case the activity of the mechanisms is stochastic and is not 

governed and deterministically determined by the creator of the model. The model itself is not affected by these different 

interpretations. 

The two Hilbert spaces are coupled by the Cartesian-ordered reference operator ℛ⓪ and the 

corresponding reference operator ℜ⓪. Both are defined by the quaternionic function ℜ(𝑞) ≝ 𝑞. 

On the rim between history and future will controlling mechanisms {𝔐𝑛} fill the module related 

subspaces of separable Hilbert space ℌ with data and the new contents of these subspaces are 

subsequently embedded into the non-separable Hilbert space ℋ. The history stays untouched. The 

fill of subspaces with data is described by dedicated stochastic operators. The mechanisms {𝔐𝑛} 

use stochastic processes in order to generate these data. 

A closed subspace in ℌ maps into a subspace of ℋ. Only the countable subspaces of ℋ have a 

sensible dimension. By applying the reverse bra-ket method, defining functions can map 

countable eigenspaces of operators that reside in the separable Hilbert space into continuum 

eigenspaces in the Gelfand triple. Mapping does not influence the flat reference fields that are in 

use as parameter spaces. However, the embedding process affects the deformable field ℭ. 

Indirectly, the embedding process affects the symmetry related field 𝔄. In fact both fields 

interact by affecting the location of the geometric center of the symmetry centers that 

correspond to elementary modules. 

14.4 Parameter spaces 

The reference operator ℜ⓪ that resides in the Gelfand triple delivers a simple field that can act as a 

flat parameter space. This field is not affected by the embedding map. Via its defining function 

ℜ⓪(𝑞⓪) ≝ 𝑞⓪, it is a direct map of parameter space ℛ⓪. 

Symmetry centers are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of a compact symmetry center reference 

operator 𝕾𝑛
𝑥. The superscript  𝑥 distinguishes between properties such as symmetry flavors and spin. 
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Symmetry centers are special forms of parameter spaces that reside in the separable Hilbert space ℌ. 

They also have a representation in the Gelfand triple. In the separable Hilbert space ℌ they have a 

fixed finite dimension, which is supposed to be the same for all symmetry centers. Or the dimension 

is the same for all elementary modules that belong to the same type. Reference operator ℜ⓪ acts as 

the playground of maps of symmetry centers that define local symmetry related charges. Symmetry 

centers float over this background space. The reason for fixing the finite size of the dimension of the 

symmetry centers will be explained later. 

14.5 Embedding field 
The elements of the eigenspace of the stochastic operator ℴ, which is used by a controlling 

mechanism 𝔐𝑛 will be embedded in the eigenspace of operator ℭ. A more smoothed version 𝔘 

of this operator exists that mimics the view that observers get from the field ℭ. For example ℭ is 

smoothed by its Green’s function and 𝔘 is smoothed by a blur that approaches the blur of the 

test function. Observers are the receivers of information that is transported by messengers or by 

other vibrations or deformations of the embedding field. The messengers are objects that use 

the embedding field as their transport medium. Smoothing blurs the perception of the observer. 

The smoothing implemented by 𝔘 represents the minimal observation blur for elementary 

modules. 

With this interpretation the embedding process can be seen as the pursuit by the embedding field to follow the 

density distribution of a set of rational and thus discrete quaternionic target values as close as it tolerated by a 

selected blurring function. This process involves a convolution and this convolution involves an integration. The 

target values are the targets of the defining function for a selected set of parameter values. ℭ uses a narrower blurring 

function than 𝔘 does. ℭ is interpreted as a field, while 𝔘 is interpreted as a potential. 

Operator ℭ can be described by a quaternionic function ℭ(𝑞⓪) that has a parameter space ℜ⓪, 

which is generated by the eigenspace of reference operator ℜ⓪. When applicable, we use the 

same symbol for the parameter space, the defining function and the operator. With the installed 

restrictions, the dynamics of the embedding process can be described by quaternionic 

differential calculus.  

If the discontinuities that are generated by local discontinuities are not too violent , then the 

non-homogeneous second order partial differential equation will elucidate the embedding 

process. This will be treated in detail in the next chapter. 

In ℋthe operator ℭ ≝ |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪| is defined by function ℭ(𝑞⓪) and represents an 

embedding continuum ℭ. This continuum gets affected by the embedding process and thus 

deforms dynamically. 

We will show that two different non-homogeneous second order partial differential equations 

exist that offer different views on the embedding process. The equation that is based upon the 

double quaternionic nabla 𝛻𝛻∗ cannot show wave behavior. However, the equation that is based 

on d’Alembert’s operator 𝔒 acts as a wave equation, which offers waves as part of its set of 

solutions. 

 

𝛻𝛻∗ = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

𝔒 ≝ −𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

(1) 

(2) 
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The embedding continuum ℭ is always and (nearly) everywhere present. The space cavities form 

an exception to this rule. ℭ is deformed and vibrated by discrete artifacts that are embedded in 

this field. In the considered domain, ℭ may contain point-like artifacts and connected regions 

where ℭ(𝑞) is not defined. 

In ℋ, the representations of symmetry centers float over the natural parameter space ℜ⓪ of the 

embedding continuum. The symmetry related charges of the symmetry centers generate local 

contributions 𝜑 to the symmetry related field 𝔄. The location of the center of the symmetry 

center 𝕾𝑛
𝑥  within parameter space ℜ⓪ is affected by the symmetry related field 𝔄. The 

symmetry related field 𝔄 ≝ |𝑞⓪〉𝔄(𝑞⓪)〈𝑞⓪| uses the same natural parameter space ℜ⓪ as the 

embedding field ℭ does. This indicates that the fields 𝔄 and ℭ influence each other in an indirect 

way via the symmetry centers. 

The mechanism 𝔐𝑛 that controls stochastic operator ℴ picks members of a symmetry center 𝕾𝑛
𝑥  

and stores them in the eigenvalues of that operator. These eigenvalues are mapped to parameter 

space ℛ⓪ and in that way they become eigenvalues of a new operator 𝒷. This map involves 

relocation and re-ordering. This fact couples the location of the symmetry related charge of this 

symmetry center with the locations that get embedded in the eigenspace of operator ℭ. 

However, the parameter location of the symmetry related charge does not coincide with the 

parameter location of the eigenvalue of operator 𝒷,that will be embedded in the eigenspace of 

operator ℭ. This embedding involves a map that is described by function ℭ(q). The eigenvalues 

of operator 𝒷 will form a mapped swarm whose center will coincide with the mapped parameter 

location of the symmetry related charge. That location also coincides with the location of the 

mapped geometric center of the symmetry center. The images of eigenvalues of 𝒷 onto ℭ 

correspond to point-like artifacts. However, the images of these eigenvalues on the smoothed 

version 𝔘 of ℭ correspond with proper locations in 𝔘.  

ℭ and 𝔘 lay like snow blankets over the set of discrete rational quaternions. 𝔘 represents a 

thicker and thus smoother snow blanket than ℭ. 

14.6 Symmetry related fields 
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ 

in their symmetry flavor. The elements of coherent sets of quaternions belong to the same symmetry 

flavor. This is the symmetry flavor of the symmetry center 𝕾𝑛
𝑥  that supports the original location 

swarm. Differences between symmetry flavors of a symmetry center 𝕾𝑛
𝑥  and the symmetry flavor of 

the eigenspace of the surrounding reference operator ℛ⓪ cause the presence of a symmetry related 

charge at the center location of that symmetry center. The countable reference parameter space 

ℛ⓪ in the separable Hilbert space ℌ maps onto the continuum parameter space ℜ⓪, which resides 

in the Gelfand triple ℋ. 

Symmetry related charges are point-like objects. These charges generate a field 𝔄 that 

fundamentally differs from the embedding continuum. This symmetry related field also plays a role in 

the binding of modules, but that role differs significantly from the role of the embedding continuum 

ℭ. The defining function 𝔄(𝑞) of field 𝔄 and the defining function ℭ(q) of field ℭ use the same 

parameter space ℜ⓪. 

Symmetry related charges are located at the geometric centers of local symmetry centers. The size 

and the sign of the symmetry related charge depends on the difference of the symmetry flavor of the 

symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry 

centers that belong to different symmetry related charges appear to react on the symmetry 
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differences. Equally signed charges repel and differently signed charges attract. The attached 

coherent location sets that are attached to the symmetry centers will be affected by these effects. 

The symmetry related charges do not directly affect the embedding continuum ℭ. Their effects are 

confined to the map of the symmetry center 𝕾𝑛
𝑥  to the parameter space ℜ⓪. However, with their 

action the symmetry related charges relocate the centers of the corresponding coherent swarms. 

The elements of the swarms deform the embedding continuum. 

The symmetry related charges are point charges. As a consequence the range of the field that is 

generated by a single charge is rather limited. The corresponding Green’s function diminishes as 1/r 

with distance r from the charge ℭ. 

Fields of point charges superpose. A wide spread uniform distribution of symmetry related point 

charges can generate a corresponding wide spread symmetry related field 𝔄. This works well if a 

majority of the charges have the same sign. Still, relevant values of the symmetry related field 𝔄 

depend on the nearby existence of symmetry related charges. 

Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are 

not recurrently generated, but instead their geometric center can get relocated. Together with these 

symmetry centers, the corresponding symmetry related charges and the residing swarms get 

relocated. 

The relative short range of relevant field values makes the symmetry related field a bad candidate for 

the medium on which long range messengers can travel. For that purpose the embedding field ℭ is a 

much better candidate. 

14.7 Free space 

In the separable Hilbert space, the eigenvectors of the Cartesian-ordered reference operator ℛ⓪ 

that do not belong to a module subspace together span free space. The elementary modules reside 

on symmetry centers whose center locations float on the eigenspace of ℛ⓪.  

At every progression instant only one element of the swarm {𝑎𝑗
𝑥} is used. Thus “free space” 

surrounds all elements of the swarm. It forms most of the continuum ℭ, which is deformed by the  

embedding of the currently selected swarm element.   
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15 Field dynamics 
With respect to quaternionic differential calculus the basic fields behave in a similar way. Thus we 

will use a more general symbol for the investigated field in order to analyze behavior of the fields 

under differentiation and integration. In the appendix we will describe the difference between 

quaternionic differential calculus and Maxwell based differential calculus. In order to support that 

comparison we will define the derived subfields 𝔈 and 𝔅. Thus both ℭ and 𝔄 have such subfields! 

15.1 Differentiation 
In the model that we selected, the dynamics of the fields can be described by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry centers 

we encountered two basic fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field 𝔄 and the other is the embedding field ℭ.  

𝔄 determines the dynamics of the symmetry centers. ℭ gets deformed and vibrated by the recurrent 

embedding of point-like elementary particles that each reside on an individual symmetry center.  

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, both fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus.  

Two quite similar, but still significantly different kinds of dynamic geometric differential calculus exist. One kind is the 

genuine quaternionic differential calculus. The other kind is known as Maxwell based differential calculus. These two kinds 

will appear to represent different views onto the basic fields. In order to perform the comparison we must extend the set of 

Maxwell equations. In principle this means that the Maxwell based set of differential equations is incomplete. However, in 

practice and in order to achieve certain goals the set of Maxwell equations is extended with gauge equations. In this 

chapter only the quaternionic differential calculus will be treated. The Maxwell based differential equations and the 

comparison of the two kinds are treated in the appendix. 

15.2 Quaternionic differential calculus. 
First we will investigate the validity range of our pack of pure quaternionic differential equations. 

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) ≈ ∑{
𝜕𝑓

𝜕𝑞𝜇
+ ∑

𝜕

𝜕ν

𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜈

𝜇=0…3

}

𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 + 𝑐𝜇𝜈(𝑞)𝑑𝑞𝜇𝑑𝑞𝜈 

 

Here the coefficients 𝑐𝜇(𝑞) and 𝑐𝜇𝜈(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 are 

quaternionic base vectors. 

The conditions that are accepted by equation (1) do not require more than second order 

differentiation. Thus, these conditions cannot be considered to be general conditions! 

Under more moderate and sufficiently short range conditions the differential function is supposed to 

behave more linearly.  

 

(1) 

(2) 
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𝑑𝑓(𝑞) ≈ ∑
𝜕𝑓

𝜕𝑞𝜇
𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

Under even stricter conditions the partial differential functions become real functions 𝑐0
𝜇(𝑞) that are 

attached to quaternionic base vectors: 

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦
 𝒋 𝑑𝑞𝑦 + 𝑐0

𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0
𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

= ∑(∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍)𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

= ∑ 𝛷𝜇𝑒𝜇𝑑𝑞𝜇

3

𝜇=0…3

 

𝛷𝜇 = 𝑐0
𝜇

= ∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍 =
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜍 =

𝜕𝑓

𝜕𝑞𝜇
 

 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. This is the situation that we 

want to explore with our set of pure quaternionic equations. The resulting conditions are very 

restrictive! These conditions are far from general conditions. However, these restrictions tolerate 

point-like disturbances of the continuity of the original function 𝑓. 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

∇𝑓 = ∑
𝜕𝑓

𝜕𝑞𝜇
𝑒𝜇

3

𝜇=0

 

 

This form of the partial differential equation highlights the fact that in first order and second order 

partial differential equations the nabla operator can be applied as a multiplier. This means that we 

can apply the quaternionic multiplication rule. 

 

𝛷0 = 𝛻0𝜓0 − ⟨𝜵,𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵 × 𝝍 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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The ± sign indicates that the nabla operator is also afflicted by symmetry properties of the applied 

quaternionic number system. The above equations represent only low order partial differential 

equations. In this form the equations can still describe point-like disruptions of the continuity of the 

field. We can take the conjugate: 

 

𝛷∗ = (𝛻𝜓)∗ = 𝛻∗𝜓∗ − 2 𝜵 × 𝝍 

 

𝛻∗(𝛻∗𝜓∗)∗ = 𝛻∗𝛷 = 𝛻∗𝛻𝜓 

 

 The second order quaternionic partial differential equation 
This kind of double partial differentiation will then result in the following quaternionic non-

homogeneous second order partial differentiation equation: 

 

𝜉 = 𝜉0 + 𝝃 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

= {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

We can split the above equation in a real (scalar) part and an imaginary (vector) part.  

Investigation of the details shows that the 𝛻∗𝛻 operator has a rather simple consequence that is 

shown in formula (1) 

 

𝜁0 = 𝛻0𝜙0 + 〈𝜵,𝝓〉 

= 𝛻0𝛻0𝜑0 − 𝛻0〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝜑0 + 𝛻0〈𝜵,𝝋〉 ± 〈𝜵, 𝜵 × 𝝋〉 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= −𝜵𝛻0𝜑0 + 𝜵〈𝜵,𝝋〉 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋 

= −𝜵𝛻0𝜑0 + 𝜵 × 𝜵 × 𝝋 + 〈𝜵, 𝜵〉𝝋 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝝋 

 

(9) 

(10) 

(1) 

(2) 

(3) 
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Here 𝜉 is a quaternionic function that for a part 𝜌 describes the density distribution of a set of point-

like artifacts that disrupt the continuity of function 𝜓(𝑞).  

 

𝜌 = 𝜌0 + 𝝆 = 〈𝜵, 𝜵〉𝜓 =
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

𝜉 − 𝜌 = 𝛻0𝛻0𝜓 

 

In case of a single static point-like artifact, the solution 𝜓 will describe the corresponding Green’s 

function. Its actual form depends on the boundary conditions. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The second order partial differential equation that is based on the double quaternionic nabla can be 

split into two continuity equations, which are quaternionic first order partial differential equations: 

 

𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 follows: 

 

𝛻𝜓 = 𝑚 𝜁 

 

 The other second order partial differential equation 
We will encounter another quaternionic second order partial differential equation, but that one 

cannot be split into two first order quaternionic partial differential equations. It is based on 

d’Alembert’s operator 𝔒=(−𝛻0𝛻0 + 〈𝜵, 𝜵〉). 

 

𝜁 = 𝜁0 + 𝜻 = 𝔒𝜑 = 𝔒(𝜑0 + 𝝋) = {−𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑  

 

Dirac has shown that it can be split into two biquaternionic partial differential equations. This fact is 

treated in the appendix. 

In contrast to the first kind of second order quaternionic partial differential equation, the second 

kind accepts waves as solutions of the homogeneous version of the equation. The waves are 

eigenfunctions of differential operator 𝔒. All superpositions of such eigenfunctions are again 

solutions of the homogeneous equation and can be added to the solutions of the inhomogeneous 

(4) 

(5) 

(6) 

(7) 

(9) 

(1) 
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equation. These superpositions form so called wave packages. When they move, wave packages 

tend to disperse. 

 

𝛻0𝛻0𝑓 = ⟨𝛻, 𝛻⟩𝑓 = −𝜔2𝑓 

 

𝑓(𝑡, 𝑥) = 𝑎 exp(𝑖𝜔(𝑐𝑡 − |𝒙 − 𝒙′|)) ; 𝑐 = ±1 

 

This leads to a category of solutions that are known as solutions of the Helmholtz equation. 

15.3 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

This is revealed by the Fourier equivalents of the equations (4) through (10) in the previous 

paragraph: 

�̃� = �̃�0 + �̃� = 𝑝 �̃� = (𝑝0 +  𝒑)(�̃�0 + �̃�) 

 

The nabla 𝛻 is replaced by operator 𝑝. �̃� is the Fourier transform of 𝛷. 

 

�̃�0 = 𝑝0�̃�0 − ⟨𝒑, �̃�⟩ 

 

�̃� = 𝑝0�̃� + 𝒑�̃�0 ± 𝒑 × �̃� 

 

The equivalent of the quaternionic second order partial differential equation is: 

 

𝜉 = 𝜉0 + �̃� = 𝑝∗𝑝 �̃� = {𝑝0𝑝0 + 〈𝒑, 𝒑〉}�̃� 

 

�̃� = �̃�0 + �̃� = 〈𝒑, 𝒑〉�̃� 

 

The continuity equations result in: 

�̃� = 𝑝�̃� 

 

�̃� = 𝑝∗�̃� 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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15.4 Poisson equations 
The screened Poisson equation is a special condition of the non-homogeneous second order partial 

differential equation in which some terms are zero or have a special value.  

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 = 𝜉 

 

∇0∇0𝜓 = −𝜆2 𝜓 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 = 𝜉 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. In spherical symmetric boundary conditions 

the Green’s function becomes: 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜓 =  ∭𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [12] 

In case of 𝜆 = 0 it resembles the Coulomb or gravitation potential of a point source. 

If 𝜆 ≠ 0, then a solution of equation (3) is: 

 

𝜓 = 𝑎(𝒙) exp (± 𝑖 𝜔 𝜏); 𝜆 = ± 𝑖 𝜔 

 

These solutions concern a screened Poisson equation that is based on the first version of the second 

order partial differential equation. The equation that is based on d’Alembert’s operator delivers:  

 

𝔒𝜑 = 𝔒(𝜑0 + 𝝋) = {−𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑 =  𝜁 

 

∇0∇0𝜑 =
𝜕2𝜑

𝜕𝜏2
= 𝜆2 𝜑 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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(⟨𝛁, 𝛁⟩ − 𝜆2)𝜑 =
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
− 𝜆𝜑 =  𝜁 

 

𝜑 = 𝑎(𝒙) exp (±𝜆𝜏) 

 

The Green’s function is the same, but solution (9) differs significantly from solution (6). The 

difference only concerns the temporal behavior of the field. 

15.5 Special solutions of the homogeneous partial differential equations 
Here we focus on special solutions of the quaternionic homogeneous second order partial 

differential equations. These solutions are of special interest because for odd numbers of 

participating dimensions these equations have solutions in the form of shape keeping fronts.  

The homogeneous equations run as: 

 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
±

𝜕2𝜓

𝜕𝜏2
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
) ±

𝜕2𝜓

𝜕𝜏2
= 0 

 

Here we treat the two kinds of homogeneous equations together. 

First we focus on the solutions that vary in one dimension. Thus: 

 

𝜕2𝜓

𝜕𝑧2
±

𝜕2𝜓

𝜕𝜏2
= 0 

 

We try a solution in the form 𝜑 = 𝑓(𝛼𝑧 + 𝛽𝜏): 

 

𝜕𝑓

𝜕𝑧
= 𝛼𝑓′;

𝜕2𝑓

𝜕𝑧
= 𝛼

𝜕𝑓′

𝜕𝑧
= 𝛼2𝑓′′ 

𝜕𝑓

𝜕𝜏
= 𝛽𝑓′;

𝜕2𝑓

𝜕𝜏2
= 𝛽

𝜕𝑓′

𝜕𝜏
= 𝛽2𝑓′′ 

𝛼2𝑓′′ ± 𝛽2𝑓′′ = 0 

 

This is solved when 𝛼2 = ∓𝛽2. 

For the first kind of the second order partial differential equation this means: 𝛽 = ±𝛼 𝒊, where 𝒊 is a 

normalized imaginary quaternion. With 𝑔(𝑧) = 𝑓(𝛽 𝑧) follows: 

 

𝜑 = 𝑔(𝑧 𝒊 ± 𝜏) 

(8) 

(9) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The function 𝑔 represents a shape keeping front. It is not a wave. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 

𝑧. 

That orientation determines the polarization of the one-dimensional shape keeping front. The 

messengers that are mentioned earlier are constituted of strings of these one-dimensional shape 

keeping fronts. 

 

For the second kind of the second order partial differential equation this means: 𝛽 = ±𝛼. With 

𝑔(𝑧) = 𝑓(𝛽 𝑧) follows:  

𝜑 = 𝑔(𝑧 ± 𝜏) 

 

Next we focus on the three dimensional spherical symmetric condition. In that case the equations 

can be separated by writing 𝜓 = 𝑟 𝜑(𝑟, 𝜏) 

 

𝜕2𝜑

𝜕𝑟2
+

2

𝑟

𝜕𝜑

𝜕𝑟
±

𝜕2𝜑

𝜕𝜏2
= 0 ⟹

𝜕2𝜓

𝜕𝑟2
±

𝜕2𝜓

𝜕𝜏2
= 0 

 

With other words 𝜓 fulfills the conditions of the one-dimensional case. Thus solutions in the form 

𝜑 = 𝑓(𝛼𝑟 + 𝛽𝜏)/𝑟 will fit. 

For the first kind of the second order partial differential equation this means: 𝛽 = ±𝛼 𝒊, where 𝒊 is a 

normalized imaginary quaternion. With 𝑔(𝑥) = 𝑓(𝛽 𝑥) follows: 

 

𝜑 = 𝑔(𝑟 𝒊 ± 𝜏)/𝑟 

 

𝒊 represents a base vector in radial direction. 

For the second kind of the second order partial differential equation this means: 𝛽 = ±𝛼. With 

𝑔(𝑥) = 𝑓(𝛽 𝑥) follows: 

 

𝜑 = 𝑔(𝑥 ± 𝜏)/𝑟 

 

 

 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 

𝑧. 

(7) 

(8) 

(9) 

(10) 
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That orientation determines the polarization of the one-dimensional shape keeping front. The 

messengers that are mentioned earlier are constituted of strings of these one-dimensional shape 

keeping fronts. 

The shape keeping fronts are not waves and do not form wave packages. Instead the shape keeping 

fronts occur in strings and do not disperse. 

15.6 Special formulas 
We list a series of interesting formulas that hold generally for the nabla operator 𝜵. 

 

𝜵〈𝒌, 𝒙〉 = 𝒌 

 

𝒌 is constant. 

 

〈𝛁, 𝐱〉 = 𝟑 

 

𝛁 × 𝐱 = 𝟎 

 

𝛁|𝐱| =
𝐱

|𝐱|
 

 

𝛁
1

|𝐱 − 𝐱′|
= −

𝐱 − 𝐱′

|𝐱 − 𝐱′|3
 

 

〈𝛁,
𝐱 − 𝐱′

|𝐱 − 𝐱′|3
〉 = 〈𝛁,𝛁〉

1

|𝐱 − 𝐱′|
= 〈𝛁, 𝛁

1

|𝐱 − 𝐱′|
〉 = 4𝜋 𝛿(𝐱 − 𝐱′) 

 

Similar formulas apply to the quaternionic nabla and parameter values. 

 

𝛻𝑥 = 1 − 3 ;  𝛻∗𝑥 = 1 + 3;  𝛻𝑥∗ = 1 + 3 

 

𝛻(𝑥∗𝑥) = 𝑥 

 

𝛻|𝑥| = 𝛻√(𝑥∗𝑥) =
𝑥

|𝑥|
 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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𝛻
1

|𝑥 − 𝑥′|
= −

𝑥 − 𝑥′

|𝑥 − 𝑥′|3
 

 

 𝛻∗
𝑥 − 𝑥′

|𝑥 − 𝑥′|3
= 𝛻 𝛻∗

1

|𝑥 − 𝑥′|
= (

𝜕

𝜕𝜏

𝜕

𝜕𝜏
+ 〈𝛁,𝛁〉)

1

|𝑥 − 𝑥′|
≠ 4𝜋 𝛿(𝑥 − 𝑥′) 

 

Instead: 

 

(∇0∇0 + 〈𝜵, 𝜵〉)
1

|𝑥|
=

3𝜏2

|𝑥|5
−

1

|𝑥|3
+

3𝜏2

|𝑥|5
=

6𝜏2 − |𝑥|2

|𝑥|5
=

5𝜏2 − |𝒙|2

|𝑥|5
 

 

(∇0∇0 − 〈𝜵, 𝜵〉)
1

|𝑥|
= −

1

|𝑥|3
 

 

〈𝜵, 𝜵〉
1

|𝒙|
= 4𝜋 𝛿(𝒙) 

 

Thus, with spherical boundary conditions, 
1

4𝜋 |𝒙−𝒙′|
 is suitable as the Green’s function for the Poisson 

equation, but 
1

4𝜋 |𝑥−𝑥′|
 does not represent a Green’s function for the quaternionic operator 

(∇0∇0 + 〈𝛁, 𝛁〉) ! 

For a homogeneous second order partial differential equation a Green’s function is not required. 

Thus, the deficit of a green’s function does not forbid the existence of a quaternionic homogeneous 

second order partial differential equation. Still equation (6) forms the base of the Poisson equation. 

15.7 Differential field equations 
By introducing new symbols 𝕰 and 𝕭 we will keep the quaternionic differential equations closer to 

the Maxwell differential equations. Still essential differences exist between these two sets of 

differential equations. This will be elucidated in detail in the appendix.  

Like the quaternions themselves the quaternionic nabla can be split in a scalar part and a vector part. 

The quaternionic nabla acts as a multiplying operator and this means that the first order partial 

differential equation splits in five terms. Part of these terms are scalars. The other terms are vectors. 

The following formulas are not Maxwell equations. At the utmost the formulas are Maxwell-like. 

 

𝜙 = ∇ 𝜑 = (∇0 + 𝛁) (𝜑0 + 𝝋) = ∇0𝜑0 − 〈𝜵,𝝋〉 + ∇0𝝋 +  𝛁𝜑0 ± 𝛁 × 𝝋 

= ∇0𝜑0 − 〈𝜵,𝝋〉 − 𝕰 ± 𝕭 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 



68 
 

𝕰 ≝ −∇0𝝋 − 𝜵𝜑0 

 

∇0𝕰 = −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 = −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 

 

𝕭 ≝ 𝜵 × 𝝋 

 

These definitions imply: 

 

〈𝕰,𝕭〉 = 0 

 

∇0𝕭 = −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 = 0 

 

𝜵 × 𝕭 = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

The Maxwell equations ignore the real part of 𝜙. 

 

𝜙0 = ∇0𝜙0 = ∇0∇0 𝜑0 − ∇0〈𝜵,𝝋〉 

 

𝜵𝜙0 = ∇0 𝜵𝜑0 −  𝜵〈𝜵,𝝋〉 = ∇0 𝜵𝜑0 − 𝜵 × 𝜵 ×  𝝋 − 〈𝜵, 𝜵〉 𝝋 

 

𝜁 = 𝜁0 + 𝜻 = (∇0 + 〈𝛁, 𝛁〉)𝜑 

 

𝜁0 = (∇0∇0 + 〈𝛁, 𝛁〉)𝜑0 = ∇0 𝜙0 − 〈𝛁,𝕰〉 

 

𝜻 = (∇0∇0 + 〈𝛁,𝛁〉)𝝋 = −𝜵𝜙0 − ∇0𝕰 − 𝜵 × 𝓑 

 

More in detail the equations mean: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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𝜁0 = 𝛻0𝜙0 + 〈𝜵,𝝓〉 

= {𝛻0𝛻0𝜑0 − 𝛻0〈𝜵,𝝋〉} + {〈𝜵,𝜵〉𝜑0 + 𝛻0〈𝜵,𝝋〉 ± 〈𝜵, 𝜵 × 𝝋〉} 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= {−𝜵𝛻0𝜑0 + 𝜵 × 𝜵 × 𝝋 + 〈𝜵, 𝜵〉𝝋} + {𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋} 

{∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋} 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝝋 + 𝜵 × 𝜵 × 𝝋 − 𝜵 × 𝜵 × 𝝋 

 

𝜌0 = 〈𝛁,𝛁〉𝜑0 = 𝜁0 − ∇0∇0𝜑0 

𝝆 = 〈𝛁, 𝛁〉𝝋 = 𝜻 − ∇0𝛁𝟎𝝋 

 

15.8 Quaternionic differential operators 
When applied to quaternionic functions, quaternionic differential operators result in another 

quaternionic function that uses the same parameter space. 

The operators 𝛻0,𝜵,𝛻 = 𝛻0 + 𝜵 , 𝛻∗ = 𝛻0 − 𝜵, 〈𝜵, 𝜵〉, 𝛻𝛻∗ = 𝛻∗𝛻 =  𝛻0𝛻0 + 〈𝜵, 𝜵〉 and  

 

𝔒 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 are all quaternionic differential operators. 

𝛻 is the quaternionic nabla operator.  

𝛻∗ is its quaternionic conjugate. 

The Dirac nabla operators 𝒟 = 𝕚 𝛻0 + 𝜵 and 𝒟∗ = 𝕚 𝛻0 − 𝛻 convert quaternionic functions into 

biquaternionic functions. The equation 

 

𝒟𝒟∗ 𝑓 = 𝔒 𝑓 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 𝑓 = 𝑔  

 

represents a wave equation and is a pure quaternionic equation! The Dirac operator and the Dirac 

equation are treated in detail in the appendix. 

15.9 Poynting vector 
The definitions of 𝕰 and 𝓑 invite the definition of the Poynting vector 𝑺: 

 

𝑺 = 𝕰 × 𝓑 

𝑢 =  ½(〈𝕰,𝕰〉 + 〈𝓑,𝓑〉) 

(15) 

(16) 

(17) 

(18) 

(19) 

(1) 

(2) 

(3) 
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𝜕𝑢

𝜕𝜏
=  〈𝜵, 𝑺〉 + 〈𝑱,𝕰〉 

 

Where 𝜌 represents the presence of charges will 𝑱 represent the flow of charges. 
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16 Double differentiation 

16.1 Right and left sided nabla 
The quaternionic nabla can be split into a right sided version and a left sided version. Without further 

indication we consider the right version as the current version. The version is determined by the 

imaginary part and is linked with the handedness of the product rule. 

∇𝑟𝑓 = 𝑒𝜇
𝜕𝑓

𝜕𝑥𝜇
= 𝑒𝜇𝑒𝜈

𝜕𝑓𝜈
𝜕𝑥𝜇

= 𝑒𝜇𝑒𝜈∇𝜇𝑓𝜈 = ∇𝑓 

∇𝑙𝑓 =
𝜕𝑓

𝜕𝑥𝜇
𝑒𝜇 = 𝑒𝜈𝑒𝜇

𝜕𝑓𝜈
𝜕𝑥𝜇

= 𝑒𝜈𝑒𝜇∇𝜇𝑓𝜈 = (𝑒𝜇𝑒𝜈)∗∇𝜇𝑓𝜈 = (∇𝑟𝑓)∗ = (∇𝑓)∗ = ∇𝑓 − 2𝛁 × 𝒇 

∇𝑟(∇𝑙𝑓) = 𝑒𝜌𝑒𝜈𝑒𝜇∇𝜌∇𝜇𝑓𝜈 

16.2 Double partial differentiation 
The partial differential equations hide that they are part of a differential equation. 

 

𝛻′𝛻𝑓 = 𝜉 = ∑𝑒𝜈
′

𝜕

𝜕𝑞𝜈
′ (∑ 𝑒𝜇

𝜕𝑓

𝜕𝑞𝜇

3

𝜇=0

)

3

𝜈=0

= (𝑒𝜈
′𝑒𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ )𝑓 

 

16.3 Single difference 
Single difference is defined by 

𝑑𝑓(𝑞) = ∑∑
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍  𝑑𝑞𝜇

3

𝜍=0

 

3

𝜇=0

= ∑ 𝜙𝜈𝑒𝜈𝑑𝑞𝜈

3

𝜈=0

 

 

𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍 =

[
 
 
 
 
 
 
 
 
 

𝜕𝑓0

𝜕𝑞0

𝜕𝑓1

𝜕𝑞0
𝒊

𝜕𝑓2

𝜕𝑞0
𝒋

𝜕𝑓3

𝜕𝑞0
𝒌

𝜕𝑓0

𝜕𝑞1
𝒊

𝜕𝑓1

𝜕𝑞1

𝜕𝑓2

𝜕𝑞1
𝒌 −

𝜕𝑓3

𝜕𝑞1
𝒋

𝜕𝑓0

𝜕𝑞2
𝒋 −

𝜕𝑓1

𝜕𝑞2
𝒌

𝜕𝑓2

𝜕𝑞2

𝜕𝑓3

𝜕𝑞2
𝒊

𝜕𝑓0

𝜕𝑞3
𝒌

𝜕𝑓1

𝜕𝑞3
𝒋 −

𝜕𝑓2

𝜕𝑞3
𝒊

𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

 

(1) 

(2) 

(3) 
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=

[
 
 
 
 
 
 
 
 
 
𝜕𝑓0

𝜕𝑞0
−ℰ𝑥𝒊 −ℰ𝑦𝒋 −ℰ𝑧𝒌

ℰ𝑥𝒊
𝜕𝑓1

𝜕𝑞1
−ℬ𝑧1𝒌 −ℬ𝑦2𝒋

ℰ𝑦𝒋 −ℬ𝑧2𝒌
𝜕𝑓2

𝜕𝑞2
−ℬ𝑥1𝒊

ℰ𝑧𝒌 −ℬ𝑦1𝒋 −ℬ𝑥2𝒊
𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

Here  

ℬ𝑥 = ℬ𝑥1 − ℬ𝑥2;  ℬ𝑦 = ℬ𝑦1 − ℬ𝑦2;  ℬ𝑧 = ℬ𝑧1 − ℬ𝑧2 

 

𝑓̇ =
𝑑𝑓

𝑑𝜆
= ∑𝜙𝜇𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

= ∑ 𝜙𝜇𝑒𝜇�̇�𝜇

3

𝜇=0

 

 

The scalar 𝜆 is can be a linear function of τ or a scalar function of q. 

�̇� ≝
𝑑𝑞

𝑑𝜆
= 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆
= 𝑒𝜇�̇�𝜇 

 

Double difference is defined by: 

𝑑2𝑓(𝑞) = ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

)𝑒𝜍𝑑𝑞′𝜈

3

𝜈=0

 

 

𝑓̈ ≝
𝑑2𝑓(𝑞)

𝑑𝜆2
= 𝑒𝜚𝑓̈𝜚 = ∑𝑒𝜈

′ (∑
𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

)𝑒𝜍

𝑑𝑞′𝜈

𝑑𝜆

3

𝜈=0

 

= ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇�̇�𝜇

3

𝜇=0

)𝑒𝜍�̇�
′𝜈

3

𝜈=0

= (�̇�𝜇�̇�′𝜈
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜈

′𝑒𝜇)𝑓 = 𝜁𝜈𝜇 𝑓 

 

𝜁𝜈𝜇 = 𝑒𝜈
′𝑒𝜇 �̇�′𝜈 �̇�𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ = 𝑒𝜈

′𝑒𝜇Υ𝜈𝜇 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Υ𝜈𝜇 =  �̇�′𝜈 �̇�𝜇
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′  

 

If we apply 𝜙 = 𝛻𝑓as the first differential operation and 𝜉 = 𝛻∗𝜙 as the second differential 

operation, then 𝑒 = {1,+𝒊, +𝒋,+𝒌} and 𝑒′ = {1 − 𝒊,−𝒋,−𝒌} and 

 

Υ𝜈𝜇 = [

+Υ00 +Υ01𝒊 +Υ02𝒋 +Υ03𝒌
−Υ10𝒊 ⊛ Υ11 +Υ12𝒌 +Υ13𝒋
−Υ20𝒋 −Υ21𝒌 ⊛ Υ22 −Υ23𝒊
−Υ30𝒌 −Υ31𝒋 +Υ32𝒊 ⊛ Υ33

] 

 

Here the switch ⊛ distinguishes between quaternionic differential calculus and Maxwell based 

differential calculus. See the appendix. 

16.4 Deformed space 
If the investigated field represents deformed space ℭ, then the field ℜ, which represents the 

parameter space of function ℭ(𝑞) represents the virgin state of that deformed space. 

Further, the equation 
𝑑2ℭ(𝑞)

𝑑𝜆2 = 0 represents a local condition in which ℭ is not affected by external 

influences. Here 𝜆 can be any linear combination of progression τ or it can represent the equivalent 

of local quaternionic distance: 

 

𝜆 = 𝑎 𝑞0 + 𝑏 

or 

𝜆 = |𝑞|  

  

(11) 
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17 Actions of the fields 
Apart from the symmetry related fields 𝔄𝑥 that are raised by the charges of the symmetry centers, at 

least one other fields exists. That field is the embedding field ℭ.  

The origins of the two fields differ fundamentally. The embedding field smoothly follows a 

distribution of discrete quaternionic values, which are eigenvalues of a series of operators. Some of 

these values do not fit properly in the set of values that surrounds them. In the special condition that 

these disparities appear in coherent swarms, we have indicated the swarm as the representative of 

an elementary particle. The disparities are due to difference in the symmetries of the underlying 

domains. These symmetries determine how the values cooperate in convolutions. If the disparities 

were not present, then the embedding field would be equal to the parameter space ℛ and that 

continuum would follow parameter space ℜ. 

The embedding field is not directly affected by the symmetry related charges of the symmetry 

centers. It is indirectly affected, because the symmetry related fields affect the location of the 

symmetry centers that house the objects that can deform the embedding field. In principle each 

disruption of the continuity of the field, thus each element of the swarm that represents an 

elementary particle affects the embedding field ℭ. The smoothed version 𝔘 of the embedding field is 

far less vigilant. Also the symmetry related field 𝔄,which is coupled to the geometric center of the 

symmetry center reacts much less vigilant.  

In this view, fields are more or less blurred representations of discrete distributions, where the elements of the distribution 

are target values of a function that has rational quaternions as its parameter space. In some cases the discrete distribution 

represents a dynamic location density distribution. 

The embedding field ℭ is affected by the embedding of artifacts that are picked by a dedicated 

controlling mechanism that uses a symmetry center 𝕾𝑛
𝑥. as a resource. After selection of the location 

of the artifact, the controlling mechanism embeds this artifact into the embedding continuum ℭ. This 

continuum is represented by the continuum eigenspace of operator ℭ.  

Each of these mechanisms operates in a cyclic and stochastic fashion. The embedding events occur in 

the direct neighborhood of the geometric center of the corresponding symmetry center. The result is 

a recurrently regenerated coherent location swarm that also represent a stochastic hopping path. 

The swarm is centered around the geometric center of the symmetry center. Hopping means that 

the controlling mechanism generates at the utmost one embedding location per progression step. 

This means that the hopping object can be considered as a point-like artifact. At the embedding 

instant the artifact actually resides at the location that is represented by an element of the location 

swarm. Thus, the swarm represents the spatial map of a set of potential detection locations. The 

swarm is generated within the symmetry center 𝕾𝑛
𝑥  and is encapsulated by 𝜕H𝑛

𝑥. The actions of the 

mechanisms deform the field ℭ inside the floating regions H𝑛
𝑥. The deformation of ℭ reaches 

beyond the region H𝑛
𝑥.  

In this way, the mechanism creates an elementary object, which is able to deform the embedding 

field ℭ and inherits the symmetry related charge from the symmetry center. The deformation 

represents the local contribution to the embedding field by the elementary object that owns the 

swarm.  

On the other hand the geometric center of the symmetry center houses the electric charge that 

influences field 𝔄. This view can be reversed. It is possible to consider the path that the 

geometric center of the symmetry center takes under the influence of both fields. This view 

requires an estimate of the results of the actions of these fields. This will be achieved via the path 
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integral. First we will investigate the influence of the embedding field ℭ. In a later phase we will 

add the results of the much less vigilant actions of the symmetry related field 𝔄. 

17.1 Path of the symmetry center 
The symmetry center 𝕾𝑛

𝑥  that conforms to encapsulated region H𝑛
𝑥, keeps its private symmetry 

flavor. At the passage through the boundary the symmetry flavor of the background parameter space 

ℜ⓪ flips from history to future. As a consequence the symmetry related charge of the symmetry 

center will flip.  

However, the passage of the symmetry center through the rim may also be interpreted as the 

annihilation of the historic symmetry center and the creation of a new symmetry center with a 

reverse symmetry flavor that will extend its live in the future. 

The passage of the symmetry centers through the rim goes together with annihilation and creation 

phenomena for the objects that reside on these platforms. Thus, this passage is related to the 

annihilation and creation of elementary objects. However, most of these occurrences do not lead to 

the complete conversion of the concerned object into another behavior mode. These exceptional 

occurrences are known as pair production and pair annihilation. Thus, in most cases the behavior 

mode of the module persists. 

In the quaternionic space-progression model the existence of symmetry centers is independent of 

progression. With other words the number of symmetry centers is a model constant. The passage 

through the rim does not influence this number. Only the characteristics of the combination of the 

symmetry center and the background parameter space are affected by the passage. 

17.2 Path integral 
In this primary investigation we ignore the actions of the symmetry related potential. They are far 

less vigilant than the direct results of the embedding of individual locations. 

Elementary objects reside on an individual symmetry center. A dedicated mechanism controls its 

recurrent generation and embeds the object into the embedding field. The path of the symmetry 

center is the averaged path of the embedded object. The embedded object is hopping along the 

elements of the generated location swarm. The landing locations of the hops are generated by the 

controlling mechanism in a stochastic fashion, but such that at first approximation the swarm as a 

whole can be considered to be moving as one unit. This is possible when the swarm is characterized 

by a continuous location density distribution, which owns a displacement generator. That is the case 

when the location density distribution owns a Fourier transform. This fact enables the description of 

the path of the swarm by a “path integral”. The hopping of the embedded object can be described by 

a sequence of factors that after multiplication represent the whole path. Each factor represents 

three sub-factors. 

The procedure that underlies the path integral depends on the fact that the multiplication of factors that are all very close 

to unity can be replaced by a summation.  

The first sub-factor represents the jump from configuration space to momentum space. This sub-

factor is given by the inner product of the Hilbert vector that represents the current location and the 

Hilbert vector that represents the momentum of the swarm. This second Hilbert vector is assumed to 

be constant during the generation of the location swarm. 

The second sub-factor represents the effect of the hop in momentum space.  

The third sub-factor represents the jump back from momentum space to configuration space. 
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In the sequence of factors the third sub-factor of the current term compensates the effect of the first 

sub-factor of next term. Their product equals unity. 

What results is a sequence of factors that are very close to unity and that represent the effects of the 

hops in momentum space. Due to the fact that the momentum is considered to be constant, the 

logarithms of the terms can be taken and added in an overall sum. In this way, the multiplication is 

equal to the sum of the logarithms of the factors.  

This summation approaches what is known as the “path integral”. In our interpretation it is not an 

integral, but instead it is a finite summation. In more detail the procedure can be described as 

follows. 

We suppose that momentum 𝒑𝑛 is constant during the particle generation cycle in which the 

controlling mechanism produces the swarm {𝑎𝑖}. Every hop gives a contribution to the path. 

These contributions can be divided into three steps per contributing hop: 

1. Change to Fourier space. This involves as sub-factor the inner product 〈𝑎𝑖|𝑝𝑛〉. 

2. Evolve during an infinitesimal progression step into the future.  

a. Multiply with the corresponding displacement generator 𝒑𝑛.  

b. The generated step in configuration space is (𝒂𝑖+1 − 𝒂𝑖). 

c. The action contribution factor in Fourier space is 〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉. 

3. Change back to configuration space. This involves as sub-factor the inner product 
〈𝑝𝑛|𝑎𝑖+1〉 

4. The combined term contributes a factor 〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+1〉. 

5. Two subsequent steps give: 

 

〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+1〉〈𝑎𝑖+1|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+2〉 

 

= 〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+2 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+2〉 

 

The red terms in the middle turn into unity. The other terms also join. 

Over a full particle generation cycle with N steps this results in: 

∏〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+1〉

𝑁−1

𝑖=1

 

= 〈𝑎1|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑁 − 𝒂1〉)〈𝑝𝑛|𝑎𝑁〉 = 〈𝑎1|𝑝𝑛〉 exp (∑〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁

𝑖=2

) 〈𝑝𝑛|𝑎𝑁〉 

= 〈𝑎1|𝑝𝑛〉 exp(𝐿) 〈𝑝𝑛|𝑎𝑁〉 

 

𝐿 𝑑𝜏 = ∑〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁−1

𝑖=2

= 〈𝒑𝑛, 𝑑𝒒〉 

𝐿 = 〈𝒑𝑛, �̇�〉 

(1) 

(2) 

(3) 

(4) 
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𝐿 is known as the Lagrangian. 

Equation (4) holds for the special condition in which 𝒑𝑛 is constant. If 𝒑𝑛 is not constant, then 

the Hamiltonian 𝐻 varies with location. In the next equations we ignore subscript  𝑛. 

 

𝜕𝐻

𝜕𝑞𝑖
= −�̇�𝑖 

 

𝜕𝐻

𝜕𝑝𝑖
= �̇�𝑖 

 

𝜕𝐿

𝜕𝑞𝑖
= �̇� 

 

𝜕𝐿

𝜕�̇�𝑖
= 𝑝𝑖 

 

𝜕𝐻

𝜕𝜏
= −

𝜕𝐻

𝜕𝜏
 

 

𝑑

𝑑𝜏

𝜕𝐿

𝜕�̇�𝑖
=

𝜕𝐿

𝜕𝑞𝑖
 

 

𝐻 + 𝐿 = ∑�̇�𝑖𝑝𝑖

3

𝑖=1

 

Here we used proper time 𝜏 rather than coordinate time 𝑡. 

The effect of the hopping path is that the geometric center of the symmetry center is moved over a 

small resulting distance 𝒂𝑁 − 𝒂1. Together with “charge” (𝑁 ∙ 𝑄𝑛) this move determines the next 

version of momentum 𝒑𝑛. 

The result is that both the symmetry related fields 𝔄𝑥 and the embedding field ℭ influence the 

location of the geometric center of the symmetry center 𝕾𝑛
𝑥. 

In this investigation we ignored the influence of the symmetry related field 𝔄. This field influences 

momentum 𝒑𝑛 and the corresponding eigenvector |𝑝𝑛〉. This means that the product of the red 

colored middle terms is no longer equal to unity. Instead the product differs slightly from unity and 

the effect can be included in the path integral. In this way a small slowly varying extra contribution is 

added to each subsequent term in the summation. This extra contribution is a smooth function of 

progression and thus, it is a smooth function of the index of the term. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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17.1 Acceleration of the symmetry center 
Due to their actions, the fields 𝔄 and ℭ may accelerate the location of the symmetry center on which 

an elementary object resides. This occurs via the interaction of these fields with the contributions 

that the symmetry center and the recurrently embedded elementary object add to the influences of 

these fields. 

The symmetry center and with it the residing elementary object float over the background parameter 

space ℜ. This means that these items also float over the fields 𝔄 and ℭ.  

 The symmetry related field 
The symmetry related charge 𝑄𝑛

𝑥 of the symmetry center 𝕾𝑛
𝑥  contributes the local scalar potential 

𝜑𝑛0
 to the symmetry related field 𝔄.  

𝜑𝑛0
(𝒒) =

𝑄𝑛
𝑥

|𝒒 − 𝒄𝑛
𝑥|

 

 

On the other hand  

 

𝑬𝑛(𝒒) = 𝛁𝜑𝑛0
=

𝑄𝑛
𝑥(𝒒 − 𝒄𝑛

𝑥)

|𝒒 − 𝒄𝑛
𝑥|3

 

 

Another symmetry center 𝕾𝑚
𝑥  contributes potential 𝜑𝑚0

 to the symmetry related field 𝔄. The force 

𝑭𝑛𝑚 between the two symmetry centers equals: 

 

𝑭𝑛𝑚 = 𝑬𝑛𝑄𝑚
𝑥 =

𝑄𝑛
𝑥𝑄𝑚

𝑥 (𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 )

|𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 |3
= −𝑭𝑚𝑛 = −𝑬𝑚𝑄𝑛

𝑥 

 

This need not correspond to an actual acceleration. On the other hand, if relative to the parameter 

space ℜ, the movement of the symmetry center 𝕾𝑛
𝑥  is uniform with speed 𝒗𝑛, then the scalar 

potential 𝜑𝑛0
 corresponds to a vector potential 𝝋𝑛 = 𝜑𝑛0

 𝒗𝑛. If relative to the parameter space ℜ, 

the symmetry center actually accelerates, then this goes together with an extra field 𝑬𝑛 = 𝝋�̇� =

 𝜑𝑛0
 𝒗�̇� that represents the corresponding change of field 𝔄. Thus. If the two forces 𝑭𝑛𝑚 and 𝑭𝑚𝑛 

do not hold each other in equilibrium, then the field 𝕬 will change dynamically with this extra 

contribution. 

 The embedding field 
The location swarms that are generated by dedicated controlling mechanisms produce a local 

potential that also can accelerate the symmetry center on which the location swarm resides relative 

to the parameter space ℜ. We analyze the situation by assuming that the swarm is represented by a 

Gaussian location distribution. Thus, we use the corresponding artifact as a test particle. The 

corresponding local potential that contributes to field ℭ equals  

 

(1) 

(2) 

(3) 
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𝜒𝑛(𝑟) = −
𝑄𝑛

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

Here 𝑄𝑛 represents the strength of the local potential. At somewhat larger distances the potential 

behaves as a single “charge” potential.  

 

𝜒𝑛(𝒒) ≈
−𝑄𝑛

4𝜋|𝒒 − 𝒄𝑛
𝑥|

 

 

This virtual “charge” is located at the center of the symmetry center 𝕾𝑛
𝑥. The scalar potential 𝜒𝑛(𝒒) 

adds to the embedding field ℭ. The result is that ℭ gets deformed. 

The local scalar potential 𝜒𝑛(𝒒) corresponds to a derived field 𝓔𝑛(𝒒). 

 

𝓔𝑛(𝒒) = 𝛁𝜒𝑛 = −
𝑄𝑛(𝒒 − 𝒄𝑛

𝑥)

|𝒒 − 𝒄𝑛
𝑥|3

 

 

Another symmetry center 𝕾𝑚
𝑥  contributes potential 𝜒𝑚(𝒒) to the embedding field ℭ. The force 𝑭𝑛𝑚 

between the two symmetry centers equals: 

 

𝑭𝑛𝑚 = 𝓔𝑛𝑄𝑚 = −
𝑄𝑛𝑄𝑚(𝒄𝑛

𝑥 − 𝒄𝑚
𝑥 )

|𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 |3
= −𝑭𝑚𝑛 = −𝓔𝑚𝑄𝑛 

 

This need not correspond to an actual acceleration. 

If the platform 𝕾𝑚
𝑥  on which the swarm resides moves with uniform speed 𝒗, then the local potential 

corresponds to a local vector potential. 

 

𝝌𝑛 = 𝜒𝑛𝒗 

 

If this platform accelerates, then this goes together with an extra contribution to field 𝓔𝑛 that 

counteracts the acceleration. 

 

𝓔𝑛 = �̇�𝑛 = 𝜒𝑛�̇� 

 

This effect is known as inertia. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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17.2 Grouped artifacts 
Next we consider grouped artifacts that cause discontinuities in the realm of a symmetry center. The 

concerned field is the embedding field. Since we do no longer focus on symmetry related charges, we 

will omit the superscript  𝑥. 

We consider the case that the locations of the artifacts form a coherent swarm {𝒄𝑛} that can be 

characterized by a continuous location density distribution 𝜌(𝒒).  

 

 𝜒(𝒒) = ∑ ∭𝜌(𝒒) 𝑄𝑛 𝛿(𝒒 − 𝒄𝑛)
𝑉

𝑁

𝑛=0

= −
1

4𝜋
∑ ∭ 𝜌(𝒒)𝑄𝑛 〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉

𝑉

𝑁

𝑛=0

 

 

If we use the spherical symmetric Gaussian location distribution of artifacts 𝜌(𝑟) that was 

introduced earlier as test function,  

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔗(𝑟) = −
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 

 

then a potential in the form of 

 

𝔗(𝑟) = −
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

results.  

At somewhat larger distances the potential behaves like a single charge potential.  

 

𝜒(𝑟) ≈  
−𝑄

4𝜋𝑟
 

 

This gives an idea of what happens when a mechanism that acts within the realm of a symmetry 

center produces a coherent swarm of artifacts that will be embedded into a field that gets deformed 

by these artifacts.  

Despite the fact that it is constituted from a myriad of singular contributions, the potential in 

equation (3) is a continuous function and its gradient at the center point equals zero! Thus the 

corresponding deformation has a “wide-spread” binding effect. 

(1) 

(2) 

(3) 

(4) 
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17.3 The smoothed embedding field 
The embedding field ℭ is described by a mostly continuous function ℭ(𝑞). The convolution of 

ℭ(𝑞) with a blurring function transforms this function in an everywhere* continuous function 

𝔘(𝑞). Space cavities exist where both ℭ(𝑞) and 𝔘(𝑞) are not defined. The blurring function 

integrates over the regeneration cycle of elementary objects in the progression part of the 
domain. If in the spatial domain the test function 𝔗(𝑞) is used as the blurring function for 

isolated discontinuities and a Gaussian distribution is used for coherent swarms of 

discontinuities, then the function 𝔘(𝑞) defines the smoothed embedding field 𝔘. This field takes 

the role of a model-wide potential. In physics this is the role of the gravitation potential. In this 

model we consider 𝔘 to represent the equivalent of universe, however it represents a blurred 

universe. 

The local contribution to the embedding field ℭ by the elementary particle has a smoothed 

versions which is the equivalent of its individual potential. It contributes to field 𝔘. 

17.4 Spurious artifacts 
Due to their minor effect, spurious artifacts will be hidden for observers due to the blanket that is 

spread over the corresponding field by the smoothed version of this field that the observers will see. 

Only recurrent regeneration of the artifact can generate a reasonable detection probability. 
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18 Messengers 
Messengers are configured by solutions of the quaternionic second order partial differential 

equation. For odd numbers of participating dimensions some of the solutions of the homogeneous 

second order partial differential equation are combinations of shape keeping fronts. In three 

dimensions the spherical shape keeping fronts diminish their amplitude as 1/𝑟 with distance 𝑟 of the 

trigger point. One-dimensional wave fronts keep their amplitude. As a consequence these shape 

keeping fronts can travel huge distances through the field that supports them. Each shape keeping 

front can carry a bit of information and/or energy. In order to reach these distances the carrying field 

must exist long enough and it must reach far enough.  

The symmetry related field 𝔄 does not fulfil the requirements for long distance travel. It depends on 

the nearby existence of symmetry related charges and its amplitude also diminishes as 1/r with 

distance from the charge. 

The embedding field ℭ is a better candidate for long distance transfer of energy and information. ℭ 

exists always and everywhere. One-dimensional shape keeping fronts vibrate the ℭ field, but do not 

deform this field. They just follow existing deformations.  

Creating a string of one-dimensional shape keeping fronts requires a recurrent shape keeping front 

generation process. Such processes do not underlay the generation of symmetry related charges that 

support the 𝔄 field. However, such processes exist during the recurrent embedding of artifacts that 

occurs in the ℭ field. 

Recurrent generation of spherical shape keeping fronts is capable to deform the corresponding field. 

It has similar effects as a stationary deformation by a point-like artifact has. 

18.1 Photons 
The fixed speed of shape keeping fronts translates in the same fixed speed for the messengers. A 

string of one-dimensional shape keeping fronts can carry a quantized amount of energy. Photons 

appear to be the physical realizations of the messengers. The relation 𝐸 = ℎ 𝜈 and the fixed speed of 

photons indicate that at least at relative short range the string of shape keeping fronts takes a fixed 

amount of progression steps for its creation, for its passage and for its absorption.  

However, observations of long range effects over cosmological distances reveal that these relations 

do not hold over huge distances. Red-shift of patterns of “old” photons that are emitted by atoms 

and arrive from distant galaxies indicate that the spatial part of field ℭ is extending as a function of 

progression. 

With the interpretation of photons as strings of shape keeping fronts this means that the duration of 

emission and the duration of absorption are also functions of progression. As a consequence, some 

of the emitted wave fronts are “missed” at later absorption. The detected photon corresponds to a 

lower energy and a lower frequency than the emitted photon has. According to relation 𝐸 = ℎ 𝜈 that 

holds locally, the detected photon appears to be red-shifted. The energy of the “missed” shape 

keeping fronts is converted into other kinds of energy or the missed shape keeping fronts keep 

proceeding as lower energy photons. Spurious shape keeping fronts may stay undetected. 

18.2 Consequences for our model 
Thus, the quaternionic second order partial differential equation may be valid in the vicinity of the 

images of symmetry centers inside ℭ, but does not properly describe the long range behavior of ℭ. 

Due to its restricted range and the non-recurrent generation of its charges, the 𝔄 field does not show 

the equivalents of photons and red-shift phenomena. 
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The long range phenomena of photons indicate that the parameter space ℜ⓪ of ℭ may actually own 

an origin. For higher progression values and for most of the spatial reach of field ℭ, that origin is 

located at huge distances. Information coming from low progression values arrives with photons that 

have travelled huge distances. They report about a situation in which symmetry centers were located 

on average at much smaller inter-distances. 

Instead of photons the 𝔄 field may support waves, such as radio waves and microwaves. These 

waves are solutions of the wave equation, which is part of Maxwell based differential calculus. 

On the other hand the wave equation also has shape keeping fronts as its solutions. 
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19 At the start of progression 
At progression value 𝜏 = 0, the mechanisms that generate the artifacts, which cause discontinuities 

in the embedding manifold ℭ have not yet done any work. It means that this manifold was flat and its 

defining function equaled its parameter space at instance 𝜏 = 0.  

The model offers the possibility that the domain Ω expands as a function of 𝜏. In that case it is 

possible that domain Ω covers a growing amount of symmetry centers. 
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20 Discussion 
This paper only considers the divergence based version of the generalized Stokes theorem. The 

consequences for the curl based version are not investigated in detail. From fluid dynamics it is 

known that artifacts that are embedded in a fluid may suffer from the vorticity of the embedding 

field [2]. 

This paper does not investigate the consequences of polar ordering. It probably relates to the spin 

properties of elementary objects. In that case the polar ordering of symmetry centers regulates the 

distinction between fermions and bosons. The half integer spin particles may use ordering of the 

azimuth, where the integer spin particles use the ordering of the polar angle. However, this does not 

explain the difference in behavior between these categories. 

The concept of exterior derivative is carefully crafted by skillful mathematicians, such that it becomes 

independent of the selection of parameter spaces. However, in a situation like this in which several 

parameter spaces float on top of a background parameter space, the selection of the ordering of the 

parameter spaces does matter. The symmetry flavors of the coupled parameter spaces determine 

the values of the integrals that account for the contributions of the artifacts. It is represented by the 

symmetry related charges of these artifacts. These symmetry related charges are supposed to be 

located at the geometric centers of the symmetry centers.  

As happens so often, physical reality reveals facts (such as the symmetry related charges) that cannot 

easily be discovered by skilled mathematicians. The standard model contains a short list of electric 

charges that correspond to the symmetry related charges. The standard model does not give an 

explanation for the existence of this short list. Here it becomes clear that the electric charge and the 

color charge are a properties of connected parameter spaces and not a property of the objects that 

use these parameter spaces. Instead, these objects inherit the charge properties from the platform 

on which they reside. 

Both the symmetry related fields and the embedding continuum affect the geometric location of the 

symmetry center. They do that in different ways. 

If electric charges are properties of the connection between spaces, then the fields to which these 

charges contribute implement the forces between these connections. No extra objects are needed 

to implement these forces! 

It is sensible to expect that depending on the type of their “charges” all basic fields are capable of 

attracting or repelling the spaces on which these “charges” reside. This behavior is described by the 

differential and integral equations that are obeyed by the considered field. 

This model is no more and no less than a mathematical test case. The paper does not pretend that 

physical reality behaves like this model. But the methods used and the results obtained in this paper 

might learn more about how physical reality can be structured and how it can behave. 
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1 Lattices 
A lattice is a set of elements 𝑎, 𝑏, 𝑐, … that is closed for the connections ∩ and ∪. These connections 

obey: 

 The set is partially ordered.  
o This means that with each pair of elements 𝑎, 𝑏 belongs an element 𝑐, such that 

𝑎 ⊂  𝑐 and 𝑏 ⊂  𝑐.  

 The set is a ∩half lattice.  
o This means that with each pair of elements 𝑎, 𝑏 an element 𝑐 exists, such that 

𝑐 =  𝑎 ∩  𝑏.  
 The set is a ∪half lattice. 

o This means that with each pair of elements 𝑎, 𝑏 an element 𝑐 exists, such that 

𝑐 =  𝑎 ∪  𝑏.  
 The set is a lattice. 

o This means that the set is both a ∩half lattice and a ∪half lattice. 
 

The following relations hold in a lattice:  

 

𝑎 ∩  𝑏 =  𝑏 ∩  𝑎 

(𝑎 ∩  𝑏)  ∩  𝑐 =  𝑎 ∩  (𝑏 ∩  𝑐) 

𝑎 ∩  (𝑎 ∪  𝑏)  =  𝑎 

 

𝑎 ∪  𝑏 =  𝑏 ∪  𝑎 

(𝑎 ∪  𝑏)  ∪  𝑐 =  𝑎 ∪  (𝑏 ∪  𝑐) 

𝑎 ∪  (𝑎 ∩  𝑏)  =  𝑎 

 

The lattice has a partial order inclusion ⊂: 

 

𝑎 ⊂  𝑏 ⟺  𝑎 ∩  𝑏 =  𝑎 

 

A complementary lattice contains two elements 𝑛 and 𝑒 with each element 𝑎 a complementary 

element 𝑎′ such that: 

 

𝑎 ∩  𝑎′ =  𝑛 

𝑎 ∩  𝑛 =  𝑛 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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𝑎 ∩  𝑒 =  𝑎 

 

𝑎 ∪  𝑎′  =  𝑒 

𝑎 ∪  𝑒 =  𝑒 

𝑎 ∪  𝑛 =  𝑎 

 

An orthocomplemented lattice contains two elements 𝑛 and 𝑒 and with each element 𝑎 an element 

𝑎′′ such that: 

 

𝑎 ∪  𝑎′′   =  𝑒 

𝑎 ∩  𝑎′′  =  𝑛 

(𝑎′′)′′ = 𝑎 

𝑎 ⊂  𝑏 ⇔  𝑏′′  ⊂  𝑎′′ 

 

𝑒 is the unity element; 𝑛 is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

a ∩ (b ∪ c) = (a ∩ b) ∪ ( a ∩ c) 

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) 

 

A modular lattice supports: 

 

(𝑎 ∩  𝑏)  ∪  (𝑎 ∩  𝑐)  =  𝑎 ∩  (𝑏 ∪  (𝑎 ∩  𝑐)) 

 

A weak modular lattice supports instead: 

  

There exists an element 𝑑 such that 

 

𝑎 ⊂  𝑐 ⇔  (𝑎 ∪  𝑏)  ∩  𝑐 =  𝑎 ∪  (𝑏 ∩  𝑐)  ∪  (𝑑 ∩  𝑐) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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where 𝑑 obeys: 

 

(𝑎 ∪  𝑏)  ∩  𝑑 =  𝑑 

𝑎 ∩  𝑑 =  𝑛 

𝑏 ∩  𝑑 =  𝑛 

(𝑎 ⊂  𝑔) 𝑎𝑛𝑑 (𝑏 ⊂  𝑔)  ⇔  𝑑 ⊂  𝑔 

 

In an atomic lattice holds  

 

∃𝑝 ∈ 𝐿 ∀𝑥 ∈ 𝐿 {𝑥 ⊂  𝑝 ⇒  𝑥 =  𝑛} 

 

∀𝑎 ∈ 𝐿 ∀𝑥 ∈ 𝐿 {(𝑎 <  𝑥 <  𝑎 ∩  𝑝)  ⇒  (𝑥 =  𝑎 𝑜𝑟 𝑥 =  𝑎 ∩  𝑝)} 

 

𝑝 is an atom 

 

  

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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2 Quaternionic and Maxwell field equations 
In this section, we will compare two sets of differential equations. Both sets use pure space as part of 

the parameter space. 

 Quaternionic differential equations 

o These equations use progression as one of its parameters. 

 Maxwell based differential equations 

o These equations use quaternionic distance as one of its parameters. 

In this chapter we will use a switch ⊛ = ±1 that selects between two different sets of differential 

calculus. One set concerns low order quaternionic differential calculus. The other set concerns 

Maxwell based differential calculus. The switch will be used to highlight the great similarity and the 

significant differences between these sets. 

 

By introducing new symbols 𝕰 and 𝕭 we will turn the quaternionic differential equations into 

Maxwell-like quaternionic differential equations. We introduced a simple switch ⊛= ±1 that apart 

from the difference between the parameter spaces, will turn one set of equations into the other set.  

Maxwell based differential calculus splits quaternionic functions into a scalar function and a vector 

function. Instead of the quaternionic nabla ∇= ∇0 + 𝛁 the Maxwell based equations use the scalar 

operator ∇0=
𝜕

𝜕𝑡
 and the vector nabla 𝛁 as separate operators. Maxwell equations use a switch 𝛼 

that controls the structure of a gauge equation. 

 

𝜘 = 𝛼
𝜕

𝜕𝑡
 𝜑0 + 〈𝜵,𝝋〉 

 

For Maxwell based differential calculus is 𝛼 = +1 and ∇0=
𝜕

𝜕𝑡
. The switch value is ⊛ −1. 

For quaternionic differential calculus is 𝛼 = −1 and ∇0=
𝜕

𝜕𝜏
. The switch value is ⊛= +1. 

In the book EMFT the scalar field 𝜘 is taken as a gauge with 

𝛼 = 1; Lorentz gauge 

𝛼 = 0; Coulomb gauge 

 𝛼 = −1; Kirchhoff gauge.  

We will use the definition of a scalar field 𝜘: 

 

𝜘 ≝ 𝛼 𝛻𝑡𝜑0 + 〈𝛁,𝝋〉 ⟺ 𝜙0 =  𝛻𝜏𝜑0 − 〈𝛁,𝝋〉 

 

In Maxwell based differential calculus the scalar field 𝜘 is ignored or it is taken equal to zero. As will 

be shown, zeroing 𝜘 is not necessary for the derivation of the Maxwell based wave equation [13]. 

(1) 

(2) 
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Maxwell equations split the considered functions in scalar functions and vector functions. The 

Maxwell differential operators are also split and as a consequence they cannot be treated as 

multiplying operators. We keep them together with curly brackets.  

 

𝜙 = {𝜙0, 𝝓} = {∇0, 𝛁}{𝜑0, 𝝋} 

 

𝜙0 = ∇0 𝜑0 −⊛ 〈𝜵,𝝋〉 

 

𝝓 = ∇0𝝋 + 𝜵𝜑0 ± 𝜵 × 𝝋 

 

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra Maxwell 

equations. Choice ⊛= −1 conforms to the Lorenz gauge. We define extra symbols 𝕰  and 𝕭 for 

parts of the first order partial differential equation. 

 

𝕰 ≝ −∇0𝝋 − 𝜵𝜑0 

 

∇0𝕰 = −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 = −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 

 

𝕭 ≝ 𝜵 × 𝝋 

 

These definitions imply: 

 

〈𝕰,𝕭〉 = 0 

 

∇0𝕭 = −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 = 0 

 

𝜵 × 𝕭 = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Also the following two equations are not genuine Maxwell equations, but they relate to the gauge 

equation. 

 

∇0𝜙0 = ∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉 

 

𝜵𝜙0 = ∇0 𝜵𝜑0 − ⊛ 𝜵〈𝜵,𝝋〉 = ∇0 𝜵𝜑0 −⊛ 𝜵 × 𝜵 ×  𝝋 − ⊛ 〈𝜵, 𝜵〉 𝝋 

 

𝜁 = (∇0 +⊛ 〈𝛁,𝛁〉)𝜑 = 𝜁0 + 𝜻 ⟺ {𝜁0, 𝜻} = {∇0, −𝛁}{𝜙0, 𝜙} 

 

𝜁0 = (∇0∇0 +⊛ 〈𝛁, 𝛁〉)𝜑0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

 

𝜻 = (∇0∇0 +⊛ 〈𝛁, 𝛁〉)𝝋 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵 × 𝓑 

 

More in detail the equations mean: 

 

𝜁0 = 𝛻0𝜙0 +⊛ 〈𝜵,𝝓〉 

= {𝛻0𝛻0𝜑0 −⊛ 𝛻0〈𝜵,𝝋〉} + {⊛ 〈𝜵, 𝜵〉𝜑0 +⊛ 𝛻0〈𝜵,𝝋〉 ±⊛ 〈𝜵, 𝜵 × 𝝋〉} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜁0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

= {∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉} + {⊛ ∇0〈𝜵,𝝋〉 +⊛ 〈𝜵, 𝜵〉𝜑0} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋} 

{∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 +⊛ 𝜵 × 𝜵 × 𝝋 − 𝜵 × 𝜵 × 𝝋 

 

𝜻 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵 × 𝓑 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {∇0∇0 𝝋 + ∇0𝜵𝜑0} −⊛ 𝜵 × 𝜵 × 𝝋 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 

 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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Equation (21) reveals why Maxwell based differential equations use the gauge 𝜘 rather than accept 

equation (4) as a genuine Maxwell equation. 

 

𝜌0 =⊛ 〈𝛁,𝛁〉𝜑0 = 𝜁0 − ∇0∇0𝜑0 

𝝆 =⊛ 〈𝛁, 𝛁〉𝝋 = 𝜻 − ∇0𝛁𝟎𝝋 

 

Thus a simple change of a parameter and the control switch ⊛ turn quaternionic differential 

equations into equivalent Maxwell differential equations and vice versa. This makes clear that both 

sets represent two different views from the same subject, which is a field that can be stored in the 

eigenspace of an operator that resides in the Gelfand triple. 

Still the comparison shows an anomaly in equation (21) that represents a significant difference 

between the two sets of differential equations that goes beyond the difference between the 

parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue comes 

down to the conclusion that the Maxwell based equations do not lead via the coupling of two first 

order quaternionic partial differential equations to a regular second order partial quaternionic 

differential equation, but instead the wave equation represents a coupling between two solutions of 

different first order biquaternionic differential equations that use different parameter spaces. In the 

Dirac equation these solutions represent either particle behavior or antiparticle behavior. 

  

(23) 

(24) 
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3 Genuine Maxwell wave equations 
The scalar part of the genuine Maxwell based differential equals zero. This is oppressed by the Lorenz 

gauge. 

The genuine Maxwell differential equations deliver different inhomogeneous wave equations: 

 

𝕰 ≝ −𝛻0𝜑 − 𝜵𝜑0 

 

𝕭 ≝ 𝜵 × 𝝋 

 

The following definitions follow from the definitions of 𝕰 and 𝕭. 

 

𝛻0𝕰 ≝ −𝛻0𝛻0 𝝋 − 𝛻0𝜵𝜑0 

 

〈𝜵, 𝕰〉 ≝ −𝛻0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0  

 

𝛻0𝕭 ≝ −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 ≝ 𝟎 

 

𝜵 × 𝕭 ≝ 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

The Lorenz gauge means: 

 

𝛻0𝝋𝟎 + 〈𝜵,𝝋〉 = 0 

 

The genuine Maxwell based wave equations are: 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝜑0 = 𝜌0 = 〈𝜵,𝕰〉 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝝋 = 𝐽 = 𝜵 × 𝕭 − ∇0𝕰 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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4 Dirac equation 

4.1 The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices and partial 

derivatives [14].  

Instead of the usual {
𝜕𝑓

𝜕𝑡
 , 𝒊

𝜕𝑓

𝜕𝑥
, 𝒋

𝜕𝑓

𝜕𝑦
, 𝒌

𝜕𝑓

𝜕𝑧
} we want to use operators 𝛻 = {∇0, 𝛁} 

The subscript 0 indicates the scalar part. Bold face indicates the vector part. 

The operator 𝛻 relates to the applied parameter space. This means that the parameter space is also 

configured of combinations 𝑥 = {𝑥0, 𝒙 } of a scalar 𝑥0 and a vector 𝒙. Also the functions 𝑓 = {𝑓0, 𝒇 } 

can be split in scalar functions 𝑓0 and vector functions 𝒇.  

The local parameter 𝑡 = 𝑥0 represents the scalar part of the applied parameter space. 

 

Dirac was searching for a split of the Klein-Gordon equation into two first order differential 

equations.  

 

𝜕2𝑓

𝜕𝑡2
−

𝜕2𝑓

𝜕𝑥2
−

𝜕2𝑓

𝜕𝑦2
−

𝜕2𝑓

𝜕𝑧2
= −𝑚2𝑓 

 

(∇0∇0 − 〈𝛁, 𝛁〉)𝑓 = 𝔒𝑓 = −𝑚2𝑓 

 

Here 𝔒 = ∇0∇0 − 〈𝛁, 𝛁〉 is the d’Alembert operator. 

 

Dirac used a combination of matrices and spinors in order to reach this result. He applied the Pauli 

matrices in order to simulate the behavior of vector functions under differentiation. 

The unity matrix 𝐼 and the Pauli matrices  𝜎1, 𝜎2, 𝜎3 are given by [15]: 

 

𝐼 = [
1  0
0 1

] , 𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝕚 
𝕚 0

] , 𝜎3 = [
1 0
0 −1

] 

 

For one of the potential orderings of the quaternionic number system, the Pauli matrices together 

with the unity matrix 𝐼 relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 

 

1 ⟼ 𝐼, 𝒊 ⟼  𝕚 𝜎1, 𝒋 ⟼ 𝕚 𝜎2, 𝒌 ⟼ 𝕚 𝜎3 

 

𝜎1𝜎2 − 𝜎2𝜎1 = 2 𝕚 𝜎3;  𝜎2𝜎3 − 𝜎3𝜎2 = 2 𝕚 𝜎1;  𝜎3𝜎1 − 𝜎1𝜎3 = 2 𝕚 𝜎2 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝜎1𝜎1 = 𝜎2𝜎2 = 𝜎3𝜎3 = 𝐼 

 

The different ordering possibilities of the quaternionic number system correspond to different 

symmetry flavors. Half of these possibilities offer a right handed external vector product. The other 

half offer a left handed external vector product. 

 

We will regularly use: 

 

〈𝕚 𝝈, 𝜵〉 = 𝜵 ; 𝕚 = √−1 

 

With 

 

𝑝𝜇 = −𝕚 𝛻𝜇  

 

follow 

 

𝑝𝜇𝜎𝜇 = −𝕚 𝑒𝜇𝛻𝜇 

 

〈𝝈, 𝒑〉 ↔ 𝕚 𝜵 

 

4.2 Dirac’s approach 
The original Dirac equation uses 4x4 matrices 𝛂 and β. [6]: 

𝜶 and 𝛽 are matrices that implement the quaternion arithmetic behavior including the possible 

symmetry flavors of quaternionic number systems and continuums.  

 

𝛼𝜇 = [
0 𝜎𝜇

𝜎𝜇 0
] 

 

𝛽 = [
1 0
0 −1

] 

 

𝛽𝛽 = 𝐼 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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The interpretation of the Pauli matrices as representation of a special kind of angular momentum has 

led to the half integer eigenvalue of the corresponding spin operator. 

Dirac’s selection leads to 

 

(𝑝0 − 〈𝜶,𝒑〉 − 𝛽𝑚𝑐){𝜑} = 0 

 

{𝜑} is a four component spinor. 

Which splits into 

 

(𝑝0 − 〈𝝈, 𝒑〉 − 𝑚𝑐)𝜑𝐴 = 0 

 

and 

 

(𝑝0 − 〈𝝈, 𝒑〉 + 𝑚𝑐)𝜑𝐵 = 0 

 

𝜑𝐴 and 𝜑𝐵 are spinor components. Thus the original Dirac equation splits into: 

 

(𝛻0 − 𝜵 − 𝕚 𝑚𝑐)𝜑𝐴 = 0 

 

(𝛻0 − 𝜵 + 𝕚 𝑚𝑐)𝜑𝐵 = 0 

 

This split does not lead easily to a second order partial differential equation that looks like the Klein 

Gordon equation. 

4.3 Relativistic formulation 
Instead of Dirac’s original formulation, usually the relativistic formulation is used [16]. 

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different 

choice influences the form of the equations that result for the two spinor components. 

 

𝛾𝜇 = 𝛽 𝛼𝜇 = [
0 𝜎1

−𝜎𝜇 0 ] ; 𝜇 = 1,2,3 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 
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𝛾0 = 𝛽 = [
1 0
0 −1

] 

 

𝛾5 = 𝑖0𝛾0𝛾1𝛾2𝛾3 = [
0 1
1 0

] 

The matrix 𝛾5 anti-commutes with all other gamma matrices. 

Several different sets of gamma matrices are possible. The choice above leads to a “Dirac equation” 

of the form  

 

(𝕚 𝛾𝜇𝛻𝜇 − 𝑚𝑐)𝜑 = 0 

 

More extended: 

(𝛾0

𝜕

𝜕𝑡
+ 〈𝜸, 𝜵〉 −

 𝑚

𝕚 ℏ
) {𝜓} = 0 

 

([
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 〈𝝈, 𝜵〉

−〈𝝈,𝜵〉 0
] −

 𝑚

𝕚 ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

(𝕚 [
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 𝜵
−𝜵 0

] −
 𝑚

ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

𝕚 
𝜕

𝜕𝑡
𝜑𝐴 + 𝛁𝜑𝐵 −

 𝑚

𝕚 ℏ
𝜑𝐴 = 0 

 

−𝕚 
𝜕

𝜕𝑡
𝜑𝐵 − 𝛁𝜑𝐴 −

 𝑚

𝕚 ℏ
𝜑𝐵 = 0 

 

Also this split does not easily lead to a second order partial differential equation that looks like the 

Klein Gordon equation. 

4.4 A better choice 
Another interpretation of the Dirac approach replaces 𝛾0 with 𝛾5 [17]: 

 

(𝛾5

𝜕

𝜕𝑡
− 𝛾1

𝜕

𝜕𝑥
− 𝛾2

𝜕

𝜕𝑦
− 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝕚 ℏ
) {𝜓} = 0 

 

(3) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(1) 

(2) 
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(𝛾5

𝜕

𝜕𝑡
− 〈𝜸, 𝜵〉 −

 𝑚

𝕚 ℏ
) {𝜓} = 0 

 

([
0 1
1 0

]
𝜕

𝜕𝑡
− [

0 〈𝝈, 𝜵〉

−〈𝝈,𝜵〉 0
] −

 𝑚

𝕚 ℏ
[
1 0
0 1

]) [
𝜓𝐴

𝜓𝐵
] = 0 

 

This invites splitting of the four component spinor equation into two equations for the two 

components 𝜓𝐴 and 𝜓𝐵 of the spinor: 

 

𝕚 ∇0𝜓𝐴 + 𝕚 〈𝝈, 𝜵〉𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

𝕚 ∇0𝜑𝐵 − 𝕚 〈𝝈, 𝜵〉𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

(𝕚 𝛻0 + 𝜵)𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

(𝕚 𝛻0 − 𝜵)𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

This looks far more promising. We can insert the right part of the first equation into the left part of 

the second equation. 

 

(𝕚 𝛻0 − 𝜵)(𝕚 𝛻0 + 𝜵)𝜓𝐴 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐴 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 

 

=
 𝑚

ℏ
(𝕚 𝛻0 − 𝜵) 𝜓𝐵 =

 𝑚2

ℏ2
 𝜓𝐴 

 

(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 =
 𝑚2

ℏ2
 𝜓𝐴 

 

(𝕚 𝛻0 + 𝜵)(𝕚 𝛻0 − 𝜵)𝜓𝐵 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐵 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 

=
 𝑚

ℏ
(𝕚 𝛻0 + 𝜵) 𝜓𝐴 =

 𝑚2

ℏ2
 𝜓𝐵 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 =
 𝑚2

ℏ2
 𝜓𝐵 

 

This is what Dirac wanted to achieve. The two first order differential equations couple into a second 

order differential equation that is equivalent to a Klein Gordon equation. The homogeneous version 

of this second order partial differential equation is a wave equation and offers solutions that are 

waves. 

The nabla operator acts differently onto the two component spinors  𝜓𝐴 and  𝜓𝐵. 

4.5 The quaternionic nabla and the Dirac nabla 
The modified Pauli matrices together with a 2×2 identity matrix implement the equivalent of a 

quaternionic number system with a selected symmetry flavor.  

 

𝐼 = [
1  0
0 1

] ; 𝕚 𝜎1 = [
0  𝕚 
𝕚 0

] ;  𝕚 𝜎2 = [ 
0 1

−1 0
] ; 𝕚 𝜎3 = [

𝕚 0
0 −𝕚 

] 

 

The modified Pauli matrices together with the 𝐼0 matrix implements another structure, which is not a 

version of a quaternionic number system. 

 

𝐼0 = [
𝕚 0
0 𝕚

] ;   𝕚 𝜎1 = [
0  𝕚 
𝕚 0

] ;   𝕚 𝜎2 = [ 
0 1

−1 0
] ;  𝕚 𝜎3 = [

𝕚 0
0 −𝕚 

] 

 

Both the quaternionic nabla and the Dirac nabla implement a way to let these differential operators 

act as multipliers. 

The quaternionic nabla is defined as 

 

𝛻 = 𝛻0 + 𝜵 = 𝑒𝜇𝛻𝜇 = 𝛻0 + 𝕚 〈𝝈, 𝜵〉 

 

𝛻∗ = 𝛻0 − 𝜵  

 

For scalar functions and for vector functions hold: 

 

𝛻∗𝛻 = 𝛻𝛻∗ = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

The Dirac nabla is defined as 

 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝒟 = 𝕚 𝛻0 + 𝜵 = 𝕚 𝛻0 + 𝕚 〈𝝈, 𝜵〉 

 

𝒟∗ = 𝕚 𝛻0 − 𝜵 

 

𝒟∗𝒟 = 𝒟 𝒟∗ = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

 Prove 
We use  

 

𝛻0𝜵𝑓0 = 𝜵𝛻0𝑓0 

 

𝛻0𝜵𝒇 = 𝜵𝛻0𝒇 = −𝛻0〈𝜵, 𝒇〉 + 𝛻0𝜵 × 𝒇 

 

𝜵𝜵𝑓0 = −〈𝜵,𝜵〉𝑓0 + 𝜵 × 𝜵𝑓0 = −〈𝜵, 𝜵〉𝑓0 

 

𝜵(𝜵𝒇) = −𝜵〈𝜵, 𝒇〉 + 𝜵 × 𝜵 × 𝒇 = −〈𝜵,𝜵〉𝒇 = (𝜵𝜵)𝒇 

 

𝜵 × 𝜵 × 𝒇 = 𝜵〈𝜵, 𝒇〉 − 〈𝜵, 𝜵〉𝒇 

 

〈𝜵, 𝜵 × 𝒇〉 = 0 

 

𝜵 × 𝜵 𝑓0 = 𝟎 

 

This results in 

 

(𝛼𝛻0 + 𝜵)𝑓0 = 𝛼𝛻0𝑓0 + 𝜵𝑓0 

 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

 

= 𝛼2𝛻0𝛻0 + 𝛼𝛻0𝜵𝑓0 − 𝛼𝜵𝛻0𝑓0 + 〈𝜵, 𝜵〉𝑓0 − 𝜵 × 𝜵𝑓0 

 

= 𝛼2𝛻0𝛻0 + 〈𝜵, 𝜵〉𝑓0 

(6) 

7) 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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(𝛼𝛻0 + 𝜵)𝒇 = 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵 × 𝒇 

 

(𝛼𝛻0 − 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵 × 𝒇)(𝛼𝛻0 + 𝜵)𝒇 

 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

 

= 𝛼2𝛻0𝛻0𝒇 − 𝛼𝛻0〈𝜵, 𝒇〉 + 𝛼𝛻0𝜵 × 𝒇 + 𝛼𝛻0〈𝛁, 𝒇〉 

 

−𝛼𝛻0𝛁 × 𝒇 + 𝛁〈𝜵, 𝒇〉 + 〈𝛁,𝜵 × 𝒇〉 − 𝛁 × 𝜵 × 𝒇 

 

= 𝛼2𝛻0𝛻0𝒇 + 〈𝜵, 𝜵〉𝒇 

 

 Discussion 
For 𝛼 = 1 the equations  

 

(𝛻∗𝛻 𝑓0 = 𝛻𝛻∗ 𝑓0 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 

 

(𝛻∗𝛻 𝒇 = 𝛻𝛻∗ 𝒇 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 

 

work for both parts of a quaternionic function 𝑓 = 𝑓0 + 𝒇. 

 

For 𝛼 = 𝕚  the equations  

 

(𝒟∗𝒟 𝑓0 = 𝒟𝒟∗ 𝑓0 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 

 

(𝒟∗𝒟 𝒇 = 𝒟𝒟∗𝒇 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 

 

work separately for scalar function 𝑓0.and vector function 𝒇. The right sides of the equations work for 

quaternionic functions. Thus 

 

(𝑔 = 𝔒𝑓 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓 

(10) 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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is a valid equation for quaternionic functions 𝑓 and 𝑔. 

Thus the d’Alembert operator 𝔒 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 is a valid quaternionic operator. 

The nabla operators reflects the structure of the parameter space of the functions on which they 

work. Thus the quaternionic nabla operator reflects a quaternionic number system. The Dirac nabla 

operator reflects the structure of the parameters of the two component spinors that figure in the 

modified Dirac equation. 

Between the two spinor components 𝜓𝐴 and 𝜓𝐵, the scalar part of the parameter space appears to 

change sign with respect to the vector part. 

Applied to a quaternionic function, the quaternionic nabla results again in a quaternionic function. 

 

𝜙 = 𝜙0 + 𝝓 = (𝛻0 + 𝜵)(𝑓0 + 𝒇) = 𝛻0𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 +  𝛻0𝒇 + 𝜵 × 𝒇 

 

Applied to a quaternionic function, the Dirac nabla results in a biquaternionic function. 

 

(𝕚 𝛻0 + 𝜵)(𝑓0 + 𝒇) =  𝛻0 𝕚 𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 + 𝕚 𝛻0𝒇 + 𝜵 × 𝒇 

 

Neither the Dirac nabla 𝒟 nor its conjugate 𝒟∗ delivers quaternionic functions from quaternionic 

functions. They are not proper quaternionic operators. 

Thus, the d’Alembert operator cannot be split into two operators that map quaternionic functions 

onto quaternionic functions. 

In contrast the operators 𝛻∗𝛻, 𝛻 and 𝛻∗ are all three proper quaternionic operators. 

4.6 Quaternionic format of Dirac equation 
The initial goal of Dirac was to split the Klein Gordon equation into two first order differential 

equations. He tried to achieve this via the combination of matrices and spinors. This leads to a result 

that does not lead to an actual second order differential equation, but instead it leads to two 

different first order differential equations for two different spinors that can be coupled into a second 

order partial differential equation that looks like a Klein Gordon equation. The homogeneous version 

of the Klein Gordon equation is a wave equation. However, that equation misses an essential right 

part of the Klein-Gordon equation. 

 

Quaternionic differential calculus supports first order differential equations that in a natural way lead 

to a second order partial differential equation that differs significantly from a wave equation. 

The closest quaternionic equivalents of the first order Dirac equations for the electron and the 

positron are: 

 

(6) 

(7) 
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∇𝜓 = (𝛻0 + 𝜵)(𝜓0 + 𝝍) = 𝑚𝜑 

 

∇∗𝜑 = (𝛻0 − 𝜵)(𝜑0 + 𝝋) = 𝑚𝜓 

 

𝛻∗𝛻𝜓 = (𝛻0 − 𝜵)(𝛻0 + 𝜵)(𝜓0 + 𝝍) = 𝑚2𝜓 

 

𝛻∗𝛻𝜓 = 𝛻∗𝛻𝜓 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝜓 = 𝑚2𝜓 

 

𝛻𝛻∗𝜑 = 𝛻∗𝛻𝜑 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝜑 = 𝑚2𝜑 

 

A similar equation exists for spherical coordinates. 

 

These second order equations are not wave equations. Their set of solutions does not include waves. 

4.7 Interpretation of the Dirac equation 
The original Dirac equation can be split into two equations. One of them describes the behavior of 

the electron. The other equation describes the behavior of the positron.  

The positron is the anti-particle of the electron. These particles feature the same rest mass, but other 

characteristics such as their electric charge differ in sign. The positron can be interpreted as an 

electron that moves back in time. Sometimes the electron is interpreted as a hole in a sea of 

positrons. These interpretations indicate that the functions that describe these particles feature 

different parameter spaces that differ in the sign of the scalar part. 

 Particle fields 
The fields that characterize different types of particles can be related to parameter spaces that 

belong to different versions of the quaternionic number system. These fields are coupled to an 

embedding field on which the particles and their private parameter spaces float. 

The reverse bra-ket method shows how fields can on the one hand be coupled to eigenspaces and 

eigenvectors of operators which reside in quaternionic non-separable Hilbert spaces and on the 

other hand can be coupled to pairs of parameter spaces and quaternionic functions. Quaternionic 

functions can be split into scalar functions and vector functions. In a quaternionic Hilbert space 

several different natural parameter spaces can coexist. Natural parameter spaces are formed by 

versions of the quaternionic number system. These versions differ in the way that these number 

systems are ordered. 

The original Dirac equations might represent this coupling between the particle field and the 

embedding field. 

(1) 

(2) 

(3) 

(4) 

(5) 
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4.8 Alternatives 

 Minkowski parameter space 
In quaternionic differential calculus the local quaternionic distance can represent a scalar that is 

independent of the direction of progression. It corresponds to the notion of coordinate time 𝑡. This 

means that a small coordinate time step ∆𝑡 equals the sum of a small proper time step ∆𝜏 and a 

small pure space step ∆𝒙. In quaternionic format the step ∆𝜏 is a real number. The space step ∆𝒙 is 

an imaginary quaternionic number. The original Dirac equation does not pay attention to the 

difference between coordinate time and proper time, but the quaternionic presentation of these 

equations show that a progression independent scalar can be useful as the scalar part of the 

parameter space. This holds especially for solutions of the homogeneous wave equation. 

In this way coordinate time is a function of proper time 𝜏 and distance in pure space |∆𝒙|. 

 

|∆𝑡|2 = |∆𝜏|2 + |∆𝒙|2 

 

Together 𝑡 and 𝒙 deliver a spacetime model that has a Minkowski signature. 

 

|∆𝜏|2 = |∆𝑡|2 − |∆𝒙|2 

 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each 

other’s quaternionic conjugate. The 𝛽 matrix implements isotropic conjugation. An adapted 

conjugation matrix can apply anisotropic conjugation. This concerns conjugations in which only one 

or two dimensions get a reverse ordering. In that case the equations handle the dynamic behavior of 

anisotropic particles such as quarks. Quarks correspond to solutions that have anisotropic parameter 

spaces. Also for these quarks exist advanced particle solutions and retarded antiparticle solutions. 
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5 Tensor differential calculus 
We restrict to 3+1 D parameter spaces. 

Parameter spaces can differ in the way they are ordered and in the way the scalar part relates to the 

spatial part. 

Fields are functions that have values, which are independent of the selected parameter space. Fields 

exist in scalar fields, vector fields and combined scalar and vector fields.  

Combined fields exist as continuum eigenspaces of normal operators that reside in quaternionic non-

separable Hilbert spaces. These combined fields can be represented by quaternionic functions of 

quaternionic parameter spaces. However, the same field can also be interpreted as the eigenspaces 

of the Hermitian and anti-Hermitian parts of the normal operator. The quaternionic parameter space 

can be represented by a normal quaternionic reference operator that features a flat continuum 

eigenspace. This reference operator can be split in a Hermitian and an anti-Hermitian part. 

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number 

system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16 

versions that differ in their Cartesian ordering. If spherical ordering is pursued, then for each 

Cartesian start orderings two extra orderings are possible. All these choices correspond to different 

parameter spaces. 

Further it is possible to select a scalar part of the parameter space that is a scalar function of the 

quaternionic scalar part and the quaternionic vector part. For example it is possible to use 

quaternionic distance as the scalar part of the new parameter space. 

Tensor differential calculus relates components of differentials with corresponding parameter 

spaces. 

Components of differentials are terms of the corresponding differential equation. These terms can be 

split in scalar functions and in vector functions. Tensor differential calculus treats scalar functions 

different from vector functions. 

Quaternionic fields are special because the differential operators of their defining functions can be 

treated as multipliers. 

5.1 The metric tensor 
The metric tensor determines the local “distance”. 

𝑔𝜇𝜈 = [

𝑔00 𝑔01 𝑔02 𝑔03

𝑔10 𝑔11 𝑔12 𝑔13

𝑔20 𝑔21 𝑔22 𝑔23

𝑔30 𝑔31 𝑔32 𝑔33

] 

The consequences of coordinate transformations 𝑑𝑥𝜈 ⇒ 𝑑𝑋𝜈 define the elements 𝑔𝜇𝜈 as  

𝑔𝜇𝜈 =
𝑑𝑋𝜇

𝑑𝑥𝜈
 

5.2 Geodesic equation 
The geodesic equation describes the situation of a non-accelerated object. In terms of proper time 

this means: 

(1) 

(2) 

(1) 
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𝜕2𝑥𝜇

𝜕𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

In terms of coordinate time this means: 

𝜕2𝑥𝜇

𝜕𝑡2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡
+Г𝛼𝛽

0 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

 Derivation: 
We start with the double differential. Let us investigate a function 𝑋 that has a parameter space 

existing of scalar 𝜏 and a three dimensional vector 𝒙 = {𝑥1, 𝑥2, 𝑥3}. The function 𝑋 represents three 

dimensional curved space. The geodesic conditions are: 

𝜕2𝑋𝜆

𝜕𝜏2
= 0 ;  𝜆 = 1,2,3 

First we derive the first order differential. 

𝑑𝑋𝜆 = ∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑𝑥𝛽

3

𝛽=1

 

We can use the summation convention for subscripts and superscripts. This avoids the requirement 

for summation symbols. 

𝑑𝑋𝜆

𝑑𝜏
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑𝑥𝛽

𝑑𝜏
 

𝑑2𝑋𝜆 = ∑ (
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽 + 𝑑𝑥𝛽 ∑

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

3

𝛼=1

𝑑𝑥𝛼)

3

𝛽=1

 

Now we obtained the double differential equation. 

𝑑2𝑋𝜆

𝑑𝜏2
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
+

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
= 0 

The geodesic requirement results in: 

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
= −

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

If we use summation signs: 

∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

= − ∑ (𝑑𝑥𝛽 ∑ (
𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

 

Next we multiply both sides with 
𝜕𝑋𝜆

𝜕𝑥𝛽 and sum again: 

∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
(∑

𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

))

3

𝜆=1

= − ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

 

We apply the fact: 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇

𝜕𝑋𝜆

𝜕𝑥𝛽
)

3

𝜆=1

= 𝛿𝛽
𝜇

 

This results into: 

𝑑2𝑥𝜇 = ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

= Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 

Without summation signs: 

Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 ≝ (
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)𝑑𝑥𝛼𝑑𝑥𝛽 

 

𝑑2𝑥𝜇

𝑑𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝜏2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝑡2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡
+ (

𝜕𝑥0

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

5.3 Toolbox 
Coordinate transformations: 

𝑆
𝜈′𝜌′
𝜇′

=
𝜕𝑥𝜇′

𝜕𝑥𝜇

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜌

𝜕𝑥𝜌′ 𝑆𝜈𝜌
𝜇

 

The Christoffel symbol plays an important role: 

2 𝑔𝛼𝛿 Г𝛽𝛼
𝛿 =

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
+

𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
+

𝜕𝑔𝛽𝛾

𝜕𝑥𝛼
 

Г𝛼𝛽
𝜇

≝
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
 

Г𝛽𝛼
𝛿 = Г𝛼𝛽

𝛿  

 

Covariant derivative 𝛻𝜇𝛼 and partial derivative 𝜕𝜇α of scalars 

𝜕𝜇′α =
𝜕𝑥𝜇′

𝜕𝑥𝜇
𝜕𝜇α 

Covariant derivative 𝛻𝜇𝑉𝜈 and partial derivative 𝜕𝜇𝑉𝜈of vectors 

𝛻𝜇𝑉𝜈 = 𝜕𝜇𝑉𝜈 + Г𝜇𝜆
𝜈 𝑉𝜆 

𝛻𝜇𝜑𝜈 = 𝜕𝜇𝜑𝜈 − Г𝜇𝜈
𝜆 𝜑𝜆 

𝛻𝜇𝑔𝛼𝛽 = 0 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



111 
 

𝛻𝜇𝑔𝛼𝛽 = 0 

𝑔𝜈𝜇𝑔𝜈𝜇 = 𝛿𝜈
𝜇

 

𝑔 = det(𝑔𝜈𝜇) 

𝑔′ = (det(
𝜕𝑥𝜇′

𝜕𝑥𝜇 ))

−2

𝑔 

det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 ) is Jacobian 

𝑑4𝑥 ≝ 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3 

𝑑4𝑥′ = det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 )𝑑4𝑥 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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