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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is inspiration for many modern attempts
to develop new physical theories. The original theory has problems which
may well be overcome, and thus Kaluza theory should be looked at again:
it is a natural, if not necessary, geometric unification of gravity and elec-
tromagnetism. Here a general demonstration that the Lorentz force law
can be derived from a range of Kaluza theories is presented. This is investi-
gated via non-Maxwellian kinetic definitions of charge that are divergence-
free and relate Maxwellian charge to 5D components of momentum. The
possible role of torsion is considered as an extension. It is shown, how-
ever, that symmetric torsion components are likely not admissible in any
prospective theory. As a result Kaluza’s original theory is rehabilitated
and a call for deeper analysis made.

PACS numbers 04.50.Cd ; 02.40.Ky ; 04.20.-q ; 04.40.Nr

1 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [1][2][3][4] using a fifth
wrapped-up spatial dimension gives a taste of unification of electromagnetism
with gravity in a way that is generally considered incomplete and is widely be-
lieved to be untenable. Nevertheless all sorts of variants and modern versions
have been constructed [1][5]. The underlying aim was, and remains, particularly
promising in terms of explanatory power due to the natural unification of elec-
tromagnetism with geometry. The phrase ‘Kaluza miracle’ used to be used more
often than now to express the stunning coincidence of Kaluza’s original theory.
Under certain circumstances the stress-energy tensor of electromagnetism could
be derived from Kaluza’s relatively straight forward and geometrically appeal-
ing assumptions. Such is often the nature of the explanatory power of pure
mathematics in theoretical physics [6]. The philosophy of this investigation lies
in the notion that such explanatory power is not only a guide to the theoret-
ical physicist, when dealing with fundamental physics, but necessary. Though
discussion of such a post-reductionist philosophical view is not the aim of this



paper it is the personal belief of the author that this is the case [7][8][9], and
that such an approach in theory design is being obfuscated by the conceptual
difficulties of quantum mechanics. The approach here is classical.

Naturally Kaluza’s theory may be a part of a larger and still more explana-
tory theory, for example a full unification of all four known forces. So here
mathematical generality is sought for future compatibility and applicability.

Kaluza theories naturally define the electromagnetic 4-potential out of 4
components of the 5D metric that can be carried over to the 4D embedding
that represents Einsteinian space-time [1], and from which Maxwell’s laws can
be derived in the natural way. It naturally embeds general relativity [10]{11][12]
using the so-called cylinder condition. The cylinder condition states that partial
derivatives in the Kaluza direction are vanishing. Charge conservation however
is not usually precise in the Maxwellian sense due to the derivation of the field
equations of Kaluza theory in terms of a scalar field, that also arises from the
metric. This typically prevents Maxwellian charge from being fully divergence
free. The Lorentz force law [10] is not usually dealt with by such theories, per-
haps because it can be derived from the stress-energy tensor of electromagnetism
[10]. However, this assumes the usual stress-energy tensor is always follows. The
scalar field means this is not the case.

The Lorentz force law is the most enigmatic and conceptually unsatisfying
physical law within current classical theory in the author’s opinion. A study
of the problems of its derivation from the usual electromagnetic stress-energy
tensor [10] justify this concern. The Lorentz force law, however, is but the
relativistic form of Coulomb’s law. In this sense it is as simple and fundamental
as the inverse square law of gravity. It is central to the understanding of charge
and electromagnetism. It is in this vein that derivation of the Lorentz force law
independently of the usual electromagnetic stress-energy tensor is undertaken.
By making it independent of the field equations it becomes independent to some
larger extent of the particular theory being used. Details provided by the text.

The Lorentz force law derived elsewhere [13] in Kaluza theory usually re-
quires a constant scalar field, where the scalar field is a consequence of the way
space-time is embedded in the 5D Kaluza space. This however places constraints
on admissible solutions, actually quite tight ones, that prevent the full range of
electromagnetic fields that are physically required. Reintroducing them requires
more degrees of freedom. Previously this led the author to consider variants of
Kaluza theory, rightly or wrongly, that at the time of writing this paper found
little interest or criticism [14][15][16]. Not using these previous works as a de-
pendency is therefore important. Nevertheless these works were an influence,
an essential part of the process leading to this work, and this work is in many
ways a refined compilation and corrected culmination of the various analyses of
those previous drafts. The Internet age also provides us with tools to better
record and reference such otherwise private and likely flawed notes. Some of the
issues need reiteration:

Definition 1.0.1: ‘Nullish’ electromagnetic fields satisfy: F,, F® = 0. Null
electromagnetic fields have the nullish property plus the following condition,



where the star is the Hodge star operator: F,;(*F%?) = 0.

Kaluza’s original theory [1] prohibits non-nullish solutions (or even near non-
nullish solutions) where the metric defines a constant scalar field. Nullishness is
too tight to admit important electromagnetic fields, in particular the essential
electrostatic fields. That electrostatic or near-electrostatic fields are non-nullish,
and therefore a problem in any theory that omits them, can be seen by compar-
ing definition (1.0.1) with the following well-known fact from special relativity.
That is, by considering the special relativistic limit:

FF® =2(B-B—-E-E) (1.0.2)

Thus the previous works [14][15][16] were aimed at increasing degrees of
freedom in different ways to allow for such non-nullish electromagnetic fields.

The aim here is mathematically more general, and should therefore be of
more interest to more researchers. It is not assumed that the scalar field is
constant. A range of possibilities are allowed such as whether or not to use
torsion. The work here is independent, within the limits defined, of how Kaluza
theory may ultimately be embedded in more far-reaching theories. The work
here, therefore, has a higher value as a resource. Thus we make reference to
both Kaluza and Kaluza-Cartan theories (see shortly).

The Kkiller criticism of Kaluza theories more generally is the problem of sta-
bility [17]. Essentially the wrapped up fifth dimension tends to collapse under
positivity of curvature. The analogy with mass-energy and the energy condi-
tions that loosely define this positivity (that are related to causality in general
relativity [18]) lead inevitably to the failure of Kaluza theory. This is the most
important objection to Kaluza theories. Alternative approaches were explored
in [14][15][16] which are discussed again here if for no other reason than to point
out, simply, that the stability problem arises from assumptions regarding mat-
ter models and curvatures and are not necessarily true in all Kaluza theories.
Again this leads to the need to generalise the derivation of the Lorentz force
law so that the widest range of possible alternatives may be permitted under
alternative assumptions. In this way the correct theory, if such exists, need not
be identified here. But mathematical generality should be sought. The need
to avoid mathematical and logical dependencies on previous works that are not
fully peer-reviewed is maintained throughout.

All things considered, this work re-establishes Kaluza theories in the form
originally envisaged by Kaluza (and by Einstein [19]): as unifications of electro-
magnetism and gravity. We might loosely term Kaluza theories that use torsion
Kaluza-Cartan theories - as already done by the author in [14] and [15]. Where
possible the present results have been extended to include torsion, but do not
depend on torsion.



2 A Development Note

At first the objective of the research undertaken here was to try to discount
torsion [20][21][22][23][24][11] as a source of needed degrees of freedom, since its
lack of presence is geometrically an obvious assumption in many physical theo-
ries. This is analogous to Euclid’s fifth postulate. The assumption of Euclid’s
fifth postulate is an addition, and its removal enabled geometric theories like
general relativity to be possible. Perhaps the same might be true for torsion?
Whilst few would consider it necessary or even a good idea to investigate such
an assumption, that was the original program. This might be called a post-
reductionist approach [7][8][9] in that the widest possible explanatory simplicity
of the whole is sought, trying to glean more than the sum of the parts. Practi-
cally this meant showing that a sufficient range of electromagnetic fields could
be obtained (without torsion) from existing Kaluza theory. That program failed
at first and the result was therefore the exact opposite: to then try to explicitly
allow torsion to obtain the extra degrees of freedom required. This itself was
unsatisfactory [14][15] in that some of the postulates seem arbitrary. A little
more detail follows.

Kaluza theory depends on electromagnetic fields in curved space-time being
defined in 5D by having 5D Ricci flat curvature. This curvature can be defined
differently with different connections. Thus degrees of freedom can be added
to Kaluza theory in 5D vacuum by allowing the Ricci flatness to be defined in
terms of, say, a torsion connection. The result of this was the rather unwieldy
theory presented in [14] since the degrees of freedom presented in Kaluza theory
with constant scalar field and without torsion was simply inadequate. This
theory presented a number of further unsatisfactory characteristics. One being
the problem of the need for symmetric components of torsion that were curtailed
by an order of magnitude constraint that appears arbitrary. The next step was
to attempt to omit the symmetric torsion terms altogether [15]. However the
resultant theory also contained arbitrariness in a similar manner, albeit hidden
within different postulates.

So the next step was [9], an attempt to go back to the original ideas of a
Kaluza theory strictly without torsion, but this time by not being too strict
on the Ricci flatness requirement. This of course leads to interpretational dif-
ficulties: how do you distinguish electromagnetic fields from matter models?
However, this paper presents no such difficulties.

Arguments based on four dimensional theories have been made against the
use of symmetric torsion components [25]. It is interesting that this issue arises
again in this paper. It is also the reason why [15] was developed out of [14].
Nevertheless it also seems that torsion is a natural extension of general rela-
tivity required by the presence of classical spin, or point sources of classical
angular momentum [26][21] - these considerations seem to lead naturally to
Einstein-Cartan theory in 4 dimensions, as a necessary extension, whether for
fundamental or modelling purposes. Einstein-Cartan theory appears to be an
w-consistent extension of general relativity. It should also be the case in Kaluza
theories that torsion is a useful extension. The mathematics in this paper there-



fore tries to maximise generality.

The scalar field is here allowed to vary, and torsion is included with such
generality that you can bolt it on or remove it (at least completely antisymmetric
torsion) as required. Getting the generalisation right for the derivation of the
Lorentz force law in the presence of a scalar field is the important content of
this work. This finally resolves both the problem of degrees of freedom and the
arbitrariness of assumptions present in the previous torsion-based variants. To
do this we make careful use of limits and orders of magnitude estimates.

In all the previous research, as well as in this one, kinetic charges are de-
fined in terms of 5th-dimensional components of momentum. This was briefly
outlined in [13] under very limited conditions. A Lorentz force law follows in
many cases. As momentum the kinetic charge has a divergence law via the
Einstein tensor. It approximates Maxwellian charge. The definition of charge
used throughout this work references the Levi-Civita connection, and is in no
way determined by torsion. Maxwellian charge also has a vector potential and
thus local conservation, but kinetic charge being covariant with respect to the
Levi-Civita connection is the more fundamental in five dimensions. These issues
are expounded in the text proper.

3 A Note on Stability, Causality and Matter
Models

The killer criticism of Kaluza theories is the problem of stability [17]. Essen-
tially the wrapped-up fifth dimension tends to collapse under evolution over
time. The analogy with mass-energy and the energy conditions that loosely de-
fine curvature non-negativity, and are perhaps essential for causality in general
relativity [18], lead inevitably to this failure of Kaluza theory. This is the usual
reason to consider Kaluza theories untenable - we are alternatively forced to
resort to ‘exotic matter’.

However, it’s possible to get around such issues with a little tolerance for
unknowns.

The phrase ‘exotic matter’ has connotations of arbitrariness and empirical
unphysicality. But that is a 4D consideration. What is essentially needed in 5D
is a different approach to both the positivity of matter-energy, and to causal-
ity. Getting around the stability problem follows from simply not extending
the energy conditions into 5D, but instead using a different approach. We still
need a classical causal limit and 4D positivity (or similar) for mass and energy,
and in particular real-life observable particles. But the extra dimension allows
for the possibility of 5D exotic curvature that does not correspond necessarily
with 4D exotic matter. Astronomical observations suggesting a cosmological
constant also complicate the discussion - the cosmological constant is usually
implemented via an addition to the Einstein tensor, but it could equally be an
arbitrary factor in the definition of the energy conditions. In a sense there is no
‘correct’ energy condition: they are applied as required. However the problem



with that is, consequently, there is no definitive, no uniformly applicable, defini-
tion of the underlying positivity of matter-energy in general relativity. The lack
of global energy content for gravitational waves further raises questions regard-
ing matter-energy in general relativity. Whilst all this may pose few problems
for the working physicist who is modelling particular observed phenomena, a
post-reductionist approach demands more: whatever the local and quasi-local
resolutions may be to the gravitational wave problem, a more natural interpre-
tation is suggested by the Bel-Robinson tensor [11], and this may be taken as a
leading suggestion.

The Bel-Robinson tensor is but one example of what are called super-energy
tensors [27][28][29]. They always have positivity in a well-defined and intuitively
appealing sense. This makes them particularly appealing as alternatives to the
Einstein tensor. It is proposed here, as in [14][15][16] (and presumably elsewhere,
since the idea is quite obvious and seems to be behind much of the mathematical
development of super-energy tensors) that they may hold the solution to this
conundrum.

Here’s how it could work: The vanishing of the divergence of super-energy
tensors is linked with the causality [27] of the underlying tensor with which the
super-energy tensor is associated. This is known [27]. It is modelled on similar
reasoning to the conservation theorem [18] in general relativity. Whilst more
work needs to be done to clarify this, there is sufficient case presented in [27] to
support the argument here.

The generalised Bel tensor [28][29] is associated with the Riemannian cur-
vature (where all contributing tensors, connections and operators are defined
without reference to torsion), and similarly the generalised Bel-Robinson ten-
sor is associated with the Weyl tensor. The word ‘generalised’ is used in the
literature to indicate n-dimensional definitions, rather than just the usual four.
That clarification is dropped here. Interestingly the Bel-Robinson tensor is only
necessarily symmetric in 4 and 5 dimensions, exactly those of interest. The
‘causality’ thus proven [27] in the case of vanishing divergence of an arbitrary
super-energy tensor (actually the condition that it be vanishing is tighter than
necessary [27]) is not as clear a conception of causality as ideally desired, but it’s
a good start. For starters the causality of the Riemannian curvature doesn’t nec-
essary imply the causality of the metric. Further, as with Cauchy-Kowalevsky
type theorems, it is only a local result and does not make for a well-posed the-
ory. But remember, real physics isn’t causal. It has causal features of course
(even in quantum mechanics), but real physics need not demand a well-posed
theory in the sense general relativists assume [11][18]. So maybe the ‘causality’
(in the sense of [27]) of certain 5D super-energy tensors is all that is experimen-
tally, (ie actually) required? Further constraints in any case may be added in
5D to tighten the geometrical constraints further, and produce determined and
over-determined Cauchy problems.

The original Kaluza theory imposed Ricci flatness and derived a limited sub-
set of electromagnetic fields (when the consequent scalar field was set constant)
from that. A trick to derive all electromagnetic fields is possible, the scalar field
can be set large [1]: but that is as arbitrary as any other fix previously pre-



sented. The idea is to here allow the scalar field to vary more naturally in Ricci
flat Kaluza space (ie the 5D space) and derive a Lorentz force law anyway, and
to do this independently of the hypothesis (or not) of torsion. Matter models
are then just non-Ricci flat parts of the 5D Kaluza space, or regions where the
5D Einstein tensor is not Ricci flat. This latter point, Ricci flatness outside
of matter models, suggests we might look at Ricci scalar flat spaces for matter
models too. This could be an example of a tightening geometrical constraint
that we may be allowed in 5D, if we choose, that would be unreasonable in 4D.
Campbell’s embedding theorem [30] suggests such a constraint on the Kaluza
space could be reasonable in 5D. So this is just one example of adding further
geometrical constraints (on matter models in this case) to impose further con-
trol over such properties as causality in Kaluza theories - fine tuning of this can
await application, further development and/or empirical data.

A super-energy tensor is in some sense a measure of the square of its under-
lying tensor, thus it is interesting to note that if the vanishing of the divergence
of the Bel tensor is taken to be the (in some sense) correct energy condition, it
would not prohibit negative mass-energy. But it would make the proximity of
negative and positive mass-energies expensive. The results in 4D would conse-
quently appear approximately similar to the positivity of the Einstein tensor. Or
so it can be argued. This potentially opens the door to 4-geon [31][32][33][34]
and 5-geon topological structures for particles. Could it help deal with any
outstanding cosmological anomalies too? The question of stability of Kaluza
theories therefore is still open: the case is not closed.

Whatever the outcome, the stability issues of the original Kaluza theory,
with simple energy conditions following general relativity, cease to apply. The
killer objection to Kaluza theories is simply not valid without assumptions that
need not in any case be made.

A further point about n-D geometry is worth making: when the Riemannian
curvature is harmonic [35][36][37], it follows that the Bel tensor is divergence free
[28][29]. 5D Harmonic matter models may therefore be quite natural. Further,
Ricci scalar flat harmonic matter models [38][35][36][37] generalise Ricci flatness
(or actually Einstein spaces [38]) in that both Bel and Bel-Robinson super-
energy tensors then have vanishing divergence. Using such constraints the 5D
geometry may quickly become over-determined. Causality becomes the least of
the problems - finding exact solutions to model practical situations becomes an
impractical theoretical requirement, although some nice properties such as real
analicity result too. Although this may make Kaluza theories too difficult for
immediate practical use, that isn’t the issue here.

The weakest reasonable assumption would be to impose divergence of the
Bel tensor on 5D matter models, in second place (for simplicity) followed by
the probably slightly tighter condition: the harmonicity of the Riemann tensor.
For maximum generality of this work no further postulates are made regarding
the divergence laws of super-energy tensors. A weakness in previous attempts
[14][15][16] was in trying to prematurely make such requirements explicit.

Whether or not analogous approaches apply to super-energy tensors that
involve torsion in their definitions is also superfluous to the objectives of this



paper. The aim of this section is simply to show that objections to Kaluza
theories are not mathematically founded without additional assumptions which
would in any case be unwarranted given the preceding discussion.

4 Conventions

The following conventions are adopted unless otherwise specified. Though unfa-
miliar in places these are necessary for following the multiple systems used and
need to be constantly referred to to avoid confusion.

Five dimensional metrics, tensors and pseudo-tensors and operators are given
the hat symbol. Five dimensional indices, subscripts and superscripts are given
capital Roman letters. Lower case indices can either be 4D or generic for def-
initions depending on context. Index raising is referred to a metric gap if
5-dimensional, and to g4 if 4-dimensional. Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have 0,94 Ac + gavJac = (Ou(gavAc)) + (gavgac). Terms
that might repeat dummy variables or are otherwise in need of clarification use
additional brackets. Square brackets can be used to make dummy variables local
in scope. Space-time is given signature (—, +, +, +), Kaluza space (—, +, +,
+, +) in keeping with [10]. The Minkowski metric therefore has a determinant
of -1. Under the Wheeler et al [10] nomenclature the sign conventions used here
as a default are [+, +, +]. The first dimension (index 0) is time and the 5%
dimension (index 4) is the topologically closed Kaluza dimension. Time and
distance are not geometrized so c is the speed of light and G the gravitational
constant. The scalar field component is labelled ¢? as in the literature. It may
also be labelled @ if the index gets in the way. The matrix of g.q can be writ-
ten as |geq|- The Einstein summation convention may be used without special
mention.

Connection coefficients with torsion will take the form: T'¢, or T'%¢. The
metric with a torsion tensor defines a unique metric connection. Therefore two
unique connections for a given metric are one with and one without torsion,
though they may coincide when no torsion is considered. The unique Levi-
Civita connection (ie defined without torsion, even when there may be torsion
considered in the system) is written as: F¢,, and the covariant Levi-Civita
derivative operator (ie without torsion): A\, , when torsion is also being consid-
ered (though this need not apply if torsion is not being considered at all in that
the two connections become identical). So we have in terms of the Levi-Civita
connection:

Fab = AaAb - AbAa = 8(1Ab - 6bAa equally F=dA (401)

In order to distinguish tensors constructed using torsion G, and R, (i.e.
where the Ricci tensor is defined in terms of I'¢;) from those that do not use
torsion (ie that are defined in terms of F¢,), the torsionless case uses cursive:
Gap and R4p. On any given manifold with torsion, both these parallel systems



of connection coefficients and dependent tensors can be used. That is, the Ricci
tensor (with torsion), R,p, and the Ricci tensor, R,p, are both defined and are in
general different on the same manifold. Further each of these can have hats on
or hats off, giving: Rapand Rap. Itisa potentially confusing part of this work
that all four systems may be used simultaneously. But it gets better/worse! We
also need multiple systems of metrics, whether 4D or 5D, whether with torsion
or without torsion. For example when two metrics are related by a conformal
transformation. To manage this we would most easily use different colour, or,
document technology being limited at the time of writing, the use of a simple
font variation may suffice.

Torsion introduces non-obvious and unfamiliar conventions in otherwise es-
tablished and common definitions, thus leading to much premature hair loss.
The order of the indices in the connection coefficients actually matters, and
this includes in the Ricci tensor definition and the definition of the connection
coefficient symbols themselves:

Vawy = Oqwp — I'w, (4.0.2)

Some familiar defining equations consistent with [1] define the Ricci tensor

and Einstein tensors in terms of the connection coefficients along usual lines,
noting that with torsion the order of indices can no longer be interchanged:

Rap = 0.1, — 0T, + T, T4 — T4, T (4.0.3)

C

1
Gab - Rab - §Rgab = 6gTab (404)

For convenience we will define ay = 1/8, which might typically be set to
ay = ¢*/87G. Analogous definitions can also be used with the Levi-Civita
connection to define R4 and G,p in the obvious way.

The appendices have an important role in outsourcing definitions and math-
ematics that would otherwise interrupt the flow of the text. The appendices
are designed to be independent of the text, but the text is not independent of
the appendices. The appendices work as a sort of library of sub-routines for
the text. The appendices are however dependent on previous sections of the
appendices and in that sense need to be read in parallel with the main text.

Other conventions may be used as noted in the text.

5 Kaluza’s Original Theory

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories



topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore inspiration for many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems and is often considered untenable. This paper looks at these problems
from a purely classical perspective and attempts to dispel them.

5.1 The Metric

The original Kaluza theory assumes a (1,4)-Lorentzian Ricci flat manifold to
be the 5D metric, split as shown below (and for interest this can be compared
to the later ADM formalism [6]). A, is to be identified with the electromag-
netic potential, ¢2 is to be a scalar field, and g,; the metric of 4D space-time.
Note that a scaling factor k is present, it is mathematically arbitrary, but phys-
ically relates to units. By inverting this metric as a matrix (readily checked by
multiplying gap by §2¢) we get raised indices.

Definition 5.1.1: The 5D Kaluza and Kaluza-Cartan metric.

] gan + KPP ALAL kPA,
gAB = k(bQAb ¢2

ab a
~AB __ g —kA
97" = { kA L 4 kA A } (5.1.1)

Maxwell’s law are automatically satisfied, using (4.0.1) to define F' with
respect to the potential: dF=0 follows from dd = 0. We are then free to define
the charge current via d*F= 47*J (or similar). Regardless of the factor this
leads to d*J=0 via dd=0 [10], which is consistent with local conservation of
charge.

In order to write the metric in this form there is a subtle assumption, that
Jab, which will be interpreted as the usual four dimensional space-time metric,
is itself non-singular. This will always be the case for moderate or small values
of A, which will here be identified with the electromagnetic 4-vector potential.
The raising and lowering of this 4-vector are defined in the obvious way in terms
of gqp- The 5D metric can be represented at every point on the Kaluza manifold
in terms of this 4D metric g,, (when it is non-singular), the vector potential A,
and the scalar field ¢2. We have also assumed that topology is such as to allow
the Hodge star operator and Hodge duality of forms to be well-defined (see [10]
p.88). This means that near a point charge source the above interpretation of
the charge (Maxwell charge) and therefore Maxwell charge conservation breaks
down as the potential may cease to be well-defined. Whereas the kinetic charge
defined in the appendices (12.3.1) does not have this problem. So two different
definitions of charge are used: the Maxwellian, and the kinetic charge. It is the
kinetic charge that will obey a more general conservation law, per force - it’s
part of the Einstein tensor.
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With values of ¢? around 1 and relatively low 5-dimensional metric curva-
tures we need not concern ourselves with this assumption beyond stating it on
the basis that physically these parameters encompass tested theory. Given this
proviso A, is a vector and ¢? is a scalar - with respect to the tensor system
defined on any 4-dimensional submanifold (or region of a submanifold) that can
take the induced metric g.

Herein lies a further reason why setting the scalar field large to obtain the
usual electromagnetic stress-energy tensor seems arbitrary. We also need a weak
field limit to link the two forms of charge used in this work.

5.2 Kaluza’s Cylinder Condition And The Original Field
Equations

Kaluza’s cylinder condition is that all partial derivatives in the 5th dimension
i.e. 94 and 040, etc... of all metric components and of all tensors and their
derivatives are zero. A perfect ‘cylinder’. This leads to constraints on g, given
in [1] by three equations, the field equations of the original Kaluza theory, where
the Einstein-Maxwell stress-energy tensor can be recognised embedded in the
first equation. Beware in particular that the conventions are as used by the
referenced author and not those used in this paper. The field equations are
derived by simply setting the torsionless Ricci curvature to 0. O represents the
4D D’Alembertian [1].

k2¢2 1 cd c 1
Gap = 5 ZgachdF — FFye p — g{va(ﬁm) — 9o} (5.2.1)
VFap = —3%%} (5.2.2)
2.3
D¢ = kf FopF*? (5.2.3)

Note that there is both a sign difference and a possible factor difference
with respect to Wald’s [11] and Wheeler’s [10] Einstein-Maxwell equation. The
field equations give (without torsion [1]) nullish solutions under the original
Kaluza cylinder condition and constant scalar field, such that G4, = —%2 Fo o Fy.
Compare this with [11] where we have Go, = 2F,.F¢ in geometrized units for
ostensibly the same fields. The units would need to be agreed between the
two schemes by adjusting k, and other constants, and adjusting for the sign
difference. The sign difference appears to be due to the mixed use of metric
sign conventions in [1].

These equations will be referred to as the first, second and third torsionless
field equations, or Kaluza’s original field equations. Kaluza did not include
torsion in his definition of the Ricci tensor. They are valid only in Kaluza
vacuum, that is, when R,;, = 0 and when torsion is vanishing or not relevant.
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We might interpret this as outside of matter and charge models, if we define
such to be when the Ricci curvature is not 0. Though this is a little misleading
as Maxwell charges, however small, are present in these equations. This however
is due to the small difference introduced by the approximate identification of
Maxwell and kinetic charges. Kaluza theories should take the kinetic charge
(definition 12.3.8) as the truly divergence-free form.

5.3 The Foundational Problems

An issue addressed in this paper is the variety of electromagnetic solutions that
are a consequence of Kaluza theory, whilst maintaining the Lorentz force law.
A sufficient variety of electromagnetic fields must be available, and the Lorentz
force law should be explicitly derivable. The missing solutions are the non-
nullish solutions and include the important electrostatic fields. So they include
some really important fields! The other usual objection to Kaluza theories,
stability, is addressed elsewhere in the text.

One inadequate and arbitrary fix in standard Kaluza theory is to set the
scalar field term large to ensure that the second field equation (5.2.2) is approx-
imately zero despite scalar fluctuations. This approach will not be taken here
as it is contrived. The stress-energy tensor under scalar field fluctuations is dif-
ferent from the Einstein-Maxwell tensor [10][11] and the accepted derivation of
the Lorentz force law (for electrovacuums [10]) can not be assumed. A variable
scalar field as required by the third field equation for non-nullish fields (5.2.3)
also implies non-conservation of Maxwell charge via the second field equation
(5.2.2), and problems also arise with respect to the Lorentz force law in the
case of a variable scalar field. Thus in most Kaluza theories, including the orig-
inal the scalar field is in effect fixed, and the non-nullish solutions then need
reintroducing by increasing the available degrees of freedom.

This could be attempted via the introduction of torsion [15][16]. The elec-
tromagnetic field devoid of matter and charge sources will then be characterized
by RAB = 0 instead of 7%,43 = 0, providing a Lorentz force law still results.
It can also be attempted by reintroducing a variable scalar field, but again by
making sure that, given certain constraints, this still leads to a Lorentz force
law.

As components of momentum, the kinetic charge is of necessity locally con-
served, provided there are no irregularities in the topology of the Kaluza 5th
dimension. See Postulates K1-K3 in the appendices for well-behaved topolog-
ical requirements. Note that conservation of Maxwellian charge (which will
be shown to be identifiable with kinetic charge) is locally guaranteed by the
existence of the potential and the exterior derivative, but breaks-down under
curvature. The two definitions are to be related, but the kinetic charge deemed
more fundamental as it admits a curvature-independent local divergence-free
law via the (torsionless) Einstein tensor.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge built in. The second field
equation (5.2.2) has charge sources, but it’s unlikely that realistic sources are
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represented by this equation. They appear as ghosts. The better interpretation
is that real matter and charge sources must be defined as being when Rap # 0in
Kaluza’s original theory. Analogously by identifying Kaluza fields with Ry5 = 0
(with torsion) we would presumably have to identify matter and charge sources
now with Rap # 0. However the mass-energy conservation law remains by def-
inition in terms of Gap - i.e. the torsionless Einstein tensor, and generally only
with respect to the Levi-Civita connection. This is extended to the completely
antisymmetric torsion connection case in the appendices (11.1.15) and (11.1.18).

This then suggests rather that the Kaluza fields remain when the torsionless
Einstein tensor is vanishing, or equivalently when the torsionless Ricci tensor is
vanishing, as in Kaluza’s original theory. We then have matter-charge models
and spin models being defined in the obvious way in terms of the torsionless
Einstein tensor and the antisymmetric components of the torsion Einstein ten-
sor respectively. Noting however that this line of reasoning can only be fully
satisfactory when torsion is completely antisymmetric.

5.4 A Solution?

The torsionless Einstein tensor remains the matter-charge source in any case.
But it’s nice to note that spin conservation also arises in the completely an-
tisymmetric torsion case. Both are presented by (11.1.18). The scalar field
rather than torsion will however be used to obtain the full range of required
electromagnetic fields, thus correcting the attempts made in [14][15]?

A departure from previous works that considered torsion [14][15] will now
be made.

Definition 5.4.1: The Kaluza vacuum is a Ricci flat region of a Kaluza space
with respect to the torsionless definition of the Ricci tensor, ie R4p = 0. The
Kaluza vacuum in the presence of torsion further requires that Vg = 0.

This equates to vanishing matter-charge sources and vanishing spin sources
respectively, which defines a clear demarcation between matter-charge-spin mod-
els and the classical fields of the Kaluza vacuum. At the completely antisymmet-
ric limit it follows that G (aB] = 0 in Kaluza vacuum as shown in the appendices
(11.1.18).

6 A Complete Set Of Postulates

In this section a complete set of postulates is given that is used in this paper
to investigate a range of different Kaluza theories. How is this possible? First
there are three core postulates common to all variants. Additional postulates
that can be interpreted as forming conditions necessary for a classical weak field
limidt limit, and which link Maxwellian and kinetic charge definitions together,
then follow. Postulate L2 need only apply when torsion is admitted. Postulate
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L3 need only be present when non-antisymmetric torsion terms are admitted.
When such terms are not admitted they are in any case trivially satisfied.

Subsequently two variant geodesic postulates are considered. These are two
possible variant models, or options, for matter-charge model kinetics. They
are not exhaustive. In particular spin is not considered. By providing two very
different options here the analysis can at least try to cover a range of possibilities.

A careful balancing act is needed with respect to the scalar field induced by
(5.1.1). Postulate B1 is added, and is different from that assumed in previous
works [14][15][16]. It allows for a limited scalar field. It essentially defines the
limit where the scalar field fluctuations are small relative to electromagnetism
and gravity, but not vanishing unless additionally specified. Postulate Bl is
compatible with the field equations by inspection.

Definition (5.4.1) is so important as a defining characteristic of the field
equations that it is listed below. However it is not strictly necessary as a pos-
tulate. It is interesting to note that whilst torsion effects matter-charge-spin
models, it does not here effect the symmetric torsionless part of the Kaluza vac-
uum curvature. The Kaluza vacuum remains defined in terms of the torsionless
Ricci tensor. Torsion simply adds a new conserved (and in this case vanishing)
tensor to that definition. To state it explicitly: the Kaluza vacuum satisfies the
original Kaluza field equations.

Finally it is understood that further constraints in the form of energy or
super-energy conditions are needed physically, but that these are not dealt with
here. The broad issues are however briefly discussed elsewhere in the text.

6.1 Core Geometric Postulates

Core Postulates K1, K2 and K3 (including the famous cylinder condition) are
given in the appendices (12.1.1). These define the geometry and topology com-
mon to all Kaluza variants considered here.

6.2 A Weak Field Limit

The deviation from the 5D-Minkowski metric is given by a tensor hp. This
tensor belongs to a set of small tensors that we might label O(h). Whilst this
uses a notation similar to orders of magnitude, and is indeed analogous, the
meaning here goes further. This is the weak field approximation of general
relativity using a more flexible notation. Partial derivatives, to whatever order,
of metric terms in a particular set O(x) will be in that same set at any such limit.
In principle we are doing more than following the weak field limit procedure [10]
of general relativity. In the weak field approximation of general relativity, terms
that consist of two O(h) terms multiplied together get discounted and are treated
as vanishing at the limit. We might use the notation O(h?) to signify such terms.
There is the weak field approximation given by discounting O(h?) terms. But
we might also have a less aggressive limit given by, say, discounting O(h?) terms,
and so on. We can talk about weak field limits (plural) that discount O(h™)
terms and are therefore of order O(h"~1) for n > 1, but they are based on the
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same underlying construction. This is an upper-bound of significance of any
term in the sense that O(h"~1) C O(h™).

LIMIT POSTULATE (L1): The metric can be written as follows in terms
of the 5D Minkowski tensor and h € O(h):

dAB = fiaB +hap
Torsion will also be considered a weak field under normal observational con-
ditions, similarly to L1. Torsion is defined in terms of the Christoffel symbols.
Christoffel symbols are in part constructed from the partial derivatives of the
metric and that part is constrained by L1 to be O(h). The contorsion term
being the difference. See [20]. The contorsion (and therefore the torsion) will
be treated as O(h) accordingly.

LIMIT POSTULATE (L2): The contorsion and torsion are O(h) terms.

One further constraint is required at the weak field limit. Its use will be min-
imized (both the application of the antisymmetry and the allowance for some
small symmetry terms), but it will nevertheless be important. In L3, symmetric
parts of the torsion and contorsion tensor (and their derivatives) are treated as
particularly ‘small’ in that they are small relative to any antisymmetric parts
of the torsion and contorsion tensor, torsion already assigned to O(h) by L2.
The torsion tensor will be given the following limit: It is to be weakly com-
pletely antisymmetric - a weak antisymmetric limit. Thus the symmetric parts
of the contorsion and torsion tensors will be O(h?) at the weak field limit. All
derivatives thereof follow the same rule:

LIMIT POSTULATE (L3): The symmetric parts of the contorsion and tor-
sion tensors will be O(h?) at the weak field limits.

L1 and L2 are natural postulates for a weak field limit. L3 is not so natural
and seems arbitrary. L3 is trivially satisfied in the case of completely anti-
symmetric torsion. L3 is used to maintain maximum generality of the results of
this work, but the difficulties of allowing non-anti-symmetric torsion components
recurs throughout the work.

6.3 Geodesic Options

The two kinetic postulates under consideration are detailed and discussed in
the appendices: Postulate G1 is (11.2.1) and Postulate G2 is (11.2.2). They are
options to be selected and then applied to the kinetics of ideal point particles.
In any experimental reality, under the hypotheses here, any torsion or spin
presence would likely alter the kinetics. Such variants are not explored here,
and treated as in any case likely small effects.
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6.4 Weak Scalar Field

Above and beyond LIMIT POSTULATE (L1) for metric components, we apply
the specific tighter constraint:

LIMIT POSTULATE (B1): ¢* is O(h?) over the region of interest. The
scalar field results from the the decomposition of the Kaluza metric into 4D
metric, potential vector and scalar field. It is contained within the metric ex-
plicitly in (5.1.1).

This is compatible with the break-down of the metric and the original field
equations by inspection. Considering such it is arguably necessary for consis-
tency for the other fields to be L1.

6.5 On Non-Nullish Electromagnetic Fields

Postulate B1 is sufficiently weak to allow for the non-nullish electromagnetic
fields which are missing if the scalar field is set constant. In setting the scalar
field to be vanishing, then, the problems that led to the previous works [14][15][16]
arise. Taking Kaluza theory at face value is here argued to be the best approach.

6.6 A Quick Reference List Of Postulates
Thus we have: K1, K2, K3, L1, L2, L3, G1, G2, B1 and definition (5.4.1).

K1, K2, K3 always apply

L1 applies

L2 applies if there is torsion considered

L3 applies if there is non-completely anti-symmetric torsion considered
G1 and G2 can be selected options as required to study particle kinetics.
B1 applies

Further constraints in the form of energy or super-energy conditions are
needed physically but are not needed or defined in this work.

Of these L3 is the least favourable with regards to physicality, the most
likely not to be necessary. In such cases the stronger postulate that there are no
symmetric components of torsion at all is assumed. Definition (5.4.1) defines the
Kaluza vacuum, and therefore the field equations of such a ‘vacuum’. Energy
and/or super-energy conditions, or similar constraints are not needed here or
considered.
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7 Geometrized Charge
7.1 Maxwell Charge

Maxwell charge density is defined in keeping with the second original Kaluza
field equation, as follows:
/u'OJMa _ ACFGC
Qu = Ju(c71,0,0,0)q (7.1.1)

Where k in the metric becomes a conversion factor between geometrical
quantities and the physical units for 4-potential, here implied by pg, the per-
meability of vacuum.

7.2 Identifying Kinetic Charge and Maxwell Charge

Now to investigate the relationship between kinetic charge and Maxwell charge.
For this we need the O(h) weak field limit defined by L1, and the cylinder
condition. Discounting O(h?) terms using an arrow:

” A~ A~ o 1 o o
ga4 _ Ra4 o §a4R _ Ra4 o 5(—]€AG)R — Ra4

DO =

7%(14 _ acﬁcéla _ 84ﬁ%a + ﬁCabﬁBC _ ﬁC’DaﬁDbC

Gt - R - § [ cte (7.2.1)
With reference to the appendices for the Christoffel symbols, we get:
G — %k@cFC“ = f%kacF“C (7.2.2)
Similarly,
Gas — +%k80FaC (7.2.3)

And so by definition of kinetic current charge density and A, the Kaluza

length (12.3.8):
gk

J*— 4+ 0. F° (7.2.4)
Apply L1 again,
og Ak

J =+

Ho JMa (725)
And using (12.3.7) in the appropriate space-time frame and Kaluza atlas frame:

agAk
2

Q" — + poQ s (7.2.6)

So kinetic and Maxwell charge and current densities are related by a simple
formula. The right hand side being Maxwell’s, the left-hand side kinetic.
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This correlates the two definitions of charge at the required limit. A depen-
dence on a possibly variable Kaluza length is however present.

This subsection did not require L2 or L3. With the inconsequential exception
of equation (7.2.3) B1 can be omitted. The cylinder condition can even be
weakened to allowing O(h?) terms and it teh derivation will still work. It is a

very general result.

7.3 A Lorentz-Like Force Law

The Christoffel symbols are as follows in both G1 and G2 in the case of either
completely antisymmetric torsion or no torsion at all:

ff4b) = 29°M(04Gba + ObGada — 6agas) + 3G (64Gba + Ovgaa — Oagap) =

39°0n(¢°kAa) — da(¢°kAp)] + 1ng54gbd+ 39° 55944
(252 Cd[ébkAd 5dkAb] 2QCdkAd(5b¢2 *ngkA 5d¢2 Cd54gbd+29045b¢2

§¢>2ka %gcdkA 040? — Lg Adad? + Lg°0agua + L5°1000° =

z(kaFc — CdkAb(Sd(bQ 290d54gbd = %(bZk'Fc QQCdk’Ab(Sd¢2 (7.3.1)
IS = 2P (64gup + 6494p — Opgas) = - $9°64¢? (7.3.2)
re., p = 59°(0agav + 6v9da — Sagan)

+%9 (6o (k> AqAp) + 0p(? k2 AgAd) — 6a(P*k* Ag Ap))

+59°*(6adab + 6bG1a — 649ab)

=T(y T39°(0a(0*k>Aadp) + 0p($*k* AaAa) — 0a($7k* A Ap))

—K2A(8, 4% Ay + 5,02 Ay) (7.3.3)

In the case of non-completely antisymmetric torsion we must add O(h?)
error terms. The error terms being delimited by L3.

So, for a coordinate system within the maximal atlas:
d2 a d’I:c

0= +F(BC) d'r dr

— da® d dz* d dz® d a da?* da*

= d7-2 +F(bc) dafr & Jrlﬂ(4c) dxr @ +F( )de dafr + g, b e

_ e T, (R g AS ) B A — L,  (7.3.)

Taking ¢? = 1, and the L3 error terms to be vanishing, and the charge-to-
mass ratio to be:

dz*
Q' /myo = = (7.3.5)
We derive a Lorentz-like force law:
dPz* . dxb dz° dxb
- Fa 7 / F(L 3.
dr? * o) dr dr (Q/mio)kFy dr (7.3.6)
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Putting arbitrary L3 error terms back in,