BEAL's Conjecture: A Complete Proof

Abdelmajid Ben Hadj Salem

6, rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia¹

Abstract

In 1997, Andrew Beal [1] announced the following conjecture: Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If $A^m + B^n = C^l$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x) = (x - A^m)(x - B^n)(x + C^l) = x^3 - px + q$ with p, q integers depending of A^m, B^n and C^l . We resolve $x^3 - px + q = 0$ and we obtain the three roots x_1, x_2, x_3 as functions of p, q and a parameter θ . Since $A^m, B^n, -C^l$ are the only roots of $x^3 - px + q = 0$, we discuss the conditions that x_1, x_2, x_3 are integers. Three numerical examples are given.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.

2010 MSC: 00-01, 99-00

O my Lord! Increase me further in knowledge.

(Holy Quran, Surah Ta Ha, 20:114.)

To my wife Wahida

1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1. Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

$$A^m + B^n = C^l (1)$$

 $^{^{1}}$ Email:abenhadjsalem@gmail.com

then A, B, and C have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to construct a polynomial P(x) of three order having as roots A^m, B^n and $-C^l$ with the condition (1). The paper is organized as follows. In Section 2 of preliminaries, we begin with the trivial case where $A^m = B^n$. Then we consider the polynomial $P(x) = (x - A^m)(x - B^n)(x + C^l) = x^3 - px + q$. We express the three roots of $P(x) = x^3 - px + q = 0$ in function of two parameters ρ, θ that depend of A^m, B^n, C^l . The Section 3 is the main part of the paper. We write that $A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3}$. As A^{2m} is an integer, it follows that $\cos^2\frac{\theta}{3}$ must be written as $\frac{a}{b}$ where a, b are two positive coprime integers. We discuss the conditions of divisibility of p, a, b so that the expression of A^{2m} is an integer. Depending on each individual case, we obtain that A, B, C have or not a common factor. In the last Section, three numerical examples are presented. We finish with the conclusion.

2. Preliminaries

We begin with the trivial case when $A^m = B^n$. The equation (1) becomes:

$$2A^m = C^l (2)$$

then $2|C^l \Longrightarrow 2|C \Longrightarrow \exists c \in N^*/C = 2c$, it follows $2A^m = 2^l c^l \Longrightarrow A^m = 2^{l-1}c^l$. As l > 2, then $2|A^m \Longrightarrow 2|A \Longrightarrow 2|B^n \Longrightarrow 2|B$. The conjecture (??) is verified.

We suppose in the following that $A^m > B^n$.

2.1. General Case

Let $m, n, l \in N^* > 2$ and $A, B, C \in N^*$ such:

$$A^m + B^n = C^l (3)$$

We call:

$$P(x) = (x - A^m)(x - B^n)(x + C^l) = x^3 - x^2(A^m + B^n - C^l)$$
$$+x[A^m B^n - C^l(A^m + B^n)] + C^l A^m B^n$$
(4)

Using the equation (3), P(x) can be written:

$$P(x) = x^3 + x[A^m B^n - (A^m + B^n)^2] + A^m B^n (A^m + B^n)$$
 (5)

We introduce the notations:

$$p = (A^m + B^n)^2 - A^m B^n (6)$$

$$q = A^m B^n (A^m + B^n) (7)$$

As $A^m \neq B^n$, we have :

$$p > (A^m - B^n)^2 > 0 (8)$$

Equation (5) becomes:

$$P(x) = x^3 - px + q \tag{9}$$

Using the equation (4), P(x) = 0 has three different real roots : A^m, B^n and $-C^l$.

Now, let us resolve the equation:

$$P(x) = x^3 - px + q = 0 (10)$$

To resolve (10) let:

$$x = u + v \tag{11}$$

Then P(x) = 0 gives:

$$P(x) = P(u+v) = (u+v)^3 - p(u+v) + q = 0 \Longrightarrow u^3 + v^3 + (u+v)(3uv - p) + q = 0$$
(12)

To determine u and v, we obtain the conditions:

$$u^3 + v^3 = -q (13)$$

$$uv = p/3 > 0 (14)$$

Then u^3 and v^3 are solutions of the second ordre equation:

$$X^2 + qX + p^3/27 = 0 (15)$$

Its discriminant Δ is written as :

$$\Delta = q^2 - 4p^3/27 = \frac{27q^2 - 4p^3}{27} = \frac{\bar{\Delta}}{27}$$
 (16)

Let:

$$\bar{\Delta} = 27q^2 - 4p^3 = 27(A^m B^n (A^m + B^n))^2 - 4[(A^m + B^n)^2 - A^m B^n]^3$$
$$= 27A^{2m}B^{2n}(A^m + B^n)^2 - 4[(A^m + B^n)^2 - A^m B^n]^3 \qquad (17)$$

Noting:

$$\alpha = A^m B^n > 0 \tag{18}$$

$$\beta = (A^m + B^n)^2 \tag{19}$$

we can write (17) as:

$$\bar{\Delta} = 27\alpha^2\beta - 4(\beta - \alpha)^3 \tag{20}$$

As $\alpha \neq 0$, we can also rewrite (20) as :

$$\bar{\Delta} = \alpha^3 \left(27 \frac{\beta}{\alpha} - 4 \left(\frac{\beta}{\alpha} - 1 \right)^3 \right) \tag{21}$$

We call t the parameter :

$$t = \frac{\beta}{\alpha} \tag{22}$$

 $\bar{\Delta}$ becomes :

$$\bar{\Delta} = \alpha^3 (27t - 4(t-1)^3) \tag{23}$$

Let us calling:

$$y = y(t) = 27t - 4(t-1)^{3}$$
(24)

Since $\alpha > 0$, the sign of $\bar{\Delta}$ is also the sign of y(t). Let us study the sign of y. We obtain y'(t):

$$y'(t) = y' = 3(1+2t)(5-2t)$$
(25)

Figure 1: The table of variation

 $y'=0 \Longrightarrow t_1=-1/2$ and $t_2=5/2$, then the table of variations of y is given below:

The table of the variations of the function y shows that y < 0 for t > 4. In our case, we are interested for t > 0. For t = 4 we obtain y(4) = 0 and for $t \in]0, 4[\Longrightarrow y > 0$. As we have $t = \frac{\beta}{\alpha} > 4$ because as $A^m \neq B^n$:

$$(A^m - B^n)^2 > 0 \Longrightarrow \beta = (A^m + B^n)^2 > 4\alpha = 4A^m B^n$$
 (26)

Then $y < 0 \Longrightarrow \bar{\Delta} < 0 \Longrightarrow \Delta < 0$. Then, the equation (15) does not have real solutions u^3 and v^3 . Let us find the solutions u and v with x = u + v is a positive or a negative real and u.v = p/3.

2.2. Demonstration

PROOF. The solutions of (15) are:

$$X_1 = \frac{-q + i\sqrt{-\Delta}}{2} \tag{27}$$

$$X_2 = \overline{X_1} = \frac{-q - i\sqrt{-\Delta}}{2} \tag{28}$$

We may resolve:

$$u^3 = \frac{-q + i\sqrt{-\Delta}}{2} \tag{29}$$

$$v^3 = \frac{-q - i\sqrt{-\Delta}}{2} \tag{30}$$

Writing X_1 in the form:

$$X_1 = \rho e^{i\theta} \tag{31}$$

with:

$$\rho = \frac{\sqrt{q^2 - \Delta}}{2} = \frac{p\sqrt{p}}{3\sqrt{3}} \tag{32}$$

and
$$sin\theta = \frac{\sqrt{-\Delta}}{2\rho} > 0$$
 (33)

$$\cos\theta = -\frac{q}{2\rho} < 0 \tag{34}$$

Then $\theta[2\pi] \in]+\frac{\pi}{2}, +\pi[$, let:

$$\frac{\pi}{2} < \theta < +\pi \Rightarrow \frac{\pi}{6} < \frac{\theta}{3} < \frac{\pi}{3} \Rightarrow \frac{1}{2} < \cos\frac{\theta}{3} < \frac{\sqrt{3}}{2}$$
 (35)

and:

$$\boxed{\frac{1}{4} < \cos^2 \frac{\theta}{3} < \frac{3}{4}} \tag{36}$$

hence the expression of X_2 :

$$X_2 = \rho e^{-i\theta} \tag{37}$$

Let:

$$u = re^{i\psi} \tag{38}$$

and
$$j = \frac{-1 + i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}$$
 (39)

$$j^2 = e^{i\frac{4\pi}{3}} = -\frac{1+i\sqrt{3}}{2} = \bar{j} \tag{40}$$

j is a complex cubic root of the unity $\iff j^3 = 1$. Then, the solutions u and v are:

$$u_1 = re^{i\psi_1} = \sqrt[3]{\rho}e^{i\frac{\theta}{3}} \tag{41}$$

$$u_2 = re^{i\psi_2} = \sqrt[3]{\rho} j e^{i\frac{\theta}{3}} = \sqrt[3]{\rho} e^{i\frac{\theta+2\pi}{3}}$$
 (42)

$$u_3 = re^{i\psi_3} = \sqrt[3]{\rho} j^2 e^{i\frac{\theta}{3}} = \sqrt[3]{\rho} e^{i\frac{4\pi}{3}} e^{+i\frac{\theta}{3}} = \sqrt[3]{\rho} e^{i\frac{\theta+4\pi}{3}}$$
(43)

and similarly:

$$v_1 = re^{-i\psi_1} = \sqrt[3]{\rho}e^{-i\frac{\theta}{3}} \tag{44}$$

$$v_2 = re^{-i\psi_2} = \sqrt[3]{\rho} j^2 e^{-i\frac{\theta}{3}} = \sqrt[3]{\rho} e^{i\frac{4\pi}{3}} e^{-i\frac{\theta}{3}} = \sqrt[3]{\rho} e^{i\frac{4\pi-\theta}{3}}$$
(45)

$$v_3 = re^{-i\psi_3} = \sqrt[3]{\rho} j e^{-i\frac{\theta}{3}} = \sqrt[3]{\rho} e^{i\frac{2\pi - \theta}{3}}$$
 (46)

We may now choose u_k and v_h so that $u_k + v_h$ will be real. In this case, we have necessary:

$$v_1 = \overline{u_1} \tag{47}$$

$$v_2 = \overline{u_2} \tag{48}$$

$$v_3 = \overline{u_3} \tag{49}$$

We obtain as real solutions of the equation (12):

$$x_1 = u_1 + v_1 = 2\sqrt[3]{\rho}\cos\frac{\theta}{2} > 0 \tag{50}$$

$$x_2 = u_2 + v_2 = 2\sqrt[3]{\rho}\cos\frac{\theta + 2\pi}{3} = -\sqrt[3]{\rho}\left(\cos\frac{\theta}{3} + \sqrt{3}\sin\frac{\theta}{3}\right) < 0$$
 (51)

$$x_3 = u_3 + v_3 = 2\sqrt[3]{\rho}\cos\frac{\theta + 4\pi}{3} = \sqrt[3]{\rho}\left(-\cos\frac{\theta}{3} + \sqrt{3}\sin\frac{\theta}{3}\right) > 0$$
 (52)

We compare the expressions of x_1 and x_3 , we obtain:

$$2\sqrt[3]{p}\cos\frac{\theta}{3} \xrightarrow{?} \sqrt[3]{p}\left(-\cos\frac{\theta}{3} + \sqrt{3}\sin\frac{\theta}{3}\right)$$
$$3\cos\frac{\theta}{3} \xrightarrow{?} \sqrt{3}\sin\frac{\theta}{3} \tag{53}$$

As $\frac{\theta}{3} \in]+\frac{\pi}{6},+\frac{\pi}{3}[$, then $sin\frac{\theta}{3}$ and $cos\frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$\frac{1}{4} < \cos^2 \frac{\theta}{3} \tag{54}$$

which is true since $\frac{\theta}{3} \in]+\frac{\pi}{6}, +\frac{\pi}{3}[$ then $x_1 > x_3$. As A^m, B^n and $-C^l$ are the only real solutions of (10), we consider, as A^m is supposed great than B^n , the expressions:

$$\begin{cases}
A^{m} = x_{1} = u_{1} + v_{1} = 2\sqrt[3]{\rho}\cos\frac{\theta}{3} \\
B^{n} = x_{3} = u_{3} + v_{3} = 2\sqrt[3]{\rho}\cos\frac{\theta + 4\pi}{3} = \sqrt[3]{\rho}\left(-\cos\frac{\theta}{3} + \sqrt{3}\sin\frac{\theta}{3}\right) \\
-C^{l} = x_{2} = u_{2} + v_{2} = 2\sqrt[3]{\rho}\cos\frac{\theta + 2\pi}{3} = -\sqrt[3]{\rho}\left(\cos\frac{\theta}{3} + \sqrt{3}\sin\frac{\theta}{3}\right)
\end{cases}$$
(55)

3. Proof of the Main Theorem

Main Theorem: Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

$$A^m + B^n = C^l (56)$$

then A, B, and C have a common factor.

PROOF. $A^m = 2\sqrt[3]{\rho}\cos\frac{\theta}{3}$ is an integer $\Rightarrow A^{2m} = 4\sqrt[3]{\rho^2}\cos^2\frac{\theta}{3}$ is an integer. But:

$$\sqrt[3]{\rho^2} = \frac{p}{3} \tag{57}$$

Then:

$$A^{2m} = 4\sqrt[3]{\rho^2}\cos^2\frac{\theta}{3} = 4\frac{p}{3}.\cos^2\frac{\theta}{3} = p.\frac{4}{3}.\cos^2\frac{\theta}{3}$$
 (58)

As A^{2m} is an integer, and p is an integer then $\cos^2\frac{\theta}{3}$ must be written in the form:

$$cos^2 \frac{\theta}{3} = \frac{1}{b} \quad or \quad cos^2 \frac{\theta}{3} = \frac{a}{b}$$
 (59)

with $b \in N^*$, for the last condition $a \in N^*$ and a, b coprime.

3.1. <u>Case</u> $\cos^2 \frac{\theta}{3} = \frac{1}{b}$

We obtain :

$$A^{2m} = p \cdot \frac{4}{3} \cdot \cos^2 \frac{\theta}{3} = \frac{4 \cdot p}{3 \cdot b} \tag{60}$$

 $\mathrm{As}\ \frac{1}{4} < \cos^2\frac{\theta}{3} < \frac{3}{4} \Rightarrow \frac{1}{4} < \frac{1}{b} < \frac{3}{4} \Rightarrow b < 4 < 3b \Rightarrow b = 1, 2, 3.$

3.1.1. <u>Case b = 1</u>

 $b=1\Rightarrow 4<3$ which is impossible.

3.1.2. Case b = 2

 $b=2\Rightarrow A^{2m}=p.\frac{4}{3}.\frac{1}{2}=\frac{2.p}{3}\Rightarrow 3|p\Rightarrow p=3p' \text{ with } p'\neq 1 \text{ because } 3\ll p,$ and b=2, we obtain:

$$A^{2m} = \frac{2p}{3} = 2.p' \tag{61}$$

But:

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right) = \frac{p}{3} \left(3 - 4\frac{1}{2} \right) = \frac{p}{3} = \frac{3p'}{3} = p'$$
 (62)

On the one hand:

$$A^{2m} = (A^m)^2 = 2p' \Rightarrow 2|p' \Rightarrow p' = 2p''^2 \Rightarrow A^{2m} = 4p''^2$$
$$\Rightarrow A^m = 2p'' \Rightarrow 2|A^m \Rightarrow 2|A$$

On the other hand:

 $B^nC^l=p'=2p^{n\,2}\Rightarrow 2|B^n \text{ or } 2|C^l.$ If $2|B^n\Rightarrow 2|B.$ As $C^l=A^m+B^n$ and 2|A and 2|B, it follows $2|A^m$ and $2|B^n$ then $2|(A^m+B^n)\Rightarrow 2|C^l\Leftrightarrow 2|C.$

Then, we have : A,B and C solutions of (3) have a common factor. Also if $2|C^l$, we obtain the same result : A,B and C solutions of (3) have a common factor.

3.1.3. Case b = 3

 $b=3\Rightarrow A^{2m}=p.\frac{4}{3}.\frac{1}{3}=\frac{4p}{9}\Rightarrow 9|p\Rightarrow p=9p' \text{ with } p'\neq 1 \text{ since } 9\ll p \text{ then } A^{2m}=4p'\Longrightarrow p' \text{ is not a prime. Let } \mu \text{ a prime with } \mu|p'\Rightarrow \mu|A^{2m}\Rightarrow \mu|A.$

On the other hand:

$$B^nC^l = \frac{p}{3}\left(3 - 4\cos^2\frac{\theta}{3}\right) = 5p'$$

Then $\mu|B^n$ or $\mu|C^l$. If $\mu|B^n \Rightarrow \mu|B$. As $C^l = A^m + B^n$ and $\mu|A$ and $\mu|B$, it follows $\mu|A^m$ and $\mu|B^n$ then $\mu|(A^m + B^n) \Rightarrow \mu|C^l \Longrightarrow \mu|C$.

Then, we have : A,B and C solutions of (3) have a common factor. Also if $\mu|C^l$, we obtain the same result : A,B and C solutions of (3) have a common factor.

3.2. Case
$$a > 1$$
, $\cos^2 \frac{\theta}{3} = \frac{a}{b}$

That is to say:

$$\cos^2\frac{\theta}{3} = \frac{a}{b} \tag{63}$$

$$A^{2m} = p.\frac{4}{3}.\cos^2\frac{\theta}{3} = \frac{4.p.a}{3h}$$
 (64)

and a, b verify one of the two conditions:

$$\{3|p \quad and \quad b|4p\} \quad \text{or} \quad \{3|a \quad and \quad b|4p\} \tag{65}$$

and using the equation (36), we obtain a third condition:

$$\boxed{b < 4a < 3b} \tag{66}$$

In these conditions, respectively, $A^{2m} = 4\sqrt[3]{\rho^2}\cos^2\frac{\theta}{3} = 4\frac{p}{3}.\cos^2\frac{\theta}{3}$ is an integer.

Let us study the conditions given by the equation (65).

3.2.1. **Hypothesis:** $\{3|p \text{ and } b|4p\}$

<u>3.2.1.1. Case b=2 and 3|p:.</u> $3|p\Rightarrow p=3p'$ with $p'\neq 1$ because $3\ll p$, and b=2, we obtain:

$$A^{2m} = \frac{4p.a}{3b} = \frac{4.3p'.a}{3b} = \frac{4.p'.a}{2} = 2.p'.a \tag{67}$$

As:

$$\frac{1}{4} < \cos^2 \frac{\theta}{3} = \frac{a}{b} = \frac{a}{2} < \frac{3}{4} \Rightarrow a < 2 \Rightarrow a = 1$$
 (68)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Case b=4 and 3|p: We have $3|p\Longrightarrow p=3p'$ with $p'\in N^*$, it follows:

$$A^{2m} = \frac{4p.a}{3b} = \frac{4.3p'.a}{3 \times 4} = p'.a \tag{69}$$

and:

$$\frac{1}{4} < \cos^2 \frac{\theta}{3} = \frac{a}{b} = \frac{a}{4} < \frac{3}{4} \Rightarrow 1 < a < 3 \Rightarrow a = 2 \tag{70}$$

But a, b are coprime. Then the case b = 4 and 3|p is impossible.

3.2.1.3. Case: $b \neq 2, b \neq 4, \ b|p \ and \ 3|p$:. As 3|p then p=3p' and :

$$A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3} = \frac{4p}{3}\frac{a}{b} = \frac{4\times 3p'}{3}\frac{a}{b} = \frac{4p'a}{b}$$
 (71)

We consider the case: $b|p' \Longrightarrow p' = bp$ " and $p'' \ne 1$ (if p'' = 1, then p = 3b, see sub-paragraph II. Case k'=1 of paragraph 3.2.1.8). Hence:

$$A^{2m} = \frac{4bp''a}{b} = 4ap'' (72)$$

Let us calculate B^nC^l :

$$B^{n}C^{l} = \frac{p}{3}\left(3 - 4\cos^{2}\frac{\theta}{3}\right) = p'\left(3 - 4\frac{a}{b}\right) = b.p".\frac{3b - 4a}{b} = p".(3b - 4a) \quad (73)$$

Finally, we have the two equations:

$$A^{2m} = \frac{4bp''a}{b} = 4ap'' \tag{74}$$

$$B^n C^l = p".(3b - 4a) (75)$$

I. Case p" is prime:

From (74), $p"|A^{2m} \Rightarrow p"|A^m \Rightarrow p"|A$. From (75), $p"|B^n$ or $p"|C^l$. If $p"|B^n \Rightarrow p"|B$, as $C^l = A^m + B^n \Rightarrow p"|C^l \Rightarrow p"|C$. If $p"|C^l \Rightarrow p"|C$, as $B^n = C^l - A^m \Rightarrow p"|B^n \Rightarrow p"|B$.

Then A,B and C solutions of (3) have a common factor.

II. Case p" is not prime:

Let λ one prime divisor of p". From (74), we have :

$$\lambda | A^{2m} \Rightarrow \lambda | A^m$$
 as λ is prime then $\lambda | A$ (76)

From (75), as $\lambda | p$ " we have:

$$\lambda | B^n C^l \Rightarrow \lambda | B^n \quad \text{or } \lambda | C^l$$
 (77)

If $\lambda | B^n$, λ is prime $\lambda | B$, and as $C^l = A^m + B^n$ then we have also:

$$\lambda | C^l \quad \text{as } \lambda \text{ is prime, then } \lambda | C$$
 (78)

By the same way, if $\lambda | C^l$, we obtain $\lambda | B$.

Then: A, B and C solutions of (3) have a common factor.

Let us verify the condition (66) given by:

In our case, the last equation becomes:

$$p < 3A^{2m} < 3p \quad with \quad p = A^{2m} + B^{2n} + A^m B^n$$
 (79)

The condition $3A^{2m} < 3p \Longrightarrow A^{2m} < p$ is verified.

If:

$$p < 3A^{2m} \Longrightarrow 2A^{2m} - A^m B^n - B^{2n} > 0$$

We put $Q(Y) = 2Y^2 - B^nY - B^{2n}$, the roots of Q(Y) = 0 are $Y_1 = -\frac{B^n}{2}$ and $Y_2 = B^n$. Q(Y) > 0 for $Y < Y_1$ and $Y > Y_2 = B^n$. In our case, we take $Y = A^m$. As $A^m > B^n$ then $p < 3A^{2m}$ is verified. Then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies to verify $A^m > B^n$ which is true.

3.2.1.4. Case b = 3 and 3|p : As $3|p \Longrightarrow p = 3p'$ and we write:

$$A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3} = \frac{4p}{3}\frac{a}{b} = \frac{4\times 3p'}{3}\frac{a}{3} = \frac{4p'a}{3}$$
 (80)

As A^{2m} is an integer and that a and b are coprime and $\cos^2\frac{\theta}{3}$ can not be one in reference to the equation (35), then we have necessary $3|p'\Longrightarrow p'=3p$ " with $p"\neq 1$, if not $p=3p'=3\times 3p"=9$ but $p=A^{2m}+B^{2n}+A^mB^n>9$, the hypothesis p"=1 is impossible, then p">1. hence:

$$A^{2m} = \frac{4p'a}{3} = \frac{4 \times 3p"a}{3} = 4p"a \tag{81}$$

$$B^{n}C^{l} = \frac{p}{3}\left(3 - 4\cos^{2}\frac{\theta}{3}\right) = p'\left(3 - 4\frac{a}{b}\right) = \frac{3p''(9 - 4a)}{3} = p''.(9 - 4a) \tag{82}$$

As $\frac{1}{4} < \cos^2 \frac{\theta}{3} = \frac{a}{b} = \frac{a}{3} < \frac{3}{4} \Longrightarrow 3 < 4a < 9 \Longrightarrow a = 2$ as a > 1. a = 2, we obtain:

$$A^{2m} = \frac{4p'a}{3} = \frac{4 \times 3p"a}{3} = 4p"a = 8p"$$
 (83)

$$B^{n}C^{l} = \frac{p}{3}\left(3 - 4\cos^{2}\frac{\theta}{3}\right) = p'\left(3 - 4\frac{a}{b}\right) = \frac{3p''(9 - 4a)}{3} = p''$$
 (84)

The two last equations give that p" is not prime. Then we use the same methodology described above for the case **3.2.1.3.**, and we have : A,B and C solutions of (3) have a common factor.

3.2.1.5. Case 3|p| and b = p:. We have:

$$\cos^2\frac{\theta}{3} = \frac{a}{b} = \frac{a}{p}$$

and:

$$A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3} = \frac{4p}{3}\cdot\frac{a}{p} = \frac{4a}{3}$$
 (85)

As A^{2m} is an integer, this implies that 3|a, but $3|p \Longrightarrow 3|b$. As a and b are coprime, hence the contradiction. Then the case 3|p and b=p is impossible.

<u>3.2.1.6. Case 3|p and b=4p</u>: $3|p \Longrightarrow p=3p', p' \ne 1$ because $3 \ll p$, hence b=4p=12p'.

$$A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3} = \frac{4p}{3}\frac{a}{b} = \frac{a}{3} \Longrightarrow 3|a \tag{86}$$

because A^{2m} is an integer. But $3|p \Longrightarrow 3|[(4p) = b]$, that is in contradiction with the hypothesis a, b are coprime. Then the case b = 4p is impossible.

3.2.1.7. Case 3|p and b=2p: $3|p \Longrightarrow p=3p', p' \neq 1 \text{ because } 3 \ll p, \text{ hence } b=2p=6p'.$

$$A^{2m} = \frac{4p}{3}cos^2\frac{\theta}{3} = \frac{4p}{3}\frac{a}{b} = \frac{2a}{3} \Longrightarrow 3|a \tag{87}$$

because A^{2m} is an integer. But $3|p \Longrightarrow 3|(2p) \Longrightarrow 3|b$, that is in contradiction with the hypothesis a, b are coprime. Then the case b = 2p is impossible.

3.2.1.8. Case 3|p and $b \neq 3$ is a divisor of p:. We have $b = p' \neq 3$, and p is written as:

$$p = kp'$$
 with $3|k \Longrightarrow k = 3k'$ (88)

and :

$$A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3} = \frac{4p}{3}\cdot\frac{a}{b} = \frac{4\times3.k'p'}{3}\frac{a}{p'} = 4ak'$$
 (89)

We calculate B^nC^l :

$$B^{n}C^{l} = \frac{p}{3} \cdot \left(3 - 4\cos^{2}\frac{\theta}{3}\right) = k'(3p' - 4a) \tag{90}$$

I. Case $k' \neq 1$:

We suppose $k' \neq 1$, we use the same methodology described for the case **3.1.2.3.**, and we obtain: A, B and C solutions of (3) have a common factor.

II. Case k' = 1:

We have $k' = 1 \Longrightarrow p = 3b$, then we have:

$$A^{2m} = 4a \Longrightarrow a$$
 is even (91)

and:

$$A^m B^n = 2\sqrt[3]{\rho} \cos\frac{\theta}{3} \cdot \sqrt[3]{\rho} \left(\sqrt{3} \sin\frac{\theta}{3} - \cos\frac{\theta}{3}\right) = \frac{p\sqrt{3}}{3} \sin\frac{2\theta}{3} - 2a$$
 (92)

let:

$$A^{2m} + 2A^m B^n = \frac{2p\sqrt{3}}{3} \sin \frac{2\theta}{3} = 2b\sqrt{3} \sin \frac{2\theta}{3}$$
 (93)

The left member of (93) is an integer and b also, then $2\sqrt{3}sin\frac{2\theta}{3}$ can be written in the form:

$$2\sqrt{3}sin\frac{2\theta}{3} = \frac{k_1}{k_2} \tag{94}$$

where k_1, k_2 are two coprime integers and $k_2|b \Longrightarrow b = k_2.k_3$.

II.1. Case $k_3 \neq 1$:

We suppose $k_3 \neq 1$. Hence:

$$A^{2m} + 2A^m B^n = k_3.k_1 (95)$$

Let μ is an prime integer such that $\mu|k_3$. If $\mu=2\Rightarrow 2|b$, but 2|a that is contradiction with a,b coprime. We suppose $\mu\neq 2$ and $\mu|k_3$, then:

$$\mu|A^m(A^m + 2B^n) \Longrightarrow \mu|A^m \text{ or } \mu|(A^m + 2B^n)$$
(96)

II.1.1. Case $\mu|A^m$:

If $\mu|A^m \Longrightarrow \mu|A^{2m} \Longrightarrow \mu|4a \Longrightarrow \mu|a$. As $\mu|k_3 \Longrightarrow \mu|b$ and that a,b are coprime hence the contradiction.

II.1.2. Case $\mu | (A^m + 2B^n)$:

If $\mu|(A^m+2B^n) \Longrightarrow \mu \nmid A^m$ and $\mu \nmid 2B^n$ then $\mu \neq 2$ and $\mu \nmid B^n$. $\mu|(A^m+2B^n)$, we can write:

$$A^{m} + 2B^{n} = \mu.t' \quad t' \in N^{*} \tag{97}$$

It follows:

$$A^m + B^n = \mu t' - B^n \Longrightarrow A^{2m} + B^{2n} + 2A^m B^n = \mu^2 t'^2 - 2t' \mu B^n + B^{2n}$$

Using the expression of p, we obtain:

$$p = t^{2} \mu^{2} - 2t' B^{n} \mu + B^{n} (B^{n} - A^{m})$$
(98)

As $p = 3b = 3k_2.k_3$ and $\mu|k_3$ hence $\mu|p \Longrightarrow p = \mu\mu'$, so we have :

$$\mu'\mu = \mu(\mu t'^2 - 2t'B^n) + B^n(B^n - A^m) \tag{99}$$

then:

$$\boxed{\mu|B^n(B^n - A^m) \Longrightarrow \mu|B^n \text{ or } \mu|(B^n - A^m)}$$
(100)

II.1.2.1. Case $\mu|B^n$:

If $\mu|B^n \Longrightarrow \mu|B$ which is in contradiction with case II.1.2. above.

II.1.2.2. Case $\mu|(B^n - A^m)$:

If $\mu|(B^n-A^m)$ and using $\mu|(A^m+2B^n)$, we obtain:

$$\mu|3B^n\tag{101}$$

II.1.2.2.1. Case $\mu|B^n$:

If $\mu|B^n$, using the result above of II.1.2.1. of this paragraph, it is impossible.

II.1.2.2.2. Case $\mu = 3$:

If $\mu = 3 \Longrightarrow 3|k_3 \Longrightarrow k_3 = 3k_3'$, and we have $b = k_2k_3 = 3k_2k_3'$, it follows $p = 3b = 9k_2k_3'$ then 9|p, but $p = (A^m - B^n)^2 + 3A^mB^n$ then:

$$9k_2k_3' - 3A^mB^n = (A^m - B^n)^2$$

we write it as:

$$3(3k_2k_3' - A^m B^n) = (A^m - B^n)^2 (102)$$

hence:

$$3|(3k_2k_3' - A^mB^n) \Longrightarrow 3|A^mB^n \Longrightarrow 3|A^m \text{ or } 3|B^n$$
(103)

II.1.2.2.2.1. Case $3|A^m$:

If $3|A^m \Longrightarrow 3|A$ and we have also $3|A^{2m}$, but $A^{2m} = 4a \Longrightarrow 3|4a \Longrightarrow 3|a$. As $b = 3k_2k_3'$ then 3|b, but a, b are coprime hence the contradiction. Then $3 \nmid A$.

II.1.2.2.2.2. Case $3|B^n$:

If $3|B^n \Longrightarrow 3|B$, but the (102) gives $3|(A^m - B^n)^2 \Longrightarrow 3|(A^m - B^n) \Longrightarrow 3|A^m \Longrightarrow 3|(A^{2m} = 4a) \Rightarrow 3|a$. As 3|b then the contradiction with a, b coprime.

Then the hypothesis $k_3 \neq 1$ is impossible.

III. Case $k_3 = 1$:

Now we suppose that $k_3 = 1 \Longrightarrow b = k_2$ and $p = 3b = 3k_2$. We have then:

$$2\sqrt{3}\sin\frac{2\theta}{3} = \frac{k_1}{b} \tag{104}$$

with k_1, b coprime. We write (104) as:

$$4\sqrt{3}\sin\frac{\theta}{3}\cos\frac{\theta}{3} = \frac{k_1}{b}$$

Taking the square of the two members and replacing $\cos^2\frac{\theta}{3}$ by $\frac{a}{b}$, we obtain:

$$3 \times 4^2 \cdot a(b-a) = k_1^2 \tag{105}$$

which implies that:

$$\boxed{3|a \quad or \quad 3|(b-a)} \tag{106}$$

III.1. Case 3|a:

If 3|a, as $A^{2m} = 4a \Longrightarrow 3|A^{2m} \Longrightarrow 3|A$ and 3|a. But $p = (A^m - B^n)^2 + 3A^mB^n$ and that $3|p \Longrightarrow 3|(A^m - B^n)^2 \Longrightarrow 3|(A^m - B^n)$. But 3|A hence $3|B^n \Longrightarrow 3|B$, as $m \ge 3 \Longrightarrow 3^2|p$, it follows 3|b then the contradiction with a, b coprime.

III.2. Case 3|(b-a):

Considering now that 3|(b-a). As $k_1 = A^m(A^m + 2B^n)$ by the equation (95) and that $3|k_1 \Longrightarrow 3|A^m(A^m + 2B^n) \Longrightarrow \boxed{3|A^m \text{ or } 3|(A^m + 2B^n)}$.

III.2.1. Case $3|A^m$:

If $3|A^m \Longrightarrow 3|A \Longrightarrow 3|A^{2m}$ then $3|4a \Longrightarrow 3|a$. But $3|(b-a) \Longrightarrow 3|b$ hence the contradiction with a, b are coprime.

III.2.2. Case $3|(A^m + 2B^n)$:

If:

$$3|(A^m + 2B^n) \Longrightarrow 3|(A^m - B^n) \tag{107}$$

But $p = A^{2m} + B^{2n} + A^m B^n = (A^m - B^n)^2 + 3A^m B^n$ then $p - 3A^m B^n = (A^m - B^n)^2 \Longrightarrow 9|(p - 3A^m B^n)$ or $9|(3b - 3A^m B^n)$, then $3|(b - A^m B^n)$ but $3|(b - a) \Longrightarrow 3|(a - A^m B^n)$. As $A^{2m} = 4a = (A^m)^2 \Longrightarrow \exists a' \in N^*$ and $a = a'^2 \Longrightarrow A^m = 2a'$. We arrive to:

$$3|(a'^2 - 2a'B^n) \Rightarrow 3|a'(a' - 2B^n) \Rightarrow 3|a' \quad or \quad 3|(a' - 2B^n)|$$
 (108)

III.2.2.1. Case 3|a':

If $3|a' \Rightarrow 3|a'^2 \Rightarrow 3|a$, but $3|(b-a) \Rightarrow 3|b$, then the contradiction with a, b coprime.

III.2.2.2. Case $3|(a'-2B^n)$:

Now if $3|(a'-2B^n) \Rightarrow 3|(2a'-4B^n) \Rightarrow 3|(A^m-4B^n) \Rightarrow 3|(A^m-B^n)$, we refind the case **III.2.2.**, equation (107), that has a solution given by the case **2.2.1.** above.

Then, the study of the case 3.2.1.8. is finished.

 $\underline{3.2.1.9 \ Case \ 3|p \ and \ b|4p}$. As $3|p \Rightarrow p = 3p'$ and $b|4p \Rightarrow \exists k_1 \in N^*$ and $4p = 12p' = k_1b$.

I. Case $k_1 = 1$:

If $k_1=1$, then b=12p', $(p'\neq 1 \text{ if not } p=3\ll A^{2m}+B^{2n}+A^mB^n)$. But $A^{2m}=\frac{4p}{3}.cos^2\frac{\theta}{3}=\frac{12p'}{3}\frac{a}{b}=\frac{4p'.a}{12p'}=\frac{a}{3}\Rightarrow 3|a$ because A^{2m} is an integer, then the contradiction with a,b coprime.

II. Case $k_1 = 3$:

If $k_1 = 3$, then b = 4p' and $A^{2m} = \frac{4p}{3}.cos^2\frac{\theta}{3} = \frac{k_1.a}{3} = a$.

Let us calculate A^mB^n :

$$A^mB^n=2\sqrt[3]{\rho}\cos\frac{\theta}{3}.\sqrt[3]{\rho}\left(\sqrt{3}\sin\frac{\theta}{3}-\cos\frac{\theta}{3}\right)=\frac{p\sqrt{3}}{3}\sin\frac{2\theta}{3}-\frac{a}{2} \tag{109}$$

Let:

$$A^{2m} + 2A^m B^n = \frac{2p\sqrt{3}}{3} \sin \frac{2\theta}{3} = 2p'\sqrt{3} \sin \frac{2\theta}{3}$$
 (110)

The left member of the equation (110) is an integer and also p', then $2\sqrt{3}sin\frac{2\theta}{3}$ can be written as :

$$2\sqrt{3}\sin\frac{2\theta}{3} = \frac{k_2}{k_3} \tag{111}$$

where k_2, k_3 are two coprime integers and:

$$k_3|p' \Longrightarrow \exists k_4 \in N^* \quad and \quad p' = k_3.k_4$$
 (112)

II.1. Case $k_4 \neq 1$:

We suppose that $k_4 \neq 1$, then:

$$A^{2m} + 2A^m B^n = k_2 \cdot k_4 (113)$$

Let μ one prime integer with:

$$\mu|k_4 \tag{114}$$

Then:

$$\boxed{\mu|A^m(A^m + 2B^n) \Longrightarrow \mu|A^m \quad \text{or} \quad \mu|(A^m + 2B^n)}$$
(115)

II.1.1. Case $\mu|A^m$:

If $\mu|A^m \Longrightarrow \mu|A^{2m} \Longrightarrow \mu|a$. As $\mu|k_4 \Longrightarrow \mu|p' \Rightarrow \mu|(4p'=b)$. But a,b are coprime then the contradiction.

II.1.2. Case $\mu|(A^m + 2B^n)$:

If $\mu|(A^m+2B^n) \Longrightarrow \mu \nmid A^m$ and $\mu \nmid 2B^n$ then $\mu \neq 2$ and $\mu \nmid B^n$. $\mu|(A^m+2B^n)$, we can write:

$$A^{m} + 2B^{n} = \mu . t' \quad t' \in N^{*}$$
(116)

It follows:

$$A^{m} + B^{n} = \mu t' - B^{n} \Longrightarrow A^{2m} + B^{2n} + 2A^{m}B^{n} = \mu^{2}t'^{2} - 2t'\mu B^{n} + B^{2n}$$

Using the expression of p, we obtain:

$$p = t^{2} \mu^{2} - 2t' B^{n} \mu + B^{n} (B^{n} - A^{m})$$
(117)

As p = 3p' and $\mu|p' \Rightarrow \mu|(3p') \Rightarrow \mu|p$, we can write $\exists \mu' \in N^*$ and $p = \mu\mu'$, then we obtain:

$$\mu'\mu = \mu(\mu t'^2 - 2t'B^n) + B^n(B^n - A^m)$$
(118)

and:

$$\mu|B^n(B^n - A^m) \Longrightarrow \mu|B^n \quad \text{or} \quad \mu|(B^n - A^m)$$
 (119)

II.1.2.1. Case $\mu|B^n$:

If $\mu|B^n \Longrightarrow \mu|B$ which is in contradiction with the case II.1.2. above.

II.1.2.2. Case $\mu|(B^n - A^m)$:

If $\mu|(B^n-A^m)$ and using $\mu|(A^m+2B^n)$, we obtain:

$$\mu|3B^n$$
 (120)

II.1.2.2.1. Case $\mu|B^n$:

If $\mu|B^n$ it is impossible, see the case **II.1.2.1.** above.

II.1.2.2.2 Case $\mu = 3$:

If $\mu = 3 \Longrightarrow 3|k_4 \Longrightarrow k_4 = 3k'_4$, and we obtain $p' = k_3k_4 = 3k_3k'_4$, it follows $p = 3p' = 9k_3k'_4$ then 9|p, but $p = (A^m - B^n)^2 + 3A^mB^n$, then:

$$9k_4k_5' - 3A^mB^n = (A^m - B^n)^2$$

that we write:

$$3(3k_4k_5' - A^m B^n) = (A^m - B^n)^2 (121)$$

then $3|(3k_4k_5'-A^mB^n) \Longrightarrow 3|A^mB^n \Longrightarrow \boxed{3|A^m \quad or \quad 3|B^n}$

II.1.2.2.2.1. Case $3|A^m$:

If $3|A^m \Longrightarrow 3|A^{2m} \Rightarrow 3|a$, but $3|p' \Rightarrow 3|(4p') \Rightarrow 3|b$, then the contradiction with a, b coprime. Then $3 \nmid A$.

II.1.2.2.2.2. Case $3|B^n$:

If $3|B^n$ and using (116), we have $A^m = \mu t' - 2B^n = 3t' - 2B^n \Longrightarrow 3|A^m \Longrightarrow 3|A^{2m} \Longrightarrow 3|a$, but $3|p' \Longrightarrow 3|(4p') \Longrightarrow 3|b$, then the contradiction with a, b coprime.

Then the hypothesis $k_4 \neq 1$ is impossible.

II.2. Case $k_4 = 1$:

We suppose that $k_4 = 1 \Longrightarrow p' = k_3 k_4 = k_3$. Then we obtain:

$$2\sqrt{3}\sin\frac{2\theta}{3} = \frac{k_2}{p'}\tag{122}$$

with k_2, p' coprime, we write (122) as:

$$4\sqrt{3}\sin\frac{\theta}{3}\cos\frac{\theta}{3} = \frac{k_2}{p'}$$

Taking the square of the two members and replacing $\cos^2 \frac{\theta}{3}$ by $\frac{a}{b}$ and b = 4p', we obtain:

$$3.a(b-a) = k_2^2 \tag{123}$$

that implies:

$$\boxed{3|a \quad or \quad 3|(b-a)} \tag{124}$$

II.2.1. Case 3|a:

If $3|a \Rightarrow 3|A^{2m} \Rightarrow 3|A$, as $p = (A^m - B^n)^2 + 3A^mB^n$ and that $3|p \Longrightarrow 3|(A^m - B^n)^2 \Longrightarrow 9|(A^m - B^n)^2$. But $(A^m - B^n)^2 = p - 3A^mB^n = 3b - 3A^mB^n \Longrightarrow 3|(b - A^mB^n)$. As $3|A^m \Longrightarrow 3|b \Longrightarrow$ the contradiction with a, b coprime.

II.2.2. Case 3|(b-a):

We consider that 3|(b-a). As $k_2 = A^m(A^m + 2B^n)$ given by the equation (113) and that $3|k_2 \Longrightarrow 3|A^m(A^m + 2B^n) \Longrightarrow \boxed{3|A^m \quad or \quad 3|(A^m + 2B^n)}$.

II.2.2.1. Case $3|A^m$:

If $3|A^m \Longrightarrow 3|A^{2m} \Longrightarrow 3|a$, but $3|(b-a) \Longrightarrow 3|b$ then the contradiction with a,b coprime.

II.2.2.2. Case $3|(A^m + 2B^n)$:

If:

$$3|(A^m + 2B^n) \Longrightarrow 3|(A^m - B^n) \tag{125}$$

but $p = A^{2m} + B^{2n} + A^m B^n = (A^m - B^n)^2 + 3A^m B^n$ then $p - 3A^m B^n = (A^m - B^n)^2 \Longrightarrow 9|(p - 3A^m B^n)$ or $9|(3p' - 3A^m B^n)$, then $3|(p' - A^m B^n) \Longrightarrow$

$$3|4(p'-4A^mB^n) \Rightarrow 3|(b-4A^mB^n) \text{ but } 3|(b-a) \implies 3|(a-A^mB^n). \text{ As}$$

 $3|(A^{2m}-4A^mB^n) \Rightarrow \boxed{3|A^m(A^m-4B^n)}.$

II.2.2.2.1. Case $3|A^m$:

If $3|A^m \Longrightarrow 3|A^{2m} \Longrightarrow 3|a$, but $3|(b-a) \Longrightarrow 3|b$ then the contradiction with a,b coprime.

II.2.2.2.2. Case $3|(A^m - 4B^n)$:

Now if $3|(A^m-4B^n) \Longrightarrow 3|(A^m-B^n)$, we refind the hypothesis of the beginning (125) above, that has a solution **II.2.2.2.1.**.

III. Case $k_1 \neq 3$ and $3|k_1$:

We suppose $k_1 \neq 3$ and $3|k_1 \Rightarrow k_1 = 3k'1$ with $k'_1 \neq 1$. We have $4p = 12p' = k_1b = 3k'_1b \Rightarrow 4p' = k'_1b$. A^{2m} can be written as:

$$A^{2m} = \frac{4p}{3}\cos^2\frac{\theta}{3} = \frac{3k_1'b}{3}\frac{a}{b} = k_1'a \tag{126}$$

and B^nC^l :

$$B^{n}C^{l} = \frac{p}{3}\left(3 - 4\cos^{2}\frac{\theta}{3}\right) = \frac{k_{1}'}{4}(3b - 4a)$$
 (127)

As B^nC^l is an integer, we must have $\boxed{4|(3b-4a) \quad \text{or} \quad 4|k_1'}$

III.1. Case 4|(3b-4a):

We suppose that $4|(3b-4a) \Rightarrow \frac{3b-4a}{4} = c \in N^*$, and we obtain:

$$A^{2m} = k_1' a$$

$$B^nC^l=k_1^\prime c$$

III.1.1. Case k'_1 is prime:

If k_1' is prime, then $k_1'|A^{2m} \Rightarrow k_1'|A$ and $k_1'|B^nC^l \Rightarrow k_1'|B^n$ or $k_1'|C^l$. If $k_1'|B^n \Rightarrow k_1'|B$, then $k_1'|C^l \Rightarrow k_1'|C$. With the same method if $k_1'|C^l$, we arrive to $k_1'|B$.

We obtain: A,B and C solutions of (3) have a common factor.

III.1.2. Case k'_1 not a prime:

We suppose k'_1 not a prime. Let μ a prime divisor of k'_1 , as described in **III.1.1**. above, we obtain : A,B and C solutions of (3) have a common factor.

III.2. Case $4|k_1'$:

Now, we suppose that $4|k'_1$.

III.2.1. Case $k'_1 = 4$:

We suppose $k'_1 = 4$, then $A^{2m} = 4a$ and $B^nC^l = 4c$, It is easy to verify that 2 is a common factor of A, B, C.

We obtain: A,B and C solutions of (3) have a common factor.

III.2.2. Case $k'_1 = 4k''_1$:

If $k'_1 = 4k$ "₁ with k"₁ > 1. Then, we have:

$$A^{2m} = 4k_1^n a (128)$$

$$B^n C^l = k_1 (3b - 4a) (129)$$

III.2.2.1. Case k["]₁ prime:

If $k"_1$ is prime, then $k"_1|A^{2m}\Rightarrow k"_1|A$ and $k"_1|B^nC^l\Rightarrow k"_1|B^n$ or $k"_1|C^l$. If $k"_1|B^n\Rightarrow k"_1|B$, then $k"_1|C^l\Rightarrow k"_1|C$. With the same method if $k"_1|C^l$, we arrive to $k"_1|B$.

We obtain: A,B and C solutions of (3) have a common factor.

III.2.2.2. Case k"₁ not a prime:

If k''_1 not a prime. Let μ a prime divisor of k''_1 , as described in case **III.2.2.1.** above, we obtain : A,B and C solutions of (3) have a common factor.

3.2.2. **Hypothesis**: $\{3|a \ and \ b|4p\}$

We have:

$$3|a \Longrightarrow \exists a' \in N^* / a = 3a' \tag{130}$$

3.2.2.1. Case b = 2 and $3|a : A^{2m}$ is written as:

$$A^{2m} = \frac{4p}{3} \cdot \cos^2 \frac{\theta}{3} = \frac{4p}{3} \cdot \frac{a}{b} = \frac{4p}{3} \cdot \frac{a}{2} = \frac{2 \cdot p \cdot a}{3}$$
 (131)

Using the equation (130), A^{2m} becomes:

$$A^{2m} = \frac{2 \cdot p \cdot 3a'}{3} = 2 \cdot p \cdot a' \tag{132}$$

But $\cos^2 \frac{\theta}{3} = \frac{a}{b} = \frac{3a'}{2} > 1$ which is impossible, then $b \neq 2$.

3.2.2.2. Case b = 4 and $3|a : A^{2m}$ is written as:

$$A^{2m} = \frac{4 \cdot p}{3} \cos^2 \frac{\theta}{3} = \frac{4 \cdot p}{3} \cdot \frac{a}{b} = \frac{4 \cdot p}{3} \cdot \frac{a}{4} = \frac{p \cdot a}{3} = \frac{p \cdot 3a'}{3} = p \cdot a'$$
 (133)

and
$$\cos^2 \frac{\theta}{3} = \frac{a}{b} = \frac{3 \cdot a'}{4} < \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \Longrightarrow a' < 1$$
 (134)

which is impossible.

Then the case b = 4 is impossible.

3.2.2.3. Case b = p and 3|a|: Then:

$$\cos^2\frac{\theta}{3} = \frac{a}{b} = \frac{3a'}{p} \tag{135}$$

and:

$$A^{2m} = \frac{4p}{3} \cdot \cos^2 \frac{\theta}{3} = \frac{4p}{3} \cdot \frac{3a'}{p} = 4a' = (A^m)^2$$
 (136)

$$\exists a" \in N^* \ / \ a' = a"^2 \tag{137}$$

We calculate A^mB^n , hence:

$$A^{m}B^{n} = p.\frac{\sqrt{3}}{3}\sin\frac{2\theta}{3} - 2a'$$
or $A^{m}B^{n} + 2a' = p.\frac{\sqrt{3}}{3}\sin\frac{2\theta}{3}$ (138)

The left member of (138) is an integer and p is also, then $2\frac{\sqrt{3}}{3}sin\frac{2\theta}{3}$ will be written as :

$$2\frac{\sqrt{3}}{3}\sin\frac{2\theta}{3} = \frac{k_1}{k_2} \tag{139}$$

where k_1, k_2 are two coprime integers and $k_2|p \Longrightarrow p = b = k_2.k_3, \ k_3 \in N^*.$

I. Case $k_3 \neq 1$:

We suppose that $k_3 \neq 1$. We obtain:

$$A^{m}(A^{m} + 2B^{n}) = k_{1}.k_{3} (140)$$

Let us μ a prime integer with $\mu|k_3$, then $\mu|b$ and $\mu|A^m(A^m+2B^n)$. Hence:

$$\boxed{\mu|A^m \quad or \quad \mu|(A^m + 2B^n)}$$
(141)

I.1. Case $\mu|A^m$:

If $\mu|A^m \Longrightarrow \mu|A$ and $\mu|A^{2m}$, but $A^{2m} = 4a' \Longrightarrow \mu|4a' \Longrightarrow (\mu = 2 \text{ but } 2|a')$ or $\mu|a'$. Then $\mu|a$ hence the contradiction with a,b coprime.

I.2. Case $\mu|(A^m + 2B^n)$:

If $\mu|(A^m+2B^n) \Longrightarrow \mu \nmid A^m$ and $\mu \nmid 2B^n$ then $\mu \neq 2$ and $\mu \nmid B^n$. We write $\mu|(A^m+2B^n)$ as:

$$A^m + 2B^n = \mu . t' \quad t' \in N^* \tag{142}$$

It follows:

$$A^m + B^n = \mu t' - B^n \Longrightarrow A^{2m} + B^{2n} + 2A^m B^n = \mu^2 t'^2 - 2t' \mu B^n + B^{2n}$$

Using the expression of p:

$$p = t^{2} \mu^{2} - 2t' B^{n} \mu + B^{n} (B^{n} - A^{m})$$
(143)

Since $p = b = k_2.k_3$ and $\mu|k_3$ then $\mu|b \Longrightarrow \exists \mu' \in N^*$ and $b = \mu\mu'$, so we can write:

$$\mu'\mu = \mu(\mu t'^2 - 2t'B^n) + B^n(B^n - A^m)$$
(144)

From the last equation, we get $\mu|B^n(B^n-A^m)\Longrightarrow \boxed{\mu|B^n\quad or\quad \mu|(B^n-A^m)}$

I.2.1. Case $\mu|B^n$:

If $\mu|B^n$ which is contradiction with $\mu \nmid B^n$.

I.2.2. Case $\mu|(B^n - A^m)$:

If $\mu|(B^n-A^m)$ and using $\mu|(A^m+2B^n)$, we arrive to:

$$\mu|3B^n \Longrightarrow \begin{cases} \boxed{\mu|B^n} \\ or \\ \boxed{\mu = 3} \end{cases}$$
 (145)

I.2.2.1. Case $\mu | B^n$:

If $\mu|B^n$ which is contradiction with $\mu \nmid B$ from **I.2. Case** $\mu|(A^m + 2B^n)$.

I.2.2.2. Case $\mu = 3$:

If $\mu = 3$, then $b = 3\mu'$, but 3|a| then the contradiction with a, b coprime.

II. Case $k_3 = 1$:

We assume now $k_3 = 1$. Hence:

$$A^{2m} + 2A^m B^n = k_1 (146)$$

$$b = k_2 \tag{147}$$

$$\frac{2\sqrt{3}}{3}\sin\frac{2\theta}{3} = \frac{k_1}{b} \tag{148}$$

Taking the square of the last equation, we obtain:

$$\begin{split} \frac{4}{3}sin^2\frac{2\theta}{3} &= \frac{k_1^2}{b^2} \\ \frac{16}{3}sin^2\frac{\theta}{3}cos^2\frac{\theta}{3} &= \frac{k_1^2}{b^2} \\ \frac{16}{3}sin^2\frac{\theta}{3}.\frac{3a'}{b} &= \frac{k_1^2}{b^2} \end{split}$$

Finally:

$$4^2a'(p-a) = k_1^2 (149)$$

but $a' = a^{2}$ then p - a is a square. Let us:

$$\lambda^2 = p - a \tag{150}$$

The equation (149) becomes:

$$4^2 a^{2} \lambda^2 = k_1^2 \Longrightarrow k_1 = 4a^2 \lambda \tag{151}$$

taking the positive square root. Using (146), we get:

$$k_1 = 4a"\lambda \tag{152}$$

But $k_1 = A^m(A^m + 2B^n) = 2a''(A^m + 2B^n)$, it follows:

$$A^m + 2B^n = 2\lambda \tag{153}$$

Let λ_1 prime $\neq 2$, a divisor of λ (if not, $\lambda_1 = 2|\lambda \Longrightarrow 2|\lambda^2 \Longrightarrow 2|(p-a)$ but a is even, then $2|p \Longrightarrow 2|b$ which is contradiction with a, b coprime).

We consider $\lambda_1 \neq 2$ and :

$$\lambda_1 | \lambda \Longrightarrow \lambda_1 | \lambda^2 \quad and \quad \lambda_1 | (A^m + 2B^n)$$
 (154)

$$\lambda_1 | (A^m + 2B^n) \Longrightarrow \lambda_1 \nmid A^m \quad if \quad not \quad \lambda_1 | 2B^n$$
 (155)

But $\lambda_1 \neq 2$ hence $\lambda_1 | B^n \Longrightarrow \lambda_1 | B$, it follows:

$$\lambda_1|(p=b)$$
 and $\lambda_1|A^m \Longrightarrow \lambda_1|2a^n \Longrightarrow \lambda_1|a$ (156)

hence the contradiction with a, b coprime.

II.1. Case $\lambda_1 \nmid A^m$ and $\lambda_1 | (A^m + 2B^n)$:

We assume now $\lambda_1 \nmid A^m$. $\lambda_1 | (A^m + 2B^n) \Longrightarrow \lambda_1 | (A^m + 2B^n)^2$ that is $\lambda_1 | (A^{2m} + 4A^mB^n + 4B^{2n})$, we write it as $\lambda_1 | (p + 3A^mB^n + 3B^{2n}) \Longrightarrow \lambda_1 | (p + 3B^n(A^m + 2B^n) - 3B^{2n})$. But $\lambda_1 | (A^m + 2B^n) \Longrightarrow \lambda_1 | (p - 3B^{2n})$, as $\lambda_1 | (p - a)$ hence by difference, we obtain $\lambda_1 | (a - 3B^{2n})$ or $\lambda_1 | (3a' - 3B^{2n}) \Longrightarrow \lambda_1 | 3(a' - B^{2n})$, Then:

$$\lambda_1 = 3 \quad or \quad \lambda_1 | (a' - B^{2n})$$
 (157)

II.1.1. Case $\lambda_1 = 3$:

If $\lambda_1 = 3$ but 3|a, as $\lambda_1|(p-a) \Longrightarrow 3|(p=b)$ hence the contradiction with a, b coprime.

II.1.2. Case $\lambda_1 | (a' - B^{2n})$:

If $\lambda_1|(a'-B^{2n}) \Longrightarrow \lambda_1|(a''^2-B^{2n}) \Longrightarrow \boxed{\lambda_1|(a''-B^n)(a''+B^n)} \Longrightarrow \lambda_1|(a''+B^n)$ or $\lambda_1|(a''-B^n)$, because $(a''-B^n) \ne 1$, if not, we obtain $a''^2-B^{2n}=a''+B^n\Longrightarrow a''^2-a''=B^n-B^{2n}$. The left member is positive and the right member is negative, then the contradiction.

II.1.2.1. Case $\lambda_1 | (a^n - B^n)$:

If $\lambda_1|(a^n - B^n) \Longrightarrow \lambda_1|2(a^n - B^n) \Longrightarrow \lambda_1|(A^m - 2B^n)$ but $\lambda_1|(A^m + 2B^n)$ hence $\lambda_1|2A^m \Longrightarrow \lambda_1|A^m$ as $\lambda_1 \neq 2$, it follows $\lambda_1|A^m$ hence the contradiction with (155).

II.1.2.2. Case $\lambda_1 | (a^n + B^n)$:

If $\lambda_1|(a^n + B^n) \Longrightarrow \lambda_1|2(a^n + B^n) \Longrightarrow \lambda_1|(2a^n + 2B^n) \Longrightarrow \lambda_1|(A^m + 2B^n)$. We find the case **II.1.** that has solutions.

Then the case $k_3 = 1$ is impossible.

3.2.2.4. Case $b|p \Rightarrow p = b.p', p' > 1, b \neq 2, b \neq 4 \text{ and } 3|a :.$

$$A^{2m} = \frac{4.p}{3} \cdot \frac{a}{b} = \frac{4.b.p'.3.a'}{3.b} = 4.p'a'$$
 (158)

We calculate B^nC^l :

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3\sin^{2}\frac{\theta}{3} - \cos^{2}\frac{\theta}{3} \right) = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right)$$
 (159)

But $\sqrt[3]{\rho^2} = \frac{p}{3}$, hence using $\cos^2 \frac{\theta}{3} = \frac{3 \cdot a'}{b}$:

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right) = \frac{p}{3} \left(3 - 4\frac{3 \cdot a'}{b} \right) = p \cdot \left(1 - \frac{4 \cdot a'}{b} \right) = p'(b - 4a')$$
(160)

As p = b.p', and p' > 1, we have then:

$$B^n C^l = p'(b - 4a') (161)$$

and
$$A^{2m} = 4.p'.a'$$
 (162)

I. Case λ a prime divisor of p':

Let λ a prime divisor of p' (we suppose p' not prime). From (162), we have:

$$\lambda | A^{2m} \Rightarrow \lambda | A^m$$
 as λ is a prime, then $\lambda | A$ (163)

From (161), as $\lambda | p'$ we have:

$$\lambda | B^n C^l \Rightarrow \lambda | B^n \quad \text{or } \lambda | C^l$$
 (164)

If $\lambda | B^n$, λ is a prime $\lambda | B$, but $C^l = A^m + B^n$, then we have also:

$$\lambda | C^l$$
 as λ is a prime, then $\lambda | C$ (165)

By the same way, if $\lambda | C^l$, we obtain $\lambda | B$. then : A, B and C solutions of (3) have a common factor.

II. Case p' is a prime number:

We suppose now that p' is prime, from the equations (161) and (162), we obtain that:

$$p'|A^{2m} \Rightarrow p'|A^m \Rightarrow p'|A \tag{166}$$

and:

$$p'|B^nC^l \Rightarrow p'|B^n \quad \text{or } p'|C^l$$
 (167)

If
$$p'|B^n \Rightarrow p'|B$$
 (168)

As $C^l = A^m + B^n$ and that $p'|A,p'|B \Rightarrow p'|A^m,p'|B^n \Rightarrow p'|C^l$

$$\Rightarrow p'|C \tag{169}$$

By the same way, if $p'|C^l$, we arrive to p'|B.

Hence: A, B and C solutions of (3) have a common factor.

3.2.2.5. Case b = 2p and 3|a|: We have:

$$\cos^2\frac{\theta}{3} = \frac{a}{b} = \frac{3a'}{2p} \Longrightarrow A^{2m} = \frac{4p.a}{3b} = \frac{4p}{3} \cdot \frac{3a'}{2p} = 2a' \Longrightarrow 2|A^m \Longrightarrow 2|a \Longrightarrow 2|a' \Longrightarrow 2|$$

Then 2|a and 2|b which is contradiction with a, b coprime.

3.2.2.6. Case b = 4p and 3|a|:. We have:

$$\cos^2\frac{\theta}{3} = \frac{a}{b} = \frac{3a'}{4p} \Longrightarrow A^{2m} = \frac{4p.a}{3b} = \frac{4p}{3} \cdot \frac{3a'}{4p} = a'$$

Calculate A^mB^n , we obtain:

$$A^{m}B^{n} = \frac{p\sqrt{3}}{3}.\sin\frac{2\theta}{3} - \frac{2p}{3}\cos^{2}\frac{\theta}{3} = \frac{p\sqrt{3}}{3}.\sin\frac{2\theta}{3} - \frac{a'}{2} \Longrightarrow$$
$$A^{m}B^{n} + \frac{A^{2m}}{2} = \frac{p\sqrt{3}}{3}.\sin\frac{2\theta}{3} \qquad (170)$$

let:

$$A^{2m} + 2A^m B^n = \frac{2p\sqrt{3}}{3} \sin\frac{2\theta}{3}$$
 (171)

The left member of (171) is an integer and p is an integer, then $\frac{2\sqrt{3}}{3}sin\frac{2\theta}{3}$ will be written:

$$\frac{2\sqrt{3}}{3}\sin\frac{2\theta}{3} = \frac{k_1}{k_2} \tag{172}$$

where k_1, k_2 are two coprime integers and $k_2|p \Longrightarrow p = k_2.k_3.$

I. Case $k_3 \neq 1$:

Firstly, we suppose that $k_3 \neq 1$. Hence:

$$A^{2m} + 2A^m B^n = k_3.k_1 (173)$$

Let μ a prime integer and $\mu|k_3$, then $\mu|A^m(A^m+2B^n) \Longrightarrow \boxed{\mu|A^m \quad or \quad \mu|(A^m+2B^n)}$

I.1. Case $\mu|A^m$:

If $\mu|A^m \Longrightarrow \mu|(A^{2m}=a') \Rightarrow \mu|(3a'=a)$. As $\mu|k_3 \Longrightarrow \mu|p \Rightarrow \mu|(4p=b)$. Then the contradiction with a,b coprime.

I.2. Case $\mu|(A^m + 2B^n)$:

If $\mu|(A^m+2B^n) \Longrightarrow \mu \nmid A^m$ and $\mu \nmid 2B^n$ then:

$$\mu \neq 2 \quad and \quad \mu \nmid B^n$$
 (174)

 $\mu|(A^m+2B^n)$, we write:

$$A^m + 2B^n = \mu . t' \quad t' \in N^* \tag{175}$$

Then:

$$A^m + B^n = \mu t' - B^n \Longrightarrow A^{2m} + B^{2n} + 2A^m B^n = \mu^2 t'^2 - 2t' \mu B^n + B^{2n}$$

$$\implies p = t'^2 \mu^2 - 2t' B^n \mu + B^n (B^n - A^m)$$
 (176)

As $b=4p=4k_2.k_3$ and $\mu|k_3$ then $\mu|b\Longrightarrow \exists \mu'\in N^*$ that $b=\mu\mu'$, we obtain:

$$\mu'\mu = \mu(4\mu t'^2 - 8t'B^n) + 4B^n(B^n - A^m)$$
(177)

The last equation implies $\mu | 4B^n(B^n - A^m)$, but $\mu \neq 2$ then $\mu | B^n = 0$ or $\mu | (B^n - A^m)$

I.2.1. Case $\mu|B^n$:

If $\mu|B^n$ then the contradiction with (174).

I.2.2. Case $\mu | (B^n - A^m)$:

If $\mu|(B^n-A^m)$ and using $\mu|(A^m+2B^n)$, we obtain:

$$\mu | 3B^n \Longrightarrow \mu | B^n \quad or \quad \mu = 3$$
 (178)

I.2.2.1. Case $\mu|B^n$:

If $\mu|B^n$ it is contradiction with (174).

I.2.2.2. Case $\mu = 3$:

If $\mu = 3$, then $b = 3\mu'$, but 3|a which is contradiction with a, b coprime.

II. Case $k_3 = 1$:

We assume now $k_3 = 1$. Hence:

$$A^{2m} + 2A^m B^n = k_1 (179)$$

$$p = k_2 \tag{180}$$

$$\frac{2\sqrt{3}}{3}\sin\frac{2\theta}{3} = \frac{k_1}{p} \tag{181}$$

Taking the square of the last equation, we obtain:

$$\frac{4}{3}sin^2\frac{2\theta}{3} = \frac{k_1^2}{n^2}$$

$$\frac{16}{3} sin^2 \frac{\theta}{3} cos^2 \frac{\theta}{3} = \frac{k_1^2}{p^2}$$

$$\frac{16}{3}\sin^2\frac{\theta}{3} \cdot \frac{3a'}{b} = \frac{k_1^2}{p^2}$$

Finally:

$$a'(4p - 3a') = k_1^2 (182)$$

but $a' = a^{2}$ then 4p - 3a' is a square. Let us:

$$\lambda^2 = 4p - 3a' = 4p - a = b - a \tag{183}$$

The equation (182) becomes:

$$a^{2}\lambda^{2} = k_{1}^{2} \Longrightarrow k_{1} = a^{2}\lambda \tag{184}$$

taking the positive square root. Using (179), we get:

$$k_1 = a"\lambda \tag{185}$$

But $k_1 = A^m(A^m + 2B^n) = a"(A^m + 2B^n)$, it follows:

$$(A^m + 2B^n) = \lambda \tag{186}$$

Let λ_1 prime $\neq 2$, a divisor of λ (if not $\lambda_1 = 2|\lambda \Longrightarrow 2|\lambda^2$. As $2|(b=4p) \Longrightarrow 2|(a=3a')$ which is contradiction with a,b coprime).

We consider $\lambda_1 \neq 2$ and :

$$\lambda_1 | \lambda \Longrightarrow \lambda_1 | (A^m + 2B^n) \tag{187}$$

$$\Longrightarrow \lambda_1 \nmid A^m \quad if \ not \quad \lambda_1 \mid 2B^n \tag{188}$$

But $\lambda_1 \neq 2$ hence $\lambda_1 | B^n \Longrightarrow \lambda_1 | B$, it follows:

$$\lambda_1|(b=4p)$$
 and $\lambda_1|A^m \Longrightarrow \lambda_1|2a^* \Longrightarrow \lambda_1|a$ (189)

hence the contradiction with a, b coprime.

II.1. Case $\lambda_1 \nmid A^m$, $\lambda_1 \nmid B^n$ and $\lambda_1 | (A^m + 2B^n)$:

We assume now $\lambda_1 \nmid A^m$, $\lambda_1 \nmid B^n$. $\lambda_1 | (A^m + 2B^n) \Longrightarrow \lambda_1 | (A^m + 2B^n)^2$ that is $\lambda_1 | (A^{2m} + 4A^mB^n + 4B^{2n})$, we write it as $\lambda_1 | (p + 3A^mB^n + 3B^{2n}) \Longrightarrow \lambda_1 | (p + 3B^n(A^m + 2B^n) - 3B^{2n})$. But $\lambda_1 | (A^m + 2B^n) \Longrightarrow \lambda_1 | (p - 3B^{2n})$, as $\lambda_1 | (4p - a)$ hence by difference, we obtain $\lambda_1 | (a - 3(B^{2n} + p))$ or $\lambda_1 | (3a' - 3(B^{2n} + p)) \Longrightarrow \lambda_1 | 3(a' - B^{2n} - p) \Longrightarrow \lambda_1 | 3(a' - B^{2n$

II.1.1. Case $\lambda_1 = 3$:

If $\lambda_1 = 3|\lambda \Rightarrow 3|\lambda^2 \Rightarrow 3|b-a$ but $3|a \Longrightarrow 3|(p=b)$ hence the contradiction with a,b coprime.

II.1.2. Case
$$\lambda_1 | (a' - (B^{2n} + p))$$
:

If
$$\lambda_1 \neq 3$$
 and $\lambda_1 | (a' - B^{2n} - p) \Longrightarrow \lambda_1 | (A^m B^n + B^{2n}) \Longrightarrow \lambda_1 | B^n (A^m + 2B^n) \Longrightarrow \lambda_1 | B^n \quad or \quad \lambda_1 | (A^m + 2B^n)$.

II.1.2.1. Case $\lambda_1 | B^n$:

If $\lambda_1|B^n$ that is in contradiction with the hypothesis $\lambda_1 \nmid B$ cited above case II.1.

II.1.2.2. Case $\lambda_1 | (A^n + 2B^n)$:

If $\lambda_1|(A^n+2B^n)$. We refind this condition in the case II.1.

Then the case $k_3 = 1$ is impossible.

3.2.2.7. Case $3|a \text{ and } b=2p' \text{ } b \neq 2 \text{ with } p'|p:$. $3|a \Longrightarrow a=3a', \ b=2p' \text{ with } p=k.p', \text{ hence:}$

$$A^{2m} = \frac{4 \cdot p}{3} \cdot \frac{a}{b} = \frac{4 \cdot k \cdot p' \cdot 3 \cdot a'}{6p'} = 2 \cdot k \cdot a'$$
 (190)

Calculate B^nC^l :

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3\sin^{2}\frac{\theta}{3} - \cos^{2}\frac{\theta}{3} \right) = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right)$$
 (191)

But $\sqrt[3]{\rho^2} = \frac{p}{3}$ hence en using $\cos^2 \frac{\theta}{3} = \frac{3 \cdot a'}{b}$:

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right) = \frac{p}{3} \left(3 - 4\frac{3 \cdot a'}{b} \right) = p \cdot \left(1 - \frac{4 \cdot a'}{b} \right) = k(p' - 2a')$$
(192)

As p = b.p', and p' > 1, we have then:

$$B^n C^l = k(p' - 2a') (193)$$

and
$$A^{2m} = 2k.a'$$
 (194)

I. Case λ is a prime divisor of k:

We suppose that λ is a prime divisor of k (we suppose k not a prime). From (194), we have:

$$\lambda | A^{2m} \Rightarrow \lambda | A^m$$
 as λ is prime then $\lambda | A$ (195)

From (193), as $\lambda | k$, we have:

$$\lambda | B^n C^l \Rightarrow \lambda | B^n \quad \text{or} \quad \lambda | C^l$$
 (196)

If $\lambda | B^n$, λ is prime $\lambda | B$, and as $C^l = A^m + B^n$ then we have also:

$$\lambda | C^l \quad \text{as } \lambda \text{ is prime then } \lambda | C$$
 (197)

By the same way, if $\lambda | C^l$, we obtain $\lambda | B$. Then : A, B and C solutions of (3) have a common factor.

II. Case k is prime:

Now, we suppose now that k is prime, from the equations (193) and (194), we obtain:

$$k|A^{2m} \Rightarrow k|A^m \Rightarrow k|A \tag{198}$$

and:

$$k|B^nC^l \Rightarrow k|B^n \quad \text{or } k|C^l$$
 (199)

if
$$k|B^n \Rightarrow k|B$$
 (200)

as $C^l = A^m + B^n$ and that $k|A, k|B \Rightarrow k|A^m, k|B^n \Rightarrow k|C^l$

$$\Rightarrow k|C \tag{201}$$

By the same way, if $k|C^l$, we arrive to k|B.

Hence: A, B and C solutions of (3) have a common factor.

3.2.2.8. Case 3|a and b = 4p' $b \neq 2$ with p'|p:. $3|a \implies a = 3a'$, b = 4p' with p = k.p', $k \neq 1$, if not, b = 4p a case that has been studied (paragraph **3.2.2.6**), then we have:

$$A^{2m} = \frac{4 \cdot p}{3} \cdot \frac{a}{b} = \frac{4 \cdot k \cdot p' \cdot 3 \cdot a'}{12p'} = k \cdot a'$$
 (202)

Writing B^nC^l :

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3\sin^{2}\frac{\theta}{3} - \cos^{2}\frac{\theta}{3} \right) = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right)$$
 (203)

But $\sqrt[3]{\rho^2} = \frac{p}{3}$, hence en using $\cos^2 \frac{\theta}{3} = \frac{3 \cdot a'}{b}$:

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3 - 4\cos^{2}\frac{\theta}{3} \right) = \frac{p}{3} \left(3 - 4\frac{3 \cdot a'}{b} \right) = p \cdot \left(1 - \frac{4 \cdot a'}{b} \right) = k(p' - a')$$
(204)

As p = b.p', and p' > 1, we have:

$$B^n C^l = k(p' - 2a') (205)$$

and
$$A^{2m} = 2k.a'$$
 (206)

I. Case λ a prime divisor of k:

Let λ a prime divisor of k (we suppose k not a prime). From (206), we have:

$$\lambda | A^{2m} \Rightarrow \lambda | A^m$$
 as λ is prime then $\lambda | A$ (207)

From (205), as $\lambda | k$ we obtain:

$$\lambda |B^n C^l \Rightarrow \boxed{\lambda |B^n \quad or \quad \lambda |C^l}$$
 (208)

I.1 Case $\lambda | B^n$ or $\lambda | C^n$:

If $\lambda|B^n$, λ is a prime, then $\lambda|B$, and as $\lambda|A \Rightarrow \lambda|(A^m + B^n = C^l) \Rightarrow \lambda|C$. By the same way if $\lambda|C^l$, we obtain $\lambda|B$. Then : A, B and C solutions of (3) have a common factor.

II. Case k is prime:

We suppose now that k is prime, from the equations (205) and (206), we have:

$$k|A^{2m} \Rightarrow k|A^m \Rightarrow k|A \tag{209}$$

and:

$$k|B^nC^l \Rightarrow k|B^n \quad \text{or } k|C^l$$
 (210)

if
$$k|B^n \Rightarrow k|B$$
 (211)

as $C^l = A^m + B^n$ and that $k|A, k|B \Rightarrow k|A^m, k|B^n \Rightarrow k|C^l$

$$\Rightarrow k|C \tag{212}$$

By the same way if $k|C^l$, we arrive to k|B.

Hence: A, B and C solutions of (3) have a common factor.

$$\frac{3.2.2.9.\ Case\ 3|a\ and\ b|4p:.\ a=3a'\ \text{and}\ 4p=k_1b\ \text{with}\ k_1\in N^*.\ \text{As}\ A^{2m}=\frac{4p}{3}cos^2\frac{\theta}{3}=\frac{4p}{3}\frac{3a'}{b}=k_1a'\ \text{and}\ B^nC^l:$$

$$B^{n}C^{l} = \sqrt[3]{\rho^{2}} \left(3\sin^{2}\frac{\theta}{3} - \cos^{2}\frac{\theta}{3} \right) = \frac{p}{3} \left(3 - 4\cos^{2}\frac{\theta}{3} \right) = \frac{p}{3} \left(3 - 4\frac{3a'}{b} \right) = \frac{k_{1}}{4}(b - 4a')$$
(213)

As B^nC^l is an integer, we must have $\boxed{4|k_1 \quad or \quad 4|(b-4a')}$

I. Case $k_1 = 1$:

If $k_1 = 1 \Rightarrow b = 4p$: it is the case (3.2.2.6) above.

II. Case $k_1 = 4$:

If $k_1 = 4 \Rightarrow p = b$: it is the case (3.2.2.3) above.

III. Case $4|k_1$:

We suppose that $4|k_1|$ with $k_1 > 4 \Rightarrow k_1 = 4k'_1$, then we have:

$$A^{2m} = 4k_1'a'$$

$$B^n C^l = k_1'(b - 4a')$$

By discussing k'_1 is a prime integer or not, we arrive easily to: A, B and C solutions of (3) have a common factor.

III.1. Case $4 \nmid (b-4a')$ and $4 \nmid k'_1$:

If $4 \nmid (b - 4a')$ and $4 \nmid k'_1$ it is impossible.

III.2. Case 4|(b-4a'):

If $4|(b-4a') \Rightarrow (b-4a') = 4c$, with $c \in N^*$, then we obtain:

$$A^{2m} = k_1 a'$$

$$B^n C^l = k_1 c$$

By discussing k_1 is a prime integer or not, we arrive easily to: A, B and C solutions of (3) have a common factor.

The main theorem is proved.

4. Numerical Examples

4.1. Example 1:

We consider the example:

$$6^3 + 3^3 = 3^5 (214)$$

with $A^m = 6^3$, $B^n = 3^3$ and $C^l = 3^5$. With the notations used in the paper, we obtain:

$$p = 3^6 \times 73, (215)$$

$$q = 8 \times 3^{11},\tag{216}$$

$$\bar{\Delta} = 4 \times 3^{18} (3^7 \times 4^2 - 73^3) < 0, \tag{217}$$

$$\rho = \frac{p\sqrt{p}}{3\sqrt{3}} = \frac{3^8 \times 73\sqrt{73}}{3},\tag{218}$$

$$\cos\theta = -\frac{4 \times 3^3 \times \sqrt{3}}{73\sqrt{73}} \tag{219}$$

As
$$A^{2m} = \frac{4p}{3} .cos^2 \frac{\theta}{3} \Longrightarrow cos^2 \frac{\theta}{3} = \frac{3A^{2m}}{4p} = \frac{3 \times 2^4}{73} = \frac{a}{b} \Longrightarrow a = 3 \times 2^4, \ b = 73;$$

$$\cos\frac{\theta}{3} = \frac{4\sqrt{3}}{\sqrt{73}}\tag{220}$$

$$p = 3^6 b \tag{221}$$

Let us verify the equation (219) using the equation (220):

$$\cos\theta = \cos 3(\theta/3) = 4\cos^3\frac{\theta}{3} - 3\cos\frac{\theta}{3} = 4\left(\frac{4\sqrt{3}}{\sqrt{73}}\right)^3 - 3\frac{4\sqrt{3}}{\sqrt{73}} = -\frac{4\times3^3\times\sqrt{3}}{73\sqrt{73}}$$
(222)

That's OK. For this example, we can use the two conditions of (65) as 3|p,b|4p and 3|a. The cases **3.2.1.3** and **3.2.2.4** are respectively used. We find for both cases that A^m, B^n and C^l of the equation (214) have a common prime factor which is true.

4.2. Example 2:

Let the second example:

$$7^4 + 7^3 = 14^3 \Rightarrow 2401 + 343 = 2744 \tag{223}$$

With the notations of the paper, we take:

$$A^m = 7^4 \tag{224}$$

$$B^n = 7^3 \tag{225}$$

$$C^l = 14^3 (226)$$

We obtain:

$$p = 57 \times 7^6 = 3 \times 19 \times 7^6 \tag{227}$$

$$q = 8 \times 7^{10} \tag{228}$$

$$\overline{\Delta} = 27q^2 - 4p^3 = 27 \times 4 \times 7^{18} (16 \times 49 - 19^3)$$

$$= -27 \times 4 \times 7^{18} \times 6075 < 0 \tag{229}$$

$$\rho = \frac{p\sqrt{p}}{3\sqrt{3}} = 19 \times 7^9 \times \sqrt{19} \tag{230}$$

$$\cos\theta = \frac{-q}{2\rho} = -\frac{4\times7}{19\sqrt{19}}\tag{231}$$

As $A^{2m}=\frac{4p}{3}.cos^2\frac{\theta}{3}\Longrightarrow cos^2\frac{\theta}{3}=\frac{3A^{2m}}{4p}=\frac{7^2}{4\times 19}=\frac{a}{b}\Longrightarrow a=7^2,\ b=4\times 19;$ then:

$$\cos\frac{\theta}{3} = \frac{7}{2\sqrt{19}}\tag{232}$$

$$3|p \quad and \quad b|(4p) \tag{233}$$

Let us verify the equation (231) using the equation (232):

$$\cos\theta = \cos 3(\theta/3) = 4\cos^3 \frac{\theta}{3} - 3\cos \frac{\theta}{3} = 4\left(\frac{7}{2\sqrt{19}}\right)^3 - 3\frac{7}{2\sqrt{19}} = -\frac{4\times7}{19\sqrt{19}}$$
(234)

It is the same value of (231)!

Now, from (233), we have $3|p \Rightarrow p = 3p'$, b|(4p) with $b \neq 2,4$ then $12p' = k_1b = 3 \times 7^6b$. It concerns the paragraph **3.2.1.9.** of the first hypothesis. As $k_1 = 3 \times 7^6 = 3k'_1$ with $k'_1 = 7^6 \neq 1$. It is the case **III.**, with the two conditions: 4|(3b-4a) or $4|k'_1$. We take 4|(3b-4a). Let us calculate 3b-4a:

$$3b - 4a = 3 \times 4 \times 19 - 4 \times 7^2 = 32 \Longrightarrow 4|(3b - 4a)$$
 (235)

Then it is the sous-case **III.1.** with $A^{2m} = 7^8 = 7^6 \times 7^2 = k'_1.a$ with k'_1 not a prime, we find the sous-case **III.1.2** with the result that A, B and C have a common factor namely the prime number 7 a divisor of $k'_1 = 7^6$!.

4.3. Example 3:

Let the third example:

$$7^2 + 2^5 = 3^4 (236)$$

with:

$$A^m = 7^2; B^n = 2^5; C^l = 3^4$$

We obtain:

$$p = 4999$$
 $a prime number$ (237)

$$q = 2^5 \times 7^2 \times 3^4 = 127008 \gg p \tag{238}$$

As $q \gg p$, we find that :

$$\overline{\Delta} = 27q^2 - 4p^3 > 0 \tag{239}$$

Then we cannot use the results of our proof because in this example, m = 2 < 3. We remark that in all the proof, we don't encountered that m, n or l must be great than 2. Then the condition that m, n, l > 2 is important in (1).

5. Conclusion

As seen above, the examples confirm the results of the proof. In conclusion, we can announce the theorem:

Theorem 1. (A. Ben Hadj Salem, A. Beal, 2016): Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

$$A^m + B^n = C^l (240)$$

then A, B, and C have a common factor.

References

R. Daniel Mauldin. A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of AMS, Vol44, n°11, 1997, pp1436-1437.