BEAL's Conjecture: A Complete Proof

Abdelmajid Ben Hadj Salem
6,rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia ${ }^{1}$

Abstract

In 1997, Andrew Beal $\mathbb{1}$ announced the following conjecture : Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If $A^{m}+B^{n}=C^{l}$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x)=(x-$ $\left.A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ with p, q integers depending of A^{m}, B^{n} and C^{l}. We resolve $x^{3}-p x+q=0$ and we obtain the three roots x_{1}, x_{2}, x_{3} as functions of p, q and a parameter θ. Since $A^{m}, B^{n},-C^{l}$ are the only roots of $x^{3}-p x+q=0$, we discuss the conditions that x_{1}, x_{2}, x_{3} are integers. Three numerical examples are given.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.
2010 MSC: 00-01, 99-00

O my Lord! Increase me further in knowledge.
(Holy Quran, Surah Ta Ha, 20:114.)

To my wife Wahida

1. Introduction

In 1997, Andrew Beal 1 announced the following conjecture :
Conjecture 1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1}
\end{equation*}
$$

[^0]then A, B, and C have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to construct a polynomial $P(x)$ of three order having as roots A^{m}, B^{n} and $-C^{l}$ with the condition (1). The paper is organized as follows. In Section 2 of preliminaries, we begin with the trivial case where $A^{m}=B^{n}$. Then we consider the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$. We express the three roots of $P(x)=x^{3}-p x+q=0$ in function of two parameters ρ, θ that depend of A^{m}, B^{n}, C^{l}. The Section 3 is the main part of the paper. We write that $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}$. As $A^{2 m}$ is an integer, it follows that $\cos ^{2} \frac{\theta}{3}$ must be written as $\frac{a}{b}$ where a, b are two positive coprime integers. We discuss the conditions of divisibility of p, a, b so that the expression of $A^{2 m}$ is an integer. Depending on each individual case, we obtain that A, B, C have or not a common factor. In the last Section, three numerical examples are presented. We finish with the conclusion.

2. Preliminaries

We begin with the trivial case when $A^{m}=B^{n}$. The equation (1) becomes:

$$
\begin{equation*}
2 A^{m}=C^{l} \tag{2}
\end{equation*}
$$

then $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow \exists c \in N^{*} / C=2 c$, it follows $2 A^{m}=2^{l} c^{l} \Longrightarrow A^{m}=$ $2^{l-1} c^{l}$. As $l>2$, then $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow 2\left|B^{n} \Longrightarrow 2\right| B$. The conjecture (??) is verified.

We suppose in the following that $A^{m}>B^{n}$.

2.1. General Case

Let $m, n, l \in N^{*}>2$ and $A, B, C \in N^{*}$ such:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{3}
\end{equation*}
$$

We call:

$$
\begin{gather*}
P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-x^{2}\left(A^{m}+B^{n}-C^{l}\right) \\
+x\left[A^{m} B^{n}-C^{l}\left(A^{m}+B^{n}\right)\right]+C^{l} A^{m} B^{n} \tag{4}
\end{gather*}
$$

Using the equation (3), $P(x)$ can be written:

$$
\begin{equation*}
P(x)=x^{3}+x\left[A^{m} B^{n}-\left(A^{m}+B^{n}\right)^{2}\right]+A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{5}
\end{equation*}
$$

We introduce the notations:

$$
\begin{array}{r}
p=\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n} \\
q=A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{7}
\end{array}
$$

As $A^{m} \neq B^{n}$, we have :

$$
\begin{equation*}
p>\left(A^{m}-B^{n}\right)^{2}>0 \tag{8}
\end{equation*}
$$

Equation (5) becomes:

$$
\begin{equation*}
P(x)=x^{3}-p x+q \tag{9}
\end{equation*}
$$

Using the equation (4), $P(x)=0$ has three different real roots : A^{m}, B^{n} and $-C^{l}$.

Now, let us resolve the equation:

$$
\begin{equation*}
P(x)=x^{3}-p x+q=0 \tag{10}
\end{equation*}
$$

To resolve (10) let:

$$
\begin{equation*}
x=u+v \tag{11}
\end{equation*}
$$

Then $P(x)=0$ gives:
$P(x)=P(u+v)=(u+v)^{3}-p(u+v)+q=0 \Longrightarrow u^{3}+v^{3}+(u+v)(3 u v-p)+q=0$

To determine u and v, we obtain the conditions:

$$
\begin{align*}
& u^{3}+v^{3}=-q \tag{13}\\
& u v=p / 3>0 \tag{14}
\end{align*}
$$

Then u^{3} and v^{3} are solutions of the second ordre equation:

$$
\begin{equation*}
X^{2}+q X+p^{3} / 27=0 \tag{15}
\end{equation*}
$$

Its discriminant Δ is written as :

$$
\begin{equation*}
\Delta=q^{2}-4 p^{3} / 27=\frac{27 q^{2}-4 p^{3}}{27}=\frac{\bar{\Delta}}{27} \tag{16}
\end{equation*}
$$

Let:

$$
\begin{align*}
\bar{\Delta}=27 q^{2}-4 p^{3} & =27\left(A^{m} B^{n}\left(A^{m}+B^{n}\right)\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \\
& =27 A^{2 m} B^{2 n}\left(A^{m}+B^{n}\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \tag{17}
\end{align*}
$$

Noting :

$$
\begin{array}{r}
\alpha=A^{m} B^{n}>0 \\
\beta=\left(A^{m}+B^{n}\right)^{2} \tag{19}
\end{array}
$$

we can write 17 as:

$$
\begin{equation*}
\bar{\Delta}=27 \alpha^{2} \beta-4(\beta-\alpha)^{3} \tag{20}
\end{equation*}
$$

As $\alpha \neq 0$, we can also rewrite 20 as :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 \frac{\beta}{\alpha}-4\left(\frac{\beta}{\alpha}-1\right)^{3}\right) \tag{21}
\end{equation*}
$$

We call t the parameter :

$$
\begin{equation*}
t=\frac{\beta}{\alpha} \tag{22}
\end{equation*}
$$

$\bar{\Delta}$ becomes :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 t-4(t-1)^{3}\right) \tag{23}
\end{equation*}
$$

Let us calling :

$$
\begin{equation*}
y=y(t)=27 t-4(t-1)^{3} \tag{24}
\end{equation*}
$$

Since $\alpha>0$, the sign of $\bar{\Delta}$ is also the sign of $y(t)$. Let us study the sign of y. We obtain $y^{\prime}(t)$:

$$
\begin{equation*}
y^{\prime}(t)=y^{\prime}=3(1+2 t)(5-2 t) \tag{25}
\end{equation*}
$$

t	$-\infty$	-1/2	5/2		4	$+\infty$
1+2t	-	0	+		+	
5-2t	+		+	0	-	
$y^{\prime}(\mathrm{t})$	-	0	+	0	-	
$\mathrm{y}(\mathrm{t})$						$-\infty$

Figure 1: The table of variation
$y^{\prime}=0 \Longrightarrow t_{1}=-1 / 2$ and $t_{2}=5 / 2$, then the table of variations of y is given below:

The table of the variations of the function y shows that $y<0$ for $t>4$. In our case, we are interested for $t>0$. For $t=4$ we obtain $y(4)=0$ and for $t \in] 0,4\left[\Longrightarrow y>0\right.$. As we have $t=\frac{\beta}{\alpha}>4$ because as $A^{m} \neq B^{n}$:

$$
\begin{equation*}
\left(A^{m}-B^{n}\right)^{2}>0 \Longrightarrow \beta=\left(A^{m}+B^{n}\right)^{2}>4 \alpha=4 A^{m} B^{n} \tag{26}
\end{equation*}
$$

Then $y<0 \Longrightarrow \bar{\Delta}<0 \Longrightarrow \Delta<0$. Then, the equation 15 does not have real solutions u^{3} and v^{3}. Let us find the solutions u and v with $x=u+v$ is a positive or a negative real and $u . v=p / 3$.

2.2. Demonstration

Proof. The solutions of 15 are:

$$
\begin{array}{r}
X_{1}=\frac{-q+i \sqrt{-\Delta}}{2} \\
X_{2}=\overline{X_{1}}=\frac{-q-i \sqrt{-\Delta}}{2} \tag{28}
\end{array}
$$

We may resolve:

$$
\begin{align*}
& u^{3}=\frac{-q+i \sqrt{-\Delta}}{2} \tag{29}\\
& v^{3}=\frac{-q-i \sqrt{-\Delta}}{2} \tag{30}
\end{align*}
$$

Writing X_{1} in the form:

$$
\begin{equation*}
X_{1}=\rho e^{i \theta} \tag{31}
\end{equation*}
$$

with:

$$
\begin{array}{r}
\rho=\frac{\sqrt{q^{2}-\Delta}}{2}=\frac{p \sqrt{p}}{3 \sqrt{3}} \\
\text { and } \sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}>0 \\
\cos \theta=-\frac{q}{2 \rho}<0 \tag{34}
\end{array}
$$

Then $\theta[2 \pi] \in]+\frac{\pi}{2},+\pi[$, let:

$$
\begin{equation*}
\frac{\pi}{2}<\theta<+\pi \Rightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \tag{35}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{36}
\end{equation*}
$$

hence the expression of X_{2} :

$$
\begin{equation*}
X_{2}=\rho e^{-i \theta} \tag{37}
\end{equation*}
$$

Let:

$$
\begin{array}{r}
u=r e^{i \psi} \\
\text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}} \\
j^{2}=e^{i \frac{4 \pi}{3}}=-\frac{1+i \sqrt{3}}{2}=\bar{j} \tag{40}
\end{array}
$$

j is a complex cubic root of the unity $\Longleftrightarrow j^{3}=1$. Then, the solutions u and v are:

$$
\begin{array}{r}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+2 \pi}{3}} \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{+i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+4 \pi}{3}} \tag{43}
\end{array}
$$

and similarly:

$$
\begin{array}{r}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{2 \pi-\theta}{3}} \tag{46}
\end{array}
$$

We may now choose u_{k} and v_{h} so that $u_{k}+v_{h}$ will be real. In this case, we have necessary :

$$
\begin{align*}
v_{1} & =\overline{u_{1}} \tag{47}\\
v_{2} & =\overline{u_{2}} \tag{48}\\
v_{3} & =\overline{u_{3}} \tag{49}
\end{align*}
$$

We obtain as real solutions of the equation (12):

$$
\begin{gather*}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}>0 \tag{50}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)<0 \tag{51}\\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)>0 \tag{52}
\end{gather*}
$$

We compare the expressions of x_{1} and x_{3}, we obtain:

$$
\begin{align*}
2 \sqrt[3]{p} \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt[3]{p}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
3 \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt{3} \sin \frac{\theta}{3} \tag{53}
\end{align*}
$$

As $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$, then $\sin \frac{\theta}{3}$ and $\cos \frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3} \tag{54}
\end{equation*}
$$

which is true since $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$ then $x_{1}>x_{3}$. As A^{m}, B^{n} and $-C^{l}$ are the only real solutions of 10 , we consider, as A^{m} is supposed great than B^{n}, the expressions:

$$
\left\{\begin{array}{l}
A^{m}=x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \tag{55}\\
B^{n}=x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
-C^{l}=x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

3. Proof of the Main Theorem

Main Theorem: Let A, B, C, m, n, and l be positive integers with $m, n, l>$ 2. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{56}
\end{equation*}
$$

then A, B, and C have a common factor.
Proof. $A^{m}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}$ is an integer $\Rightarrow A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}$ is an integer. But:

$$
\begin{equation*}
\sqrt[3]{\rho^{2}}=\frac{p}{3} \tag{57}
\end{equation*}
$$

Then:

$$
\begin{equation*}
A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3} \tag{58}
\end{equation*}
$$

As $A^{2 m}$ is an integer, and p is an integer then $\cos ^{2} \frac{\theta}{3}$ must be written in the form:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{b} \quad \text { or } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b} \tag{59}
\end{equation*}
$$

with $b \in N^{*}$, for the last condition $a \in N^{*}$ and a, b coprime.
3.1. Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$

We obtain :

$$
\begin{equation*}
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3 \cdot b} \tag{60}
\end{equation*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \Rightarrow \frac{1}{4}<\frac{1}{b}<\frac{3}{4} \Rightarrow b<4<3 b \Rightarrow b=1,2,3$.

3.1.1. Case $b=1$

$b=1 \Rightarrow 4<3$ which is impossible.

3.1.2. Case $b=2$

$\left.b=2 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{2}=\frac{2 \cdot p}{3} \Rightarrow 3 \right\rvert\, p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
\begin{equation*}
A^{2 m}=\frac{2 p}{3}=2 \cdot p^{\prime} \tag{61}
\end{equation*}
$$

But:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{1}{2}\right)=\frac{p}{3}=\frac{3 p^{\prime}}{3}=p^{\prime} \tag{62}
\end{equation*}
$$

On the one hand:

$$
\begin{aligned}
A^{2 m}=\left(A^{m}\right)^{2}=2 p^{\prime} \Rightarrow 2 \mid p^{\prime} & \Rightarrow p^{\prime}=2 p^{\prime \prime} \Rightarrow A^{2 m}=4 p^{\prime \prime} \\
& \Rightarrow A^{m}=2 p " \Rightarrow 2\left|A^{m} \Rightarrow 2\right| A
\end{aligned}
$$

On the other hand:

$$
B^{n} C^{l}=p^{\prime}=2 p^{2} \Rightarrow 2 \mid B^{n} \text { or } 2 \mid C^{l} . \text { If } 2\left|B^{n} \Rightarrow 2\right| B . \text { As } C^{l}=A^{m}+B^{n} \text { and }
$$ $2 \mid A$ and $2 \mid B$, it follows $2 \mid A^{m}$ and $2 \mid B^{n}$ then $2\left|\left(A^{m}+B^{n}\right) \Rightarrow 2\right| C^{l} \Leftrightarrow 2 \mid C$.

Then, we have : A, B and C solutions of (3) have a common factor. Also if $2 \mid C^{l}$, we obtain the same result : A, B and C solutions of (3) have a common factor.

3.1.3. $\underline{C a s e ~} b=3$

$\left.b=3 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{3}=\frac{4 p}{9} \Rightarrow 9 \right\rvert\, p \Rightarrow p=9 p^{\prime}$ with $p^{\prime} \neq 1$ since $9 \ll p$ then $A^{2 m}=4 p^{\prime} \Longrightarrow p^{\prime}$ is not a prime. Let μ a prime with $\mu\left|p^{\prime} \Rightarrow \mu\right| A^{2 m} \Rightarrow \mu \mid A$.

On the other hand:

$$
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=5 p^{\prime}
$$

Then $\mu \mid B^{n}$ or $\mu \mid C^{l}$. If $\mu\left|B^{n} \Rightarrow \mu\right| B$. As $C^{l}=A^{m}+B^{n}$ and $\mu \mid A$ and $\mu \mid B$, it follows $\mu \mid A^{m}$ and $\mu \mid B^{n}$ then $\mu\left|\left(A^{m}+B^{n}\right) \Rightarrow \mu\right| C^{l} \Longrightarrow \mu \mid C$.

Then, we have : A, B and C solutions of (3) have a common factor. Also if $\mu \mid C^{l}$, we obtain the same result : A, B and C solutions of (3) have a common factor.

3.2. $\underline{\text { Case } a>1}, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$

That is to say:

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b} \\
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p \cdot a}{3 \cdot b} \tag{64}
\end{array}
$$

and a, b verify one of the two conditions:

$$
\left.\begin{array}{|lll}
\hline\{3 \mid p & \text { and } & b \mid 4 p\} \tag{65}\\
& \text { or } & \{3 \mid a \\
\hline
\end{array} \text { and } \quad b \mid 4 p\right\}
$$

and using the equation (36), we obtain a third condition:

$$
\begin{equation*}
b<4 a<3 b \tag{66}
\end{equation*}
$$

In these conditions, respectively, $A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}$ is an integer.

Let us study the conditions given by the equation 65 .
3.2.1. Hypothesis: $\{3 \mid p$ and $b \mid 4 p\}$
3.2.1.1. Case $b=2$ and $3|p: .3| p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
\begin{equation*}
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 b}=\frac{4 \cdot p^{\prime} \cdot a}{2}=2 \cdot p^{\prime} \cdot a \tag{67}
\end{equation*}
$$

As:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{2}<\frac{3}{4} \Rightarrow a<2 \Rightarrow a=1 \tag{68}
\end{equation*}
$$

But $a>1$ then the case $b=2$ and $3 \mid p$ is impossible.
3.2.1.2. Case $b=4$ and $3 \mid p \therefore$. We have $3 \mid p \Longrightarrow p=3 p^{\prime}$ with $p^{\prime} \in N^{*}$, it follows:

$$
\begin{equation*}
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 \times 4}=p^{\prime} \cdot a \tag{69}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{4}<\frac{3}{4} \Rightarrow 1<a<3 \Rightarrow a=2 \tag{70}
\end{equation*}
$$

But a, b are coprime. Then the case $b=4$ and $3 \mid p$ is impossible.
3.2.1.3. Case: $b \neq 2, b \neq 4, b \mid p$ and $3 \mid p \therefore$ As $3 \mid p$ then $p=3 p^{\prime}$ and :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} a}{b} \tag{71}
\end{equation*}
$$

We consider the case: $b \mid p^{\prime} \Longrightarrow p^{\prime}=b p "$ and $p " \neq 1$ (if $p "=1$, then $p=3 b$, see sub-paragraph II. Case $\mathbf{k}^{\prime}=1$ of paragraph 3.2.1.8). Hence :

$$
\begin{equation*}
A^{2 m}=\frac{4 b p " a}{b}=4 a p " \tag{72}
\end{equation*}
$$

Let us calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}\left(3-4 \frac{a}{b}\right)=b \cdot p " \cdot \frac{3 b-4 a}{b}=p^{\prime \prime} \cdot(3 b-4 a) \tag{73}
\end{equation*}
$$

Finally, we have the two equations:

$$
\begin{align*}
& A^{2 m}=\frac{4 b p " a}{b}=4 a p " \tag{74}\\
& B^{n} C^{l}=p " \cdot(3 b-4 a) \tag{75}
\end{align*}
$$

I. Case $p "$ is prime:

From (74), $p "\left|A^{2 m} \Rightarrow p "\right| A^{m} \Rightarrow p " \mid A$. From (75), $p " \mid B^{n}$ or $p " \mid C^{l}$. If $p " \mid B^{n} \Rightarrow$ $p " \mid B$, as $C^{l}=A^{m}+B^{n} \Rightarrow p "\left|C^{l} \Rightarrow p "\right| C$. If $p "\left|C^{l} \Rightarrow p "\right| C$, as $B^{n}=C^{l}-A^{m} \Rightarrow$ $p "\left|B^{n} \Rightarrow p "\right| B$.

Then A, B and C solutions of (3) have a common factor.

II. Case $p "$ is not prime:

Let λ one prime divisor of $p "$. From 74 , we have :

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is prime then } \lambda \mid A \tag{76}
\end{equation*}
$$

From (75), as $\lambda \mid p$ " we have:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \lambda \mid C^{l} \tag{77}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is prime $\lambda \mid B$, and as $C^{l}=A^{m}+B^{n}$ then we have also :

$$
\begin{equation*}
\lambda \mid C^{l} \quad \text { as } \lambda \text { is prime, then } \lambda \mid C \tag{78}
\end{equation*}
$$

By the same way, if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$.

Then: A, B and C solutions of (3) have a common factor.

Let us verify the condition given by:

$$
b<4 a<3 b
$$

In our case, the last equation becomes:

$$
\begin{equation*}
p<3 A^{2 m}<3 p \quad \text { with } \quad p=A^{2 m}+B^{2 n}+A^{m} B^{n} \tag{79}
\end{equation*}
$$

The condition $3 A^{2 m}<3 p \Longrightarrow A^{2 m}<p$ is verified.
If :

$$
p<3 A^{2 m} \Longrightarrow 2 A^{2 m}-A^{m} B^{n}-B^{2 n}>0
$$

We put $Q(Y)=2 Y^{2}-B^{n} Y-B^{2 n}$, the roots of $Q(Y)=0$ are $Y_{1}=-\frac{B^{n}}{2}$ and $Y_{2}=B^{n}$. $Q(Y)>0$ for $Y<Y_{1}$ and $Y>Y_{2}=B^{n}$. In our case, we take $Y=A^{m}$. As $A^{m}>B^{n}$ then $p<3 A^{2 m}$ is verified. Then the condition $b<4 a<3 b$ is true .

In the following of the paper, we verify easily that the condition $b<4 a<3 b$ implies to verify $A^{m}>B^{n}$ which is true.
3.2.1.4. Case $b=3$ and $3 \mid p:$ As $3 \mid p \Longrightarrow p=3 p^{\prime}$ and we write :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{3}=\frac{4 p^{\prime} a}{3} \tag{80}
\end{equation*}
$$

As $A^{2 m}$ is an integer and that a and b are coprime and $\cos ^{2} \frac{\theta}{3}$ can not be one in reference to the equation (35), then we have necessary $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p$ " with $p " \neq 1$, if not $p=3 p^{\prime}=3 \times 3 p "=9$ but $p=A^{2 m}+B^{2 n}+A^{m} B^{n}>9$, the hypothesis $p "=1$ is impossible, then $p ">1$. hence:

$$
\begin{gather*}
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p " a}{3}=4 p " a \tag{81}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}\left(3-4 \frac{a}{b}\right)=\frac{3 p "(9-4 a)}{3}=p " \cdot(9-4 a) \tag{82}
\end{gather*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{3}<\frac{3}{4} \Longrightarrow 3<4 a<9 \Longrightarrow a=2$ as $a>1 . a=2$, we obtain:

$$
\begin{gather*}
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p " a}{3}=4 p " a=8 p " \tag{83}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}\left(3-4 \frac{a}{b}\right)=\frac{3 p "(9-4 a)}{3}=p " \tag{84}
\end{gather*}
$$

The two last equations give that $p "$ is not prime. Then we use the same methodology described above for the case $\mathbf{3 . 2} \mathbf{2}$.3., and we have : A, B and C solutions of (3) have a common factor.
3.2.1.5. Case $3 \mid p$ and $b=p:$ We have :

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{p}
$$

and :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{p}=\frac{4 a}{3} \tag{85}
\end{equation*}
$$

As $A^{2 m}$ is an integer, this implies that $3 \mid a$, but $3|p \Longrightarrow 3| b$. As a and b are coprime, hence the contradiction. Then the case $3 \mid p$ and $b=p$ is impossible.
3.2.1.6. Case $3 \mid p$ and $b=4 p \therefore 3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, hence $b=4 p=12 p^{\prime}$.

$$
\begin{equation*}
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{a}{3} \Longrightarrow 3 \right\rvert\, a \tag{86}
\end{equation*}
$$

because $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|[(4 p)=b]$, that is in contradiction with the hypothesis a, b are coprime. Then the case $b=4 p$ is impossible.
3.2.1.7. Case $3 \mid p$ and $b=2 p: .3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, hence $b=2 p=6 p^{\prime}$.

$$
\begin{equation*}
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{2 a}{3} \Longrightarrow 3 \right\rvert\, a \tag{87}
\end{equation*}
$$

because $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|(2 p) \Longrightarrow 3 \mid b$, that is in contradiction with the hypothesis a, b are coprime. Then the case $b=2 p$ is impossible.
3.2.1.8. Case $3 \mid p$ and $b \neq 3$ is a divisor of $p \therefore$. We have $b=p^{\prime} \neq 3$, and p is written as:

$$
\begin{equation*}
p=k p^{\prime} \quad \text { with } \quad 3 \mid k \Longrightarrow k=3 k^{\prime} \tag{88}
\end{equation*}
$$

and :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 \times 3 \cdot k^{\prime} p^{\prime}}{3} \frac{a}{p^{\prime}}=4 a k^{\prime} \tag{89}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\frac{p}{3} \cdot\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=k^{\prime}\left(3 p^{\prime}-4 a\right) \tag{90}
\end{equation*}
$$

I. Case $k^{\prime} \neq 1$:

We suppose $k^{\prime} \neq 1$, we use the same methodology described for the case 3.1.2.3., and we obtain: A, B and C solutions of (3) have a common factor.
II. Case $k^{\prime}=1$:

We have $k^{\prime}=1 \Longrightarrow p=3 b$, then we have:

$$
\begin{equation*}
A^{2 m}=4 a \Longrightarrow a \quad \text { is even } \tag{91}
\end{equation*}
$$

and :

$$
\begin{equation*}
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a \tag{92}
\end{equation*}
$$

let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 b \sqrt{3} \sin \frac{2 \theta}{3} \tag{93}
\end{equation*}
$$

The left member of 93 is an integer and b also, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written in the form:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{94}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid b \Longrightarrow b=k_{2} . k_{3}$.
II.1. Case $k_{3} \neq 1$:

We suppose $k_{3} \neq 1$. Hence:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{3} . k_{1} \tag{95}
\end{equation*}
$$

Let μ is an prime integer such that $\mu \mid k_{3}$. If $\mu=2 \Rightarrow 2 \mid b$, but $2 \mid a$ that is contradiction with a, b coprime. We suppose $\mu \neq 2$ and $\mu \mid k_{3}$, then:

$$
\begin{equation*}
\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m} \text { or } \mu \mid\left(A^{m}+2 B^{n}\right) \tag{96}
\end{equation*}
$$

II.1.1. Case $\mu \mid A^{m}$:

If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu|4 a \Longrightarrow \mu| a$. As $\mu\left|k_{3} \Longrightarrow \mu\right| b$ and that a, b are coprime hence the contradiction.
II.1.2. Case $\mu \mid\left(A^{m}+2 B^{n}\right)$:

If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+2 B^{n}\right)$, we can write:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \quad t^{\prime} \in N^{*} \tag{97}
\end{equation*}
$$

It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
\begin{equation*}
p=t^{2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{98}
\end{equation*}
$$

As $p=3 b=3 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ hence $\mu \mid p \Longrightarrow p=\mu \mu^{\prime}$, so we have :

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{99}
\end{equation*}
$$

then:

$$
\begin{equation*}
\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n} \text { or } \mu \mid\left(B^{n}-A^{m}\right) \tag{100}
\end{equation*}
$$

II.1.2.1. Case $\mu \mid B^{n}$:

If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ which is in contradiction with case II.1.2. above.
II.1.2.2. Case $\mu \mid\left(B^{n}-A^{m}\right)$:

If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain:

$$
\begin{equation*}
\mu \mid 3 B^{n} \tag{101}
\end{equation*}
$$

II.1.2.2.1. Case $\mu \mid B^{n}$:

If $\mu \mid B^{n}$, using the result above of II.1.2.1. of this paragraph, it is impossible.
II.1.2.2.2. Case $\mu=3$:

If $\mu=3 \Longrightarrow 3 \mid k_{3} \Longrightarrow k_{3}=3 k_{3}^{\prime}$, and we have $b=k_{2} k_{3}=3 k_{2} k_{3}^{\prime}$, it follows $p=3 b=9 k_{2} k_{3}^{\prime}$ then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then :

$$
9 k_{2} k_{3}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

we write it as :

$$
\begin{equation*}
3\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{102}
\end{equation*}
$$

hence:

$$
\begin{equation*}
3\left|\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m} \text { or } 3 \mid B^{n} \tag{103}
\end{equation*}
$$

II.1.2.2.2.1. Case $3 \mid A^{m}$:

If $3\left|A^{m} \Longrightarrow 3\right| A$ and we have also $3 \mid A^{2 m}$, but $A^{2 m}=4 a \Longrightarrow 3|4 a \Longrightarrow 3| a$. As $b=3 k_{2} k_{3}^{\prime}$ then $3 \mid b$, but a, b are coprime hence the contradiction. Then $3 \nmid A$.
II.1.2.2.2.2. Case $3 \mid B^{n}$:

If $3\left|B^{n} \Longrightarrow 3\right| B$, but the 102 gives $3\left|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \Longrightarrow$ $3\left|A^{m} \Longrightarrow 3\right|\left(A^{2 m}=4 a\right) \Rightarrow 3 \mid a$. As $3 \mid b$ then the contradiction with a, b coprime.

Then the hypothesis $k_{3} \neq 1$ is impossible.
III. Case $k_{3}=1$:

Now we suppose that $k_{3}=1 \Longrightarrow b=k_{2}$ and $p=3 b=3 k_{2}$. We have then:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{b} \tag{104}
\end{equation*}
$$

with k_{1}, b coprime. We write (104) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{1}}{b}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$, we obtain:

$$
\begin{equation*}
3 \times 4^{2} \cdot a(b-a)=k_{1}^{2} \tag{105}
\end{equation*}
$$

which implies that:

$$
\begin{equation*}
3 \mid a \quad \text { or } \quad 3 \mid(b-a) \tag{106}
\end{equation*}
$$

III.1. Case $3 \mid a$:

If $3 \mid a$, as $A^{2 m}=4 a \Longrightarrow 3\left|A^{2 m} \Longrightarrow 3\right| A$ and $3 \mid a$. But $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ and that $3|p \Longrightarrow 3|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3 \mid\left(A^{m}-B^{n}\right)$. But $3 \mid A$ hence $3\left|B^{n} \Longrightarrow 3\right| B$, as $m \geq 3 \Longrightarrow 3^{2} \mid p$, it follows $3 \mid b$ then the contradiction with a, b coprime.
III.2. Case $3 \mid(b-a)$:

Considering now that $3 \mid(b-a)$. As $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)$ by the equation 95) and that $3\left|k_{1} \Longrightarrow 3\right| A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \mid A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.

III.2.1. Case $3 \mid A^{m}$:

If $3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow 3 \mid A^{2 m}$ then $3|4 a \Longrightarrow 3| a$. But $3|(b-a) \Longrightarrow 3| b$ hence the contradiction with a, b are coprime.
III.2.2. Case $3 \mid\left(A^{m}+2 B^{n}\right)$:

If:

$$
\begin{equation*}
3\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \tag{107}
\end{equation*}
$$

But $p=A^{2 m}+B^{2 n}+A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then $p-3 A^{m} B^{n}=$ $\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 9 \mid\left(p-3 A^{m} B^{n}\right)$ or $9 \mid\left(3 b-3 A^{m} B^{n}\right)$, then $3 \mid\left(b-A^{m} B^{n}\right)$ but $3|(b-a) \Longrightarrow 3|\left(a-A^{m} B^{n}\right)$. As $A^{2 m}=4 a=\left(A^{m}\right)^{2} \Longrightarrow \exists a^{\prime} \in N^{*}$ and $a=a^{\prime 2} \Longrightarrow A^{m}=2 a^{\prime}$. We arrive to:

$$
\begin{equation*}
3\left|\left(a^{\prime 2}-2 a^{\prime} B^{n}\right) \Rightarrow 3\right| a^{\prime}\left(a^{\prime}-2 B^{n}\right) \Rightarrow 3 \mid a^{\prime} \quad \text { or } \quad 3 \mid\left(a^{\prime}-2 B^{n}\right) \tag{108}
\end{equation*}
$$

III.2.2.1. Case $3 \mid a^{\prime}$:

If $3\left|a^{\prime} \Rightarrow 3\right| a^{\prime 2} \Rightarrow 3 \mid a$, but $3|(b-a) \Rightarrow 3| b$, then the contradiction with a, b coprime.
III.2.2.2. Case $3 \mid\left(a^{\prime}-2 B^{n}\right)$:

Now if $3\left|\left(a^{\prime}-2 B^{n}\right) \Rightarrow 3\right|\left(2 a^{\prime}-4 B^{n}\right) \Rightarrow 3\left|\left(A^{m}-4 B^{n}\right) \Rightarrow 3\right|\left(A^{m}-B^{n}\right)$, we refind the case III.2.2., equation 107 , that has a solution given by the case 2.2.1. above.

Then, the study of the case $\mathbf{3 . 2} \mathbf{2} \mathbf{1 . 8}$. is finished.
3.2.1.9 Case $3 \mid p$ and $b \mid 4 p:$ As $3 \mid p \Rightarrow p=3 p^{\prime}$ and $b \mid 4 p \Rightarrow \exists k_{1} \in N^{*}$ and $4 p=12 p^{\prime}=k_{1} b$.
I. Case $k_{1}=1$:

If $k_{1}=1$, then $b=12 p^{\prime},\left(p^{\prime} \neq 1\right.$ if not $\left.p=3 \ll A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{12 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} \cdot a}{12 p^{\prime}}=\frac{a}{3} \Rightarrow 3 \right\rvert\, a$ because $A^{2 m}$ is an integer, then the contradiction with a, b coprime.
II. Case $k_{1}=3$:

If $k_{1}=3$, then $b=4 p^{\prime}$ and $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{k_{1} \cdot a}{3}=a$.
Let us calculate $A^{m} B^{n}$:

$$
\begin{equation*}
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-\frac{a}{2} \tag{109}
\end{equation*}
$$

Let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 p^{\prime} \sqrt{3} \sin \frac{2 \theta}{3} \tag{110}
\end{equation*}
$$

The left member of the equation 110 is an integer and also p^{\prime}, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written as :

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{k_{3}} \tag{111}
\end{equation*}
$$

where k_{2}, k_{3} are two coprime integers and:

$$
\begin{equation*}
k_{3} \mid p^{\prime} \Longrightarrow \exists k_{4} \in N^{*} \quad \text { and } \quad p^{\prime}=k_{3} \cdot k_{4} \tag{112}
\end{equation*}
$$

II.1. Case $k_{4} \neq 1$:

We suppose that $k_{4} \neq 1$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{2} \cdot k_{4} \tag{113}
\end{equation*}
$$

Let μ one prime integer with:

$$
\begin{equation*}
\mu \mid k_{4} \tag{114}
\end{equation*}
$$

Then :

$$
\begin{equation*}
\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m} \quad \text { or } \quad \mu \mid\left(A^{m}+2 B^{n}\right) \tag{115}
\end{equation*}
$$

II.1.1. Case $\mu \mid A^{m}$:

If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu \mid a$. As $\mu\left|k_{4} \Longrightarrow \mu\right| p^{\prime} \Rightarrow \mu \mid\left(4 p^{\prime}=b\right)$. But a, b are coprime then the contradiction.
II.1.2. Case $\mu \mid\left(A^{m}+2 B^{n}\right)$:

If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+2 B^{n}\right)$, we can write:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \quad t^{\prime} \in N^{*} \tag{116}
\end{equation*}
$$

It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{117}
\end{equation*}
$$

As $p=3 p^{\prime}$ and $\mu\left|p^{\prime} \Rightarrow \mu\right|\left(3 p^{\prime}\right) \Rightarrow \mu \mid p$, we can write $: \exists \mu^{\prime} \in N^{*}$ and $p=\mu \mu^{\prime}$, then we obtain :

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{118}
\end{equation*}
$$

and:

$$
\begin{equation*}
\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n} \quad \text { or } \quad \mu \mid\left(B^{n}-A^{m}\right) \tag{119}
\end{equation*}
$$

II.1.2.1. Case $\mu \mid B^{n}$:

If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ which is in contradiction with the case II.1.2. above.
II.1.2.2. Case $\mu \mid\left(B^{n}-A^{m}\right)$:

If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain:

$$
\begin{equation*}
\mu \mid 3 B^{n} \tag{120}
\end{equation*}
$$

II.1.2.2.1. Case $\mu \mid B^{n}$:

If $\mu \mid B^{n}$ it is impossible, see the case II.1.2.1. above.
II.1.2.2.2 Case $\mu=3$:

If $\mu=3 \Longrightarrow 3 \mid k_{4} \Longrightarrow k_{4}=3 k_{4}^{\prime}$, and we obtain $p^{\prime}=k_{3} k_{4}=3 k_{3} k_{4}^{\prime}$, it follows $p=3 p^{\prime}=9 k_{3} k_{4}^{\prime}$ then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$, then:

$$
9 k_{4} k_{5}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write :

$$
\begin{equation*}
3\left(3 k_{4} k_{5}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{121}
\end{equation*}
$$

then $3\left|\left(3 k_{4} k_{5}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m}$ or $\quad 3 \mid B^{n}$.

II.1.2.2.2.1. Case $3 \mid A^{m}$:

If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Rightarrow 3 \mid a$, but $3\left|p^{\prime} \Rightarrow 3\right|\left(4 p^{\prime}\right) \Rightarrow 3 \mid b$, then the contradiction with a, b coprime. Then $3 \nmid A$.
II.1.2.2.2.2. Case $3 \mid B^{n}$:

If $3 \mid B^{n}$ and using (116), we have $A^{m}=\mu t^{\prime}-2 B^{n}=3 t^{\prime}-2 B^{n} \Longrightarrow 3 \mid A^{m} \Rightarrow$ $3\left|A^{2 m} \Rightarrow 3\right| a$, but $3\left|p^{\prime} \Rightarrow 3\right|\left(4 p^{\prime}\right) \Rightarrow 3 \mid b$, then the contradiction with a, b coprime.

Then the hypothesis $k_{4} \neq 1$ is impossible.
II.2. Case $k_{4}=1$:

We suppose that $k_{4}=1 \Longrightarrow p^{\prime}=k_{3} k_{4}=k_{3}$. Then we obtain:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{p^{\prime}} \tag{122}
\end{equation*}
$$

with k_{2}, p^{\prime} coprime, we write 122 as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{2}}{p^{\prime}}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$ and $b=4 p^{\prime}$, we obtain:

$$
\begin{equation*}
3 . a(b-a)=k_{2}^{2} \tag{123}
\end{equation*}
$$

that implies:

$$
\begin{equation*}
3 \mid a \text { or } \quad 3 \mid(b-a) \tag{124}
\end{equation*}
$$

II.2.1. Case $3 \mid a$:

If $3|a \Rightarrow 3| A^{2 m} \Rightarrow 3 \mid A$, as $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ and that $3|p \Longrightarrow 3|\left(A^{m}-\right.$ $\left.B^{n}\right)^{2} \Longrightarrow 9 \mid\left(A^{m}-B^{n}\right)^{2}$. But $\left(A^{m}-B^{n}\right)^{2}=p-3 A^{m} B^{n}=3 b-3 A^{m} B^{n} \Longrightarrow$ $3 \mid\left(b-A^{m} B^{n}\right)$. As $3\left|A^{m} \Longrightarrow 3\right| b \Longrightarrow$ the contradiction with a, b coprime.
II.2.2. Case $3 \mid(b-a)$:

We consider that $3 \mid(b-a)$. As $k_{2}=A^{m}\left(A^{m}+2 B^{n}\right)$ given by the equation 113) and that $3\left|k_{2} \Longrightarrow 3\right| A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \mid A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.
II.2.2.1. Case $3 \mid A^{m}$:

If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Longrightarrow 3 \mid a$, but $3|(b-a) \Longrightarrow 3| b$ then the contradiction with a, b coprime.
II.2.2.2. Case $3 \mid\left(A^{m}+2 B^{n}\right)$:

If:

$$
\begin{equation*}
3\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \tag{125}
\end{equation*}
$$

but $p=A^{2 m}+B^{2 n}+A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then $p-3 A^{m} B^{n}=$ $\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 9 \mid\left(p-3 A^{m} B^{n}\right)$ or $9 \mid\left(3 p^{\prime}-3 A^{m} B^{n}\right)$, then $3 \mid\left(p^{\prime}-A^{m} B^{n}\right) \Rightarrow$
$3\left|4\left(p^{\prime}-4 A^{m} B^{n}\right) \Rightarrow 3\right|\left(b-4 A^{m} B^{n}\right)$ but $3|(b-a) \Longrightarrow 3|\left(a-A^{m} B^{n}\right)$. As $3\left|\left(A^{2 m}-4 A^{m} B^{n}\right) \Rightarrow 3\right| A^{m}\left(A^{m}-4 B^{n}\right)$.
II.2.2.2.1. Case $3 \mid A^{m}$:

If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Longrightarrow 3 \mid a$, but $3|(b-a) \Longrightarrow 3| b$ then the contradiction with a, b coprime.
II.2.2.2.2. Case $3 \mid\left(A^{m}-4 B^{n}\right)$:

Now if $3\left|\left(A^{m}-4 B^{n}\right) \Longrightarrow 3\right|\left(A^{m}-B^{n}\right)$, we refind the hypothesis of the beginning (125) above, that has a solution II.2.2.2.1..
III. Case $k_{1} \neq 3$ and $3 \mid k_{1}$:

We suppose $k_{1} \neq 3$ and $3 \mid k_{1} \Rightarrow k_{1}=3 k^{\prime} 1$ with $k_{1}^{\prime} \neq 1$. We have $4 p=12 p^{\prime}=$ $k_{1} b=3 k_{1}^{\prime} b \Rightarrow 4 p^{\prime}=k_{1}^{\prime} b . A^{2 m}$ can be written as :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{3 k_{1}^{\prime} b}{3} \frac{a}{b}=k_{1}^{\prime} a \tag{126}
\end{equation*}
$$

and $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{k_{1}^{\prime}}{4}(3 b-4 a) \tag{127}
\end{equation*}
$$

As $B^{n} C^{l}$ is an integer, we must have | $4 \mid(3 b-4 a)$ | or | $4 \mid k_{1}^{\prime}$ |
| :--- | :--- | :--- | :--- | .

III.1. Case $4 \mid(3 b-4 a)$:

We suppose that $4 \left\lvert\,(3 b-4 a) \Rightarrow \frac{3 b-4 a}{4}=c \in N^{*}\right.$, and we obtain:

$$
\begin{aligned}
A^{2 m} & =k_{1}^{\prime} a \\
B^{n} C^{l} & =k_{1}^{\prime} c
\end{aligned}
$$

III.1.1. Case k_{1}^{\prime} is prime:

If k_{1}^{\prime} is prime, then $k_{1}^{\prime}\left|A^{2 m} \Rightarrow k_{1}^{\prime}\right| A$ and $k_{1}^{\prime}\left|B^{n} C^{l} \Rightarrow k_{1}^{\prime}\right| B^{n}$ or $k_{1}^{\prime} \mid C^{l}$. If $k_{1}^{\prime}\left|B^{n} \Rightarrow k_{1}^{\prime}\right| B$, then $k_{1}^{\prime}\left|C^{l} \Rightarrow k_{1}^{\prime}\right| C$. With the same method if $k_{1}^{\prime} \mid C^{l}$, we arrive to $k_{1}^{\prime} \mid B$.

We obtain: A, B and C solutions of (3) have a common factor.

III.1.2. Case k_{1}^{\prime} not a prime:

We suppose k_{1}^{\prime} not a prime. Let μ a prime divisor of k_{1}^{\prime}, as described in III.1.1. above, we obtain : A, B and C solutions of (3) have a common factor.
III.2. Case $4 \mid k_{1}^{\prime}$:

Now, we suppose that $4 \mid k_{1}^{\prime}$.
III.2.1. Case $k_{1}^{\prime}=4$:

We suppose $k_{1}^{\prime}=4$, then $A^{2 m}=4 a$ and $B^{n} C^{l}=4 c$, It is easy to verify that 2 is a common factor of A, B, C.

We obtain: A, B and C solutions of (3) have a common factor.
III.2.2. Case $k_{1}^{\prime}=4 k_{1}{ }_{1}$:

If $k_{1}^{\prime}=4 k{ }^{\prime \prime}{ }_{1}$ with $k "_{1}>1$. Then, we have:

$$
\begin{array}{r}
A^{2 m}=4 k "_{1} a \\
B^{n} C^{l}=k "_{1}(3 b-4 a) \tag{129}
\end{array}
$$

III.2.2.1. Case $k^{\prime \prime}{ }_{1}$ prime:

If $k "_{1}$ is prime, then $k "{ }_{1}\left|A^{2 m} \Rightarrow k{ }^{\prime \prime}\right| A$ and $k "{ }_{1}\left|B^{n} C^{l} \Rightarrow k{ }^{\prime}{ }_{1}\right| B^{n}$ or $k "{ }_{1} \mid C^{l}$. If $k "{ }_{1}\left|B^{n} \Rightarrow k "{ }_{1}\right| B$, then $k "{ }_{1}\left|C^{l} \Rightarrow k "{ }_{1}\right| C$. With the same method if $k{ }^{\prime}{ }_{1} \mid C^{l}$, we arrive to $k "{ }_{1} \mid B$.

We obtain: A, B and C solutions of (3) have a common factor.

III.2.2.2. Case $k{ }_{1}{ }_{1}$ not a prime:

If $k{ }_{1}{ }_{1}$ not a prime. Let μ a prime divisor of $k "{ }_{1}$, as described in case III.2.2.1. above, we obtain : A, B and C solutions of (3) have a common factor.

3.2.2. Hypothesis : $\{3 \mid a$ and $b \mid 4 p\}$

We have :

$$
\begin{equation*}
3 \mid a \Longrightarrow \exists a^{\prime} \in N^{*} / a=3 a^{\prime} \tag{130}
\end{equation*}
$$

3.2.2.1. C ase $b=2$ and $3 \mid a \therefore A^{2 m}$ is written as:

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 p}{3} \cdot \frac{a}{2}=\frac{2 \cdot p \cdot a}{3} \tag{131}
\end{equation*}
$$

Using the equation $130, A^{2 m}$ becomes:

$$
\begin{equation*}
A^{2 m}=\frac{2 \cdot p \cdot 3 a^{\prime}}{3}=2 \cdot p \cdot a^{\prime} \tag{132}
\end{equation*}
$$

But $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2}>1$ which is impossible, then $b \neq 2$.
3.2.2.2. $C a s e b=4$ and $3 \mid a \therefore \quad A^{2 m}$ is written as:

$$
\begin{align*}
A^{2 m} & =\frac{4 \cdot p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot p}{3} \cdot \frac{a}{4}=\frac{p \cdot a}{3}=\frac{p \cdot 3 a^{\prime}}{3}=p \cdot a^{\prime} \tag{133}\\
& \text { and } \cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 \cdot a^{\prime}}{4}<\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4} \Longrightarrow a^{\prime}<1 \tag{134}
\end{align*}
$$

which is impossible.

Then the case $b=4$ is impossible.
3.2.2.3. Case $b=p$ and $3 \mid a$:. Then:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{p} \tag{135}
\end{equation*}
$$

and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{p}=4 a^{\prime}=\left(A^{m}\right)^{2} \\
\exists a " \in N^{*} / a^{\prime}=a^{\prime \prime} \tag{137}
\end{array}
$$

We calculate $A^{m} B^{n}$, hence:

$$
\begin{align*}
& A^{m} B^{n}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a^{\prime} \\
\text { or } \quad & A^{m} B^{n}+2 a^{\prime}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{138}
\end{align*}
$$

The left member of 138 is an integer and p is also, then $2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written as:

$$
\begin{equation*}
2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{139}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=b=k_{2} . k_{3}, k_{3} \in N^{*}$.

I. Case $k_{3} \neq 1$:

We suppose that $k_{3} \neq 1$. We obtain :

$$
\begin{equation*}
A^{m}\left(A^{m}+2 B^{n}\right)=k_{1} \cdot k_{3} \tag{140}
\end{equation*}
$$

Let us μ a prime integer with $\mu \mid k_{3}$, then $\mu \mid b$ and $\mu \mid A^{m}\left(A^{m}+2 B^{n}\right)$. Hence:

$$
\begin{equation*}
\mu \mid A^{m} \quad \text { or } \quad \mu \mid\left(A^{m}+2 B^{n}\right) \tag{141}
\end{equation*}
$$

I.1. Case $\mu \mid A^{m}$:

If $\mu\left|A^{m} \Longrightarrow \mu\right| A$ and $\mu \mid A^{2 m}$, but $A^{2 m}=4 a^{\prime} \Longrightarrow \mu \mid 4 a^{\prime} \Longrightarrow\left(\mu=2\right.$ but $\left.2 \mid a^{\prime}\right)$ or $\mu \mid a^{\prime}$. Then $\mu \mid a$ hence the contradiction with a, b coprime.
I.2. Case $\mu \mid\left(A^{m}+2 B^{n}\right)$:

If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. We write $\mu \mid\left(A^{m}+2 B^{n}\right)$ as:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \quad t^{\prime} \in N^{*} \tag{142}
\end{equation*}
$$

It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p :

$$
\begin{equation*}
p=t^{2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{143}
\end{equation*}
$$

Since $p=b=k_{2} . k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime} \in N^{*}$ and $b=\mu \mu^{\prime}$, so we can write:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{144}
\end{equation*}
$$

From the last equation, we get $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n} \quad$ or $\quad \mu \mid\left(B^{n}-A^{m}\right)$.
I.2.1. Case $\mu \mid B^{n}$:

If $\mu \mid B^{n}$ which is contradiction with $\mu \nmid B^{n}$.
I.2.2. Case $\mu \mid\left(B^{n}-A^{m}\right)$:

If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we arrive to:

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\boxed{\mu \mid B^{n}} \tag{145}\\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

I.2.2.1. Case $\mu \mid B^{n}$:

If $\mu \mid B^{n}$ which is contradiction with $\mu \nmid B$ from I.2. Case $\mu \mid\left(A^{m}+2 B^{n}\right)$.
I.2.2.2. Case $\mu=3$:

If $\mu=3$, then $b=3 \mu^{\prime}$, but $3 \mid a$ then the contradiction with a, b coprime.
II. Case $k_{3}=1$:

We assume now $k_{3}=1$. Hence:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{146}\\
b & =k_{2} \tag{147}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{b} \tag{148}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{b^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
4^{2} a^{\prime}(p-a)=k_{1}^{2} \tag{149}
\end{equation*}
$$

but $a^{\prime}=a^{2}{ }^{2}$ then $p-a$ is a square. Let us:

$$
\begin{equation*}
\lambda^{2}=p-a \tag{150}
\end{equation*}
$$

The equation (149) becomes:

$$
\begin{equation*}
4^{2} a^{\prime \prime} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=4 a " \lambda \tag{151}
\end{equation*}
$$

taking the positive square root. Using 146, we get :

$$
\begin{equation*}
k_{1}=4 a " \lambda \tag{152}
\end{equation*}
$$

But $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=2 a "\left(A^{m}+2 B^{n}\right)$, it follows:

$$
\begin{equation*}
A^{m}+2 B^{n}=2 \lambda \tag{153}
\end{equation*}
$$

Let λ_{1} prime $\neq 2$, a divisor of λ (if not, $\lambda_{1}=2|\lambda \Longrightarrow 2| \lambda^{2} \Longrightarrow 2 \mid(p-a)$ but a is even, then $2|p \Longrightarrow 2| b$ which is contradiction with a, b coprime).

We consider $\lambda_{1} \neq 2$ and :

$$
\begin{array}{r}
\lambda_{1}\left|\lambda \Longrightarrow \lambda_{1}\right| \lambda^{2} \quad \text { and } \quad \lambda_{1} \mid\left(A^{m}+2 B^{n}\right) \\
\lambda_{1} \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1} \nmid A^{m} \quad \text { if not } \quad \lambda_{1} \mid 2 B^{n} \tag{155}
\end{array}
$$

But $\lambda_{1} \neq 2$ hence $\lambda_{1}\left|B^{n} \Longrightarrow \lambda_{1}\right| B$, it follows:

$$
\begin{equation*}
\lambda_{1} \mid(p=b) \quad \text { and } \quad \lambda_{1}\left|A^{m} \Longrightarrow \lambda_{1}\right| 2 a " \Longrightarrow \lambda_{1} \mid a \tag{156}
\end{equation*}
$$

hence the contradiction with a, b coprime.
II.1. Case $\lambda_{1} \nmid A^{m}$ and $\lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$:

We assume now $\lambda_{1} \nmid A^{m} . \lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right)^{2}$ that is $\lambda_{1} \mid\left(A^{2 m}+\right.$ $\left.4 A^{m} B^{n}+4 B^{2 n}\right)$, we write it as $\lambda_{1}\left|\left(p+3 A^{m} B^{n}+3 B^{2 n}\right) \Longrightarrow \lambda_{1}\right|\left(p+3 B^{n}\left(A^{m}+\right.\right.$ $\left.\left.2 B^{n}\right)-3 B^{2 n}\right)$. But $\lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(p-3 B^{2 n}\right)$, as $\lambda_{1} \mid(p-a)$ hence by difference, we obtain $\lambda_{1} \mid\left(a-3 B^{2 n}\right)$ or $\lambda_{1}\left|\left(3 a^{\prime}-3 B^{2 n}\right) \Longrightarrow \lambda_{1}\right| 3\left(a^{\prime}-B^{2 n}\right)$, Then:

$$
\begin{equation*}
\lambda_{1}=3 \quad \text { or } \quad \lambda_{1} \mid\left(a^{\prime}-B^{2 n}\right) \tag{157}
\end{equation*}
$$

II.1.1. Case $\lambda_{1}=3$:

If $\lambda_{1}=3$ but $3 \mid a$, as $\lambda_{1}|(p-a) \Longrightarrow 3|(p=b)$ hence the contradiction with a, b coprime.
II.1.2. Case $\lambda_{1} \mid\left(a^{\prime}-B^{2 n}\right)$:

If $\lambda_{1}\left|\left(a^{\prime}-B^{2 n}\right) \Longrightarrow \lambda_{1}\right|\left(a^{\prime \prime}-B^{2 n}\right) \Longrightarrow \lambda_{1}\left|\left(a^{\prime \prime}-B^{n}\right)\left(a "+B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(a^{"}+\right.$ B^{n}) or $\lambda_{1} \mid\left(a^{\prime \prime}-B^{n}\right)$, because $\left(a^{\prime \prime}-B^{n}\right) \neq 1$, if not, we obtain $a^{" 2}-B^{2 n}=$ $a "+B^{n} \Longrightarrow a^{" 2}-a "=B^{n}-B^{2 n}$. The left member is positive and the right member is negative, then the contradiction.
II.1.2.1. Case $\lambda_{1} \mid\left(a^{"}-B^{n}\right)$:

If $\lambda_{1}\left|\left(a^{\prime \prime}-B^{n}\right) \Longrightarrow \lambda_{1}\right| 2\left(a^{\prime \prime}-B^{n}\right) \Longrightarrow \lambda_{1} \mid\left(A^{m}-2 B^{n}\right)$ but $\lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$ hence $\lambda_{1}\left|2 A^{m} \Longrightarrow \lambda_{1}\right| A^{m}$ as $\lambda_{1} \neq 2$, it follows $\lambda_{1} \mid A^{m}$ hence the contradiction with (155).
II.1.2.2. Case $\lambda_{1} \mid\left(a^{\prime \prime}+B^{n}\right)$:

If $\lambda_{1}\left|\left(a^{\prime \prime}+B^{n}\right) \Longrightarrow \lambda_{1}\right| 2\left(a^{\prime \prime}+B^{n}\right) \Longrightarrow \lambda_{1}\left|\left(2 a "+2 B^{n}\right) \Rightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right)$. We find the case II.1. that has solutions.

Then the case $k_{3}=1$ is impossible.
3.2.2.4. C ase $b \mid p \Rightarrow p=b . p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a \therefore$

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot b \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{3 \cdot b}=4 \cdot p^{\prime} a^{\prime} \tag{158}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{159}
\end{equation*}
$$

But $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, hence using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=p^{\prime}\left(b-4 a^{\prime}\right) \tag{160}
\end{equation*}
$$

As $p=b . p^{\prime}$, and $p^{\prime}>1$, we have then:

$$
\begin{align*}
& B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \tag{161}\\
& \text { and } A^{2 m}=4 \cdot p^{\prime} \cdot a^{\prime} \tag{162}
\end{align*}
$$

I. Case λ a prime divisor of p^{\prime} :

Let λ a prime divisor of p^{\prime} (we suppose p^{\prime} not prime). From 162), we have:

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is a prime, then } \lambda \mid A \tag{163}
\end{equation*}
$$

From 161 , as $\lambda \mid p^{\prime}$ we have:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \lambda \mid C^{l} \tag{164}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is a prime $\lambda \mid B$, but $C^{l}=A^{m}+B^{n}$, then we have also :

$$
\begin{equation*}
\lambda \mid C^{l} \quad \text { as } \lambda \text { is a prime, then } \lambda \mid C \tag{165}
\end{equation*}
$$

By the same way, if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$. then : A, B and C solutions of (3) have a common factor.

II. Case p^{\prime} is a prime number:

We suppose now that p^{\prime} is prime, from the equations 161 and 162 , we obtain that:

$$
\begin{equation*}
p^{\prime}\left|A^{2 m} \Rightarrow p^{\prime}\right| A^{m} \Rightarrow p^{\prime} \mid A \tag{166}
\end{equation*}
$$

and:

$$
\begin{gather*}
p^{\prime}\left|B^{n} C^{l} \Rightarrow p^{\prime}\right| B^{n} \quad \text { or } p^{\prime} \mid C^{l} \tag{167}\\
\text { If } \quad p^{\prime}\left|B^{n} \Rightarrow p^{\prime}\right| B \tag{168}
\end{gather*}
$$

As $\quad C^{l}=A^{m}+B^{n} \quad$ and that $p^{\prime}\left|A, p^{\prime}\right| B \Rightarrow p^{\prime}\left|A^{m}, p^{\prime}\right| B^{n} \Rightarrow p^{\prime} \mid C^{l}$

$$
\begin{equation*}
\Rightarrow p^{\prime} \mid C \tag{169}
\end{equation*}
$$

By the same way, if $p^{\prime} \mid C^{l}$, we arrive to $p^{\prime} \mid B$.

Hence: A, B and C solutions of (3) have a common factor.
3.2.2.5. Case $b=2 p$ and $3 \mid a \therefore$ We have:

$$
\left.\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{2 p}=2 a^{\prime} \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| a \Longrightarrow 2 \right\rvert\, a^{\prime}
$$

Then $2 \mid a$ and $2 \mid b$ which is contradiction with a, b coprime.
3.2.2.6. Case $b=4 p$ and $3 \mid a:$ We have :

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{4 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{4 p}=a^{\prime}
$$

Calculate $A^{m} B^{n}$, we obtain:

$$
\begin{array}{r}
A^{m} B^{n}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{2 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{a^{\prime}}{2} \Longrightarrow \\
A^{m} B^{n}+\frac{A^{2 m}}{2}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3} \tag{170}
\end{array}
$$

let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{171}
\end{equation*}
$$

The left member of 171 is an integer and p is an integer, then $\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written:

$$
\begin{equation*}
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{172}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=k_{2} . k_{3}$.
I. Case $k_{3} \neq 1$:

Firstly, we suppose that $k_{3} \neq 1$. Hence:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1} \tag{173}
\end{equation*}
$$

Let μ a prime integer and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m} \quad$ or $\quad \mu \mid\left(A^{m}+2 B^{n}\right)$.
I.1. Case $\mu \mid A^{m}$:

If $\mu\left|A^{m} \Longrightarrow \mu\right|\left(A^{2 m}=a^{\prime}\right) \Rightarrow \mu \mid\left(3 a^{\prime}=a\right)$. As $\mu\left|k_{3} \Longrightarrow \mu\right| p \Rightarrow \mu \mid(4 p=b)$. Then the contradiction with a, b coprime.
I.2. Case $\mu \mid\left(A^{m}+2 B^{n}\right)$:

If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then:

$$
\begin{equation*}
\mu \neq 2 \quad \text { and } \quad \mu \nmid B^{n} \tag{174}
\end{equation*}
$$

$\mu \mid\left(A^{m}+2 B^{n}\right)$, we write:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu . t^{\prime} \quad t^{\prime} \in N^{*} \tag{175}
\end{equation*}
$$

Then :

$$
\begin{gather*}
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n} \\
\Longrightarrow p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{176}
\end{gather*}
$$

As $b=4 p=4 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime} \in N^{*}$ that $b=\mu \mu^{\prime}$, we obtain:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(4 \mu t^{\prime 2}-8 t^{\prime} B^{n}\right)+4 B^{n}\left(B^{n}-A^{m}\right) \tag{177}
\end{equation*}
$$

The last equation implies $\mu \mid 4 B^{n}\left(B^{n}-A^{m}\right)$, but $\mu \neq 2$ then $\mu \mid B^{n}$ or $\quad \mu \mid\left(B^{n}-A^{m}\right)$.

I.2.1. Case $\mu \mid B^{n}$:

If $\mu \mid B^{n}$ then the contradiction with (174).
I.2.2. Case $\mu \mid\left(B^{n}-A^{m}\right)$:

If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain:

$$
\begin{equation*}
\mu\left|3 B^{n} \Longrightarrow \mu\right| B^{n} \quad \text { or } \quad \mu=3 \tag{178}
\end{equation*}
$$

I.2.2.1. Case $\mu \mid B^{n}$:

If $\mu \mid B^{n}$ it is contradiction with (174).
I.2.2.2. Case $\mu=3$:

If $\mu=3$, then $b=3 \mu^{\prime}$, but $3 \mid a$ which is contradiction with a, b coprime.
II. Case $k_{3}=1$:

We assume now $k_{3}=1$. Hence:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{179}\\
p & =k_{2} \tag{180}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{p} \tag{181}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{p^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
a^{\prime}\left(4 p-3 a^{\prime}\right)=k_{1}^{2} \tag{182}
\end{equation*}
$$

but $a^{\prime}=a^{\prime 2}$ then $4 p-3 a^{\prime}$ is a square. Let us:

$$
\begin{equation*}
\lambda^{2}=4 p-3 a^{\prime}=4 p-a=b-a \tag{183}
\end{equation*}
$$

The equation 182 becomes:

$$
\begin{equation*}
a^{2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=a " \lambda \tag{184}
\end{equation*}
$$

taking the positive square root. Using 179 , we get :

$$
\begin{equation*}
k_{1}=a " \lambda \tag{185}
\end{equation*}
$$

But $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=a "\left(A^{m}+2 B^{n}\right)$, it follows:

$$
\begin{equation*}
\left(A^{m}+2 B^{n}\right)=\lambda \tag{186}
\end{equation*}
$$

Let λ_{1} prime $\neq 2$, a divisor of λ (if not $\lambda_{1}=2|\lambda \Longrightarrow 2| \lambda^{2}$. As $2 \mid(b=4 p) \Longrightarrow$ $2 \mid\left(a=3 a^{\prime}\right)$ which is contradiction with a, b coprime).

We consider $\lambda_{1} \neq 2$ and :

$$
\begin{array}{r}
\lambda_{1}\left|\lambda \Longrightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right) \\
\Longrightarrow \lambda_{1} \nmid A^{m} \quad \text { if not } \quad \lambda_{1} \mid 2 B^{n} \tag{188}
\end{array}
$$

But $\lambda_{1} \neq 2$ hence $\lambda_{1}\left|B^{n} \Longrightarrow \lambda_{1}\right| B$, it follows:

$$
\begin{equation*}
\lambda_{1} \mid(b=4 p) \quad \text { and } \quad \lambda_{1}\left|A^{m} \Longrightarrow \lambda_{1}\right| 2 a " \Longrightarrow \lambda_{1} \mid a \tag{189}
\end{equation*}
$$

hence the contradiction with a, b coprime.
II.1. Case $\lambda_{1} \nmid A^{m}, \lambda_{1} \nmid B^{n}$ and $\lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$:

We assume now $\lambda_{1} \nmid A^{m}, \lambda_{1} \nmid B^{n} . \lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right)^{2}$ that is $\lambda_{1} \mid\left(A^{2 m}+4 A^{m} B^{n}+4 B^{2 n}\right)$, we write it as $\lambda_{1}\left|\left(p+3 A^{m} B^{n}+3 B^{2 n}\right) \Longrightarrow \lambda_{1}\right|(p+$ $\left.3 B^{n}\left(A^{m}+2 B^{n}\right)-3 B^{2 n}\right)$. But $\lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(p-3 B^{2 n}\right)$, as $\lambda_{1} \mid(4 p-a)$ hence by difference, we obtain $\lambda_{1} \mid\left(a-3\left(B^{2 n}+p\right)\right)$ or $\lambda_{1} \mid\left(3 a^{\prime}-3\left(B^{2 n}+p\right)\right) \Longrightarrow$ $\lambda_{1} \mid 3\left(a^{\prime}-B^{2 n}-p\right) \Longrightarrow \lambda_{1}=3$ or $\lambda_{1} \mid\left(a^{\prime}-\left(B^{2 n}+p\right)\right)$.
II.1.1. Case $\lambda_{1}=3$:

If $\lambda_{1}=3|\lambda \Rightarrow 3| \lambda^{2} \Rightarrow 3 \mid b-a$ but $3|a \Longrightarrow 3|(p=b)$ hence the contradiction with a, b coprime.
II.1.2. Case $\lambda_{1} \mid\left(a^{\prime}-\left(B^{2 n}+p\right)\right)$:

If $\lambda_{1} \neq 3$ and $\lambda_{1}\left|\left(a^{\prime}-B^{2 n}-p\right) \Longrightarrow \lambda_{1}\right|\left(A^{m} B^{n}+B^{2 n}\right) \Longrightarrow \lambda_{1} \mid B^{n}\left(A^{m}+2 B^{n}\right) \Longrightarrow$ $\lambda_{1} \mid B^{n} \quad$ or $\quad \lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$.
II.1.2.1. Case $\lambda_{1} \mid B^{n}$:

If $\lambda_{1} \mid B^{n}$ that is in contradiction with the hypothesis $\lambda_{1} \nmid B$ cited above case II.1.
II.1.2.2. Case $\lambda_{1} \mid\left(A^{n}+2 B^{n}\right)$:

If $\lambda_{1} \mid\left(A^{n}+2 B^{n}\right)$. We refind this condition in the case II.1.

Then the case $k_{3}=1$ is impossible.
3.2.2.7. Case $3 \mid a$ and $b=2 p^{\prime} b \neq 2$ with $p^{\prime}|p \therefore 3| a \Longrightarrow a=3 a^{\prime}, b=2 p^{\prime}$ with $p=k \cdot p^{\prime}$, hence:

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{6 p^{\prime}}=2 \cdot k \cdot a^{\prime} \tag{190}
\end{equation*}
$$

Calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{191}
\end{equation*}
$$

But $\sqrt[3]{\rho^{2}}=\frac{p}{3}$ hence en using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-2 a^{\prime}\right) \tag{192}
\end{equation*}
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, we have then:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{193}\\
\text { and } \quad A^{2 m}=2 k \cdot a^{\prime} \tag{194}
\end{gather*}
$$

I. Case λ is a prime divisor of k :

We suppose that λ is a prime divisor of k (we suppose k not a prime). From (194), we have:

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is prime then } \lambda \mid A \tag{195}
\end{equation*}
$$

From (193), as $\lambda \mid k$, we have:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \quad \lambda \mid C^{l} \tag{196}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is prime $\lambda \mid B$, and as $C^{l}=A^{m}+B^{n}$ then we have also:

$$
\begin{equation*}
\lambda \mid C^{l} \quad \text { as } \lambda \text { is prime then } \lambda \mid C \tag{197}
\end{equation*}
$$

By the same way, if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$. Then : A, B and C solutions of (3) have a common factor.
II. Case k is prime:

Now, we suppose now that k is prime, from the equations 193 and 194 , we obtain:

$$
\begin{equation*}
k\left|A^{2 m} \Rightarrow k\right| A^{m} \Rightarrow k \mid A \tag{198}
\end{equation*}
$$

and:

$$
\begin{gather*}
k\left|B^{n} C^{l} \Rightarrow k\right| B^{n} \quad \text { or } k \mid C^{l} \tag{199}\\
\text { if } \quad k\left|B^{n} \Rightarrow k\right| B \tag{200}
\end{gather*}
$$

as $\quad C^{l}=A^{m}+B^{n} \quad$ and that $k|A, k| B \Rightarrow k\left|A^{m}, k\right| B^{n} \Rightarrow k \mid C^{l}$

$$
\begin{equation*}
\Rightarrow k \mid C \tag{201}
\end{equation*}
$$

By the same way, if $k \mid C^{l}$, we arrive to $k \mid B$.

Hence: A, B and C solutions of (3) have a common factor.
3.2.2.8. Case $3 \mid a$ and $b=4 p^{\prime} \quad b \neq 2$ with $p^{\prime}|p \therefore 3| a \Longrightarrow a=3 a^{\prime}, b=4 p^{\prime}$ with $p=k \cdot p^{\prime}, k \neq 1$, if not, $b=4 p$ a case that has been studied (paragraph 3.2.2.6), then we have :

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{12 p^{\prime}}=k \cdot a^{\prime} \tag{202}
\end{equation*}
$$

Writing $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{203}
\end{equation*}
$$

But $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, hence en using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-a^{\prime}\right) \tag{204}
\end{equation*}
$$

As $p=b . p^{\prime}$, and $p^{\prime}>1$, we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{205}\\
\text { and } \quad A^{2 m}=2 k \cdot a^{\prime} \tag{206}
\end{gather*}
$$

I. Case λ a prime divisor of k :

Let λ a prime divisor of k (we suppose k not a prime). From 206), we have:

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is prime then } \lambda \mid A \tag{207}
\end{equation*}
$$

From 205, as $\lambda \mid k$ we obtain:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \quad \lambda \mid C^{l} \tag{208}
\end{equation*}
$$

I. 1 Case $\lambda \mid B^{n}$ or $\lambda \mid C^{n}$:

If $\lambda \mid B^{n}, \lambda$ is a prime, then $\lambda \mid B$, and as $\lambda|A \Rightarrow \lambda|\left(A^{m}+B^{n}=C^{l}\right) \Rightarrow \lambda \mid C$. By the same way if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$. Then : A, B and C solutions of 3 have a common factor.

II. Case k is prime:

We suppose now that k is prime, from the equations and 205) we have:

$$
\begin{equation*}
k\left|A^{2 m} \Rightarrow k\right| A^{m} \Rightarrow k \mid A \tag{209}
\end{equation*}
$$

and:

$$
\begin{gather*}
k\left|B^{n} C^{l} \Rightarrow k\right| B^{n} \quad \text { or } k \mid C^{l} \tag{210}\\
\text { if } \quad k\left|B^{n} \Rightarrow k\right| B \tag{211}
\end{gather*}
$$

as $\quad C^{l}=A^{m}+B^{n} \quad$ and that $k|A, k| B \Rightarrow k\left|A^{m}, k\right| B^{n} \Rightarrow k \mid C^{l}$

$$
\begin{equation*}
\Rightarrow k \mid C \tag{212}
\end{equation*}
$$

By the same way if $k \mid C^{l}$, we arrive to $k \mid B$.

Hence: A, B and C solutions of (3) have a common factor.
$\frac{\text { 3.2.2.9. Case } 3 \mid a \text { and } b \mid 4 p \text { :. } a=3 a^{\prime} \text { and } 4 p=k_{1} b \text { with } k_{1} \in N^{*} \text {. As } A^{2 m}=}{\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{3 a^{\prime}}{b}=k_{1} a^{\prime} \text { and } B^{n} C^{l} \text { : }}$.
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 a^{\prime}}{b}\right)=\frac{k_{1}}{4}\left(b-4 a^{\prime}\right)$

As $B^{n} C^{l}$ is an integer, we must have $4 \mid k_{1}$ or $\quad 4 \mid\left(b-4 a^{\prime}\right)$.
I. Case $k_{1}=1$:

If $k_{1}=1 \Rightarrow b=4 p$: it is the case (3.2.2.6) above.
II. Case $k_{1}=4$:

If $k_{1}=4 \Rightarrow p=b:$ it is the case (3.2.2.3) above.

III. Case $4 \mid k_{1}$:

We suppose that $4 \mid k_{1}$ with $k_{1}>4 \Rightarrow k_{1}=4 k_{1}^{\prime}$, then we have:

$$
\begin{array}{r}
A^{2 m}=4 k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=k_{1}^{\prime}\left(b-4 a^{\prime}\right)
\end{array}
$$

By discussing k_{1}^{\prime} is a prime integer or not, we arrive easily to: A, B and C solutions of (3) have a common factor.
III.1. Case $4 \nmid\left(b-4 a^{\prime}\right)$ and $4 \nmid k_{1}^{\prime}$:

If $4 \nmid\left(b-4 a^{\prime}\right)$ and $4 \nmid k_{1}^{\prime}$ it is impossible.
III.2. Case $4 \mid\left(b-4 a^{\prime}\right)$:

If $4 \mid\left(b-4 a^{\prime}\right) \Rightarrow\left(b-4 a^{\prime}\right)=4 c$, with $c \in N^{*}$, then we obtain:

$$
\begin{gathered}
A^{2 m}=k_{1} a^{\prime} \\
B^{n} C^{l}=k_{1} c
\end{gathered}
$$

By discussing k_{1} is a prime integer or not, we arrive easily to: A, B and C solutions of (3) have a common factor.

The main theorem is proved.

4. Numerical Examples

4.1. Example 1:

We consider the example:

$$
\begin{equation*}
6^{3}+3^{3}=3^{5} \tag{214}
\end{equation*}
$$

with $A^{m}=6^{3}, B^{n}=3^{3}$ and $C^{l}=3^{5}$. With the notations used in the paper, we obtain:

$$
\begin{array}{r}
p=3^{6} \times 73 \\
q=8 \times 3^{11} \\
\bar{\Delta}=4 \times 3^{18}\left(3^{7} \times 4^{2}-73^{3}\right)<0 \\
\rho=\frac{p \sqrt{p}}{3 \sqrt{3}}=\frac{3^{8} \times 73 \sqrt{73}}{3} \\
\cos \theta=-\frac{4 \times 3^{3} \times \sqrt{3}}{73 \sqrt{73}} \tag{219}
\end{array}
$$

As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 2^{4}}{73}=\frac{a}{b} \Longrightarrow a=3 \times 2^{4}, b=73$; then:

$$
\begin{gather*}
\cos \frac{\theta}{3}=\frac{4 \sqrt{3}}{\sqrt{73}} \tag{220}\\
p=3^{6} b \tag{221}
\end{gather*}
$$

Let us verify the equation (219) using the equation 220):

$$
\begin{equation*}
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{4 \sqrt{3}}{\sqrt{73}}\right)^{3}-3 \frac{4 \sqrt{3}}{\sqrt{73}}=-\frac{4 \times 3^{3} \times \sqrt{3}}{73 \sqrt{73}} \tag{222}
\end{equation*}
$$

That's OK. For this example, we can use the two conditions of 65 as $3|p, b| 4 p$ and $3 \mid a$. The cases 3.2.1.3 and 3.2.2.4 are respectively used. We find for both cases that A^{m}, B^{n} and C^{l} of the equation 214 have a common prime factor which is true.

4.2. Example 2:

Let the second example:

$$
\begin{equation*}
7^{4}+7^{3}=14^{3} \Rightarrow 2401+343=2744 \tag{223}
\end{equation*}
$$

With the notations of the paper, we take:

$$
\begin{gather*}
A^{m}=7^{4} \tag{224}\\
B^{n}=7^{3} \tag{225}\\
C^{l}=14^{3} \tag{226}
\end{gather*}
$$

We obtain:

$$
\begin{gather*}
p=57 \times 7^{6}=3 \times 19 \times 7^{6} \tag{227}\\
q=8 \times 7^{10} \tag{228}\\
\bar{\Delta}=27 q^{2}-4 p^{3}=27 \times 4 \times 7^{18}\left(16 \times 49-19^{3}\right) \\
=-27 \times 4 \times 7^{18} \times 6075<0 \tag{229}\\
\rho=\frac{p \sqrt{p}}{3 \sqrt{3}}=19 \times 7^{9} \times \sqrt{19} \tag{230}\\
\cos \theta=\frac{-q}{2 \rho}=-\frac{4 \times 7}{19 \sqrt{19}} \tag{231}
\end{gather*}
$$

As $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{7^{2}}{4 \times 19}=\frac{a}{b} \Longrightarrow a=7^{2}, b=4 \times 19$; then:

$$
\begin{array}{r}
\cos \frac{\theta}{3}=\frac{7}{2 \sqrt{19}} \\
3 \mid p \text { and } b \mid(4 p) \tag{233}
\end{array}
$$

Let us verify the equation (231) using the equation (232):

$$
\begin{equation*}
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{7}{2 \sqrt{19}}\right)^{3}-3 \frac{7}{2 \sqrt{19}}=-\frac{4 \times 7}{19 \sqrt{19}} \tag{234}
\end{equation*}
$$

It is the same value of (231)!

Now, from (233), we have $3\left|p \Rightarrow p=3 p^{\prime}, b\right|(4 p)$ with $b \neq 2,4$ then $12 p^{\prime}=$ $k_{1} b=3 \times 7^{6} b$. It concerns the paragraph 3.2.1.9. of the first hypothesis. As $k_{1}=3 \times 7^{6}=3 k_{1}^{\prime}$ with $k_{1}^{\prime}=7^{6} \neq 1$. It is the case III., with the two conditions: $4 \mid(3 b-4 a)$ or $4 \mid k_{1}^{\prime}$. We take $4 \mid(3 b-4 a)$. Let us calculate $3 b-4 a$:

$$
\begin{equation*}
3 b-4 a=3 \times 4 \times 19-4 \times 7^{2}=32 \Longrightarrow 4 \mid(3 b-4 a) \tag{235}
\end{equation*}
$$

Then it is the sous-case III.1. with $A^{2 m}=7^{8}=7^{6} \times 7^{2}=k_{1}^{\prime} \cdot a$ with k_{1}^{\prime} not a prime, we find the sous-case III.1.2 with the result that A, B and C have a common factor namely the prime number 7 a divisor of $k_{1}^{\prime}=7^{6}!$.

4.3. Example 3:

Let the third example:

$$
\begin{equation*}
7^{2}+2^{5}=3^{4} \tag{236}
\end{equation*}
$$

with:

$$
A^{m}=7^{2} ; B^{n}=2^{5} ; C^{l}=3^{4}
$$

We obtain:

$$
\begin{gather*}
p=4999 \quad \text { a prime number } \tag{237}\\
q=2^{5} \times 7^{2} \times 3^{4}=127008 \gg p \tag{238}
\end{gather*}
$$

As $q \gg p$, we find that:

$$
\begin{equation*}
\bar{\Delta}=27 q^{2}-4 p^{3}>0 \tag{239}
\end{equation*}
$$

Then we cannot use the results of our proof because in this example, $m=2<3$. We remark that in all the proof, we don't encountered that m, n or l must be great than 2. Then the condition that $m, n, l>2$ is important in (1).

5. Conclusion

As seen above, the examples confirm the results of the proof. In conclusion, we can announce the theorem:

Theorem 1. (A. Ben Hadj Salem, A. Beal, 2016): Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{240}
\end{equation*}
$$

then A, B, and C have a common factor.

References

R. Daniel Mauldin. A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of AMS, Vol44, $n^{\circ} 11$, 1997, pp1436-1437.

[^0]: ${ }^{1}$ Email:abenhadjsalem@gmail.com

