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Abstract

In 1997, Andrew Beal [I] announced the following conjecture : Let A, B,C,m,n,
and | be positive integers with m,n,l > 2. If A™ + B" = C' then A, B, and C have
a common factor. We begin to construct the polynomial P(z) = (z — A™)(z —
B™)(z + C') = 2® — px + q with p, ¢ integers depending of A™, B® and C!. We
resolve 2 — pz + ¢ = 0 and we obtain the three roots z1, x5, x5 as functions of p, g
and a parameter #. Since A™, B™, —C" are the only roots of 3 — pz + g = 0, we
discuss the conditions that =i, z9, x5 are integers.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.

O my Lord! Increase me further in knowledge.
(Holy Quran, Surah Ta Ha, 20:114.)

To my Wife Wahida

1 Introduction

In 1997, Andrew Beal [I] announced the following conjecture :

Congjecture 1.1. Let A, B,C,m,n, and | be positive integers with m,n,l > 2. If:
A™ 4+ B" = (! (1.1)
then A, B, and C' have a common factor.

In this paper, we give an elementary proof of the Beal Conjecture. Our idea
is to construct a polynomial P(x) of three order having as roots A™, B" and —C"
with the condition (1.1). In the next section, we do some preliminaries calculs to

give the expressions of the three roots of P(x) = 0. The proof of the conjecture
(1.1) is the subject of the section 3.

We begin with the trivial case when A™ = B™. The equation ((1.1)) becomes:

2A™ = C! (1.2)
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then 2|C! = 2|C = Jc € N*/ O = 2, it follows 24™ = 2l¢l = A™ = 2!-1cl,
As [ > 2, then 2|A™ = 2|A = 2|B™ = 2|B. The conjecture ([1.1) is verified.

We suppose in the following that A™ > B".

2 Preliminaries Calculs
Let m,n,l € N* > 2 and A, B,C € N* such:

A™ 4 B = (C! (2.1)
We call:

P(z) = (x — A™)(x — B")(z + C') = 23 — 22(A™ + B" — C)
+a[A™B" — CY(A™ + B")] + C'A™B" (2.2)

Using the equation (2.1)), P(x) can be written:

| P(x) = +a[A"B" — (A" + B")?| + A" B"(A" + B") | (2.3)

We introduce the notations:

p=(A"+ B")? - A™B" (2.4)
g=A"B"(A™ + B"™) (2.5)

As A™ # B™, we have :
p> (A" —B")?>0 (2.6)

Equation (2.3) becomes:
P(z) =2 —pr+q (2.7)

Using the equation (2.2), P(z) = 0 has three different real roots : A™, B® and —C'.
Now, let us resolve the equation:

P(x)=2®-pr+q=0 (2.8)

To resolve ([2.8)) let:
r=u+v (2.9)

Then P(x) = 0 gives:

P(z) = P(u+v) = (u+v)? —plut+v)+¢=0 = u*+0>+ (u+v)(Buv —p)+¢ =0

(2.10)

To determine u and v, we obtain the conditions:
ud + v = —q (2.11)
uw =p/3 >0 (2.12)

Then 2 and v3 are solutions of the second ordre equation:

X?4+qgX +p*/271=0 (2.13)
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Its discriminant A is written as :

27¢% — 4p° _

: A
A= q* —4p®/27 = > > (2.14)

Let:
A =27¢° — 4p® = 27(A™B"(A™ + B"))? — 4[(A™ + B™)* — A™B"]?
= 2TA*B*"(A™ + B™)? — 4[(A™ + B™)? — A™B"]>  (2.15)

Noting :
a=A"B" >0 (2.16)
B=(A"+B")? (2.17)
we can write (2.15) as: o
A =278 —4(8 —a)? (2.18)

As a # 0, we can also rewrite (2.18) as :

A=ao? (27§ —4 (g - 1>3> (2.19)

We call ¢ the parameter :

s
t=" 2.2
- (2.20)
A becomes : o
A =27t —4(t—1)3) (2.21)
Let us calling :
y = y(t) =27t — 4(t — 1)3 (2.22)

Since a > 0, the signe of A is also the signe of y(t). Let us study the signe of y.
We obtain y'(t):
y'(t) =y =3(1+2t)(5—2t) (2.23)

y' =0=1t; = —1/2 and ¢3 = 5/2, then the table of variations of y is given below:

t —ec 1/2 52 4 R
142t - |_0| + ‘ +
5-2t + + 0 -
y'(t) - E + 0 -
b 54
¥(t) \ / \E\
[ .

Fig. 1: The table of variation

The table of the variations of the function y shows that y < 0 for t > 4. In
our case, we are interested for ¢ > 0. For ¢ = 4 we obtain y(4) = 0 and for
t €]0,4/= y > 0. As we have t = g > 4 because as A™ # B™:

(A™ -~ B")? > 0= = (A" + B")? > 4a = 4A™B" (2.24)
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Then y < 0 = A < 0= A < 0. Then, the equation (2.13) does not have real
solutions u> and v®. Let us find the solutions v and v with z = u+ v is a positif or
a negatif real and v.v = p/3.

2.1

Demonstration

Proof. The solutions of (2.13)) are:

_ i/ —A
X, - A

—  —q—iV/-A
)Q:XF%

We may resolve:

W — —q+ivV—A

Writing X; in the form:

with:

V@ —A  pyp
2 - 3V3
V-A

and sinf = 5, >0

p:

q
0=—-—<0
CcoS 2p

Then 0 €] + g,—i-ﬂ'[, let:

and

hence the expression of Xs:

Let:

T ™ 6 =« 1 0 V3
~<0< = - < <5 =>-<cos; < —
2 TS S5 3T g %3S
1< 29<3
— COS™ — —
4 3 4
X2:pe—i9
u=re¥
—-1+4+iV3 i2m
and j = 5 =e'3
2 G4m 1+Z\/§ -
3 = — :j

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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j is a complex cubic root of the unity <= j3 = 1. Then, the solutions u and v are:

up = e’ = {”/ﬁei% (2.39)

it . id o2
ug =re'? = Ypje's = Ype' 3 (2.40)
uz = rels = Yp2ett = YpeiFetit = Ypel THT (2.41)

and similarly:

vy =re W = \3/5671-% (2.42)
vy =re” V2 = 3/5]'2671'% = \3/567;4%677;% = \'S/Eeih?je (2.43)
vy =re” W = f’/ﬁje*i% = \3/561-27?0 (2.44)

We may now choose u; and vy, so that ui + vy will be real. In this case, we have
necessary :

V1 = Uy (245)
Vo = Ug (2.46)
v = Us (2.47)

We obtain as real solutions of the equation (2.10):

0
T =uUl +v1 = 2{”fpcos§ >0 (2.48)
To = Uy + Vg = 2\3/50039"'% =—Yp (cosg + ﬂsing) <0 (2.49)
T3 = U3 + V3 = 2\3/50059"'% = p (—cosg + \/gsmg) >0 (2.50)
Using the expressions of x; and x3, we obtain:
?
2\3/13005% > Yp (—cos% + \/gsmg)
?

3cos$”>"/3sin (2.51)

6 T 7
As — — 4=
53 e]+6,+3[

members of the last equation, we get:
1 50

0 0
, then smg and cos§ are > 0. Taking the square of the two

1 < cos 3 (2.52)

Lo . 0 Tow .
which is true since 3 €]+ 6’+§[ then z; > x3. As A™,B"™ and —C" are the
only real solutions of (2.8]), we consider, as A™ is supposed great than B", the

expressions:

0
A" =g =u; +v1 = 2\3//30085

0+4 0 0
B" = x5 = uz + v3 = 2¢/pcos +3 T_ p <cos3 + \/352713) (2.53)

0+2 0 0
—Cl'=xy=ug+vy = 2¢/pcos —; T_ —/p <0053 + \/gsm?))
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3 Proof of the Main Theorem

Main Theorem: Let A, B,C,m,n, and | be positive integers with m,n,l > 2. If:
A™ 4 B =(C! (3.1)

then A, B, and C' have a common factor.

0 0
Proof. A™ = 2\3/56055 is an integer = A?™ = 4/ p20052§ is an integer. But:

PP =7z (3:2)

Then: 0 A 0
2.00525 = p.g.coszg (3.3)
20

As A?™ ig an integer, and p is an integer then cos®— must be written in the form:

6 _ 1 0 _a
cos“s =y or cos®z ={ (34)

with b € N*, for the last condition ¢ € N* and a, b coprime.

0 1
3.1 Case cosz§ = -

b
we obtain : A 0 4
A2m:p70032§ = 3—]; (3.5)
1 20 3 1 1 3
311 =1

b=1= 4 < 3 which is impossible.

3.1.2 b=2

41 2.
b=2= A" =P335 = ?p = 3|p = p = 3p’ with p’ # 1 because 3 < p, and
b = 2, we obtain:
2
A =P gy (3.6)

But :

B"C! = \3/p>2 (3 - 40052§> =

On the one hand:

Wi
7N
w
|
i
N
"
Il
Wi
Il
|
Il
’B\
—~
w
\]
A

A2m _ (Am)Z _ 2pl = 2|p/ :>p/ _ 2pu2 = A2m — 4p772
= A™ = Qp” = 2|Am = 2|A
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On the other hand:
B"C! =p' =2p”2? = 2|B" or 2|C. If 2|B" = 2|B. As C' = A™ + B™ and 2|A
and 2|B, it follows 2|A™ and 2|B" then 2|(A™ + B") = 2|C! & 2|C.

Then, we have : A,B and C solutions of (2.1) have a common factor. Also if 2|C!,
we obtain the same result : A,B and C solutions of (2.1 have a common factor.

313 =3

) 41 dp S _
b:3:>Am:p.g.§:§:>9|p:>p:9p with p’ # 1 since 9 < p then
A?™ = 4p' = p’ is not a prime. Let p a prime with u|p’ = pu|A*™ = u|A.
On the other hand:

0
B"C! = g (3 - 400523) = 5p’

Then p|B™ or p|Ct. If u|B™ = p|B. As C' = A™+ B™ and p|A and p|B, it follows
plA™ and p|B™ then u|(A™ + B"™) = u|C' = u|C.

Then, we have : A,B and C solutions of (2.1) have a common factor. Also if u|C!,
we obtain the same result : A,B and C solutions of (2.1 have a common factor.

0
3.2 Casea>1, cos’= = a

3 b
That is to say:
9 a
== 3.8
cos”g =5 (3.8)
4 0 4dpa
AP™ = p.—.cos’ = = 3.9
P33 = 30 (3.9)
and a, b verify one of the two conditions:
’{3\1) and b|4p}‘ or ’ {3la and b|4p}‘ (3.10)

and using the equation ([2.34)), we obtain a third condition:

b < 4a < 3b (3.11)

0
In these conditions, respectively, A?™ = 43/ p20052% = 4§.cos2§ is an integer.
Let us study the conditions given by the equation (3.10).

3.2.1 Hypothesis: {3]p and bl4p}

3.2.1.1. Case b =2 and 3|p : 3|p = p = 3p’ with p’ # 1 because 3 < p, and
b =2, we obtain:

/

dp.a  4.3p'.a  4.p.a
AP = = = =2y 12
3b 3b 2 b-a (3.12)
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As:
1 20 a a 3
gl g=p =< =a<2=a (3.13)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Case b =4 and 3|p : We have 3|p = p = 3p’ with p’ € N*| it follows:

_4p.a 4.3p.a

AP = = =y 14
3  3xa P (3.14)
and: ) 9 5
9 a a
4<cos3 b= 11~ <a<3=a (3.15)

But a,b are coprime. Then the case b = 4 and 3|p is impossible.

3.2.1.3. Case: b#£2,b#4, blpand 3|p: As 3|p then p=3p’ and :

4p 0 4p a 4 X 3p/ a 4p/a
A2m 27 _ J— — = 3.16

We consider the case: blp’ = p’ = bp” and p” # 1 (if p” = 1, then p = 3b, see
sub-paragraph 2°¢ sous-case equation (3.36)). Hence :

_4bpTa

A2m
b

= dap” (3.17)
Let us calculate B*C!:

—4
B"C! = g (3 — 40052§> =9 (3 — 4%) = b.p”.%Ta =p”.(3b—4a) (3.18)

Finally, we have the two equations:

__4bp”a
b
B"C' = p”.(3b — 4a) (3.20)

A2m

= dap” (3.19)

Sous-case 1: p" is prime. From (3.19), p’[4*™ = p’|A™ = p’|A. From
(3.20), p”|B™ or p”|C!. If p”|B™ = p”|B, as C' = A™ + B" = p”|C! = p”|C.
If p’|C' = p”|C, as B" = C' — A™ = p”|B" = p”|B.

Then A,B and C solutions of (2.1) have a common factor.

Sous-case 2: p" is not prime. Let A one prime divisor of p”. From (3.19), we
have :

AAP™ = A\|A™ as\is prime then A (3.21)
From (3.20), as A|p” we have:
AB"C! = \|B" or \|C" (3.22)
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If \|B™, ) is prime A\|B, and as C' = A™ + B™ then we have also :
AC! as\is prime, then \|C (3.23)

By the same way, if A|C!, we obtain \|B.
Then: A, B and C solutions of (2.1) have a common factor.

Let us verify the condition given by:
b<4a < 3b
In our case, the last equation becomes:
p < 3AP™ < 3p with p= A>™ 4+ B> 4 A™B" (3.24)

The 3A%™ < 3p = A?™ < pis verified.
If :
p < 3APM = 24%™ — A™B" — B >

We put Q(Y) = 2Y2 — B"Y — B?", the roots of Q(Y) = 0 are ¥; = —£- and
Yo=B" QY)>0forY <YV, andY>Y2 B™. In our case, we take Y = A™.

As A™ > B™ then p < 3A?™ is verified. Then the condition b < 4a < 3b is true.

n

In the following of the paper, we verify easily that the condition b < 4a < 3b
implies to verify A™ > B™ which is true.

3.2.1.4. Case b=3 and 3|p: As 3|p = p = 3p' and we write :

4p 0 4dpa 4x3pa 4pa
A2m: —_ 22 = — = = —_ =
3373 3 3 3

(3.25)

% .
2~ can not be one in

As A?™ is an integer and that a and b are coprime and cos

reference to the equation (2.33), then we have necessary 3|p’ = p’ = 3p” with
p” #1,if not p = 3p’ = 3x3p” = 9 but p= A2+ B?"+ AmB" > 9, the hypothesis
p” =1 is impossible, then p” > 1. hence:

dp'a 4 x3p’a

AP = = = 4p” 2
3 3 p”a (3.26)
n D a _3p"(9—4a) B
B"C' = 3 (3 4cos* ) =p (3 4b) =5 =P (9 —4a) (3.27)
As1<cosf g—7<3:>3<4 <9 = 2asa>1.
4 3 b 3 4 ¢ T o
a = 2, we obtain:
4/ 4 i
4m = 22 :*X;’p S —apa=gy (3.28)
p 2 0 / a 3p” (9 — 4&) 5
BrOl = £ 4 ~— | = ( 747):7: 2
C 3 <3 cos 3> p' (3 2 3 P (3.29)

The two last equations give that p” is not prime. Then we use the same methodology
describted above for the case 3.2.1.3., and we have : A,B and C solutions of (2.1)
have a common factor.
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3.2.1.5. Case 3jpand b=p: We have :

cos?2 =29
3 b p
and : A 0 4 A
A2m:£ 27:7.9270’ .
3053 23 (3.30)

As A?™ is an integer, this implies that 3|a, but 3|p = 3|b. As a and b are coprime,
hence the contradiction. Then the case 3|p and b = p is impossible.

3.2.16. Case 3[pand b =4p: 3|p = p = 3p/, p’ # 1 because 3 < p, hence
b=4p=12p".
4p 0 4dpa a
Aszi 27 _ A+ _ 7 31
3085 =53 3:>3|a (3.31)
because A?™ is an integer. But 3|p = 3|[(4p) = b], that is in contradiction with

the hypothesis a, b are coprime. Then the case b = 4p is impossible.

32.1.7. Case 3[pand b =2p: 3|p = p=3p/, p’ # 1 because 3 < p, hence
b=2p=06p.
4p 0 4dpa 2a
A2m I 27 P
3°°37 30 3
because A*™ is an integer. But 3|p = 3|(2p) = 3|b, that is in contradiction
with the hypothesis a, b are coprime. Then the case b = 2p is impossible.

= 3|a (3.32)

3.2.1.8. Case 3|p and b # 3 is a divisor of p : We have b = p’ # 3, and p is
written as:

p=ky with 3lk=>k =3k (3.33)
and 4,0 4 4% 3Kp
A% = gpcoszg = —p.% = %; = dak’ (3.34)
We calculate B"C:
B"C! = g (3 - 40052§> =K' (3p" — 4a) (3.35)

1% Sous-case: k' # 1, we use the same methodology described for the case
3.1.2.3., and we obtain: A, B and C solutions of (2.1) have a common factor.

214 sous-case:

KF=1= p=23b (3.36)
then we have:
A*™ = 4q = a is even (3.37)
and :
6 0 6 20
ATB" = 2\3/;76055.\3/,5 (\/gszng — 0053> = p\?)/gsmg —2a (3.38)
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let:

A2™ 4 24 BT = %méﬁ = Qbﬁsin% (3.39)

20
The left member of (3.39) is an integer and b also, then 2\/§5an can be written

in the form: o0 &
2V3sin=- = -1 (3.40)
3 ke
where ki, ko are two coprime integers and kqo|b = b = ko.ks.
& - We suppose ks # 1. Hence:
AP L 2AM B = kg.ky (3.41)
Let p is an prime integer such that p|ks. If 4 = 2 = 2|b but 2|a that is contradiction
with a,b coprime. We suppose p # 2 and p|ks, then u|A™(A™ + 2B™) = u|A™
or p|(A™ 4 2B™).

*A-1- If p|A™ = p|A*™ = plda = pla. As plks = plb and that a,b are
coprime hence the contradiction.

*A-2- If p|(A™ +2B") = put A™ and p 1 2B™ then p # 2 and p 1 B™. p|(A™ +
2B™), we can write:
A™ 4+ 2B" = put' t €N (3.42)

It follows:
A™ 4+ B" = ut' — B" = A*™ 4 B*" 4+ 2A™B" = 1*t"* — 2t uB" + B*"
Using the expression of p, we obtain:
p=1t?u? —2t'B"u+ B"(B" — A™) (3.43)

As p = 3b = 3ko.k3 and p|ks hence ulp = p = pp’, so we have :

w = p(ut’? — 2t'B™) + B"(B™ — A™) (3.44)
and p|B™(B™ — A™) = p|B™ or p|(B™ — A™).
*A-2-1- If u|B™ = p|B which is in contradiction with *A-2.
*A-2-2- If p|(B™ — A™) and using p|(A™ + 2B™), we obtain:

p|B™ = p|B which is impossible
w|3B" = ¢ or (3.45)
p=3

*A-2-2-1- If p =3 = 3lks = k3 = 3k}, and we have b = koks = 3kaki, it follows
p = 3b = 9kok} then 9|p, but p = (A™ — B")? + 3A™B" then :

okl —3A™B™ = (A™ — B™)?
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we write it as :

3(3kgk} — A™B") = (A™ — B")? (3.46)
hence 3|(3koks — A" B") = 3|A™B" = 3|A™ or 3|B™.

*A-2-2-1-1- If 3]A™ = 3|A and we have also 3|A?™, but A*™ = 4a = 3|4a =
3|la. As b = 3kok} then 3|b, but a, b are coprime hence the contradiction. Then 3 t A.

*A-2-2-1-2- If 3| B = 3| B, but the (3.46) gives 3|(A™—B")? = 3|(A™—-B") =
3|A™ — 3|A. But using the result of the last paragraph *A-2-2-1-1, we obtain
31 A. Then the hypothesis k3 # 1 is impossible.

{- Now we suppose that ks =1 = b = kg and p = 3b = 3ky. We have then:

20 k
2V3sin=- = -L (3.47)
3 b
with kq1,b coprime. We write (3.47)) as :
0 0 k
4\/§sin§cosg = ?1

0
Taking the square of the two members and remplacing 00825 by %, we obtain:

3x4%a(b—a)=k? (3.48)

which implies that :

3la or 3|(b—a)
*B-1- If 3|a, as A*™ = 4a = 3|A?™ = 3|A. But p = (A™ — B")? + 3A™B"
and that 3|p = 3|(A™ — B")? = 3|(A™ — B™). But 3|A hence 3|B" = 3|B, it
follows 3|C! = 3|C.

We obtain: A,B and C solutions of (2.1) have a common factor.

*B-2- Considering now that 3|(b — a). As ky = A™(A™ + 2B™) by the equation
(3.41) and that 3|k; = 3|A™(A™ + 2B™) = 3|A™ or 3|(A™ + 2B™).

*B-2-1- If 3|A™ = 3|A = 3|A?™ then 3|4a = 3|a. But 3|(b — a) = 3|b hence
the contradiction with a, b are coprime.

*B-2-2- If:
3|(A™ + 2B™) = 3|(A™ — B") (3.49)

But p = A?™ + B 4+ A™B" = (A™ — B")? + 3A™B" then p — 3A™B" =
(Am — B")?2 = 9|(p — 3A™B") or 9/(3b — 3A™B"), then 3|(b — A™B") but
3|(b—a) = 3|(a — A™B"™). As A>™ = 4a = (A™)? = Jd’ € N* and a =
a’? = A™ = 2a’. We arrive to 3|(a’? — 2a’ B") = 3|a’(a’ — 2B™).

*B-2-2-1- If 3|a’ = 3|A™ = 3|A, but 3|(A"+2B") = 3|2B™ = 3|B" = 3|B,
it follows 3|C.
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Hence A,B and C solutions of (2.1) have a common factor.

*B-2-2-2- Now if 3|(a/ —2B") = 3|(2a' —4B") = 3|(A™ —4B") = 3|(A™—B"),

we refind the hypothesis (3.49)) above.

The study of the case 3.2.1.8. is finished.

3.2.2 Hypothesis : {3|a and b/4p}

We have :
3la = Ja’ e N* / a=3d

3.2.2.1. Case b=2 and 3|a : A?™ is written as :

A% — 4—p.0052€ = 4£g = 4—pg _ 2pa
3 3 3 b 3 2 3
Using the equation (3.50), A?™ becomes:
42m 2.p.3a’ oud
3
0 3a’
But 00525 = % = % > 1 which is impossible, then b #£ 2.

3.2.2.2. Case b =4 and 3|a : A?*™ is written as :

4
2
and cosz€*9*3'a/< v3 *§:>a'<1
3 b 4 N
which is impossible.

Then the case b = 4 is impossible.

3.2.2.3. Case b=p and 3|a : Then:

and:

ER 3 3 p
Ja” EN* / a/:a772

4 0 4 !
A2m: P 2 :£.3i:4a/:(Am)2

We calculate A™ B"™, hence:

3 . 20
AMB" = p%sm; —2d’

or A™B" 424 = p.?sin%ﬁ)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)
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3 .20
The left member of (3.58]) is an integer and p is also, then 2%31’71? will be written

as :
V3 20 k1
2¥osinT =4 .
5 Sin— s (3.59)

where k1, ko are two coprime integers and kqo|p = p = b = ko k3, ks € N*.

& - We suppose that k3 # 1. We obtain :
A™(A™ +2B") = ky.ks (3.60)

Let us p a prime integer with p|ks, then ulb and p|A™(A™ + 2B™) = u|A™ or
p|(A™ +2B"™).

*If u|A™ = plA and p|A?™, but A*™ = 4a’ = plda’ = (u = 2 but 2|a’)
or (ula’). Then u|a hence the contradiction with a,b coprime.

*If p|(A™ + 2B™) = pt A™ and p {1 2B™ then p # 2 and pt B®. We write
w|(A™ + 2B™) as:
A™ 4 2B" = put' t € N (3.61)

It follows:
A™ 4+ B" = ut' — B" = A*™ 4+ B®" 4 2A™B" = 1*t"* — 2t uB" + B*"
Using the expression of p:
p=t?u? —2t'B"u+ B"(B" — A™) (3.62)
Since p = b = ko.ks and plks then p|b = I’ € N* and b = pyp/, so we can write:
w'p = p(ut’® —2t'B™) + B"(B™ — A™) (3.63)

From the last equation, we get u|B™(B™ — A™) = u|B™ or u|(B™ — A™). If u|B"
which is contradiction with pt B™. If p|(B™ — A™) and using u|(A™ + 2B™), on

arrive to:
u|B™ = which is contradiction

u|3B" = ¢ or (3.64)
p=3
Si p = 3, then 3|b, but 3|a thus the contradiction with a,b coprime.

{ - We assume now k3 = 1. Hence:

AP L 2A™ BT = |y (3.65)
b= ko (3.66)
2V3 .20 K

Taking the square of the last equation, we obtain:

4 520 K
3 3 b
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3 3 3 b
16 20 30k
3 3°b b2
Finally:
4%d/ (p —a) = k? (3.68)
but @’ = a”’? then p — a is a square. Let us:
M=p—a (3.69)
The equation (3.100) becomes:
42072\ = k? = k) = 4a’ ) (3.70)

taking the positif square root. Using , we get :
k1 =4a” X (3.71)
But k; = A™(A™ + 2B™) = 2a” (A™ 4 2B™), it follows:
A™ +2B™ =2\ (3.72)

Let \; prime # 2, a divisor of A (if not \; = 2]\ = 2|\ = 2|(p — a) but a is
even, then 2|p = 2|b which is contradiction with a,b coprime).

We consider A; # 2 and :

MIA = M|N\? and M\ |(A™ +2B") (3.73)
M[(A™ 4 2B") = A\ t A™ if not A\[2B" (3.74)

But A; # 2 hence \|B" = A\1|B, it follows:
Al(p=0b) and M|A™ = A\|20” = Ai|a (3.75)
hence the contradiction with a,b coprime.

We assume now A\; { A™. A\ |(A™+2B") = \1|(A™+2B™)? that is A\;|(A?™ +
4A™B"™ 4+ 4B?*"), we write it as A|(p + 34A™B" 4+ 3B*") = \{|(p + 3B"(A™ +
2B") — 3B). But A\{|(A™ + 2B") = \1|(p — 3B?"), as A\{|(p — a) hence by dif-
ference, we obtain A1 |(a — 3B%") or \1|(3a’ — 3B*") = X\|3(d/ — B*") = )\ =3
or )\1|(a’ — BQn).

*A-1- If Ay = 3 but 3]a = 3|(p = b) hence the contradiction with a, b coprime.

*A-2- If \i|(a' — B?") = M\|(a”? — B?") = \|(a” — B")(a” + B") =
A1](a” + B™) or \i|(a” — B™), because (a” — B") # 1 if not we obtain a”? — B?" =
a”+B" = a"%?—a” = B"— B?". The left member is positif and the right member
is negatif, then the contradiction.

*A-2-1-If \|(a” —B"™) = A\|2(a” —B™) = A\|(A™—2B") but A{|(A™+2B")
hence A\[24™ = A\1|A™, A1 # 2, it follows A1|A™ hence the contradiction with
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(B:106).

*A-2-2- If \|(a” + B") = A\1|2(a” + B™) <= \1|(A™ + 2B™). We refind the
condition ([3.105)).

Then the case k3 = 1 is impossible.

3224 Caseblp= p=bp,p>1,b#2,b#4 and 3|a:

4pa 4.bp .3.a

A = 2P L ZOD Sy g .
3D 3.0 pa (3.76)

We calculate B"C':

B"C! = 3/p? (38in2§ — 00829) = /p? (3 — 400522) (3.77)

3
5 P , 0 3.
But /p? = 3 hence using cos*3 = p
0 3.a/ 4.a/
B"Ct = W(3—4cos23> = %’ (3—4 b“ ) =p. (1— ba ) =p'(b—4d)
(3.78)
As p=bp, and p’ > 1, we have then:

B"C' = p/(b—4d) (3.79)
and A*™ =49 .d (3.80)

A - Let A a prime divisor of p’ (we suppose p’ not prime ). From (3.80), we have:

A A?™ = A\|A™ as \is a prime, then A (3.81)
From (3.79), as Alp’ we have:
AB"C! = \|B" or \|C" (3.82)
If \|B", ) is a prime A|B, but C' = A™ + B", then we have also :
AC! as\is a prime, then \|C (3.83)

By the same way, if A\|C!, we obtain A\|B. then : A, B and C solutions of (2.1) have
a common factor.

B - We suppose now that p’ is prime, from the equations (3.79) and (3.80), we
obtain then:

pIAT™ = p/|A™ = p|A (3.84)
and:
p'|B"C! = p'|B™ or p/|C! (3.85)
It p/|B" = p/|B (3.86)
As C'=A™+ B" and that p'|A,p'|B = p'|A™, p'|B" = p'|C!
= p/|C (3.87)

By the same way, if p’|C!, we arrive to p’|B.

Hence: A ,B and C solutions of (2.1) have a common factor.
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3.2.2.5. Case b =2p and 3|a : We have:

6 a 3d
cos’= = - = 2m

3 _dpa_dp 30
3 b 2 3 3 2

=2d' = 2|A™ = 2|a = 2|d’
Then 2|a and 2|b which is contradiction with a,b coprime.

3.2.2.6. Case b =4p and 3|a : We have :

0 a 3(1/ 4p(l 4p 3(1/
2 2m /
_= - = — = A = = ——,— =

€os 3 b 4p 3b 3 4])

Calculate A™ B™, we obtain:

AmBn —

3 3 3 3
A2m B p\/§ 20

3 20 2 0 3 26 !

let:
2pv3 . 20
A2m 4 9A™ BN = p?‘[smg (3.89)
2 26
The left member of (3.89) is an integer and p is an integer, then gsmg will be
written: ¥
2v3 20 Kk
— == 3.90
3 sin 3 s ( )
where k1, ko are two coprime integers and kqo|p = p = ko.ks.
& - Firstly, we suppose that k3 # 1. Hence:
AP 4L 2AM B = k3. ky (3.91)

Let p a prime integer and plks, then p|A™(A™ 4+ 2B™) = u|A™ or p|(A™ +2B").

*If p|A™ = p|A. As plks = plp and that p = A?*™+ B+ AMB" = u|B*"
then | B, it follows u|C', hence A, B and C solutions of (2.1) have a common factor.

*If p|(A™ +2B") = pt A™ and p f 2B™ then:
w#2 and wptB" (3.92)
u|(A™ +2B™), we write:
A™ +2B" = put’ ¥ e N* (3.93)
Then :
A™ 4 B" = ut' — B" = A*™ 4 B> 4 2A™B" = i*t"* — 2t'uB"™ + B*"

= p=t"u? - 2t'B"u+ B"(B" — A™) (3.94)
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As b =4p = 4ky k3 and plks then p|b = Jp’ € N* that b = pp’, we obtain:
Wy = p(4ut — 8t'B™) + 4B"(B"™ — A™) (3.95)

The last equation implies u|4B™(B™ — A™), but pu # 2 then u|B™ or p|(B™ — A™).
If 4|B™ = it is contradiction with (3.92)). If |(B™ — A™) and using u|(A™+2B"),

we have:
w|B™ it is contradiction with [3.92]

3B = ¢ or (3.96)
w=3
If 1 = 3, then 3]b, but 3|a which is contradiction with a,b coprime.

{ - We assume now k3 = 1. Hence:

AP L 2A™ B = |y (3.97)
p=ko (3.98)

23 20 K
3 Sing = n (3.99)

Taking the square of the last equation, we obtain:

4 520 ki
—sin?— = L

3 3 p?

16 0 0 k2
—sin®=cos®= = L

377 357 3T 2

16 ,0 3a’ k2
— S8t —. = —
3773 2

b p
Finally:
a'(4p — 3a’) = k? (3.100)

but o’ = a”? then 4p — 3a’ is a square. Let us:
N=4p—-3d =4p—-a=b—a (3.101)
The equation becomes:
AN =k =k =a’)\ (3.102)
taking the positif square root. Using , we get :
ki =a’\ (3.103)
But ky = A™(A™ +2B") = a” (A™ + 2B"), it follows:
(A™ +2B™) =\ (3.104)

Let A prime # 2, a divisor of A (if not Ay = 2|\ = 2|A\%. As 2|(b = 4p) = 2|(a =
3a’) which is contradiction with a,b coprime).
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We consider A\; # 2 and :

)\1|/\ - /\1|(Am + QBn) (3105)
— M EA™ i not A [2B" (3.106)

But Ay # 2 hence A\|B"™ = \|B, it follows:
AM(b=4p) and M|A™ = A\|24" = \]a (3.107)

hence the contradiction with a,b coprime.

We assume now A\; { A™. A\ |(A™+2B") = \1|(A™+2B™)? that is A\;|(A?™ +
4A™B"+4B%), we write it as \;|(p+3A™B"+3B?") = \{|(p+3B"(A™+2B")—
3B%"). But A\1|(A™+2B") = \1|(p—3B?"), as A\1|(4p—a) hence by difference, we
obtain A1 |(a—3(B?*"+p)) or A\1](3a’ —3(B*"+p)) = \1|3(¢’ —B*"—p) = \; =3
or \i|(a’ — (B* + p)).

*A-1- If Ay = 3|A = 3|A? = 3|b — a but 3Ja = 3|(p = b) hence the contradic-
tion with a,b coprime.

*A-2- Tf Ay # 3 and Ai|(a/ — B2" — p) = \|(A™B" + B2") = A\ |B"(A™ +
2B™) = A\{|B™ or A\1|(A™ + 2B™). The case \1|B™ was studied above.

*A-2-1- If \1|(A™ 4+ 2B™). We refind the condition (3.103)).

Then the case k3 = 1 is impossible.

3.2.2.7. Case 3|la and b = 2p' b # 2 with p'|p : 3la = a = 3d/, b = 2p' with
p = k.p’, hence:
4.k.p'.3.a'

42m 4.p
6p’

= 2.k.a (3.108)

—
Calculate B"C’l:

B"C' = {/p? (3szn2§ - 00529) = /p? (3 - 40052§> (3.109)

3
3 p . 20 3.(1/
But /p? = 3 hence en using cos”s = -5
0 3.a/ 4.0/
B"C' = {/p? (3—400323> = % (3—4 ; ) =p. (1 - ; ) = k(p' — 2d')
(3.110)
As p=bp', and p’ > 1, we have then:

B"C' = k(p' —2d") (3.111)
and A?™ = 2k.d’ (3.112)

A - Soit A a prime divisor of k (we suppose k not a prime ). From (3.112), we have:

AAP™ = A\|A™ as\is prime then A (3.113)
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From , as Ak, we have:
NB"C' = \|B" or AC! (3.114)
If \|B™, X is prime \|B, and as C' = A™ + B" then we have also:
AC! as\is prime then \|C (3.115)

By the same way, if \|C!, we obtain A|B. Then : A, B and C solutions of (2.1
have a common factor.

B - We suppose now that & is prime, from the equations (3.111)) and (3.112)), we
obtain:

k|A?™ = k|A™ = k|A (3.116)
and:
k|B"C! = k|B™ or k|C" (3.117)
if k|B"= k|B (3.118)
as Cl=A™+ B" and that k|A,k|B = k|A™, k|B" = k|C!
- K|C (3.119)

By the same way, if k|C!, we arrive to k|B.

Hence: A ,B and C solutions of (2.1) have a common factor.

3.2.2.8. Case 3ja and b = 4p' b # 2 with p'|[p : 3la = a = 3d/, b = 4p’ with
p=k.p', k+#1if not b=4p a case has been studied (paragraph 3.2.2.6), then we

have :
4.k.p'.3.a'

P
b 12p’

3 =k.d’ (3.120)

Writing B"C':

B"C!' = {/p? (35@'1129 - 00829) = v/ p? (3 - 40032§> (3.121)

3 3
5/ 5 D . 2o 3.0
But /p? = 3’ hence en using cos*3 = b
0 3.d 4.a'
B"C! = {/p? (3—460823> = g (3—4 ba ) =p. (1— ba ) =k(p' —d)
(3.122)
Asp=>bp, and p’ > 1, we have:
B"C!' = k(p' —2d) (3.123)
and A =2k.d (3.124)

A - Let A a prime divisor of k (we suppose k not a prime). From (3.124]), we have:

AAP™ = A\|A™ as\is prime then \|A (3.125)
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From (3.123), as A|k we obtain:
NB"C! = \|B" or A\|C! (3.126)
If \|B™, \ is a prime A|B, and as C' = A™ + B™, then we have:
AC! as Ais prime, then \|C (3.127)

By the same way if A\|C!, we obtain A|B. Then : A, B and C solutions of (2.1 have
a common factor.

B - We suppose now that k is prime, from the equations (3.123)) and (3.124), we
have:

k|A?™ = K|A™ = k|A (3.128)
and:
k|B"C' = k|B™ or k|C! (3.129)
if k|B"= k|B (3.130)
as C!'=A™+ B" and that k|A, k|B = k|A™, k|B" = k|C"
= k|C (3.131)

By the same way if k|C!, we arrive to k|B.

Hence: A ,B and C solutions of (2.1) have a common factor. O
The main theorem is proved.

Tunis, November 2013.
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