An Elementary Proof of BEAL Conjecture

Abdelmajid Ben Hadj Salem, Dipl.-Eng.
Email:abenhadjsalem@gmail.com
6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman, Tunisia.

Abstract

In 1997, Andrew Beal [1] announced the following conjecture : Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If $A^{m}+B^{n}=C^{l}$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x)=\left(x-A^{m}\right)(x-$ $\left.B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ with p, q integers depending of A^{m}, B^{n} and C^{l}. We resolve $x^{3}-p x+q=0$ and we obtain the three roots x_{1}, x_{2}, x_{3} as functions of p, q and a parameter θ. Since $A^{m}, B^{n},-C^{l}$ are the only roots of $x^{3}-p x+q=0$, we discuss the conditions that x_{1}, x_{2}, x_{3} are integers.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.
O my Lord! Increase me further in knowledge.
(Holy Quran, Surah Ta Ha, 20:114.)
To my Wife Wahida

1 Introduction

In 1997, Andrew Beal [1] announced the following conjecture :
Conjecture 1.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.1}
\end{equation*}
$$

then A, B, and C have a common factor.
In this paper, we give an elementary proof of the Beal Conjecture. Our idea is to construct a polynomial $P(x)$ of three order having as roots A^{m}, B^{n} and $-C^{l}$ with the condition 1.1). In the next section, we do some preliminaries calculs to give the expressions of the three roots of $P(x)=0$. The proof of the conjecture (1.1) is the subject of the section 3 .

We begin with the trivial case when $A^{m}=B^{n}$. The equation 1.1 becomes:

$$
\begin{equation*}
2 A^{m}=C^{l} \tag{1.2}
\end{equation*}
$$

then $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow \exists c \in \mathbb{N}^{*} / C=2 c$, it follows $2 A^{m}=2^{l} c^{l} \Longrightarrow A^{m}=2^{l-1} c^{l}$. As $l>2$, then $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow 2\left|B^{n} \Longrightarrow 2\right| B$. The conjecture 1.1 is verified.

We suppose in the following that $A^{m}>B^{n}$.

2 Preliminaries Calculs

Let $m, n, l \in \mathbb{N}^{*}>2$ and $A, B, C \in \mathbb{N}^{*}$ such:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{2.1}
\end{equation*}
$$

We call:

$$
\begin{gather*}
P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-x^{2}\left(A^{m}+B^{n}-C^{l}\right) \\
+x\left[A^{m} B^{n}-C^{l}\left(A^{m}+B^{n}\right)\right]+C^{l} A^{m} B^{n} \tag{2.2}
\end{gather*}
$$

Using the equation (2.1), $P(x)$ can be written:

$$
\begin{equation*}
P(x)=x^{3}+x\left[A^{m} B^{n}-\left(A^{m}+B^{n}\right)^{2}\right]+A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{2.3}
\end{equation*}
$$

We introduce the notations:

$$
\begin{array}{r}
p=\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n} \\
\quad q=A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{2.5}
\end{array}
$$

As $A^{m} \neq B^{n}$, we have :

$$
\begin{equation*}
p>\left(A^{m}-B^{n}\right)^{2}>0 \tag{2.6}
\end{equation*}
$$

Equation (2.3) becomes:

$$
\begin{equation*}
P(x)=x^{3}-p x+q \tag{2.7}
\end{equation*}
$$

Using the equation $2.2, P(x)=0$ has three different real roots : A^{m}, B^{n} and $-C^{l}$.
Now, let us resolve the equation:

$$
\begin{equation*}
P(x)=x^{3}-p x+q=0 \tag{2.8}
\end{equation*}
$$

To resolve (2.8) let:

$$
\begin{equation*}
x=u+v \tag{2.9}
\end{equation*}
$$

Then $P(x)=0$ gives:
$P(x)=P(u+v)=(u+v)^{3}-p(u+v)+q=0 \Longrightarrow u^{3}+v^{3}+(u+v)(3 u v-p)+q=0$
To determine u and v, we obtain the conditions:

$$
\begin{align*}
& u^{3}+v^{3}=-q \tag{2.11}\\
& u v=p / 3>0 \tag{2.12}
\end{align*}
$$

Then u^{3} and v^{3} are solutions of the second ordre equation:

$$
\begin{equation*}
X^{2}+q X+p^{3} / 27=0 \tag{2.13}
\end{equation*}
$$

Its discriminant Δ is written as :

$$
\begin{equation*}
\Delta=q^{2}-4 p^{3} / 27=\frac{27 q^{2}-4 p^{3}}{27}=\frac{\bar{\Delta}}{27} \tag{2.14}
\end{equation*}
$$

Let:

$$
\begin{align*}
\bar{\Delta}=27 q^{2}-4 p^{3} & =27\left(A^{m} B^{n}\left(A^{m}+B^{n}\right)\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \\
& =27 A^{2 m} B^{2 n}\left(A^{m}+B^{n}\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \tag{2.15}
\end{align*}
$$

Noting :

$$
\begin{array}{r}
\alpha=A^{m} B^{n}>0 \\
\beta=\left(A^{m}+B^{n}\right)^{2} \tag{2.17}
\end{array}
$$

we can write 2.15 as:

$$
\begin{equation*}
\bar{\Delta}=27 \alpha^{2} \beta-4(\beta-\alpha)^{3} \tag{2.18}
\end{equation*}
$$

As $\alpha \neq 0$, we can also rewrite 2.18 as :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 \frac{\beta}{\alpha}-4\left(\frac{\beta}{\alpha}-1\right)^{3}\right) \tag{2.19}
\end{equation*}
$$

We call t the parameter :

$$
\begin{equation*}
t=\frac{\beta}{\alpha} \tag{2.20}
\end{equation*}
$$

$\bar{\Delta}$ becomes :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 t-4(t-1)^{3}\right) \tag{2.21}
\end{equation*}
$$

Let us calling :

$$
\begin{equation*}
y=y(t)=27 t-4(t-1)^{3} \tag{2.22}
\end{equation*}
$$

Since $\alpha>0$, the signe of $\bar{\Delta}$ is also the signe of $y(t)$. Let us study the signe of y. We obtain $y^{\prime}(t)$:

$$
\begin{equation*}
y^{\prime}(t)=y^{\prime}=3(1+2 t)(5-2 t) \tag{2.23}
\end{equation*}
$$

$y^{\prime}=0 \Longrightarrow t_{1}=-1 / 2$ and $t_{2}=5 / 2$, then the table of variations of y is given below:

t	$-\infty$	-1/2		5/2	4	$+\infty$
1+2t	-	0	+		+	
5-2t	+		+	0	-	
$\mathrm{y}^{\prime}(\mathrm{t})$	-	0	+	0	-	
$\mathrm{y}(\mathrm{t})$						

Fig. 1: The table of variation
The table of the variations of the function y shows that $y<0$ for $t>4$. In our case, we are interested for $t>0$. For $t=4$ we obtain $y(4)=0$ and for $t \in] 0,4\left[\Longrightarrow y>0\right.$. As we have $t=\frac{\beta}{\alpha}>4$ because as $A^{m} \neq B^{n}:$

$$
\begin{equation*}
\left(A^{m}-B^{n}\right)^{2}>0 \Longrightarrow \beta=\left(A^{m}+B^{n}\right)^{2}>4 \alpha=4 A^{m} B^{n} \tag{2.24}
\end{equation*}
$$

Then $y<0 \Longrightarrow \bar{\Delta}<0 \Longrightarrow \Delta<0$. Then, the equation 2.13 does not have real solutions u^{3} and v^{3}. Let us find the solutions u and v with $x=u+v$ is a positif or a negatif real and $u . v=p / 3$.

2.1 Demonstration

Proof. The solutions of 2.13 are:

$$
\begin{align*}
X_{1} & =\frac{-q+i \sqrt{-\Delta}}{2} \tag{2.25}\\
X_{2}=\overline{X_{1}} & =\frac{-q-i \sqrt{-\Delta}}{2} \tag{2.26}
\end{align*}
$$

We may resolve:

$$
\begin{align*}
& u^{3}=\frac{-q+i \sqrt{-\Delta}}{2} \tag{2.27}\\
& v^{3}=\frac{-q-i \sqrt{-\Delta}}{2} \tag{2.28}
\end{align*}
$$

Writing X_{1} in the form:

$$
\begin{equation*}
X_{1}=\rho e^{i \theta} \tag{2.29}
\end{equation*}
$$

with:

$$
\begin{array}{r}
\rho=\frac{\sqrt{q^{2}-\Delta}}{2}=\frac{p \sqrt{p}}{3 \sqrt{3}} \\
\text { and } \sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}>0 \\
\qquad \cos \theta=-\frac{q}{2 \rho}<0 \tag{2.32}
\end{array}
$$

Then $\theta \in]+\frac{\pi}{2},+\pi[$, let:

$$
\begin{equation*}
\frac{\pi}{2}<\theta<+\pi \Rightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{2.34}
\end{equation*}
$$

hence the expression of X_{2} :

$$
\begin{equation*}
X_{2}=\rho e^{-i \theta} \tag{2.35}
\end{equation*}
$$

Let:

$$
\begin{array}{r}
u=r e^{i \psi} \\
\text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}} \\
j^{2}=e^{i \frac{4 \pi}{3}}=-\frac{1+i \sqrt{3}}{2}=\bar{j} \tag{2.38}
\end{array}
$$

j is a complex cubic root of the unity $\Longleftrightarrow j^{3}=1$. Then, the solutions u and v are:

$$
\begin{array}{r}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+2 \pi}{3}} \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{+i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+4 \pi}{3}} \tag{2.41}
\end{array}
$$

and similarly:

$$
\begin{array}{r}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{2 \pi-\theta}{3}} \tag{2.44}
\end{array}
$$

We may now choose u_{k} and v_{h} so that $u_{k}+v_{h}$ will be real. In this case, we have necessary :

$$
\begin{align*}
v_{1} & =\overline{u_{1}} \tag{2.45}\\
v_{2} & =\overline{u_{2}} \tag{2.46}\\
v_{3} & =\overline{u_{3}} \tag{2.47}
\end{align*}
$$

We obtain as real solutions of the equation 2.10:

$$
\begin{gather*}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}>0 \tag{2.48}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)<0 \tag{2.49}\\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)>0 \tag{2.50}
\end{gather*}
$$

Using the expressions of x_{1} and x_{3}, we obtain:

$$
\begin{align*}
2 \sqrt[3]{p} \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt[3]{p}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
3 \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt{3} \sin \frac{\theta}{3} \tag{2.51}
\end{align*}
$$

As $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$, then $\sin \frac{\theta}{3}$ and $\cos \frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3} \tag{2.52}
\end{equation*}
$$

which is true since $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$ then $x_{1}>x_{3}$. As A^{m}, B^{n} and $-C^{l}$ are the only real solutions of 2.8, we consider, as A^{m} is supposed great than B^{n}, the expressions:

$$
\left\{\begin{array}{l}
A^{m}=x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \tag{2.53}\\
B^{n}=x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
-C^{l}=x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

3 Proof of the Main Theorem

Main Theorem: Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{3.1}
\end{equation*}
$$

then A, B, and C have a common factor.
Proof. $A^{m}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}$ is an integer $\Rightarrow A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}$ is an integer. But:

$$
\begin{equation*}
\sqrt[3]{\rho^{2}}=\frac{p}{3} \tag{3.2}
\end{equation*}
$$

Then:

$$
\begin{equation*}
A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3} \tag{3.3}
\end{equation*}
$$

As $A^{2 m}$ is an integer, and p is an integer then $\cos ^{2} \frac{\theta}{3}$ must be written in the form:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{b} \quad \text { or } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b} \tag{3.4}
\end{equation*}
$$

with $b \in \mathbb{N}^{*}$, for the last condition $a \in \mathbb{N}^{*}$ and a, b coprime.
3.1 Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$
we obtain :

$$
\begin{equation*}
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3 \cdot b} \tag{3.5}
\end{equation*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \Rightarrow \frac{1}{4}<\frac{1}{b}<\frac{3}{4} \Rightarrow b<4<3 b \Rightarrow b=1,2,3$.

3.1.1 $b=1$

$b=1 \Rightarrow 4<3$ which is impossible.

3.1.2 $b=2$

$\left.b=2 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{2}=\frac{2 \cdot p}{3} \Rightarrow 3 \right\rvert\, p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
\begin{equation*}
A^{2 m}=\frac{2 p}{3}=2 \cdot p^{\prime} \tag{3.6}
\end{equation*}
$$

But :

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{1}{2}\right)=\frac{p}{3}=\frac{3 p^{\prime}}{3}=p^{\prime} \tag{3.7}
\end{equation*}
$$

On the one hand:

$$
\begin{array}{r}
A^{2 m}=\left(A^{m}\right)^{2}=2 p^{\prime} \Rightarrow 2 \mid p^{\prime} \\
\Rightarrow p^{\prime}=2 p^{\prime \prime} \Rightarrow A^{2 m}=4 p^{\prime \prime} \\
\Rightarrow A^{m}=2 p^{\prime \prime} \Rightarrow 2\left|A^{m} \Rightarrow 2\right| A
\end{array}
$$

On the other hand:
$B^{n} C^{l}=p^{\prime}=2 p^{\prime \prime 2} \Rightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$. If $2\left|B^{n} \Rightarrow 2\right| B$. As $C^{l}=A^{m}+B^{n}$ and $2 \mid A$ and $2 \mid B$, it follows $2 \mid A^{m}$ and $2 \mid B^{n}$ then $2\left|\left(A^{m}+B^{n}\right) \Rightarrow 2\right| C^{l} \Leftrightarrow 2 \mid C$.

Then, we have : A, B and C solutions of 2.1 have a common factor. Also if $2 \mid C^{l}$, we obtain the same result : A, B and C solutions of 2.1 have a common factor.

3.1.3 $b=3$

$\left.b=3 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{3}=\frac{4 p}{9} \Rightarrow 9 \right\rvert\, p \Rightarrow p=9 p^{\prime}$ with $p^{\prime} \neq 1$ since $9 \ll p$ then $A^{2 m}=4 p^{\prime} \Longrightarrow p^{\prime}$ is not a prime. Let μ a prime with $\mu\left|p^{\prime} \Rightarrow \mu\right| A^{2 m} \Rightarrow \mu \mid A$.

On the other hand:

$$
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=5 p^{\prime}
$$

Then $\mu \mid B^{n}$ or $\mu \mid C^{l}$. If $\mu\left|B^{n} \Rightarrow \mu\right| B$. As $C^{l}=A^{m}+B^{n}$ and $\mu \mid A$ and $\mu \mid B$, it follows $\mu \mid A^{m}$ and $\mu \mid B^{n}$ then $\mu\left|\left(A^{m}+B^{n}\right) \Rightarrow \mu\right| C^{l} \Longrightarrow \mu \mid C$.

Then, we have : A, B and C solutions of 2.1 have a common factor. Also if $\mu \mid C^{l}$, we obtain the same result : A, B and C solutions of 2.1 have a common factor.
3.2 Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$

That is to say:

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b} \\
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p \cdot a}{3 \cdot b} \tag{3.9}
\end{array}
$$

and a, b verify one of the two conditions:

$$
\begin{array}{|lll}
\hline\{3 \mid p & \text { and } & b \mid 4 p\} \tag{3.10}\\
\hline
\end{array} \text { or } \begin{array}{|lll}
\{3 \mid a & \text { and } & b \mid 4 p\} \\
\hline
\end{array}
$$

and using the equation 2.34 , we obtain a third condition:

$$
\begin{equation*}
b<4 a<3 b \tag{3.11}
\end{equation*}
$$

In these conditions, respectively, $A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}$ is an integer.
Let us study the conditions given by the equation 3.10 .
3.2.1 Hypothesis: $\{3 \mid p$ and $b \mid 4 p\}$
3.2.1.1. Case $b=2$ and $3|p: 3| p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
\begin{equation*}
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 b}=\frac{4 \cdot p^{\prime} \cdot a}{2}=2 \cdot p^{\prime} \cdot a \tag{3.12}
\end{equation*}
$$

As:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{2}<\frac{3}{4} \Rightarrow a<2 \Rightarrow a=1 \tag{3.13}
\end{equation*}
$$

But $a>1$ then the case $b=2$ and $3 \mid p$ is impossible.
3.2.1.2. Case $b=4$ and $3 \mid p$: We have $3 \mid p \Longrightarrow p=3 p^{\prime}$ with $p^{\prime} \in \mathbb{N}^{*}$, it follows:

$$
\begin{equation*}
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4.3 p^{\prime} \cdot a}{3 \times 4}=p^{\prime} \cdot a \tag{3.14}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{4}<\frac{3}{4} \Rightarrow 1<a<3 \Rightarrow a=2 \tag{3.15}
\end{equation*}
$$

But a, b are coprime. Then the case $b=4$ and $3 \mid p$ is impossible.
3.2.1.3. Case: $b \neq 2, b \neq 4, b \mid p$ and $3 \mid p: \quad$ As $3 \mid p$ then $p=3 p^{\prime}$ and :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} a}{b} \tag{3.16}
\end{equation*}
$$

We consider the case: $b \mid p^{\prime} \Longrightarrow p^{\prime}=b p "$ and $p " \neq 1$ (if $p "=1$, then $p=3 b$, see sub-paragraph $2^{\text {sd }}$ sous-case equation (3.36). Hence :

$$
\begin{equation*}
A^{2 m}=\frac{4 b p " a}{b}=4 a p " \tag{3.17}
\end{equation*}
$$

Let us calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}\left(3-4 \frac{a}{b}\right)=b \cdot p " \cdot \frac{3 b-4 a}{b}=p^{\prime \prime} \cdot(3 b-4 a) \tag{3.18}
\end{equation*}
$$

Finally, we have the two equations:

$$
\begin{align*}
& A^{2 m}=\frac{4 b p " a}{b}=4 a p " \tag{3.19}\\
& B^{n} C^{l}=p^{\prime \prime} \cdot(3 b-4 a) \tag{3.20}
\end{align*}
$$

Sous-case 1: $\mathrm{p}^{\prime \prime}$ is prime. From $(3.19), p "\left|A^{2 m} \Rightarrow p^{"}\right| A^{m} \Rightarrow p^{\prime \prime} \mid A$. From (3.20), $p^{" \prime} \mid B^{n}$ or $p^{"} \mid C^{l}$. If $p "\left|B^{n} \Rightarrow p "\right| B$, as $C^{l}=A^{m}+B^{n} \Rightarrow p "\left|C^{l} \Rightarrow p^{"}\right| C$. If $p^{\prime \prime}\left|C^{l} \Rightarrow p^{\prime \prime}\right| C$, as $B^{n}=C^{l}-A^{m} \Rightarrow p^{\prime \prime}\left|B^{n} \Rightarrow p "\right| B$.

Then A, B and C solutions of (2.1) have a common factor.

Sous-case 2: $\mathrm{p}^{\prime \prime}$ is not prime. Let λ one prime divisor of p ". From 3.19, we have :

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is prime then } \lambda \mid A \tag{3.21}
\end{equation*}
$$

From (3.20), as $\lambda \mid p "$ we have:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \lambda \mid C^{l} \tag{3.22}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is prime $\lambda \mid B$, and as $C^{l}=A^{m}+B^{n}$ then we have also :

$$
\begin{equation*}
\lambda \mid C^{l} \text { as } \lambda \text { is prime, then } \lambda \mid C \tag{3.23}
\end{equation*}
$$

By the same way, if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$.
Then: A, B and C solutions of (2.1) have a common factor.
Let us verify the condition (3.11) given by:

$$
b<4 a<3 b
$$

In our case, the last equation becomes:

$$
\begin{equation*}
p<3 A^{2 m}<3 p \text { with } \quad p=A^{2 m}+B^{2 n}+A^{m} B^{n} \tag{3.24}
\end{equation*}
$$

The $3 A^{2 m}<3 p \Longrightarrow A^{2 m}<p$ is verified.
If :

$$
p<3 A^{2 m} \Longrightarrow 2 A^{2 m}-A^{m} B^{n}-B^{2 n}>0
$$

We put $Q(Y)=2 Y^{2}-B^{n} Y-B^{2 n}$, the roots of $Q(Y)=0$ are $Y_{1}=-\frac{B^{n}}{2}$ and $Y_{2}=B^{n} . Q(Y)>0$ for $Y<Y_{1}$ and $Y>Y_{2}=B^{n}$. In our case, we take $Y=A^{m}$. As $A^{m}>B^{n}$ then $p<3 A^{2 m}$ is verified. Then the condition $b<4 a<3 b$ is true.

In the following of the paper, we verify easily that the condition $b<4 a<3 b$ implies to verify $A^{m}>B^{n}$ which is true.
3.2.1.4. Case $b=3$ and $3 \mid p:$ As $3 \mid p \Longrightarrow p=3 p^{\prime}$ and we write :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{3}=\frac{4 p^{\prime} a}{3} \tag{3.25}
\end{equation*}
$$

As $A^{2 m}$ is an integer and that a and b are coprime and $\cos ^{2} \frac{\theta}{3}$ can not be one in reference to the equation (2.33), then we have necessary $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p$ " with $p " \neq 1$, if not $p=3 p^{\prime}=3 \times 3 p "=9$ but $p=A^{2 m}+B^{2 n}+A^{m} B^{n}>9$, the hypothesis $p "=1$ is impossible, then $p ">1$. hence:

$$
\begin{gather*}
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p " a}{3}=4 p " a \tag{3.26}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}\left(3-4 \frac{a}{b}\right)=\frac{3 p "(9-4 a)}{3}=p " \cdot(9-4 a) \tag{3.27}
\end{gather*}
$$

As $\begin{aligned} & \frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{3}<\frac{3}{4} \Longrightarrow 3<4 a<9 \Longrightarrow a=2 \text { as } a>1 . \\ & \\ & a=2 \text {, we obtain: }\end{aligned}$

$$
\begin{gather*}
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p " a}{3}=4 p " a=8 p " \tag{3.28}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}\left(3-4 \frac{a}{b}\right)=\frac{3 p "(9-4 a)}{3}=p " \tag{3.29}
\end{gather*}
$$

The two last equations give that p " is not prime. Then we use the same methodology describted above for the case 3.2.1.3., and we have : A, B and C solutions of 2.1 have a common factor.
3.2.1.5. Case $3 \mid p$ and $b=p$: We have :

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{p}
$$

and :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{p}=\frac{4 a}{3} \tag{3.30}
\end{equation*}
$$

As $A^{2 m}$ is an integer, this implies that $3 \mid a$, but $3|p \Longrightarrow 3| b$. As a and b are coprime, hence the contradiction. Then the case $3 \mid p$ and $b=p$ is impossible.
3.2.1.6. Case $3 \mid p$ and $b=4 p: 3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, hence $b=4 p=12 p^{\prime}$.

$$
\begin{equation*}
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{a}{3} \Longrightarrow 3 \right\rvert\, a \tag{3.31}
\end{equation*}
$$

because $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|[(4 p)=b]$, that is in contradiction with the hypothesis a, b are coprime. Then the case $b=4 p$ is impossible.
3.2.1.7. Case $3 \mid p$ and $b=2 p: 3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, hence $b=2 p=6 p^{\prime}$.

$$
\begin{equation*}
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{2 a}{3} \Longrightarrow 3 \right\rvert\, a \tag{3.32}
\end{equation*}
$$

because $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|(2 p) \Longrightarrow 3 \mid b$, that is in contradiction with the hypothesis a, b are coprime. Then the case $b=2 p$ is impossible.
3.2.1.8. Case $3 \mid p$ and $b \neq 3$ is a divisor of p : We have $b=p^{\prime} \neq 3$, and p is written as:

$$
\begin{equation*}
p=k p^{\prime} \quad \text { with } \quad 3 \mid k \Longrightarrow k=3 k^{\prime} \tag{3.33}
\end{equation*}
$$

and :

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 \times 3 \cdot k^{\prime} p^{\prime}}{3} \frac{a}{p^{\prime}}=4 a k^{\prime} \tag{3.34}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\frac{p}{3} \cdot\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=k^{\prime}\left(3 p^{\prime}-4 a\right) \tag{3.35}
\end{equation*}
$$

$1^{\text {st }}$ Sous-case: $k^{\prime} \neq 1$, we use the same methodology described for the case 3.1.2.3., and we obtain: A, B and C solutions of 2.1 have a common factor.

$$
\underline{2}^{\text {nd }} \text { sous-case: }
$$

$$
\begin{equation*}
k^{\prime}=1 \Longrightarrow p=3 b \tag{3.36}
\end{equation*}
$$

then we have:

$$
\begin{equation*}
A^{2 m}=4 a \Longrightarrow a \quad \text { is even } \tag{3.37}
\end{equation*}
$$

and :

$$
\begin{equation*}
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a \tag{3.38}
\end{equation*}
$$

let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 b \sqrt{3} \sin \frac{2 \theta}{3} \tag{3.39}
\end{equation*}
$$

The left member of 3.39 is an integer and b also, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written in the form:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{3.40}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid b \Longrightarrow b=k_{2} . k_{3}$.
\diamond - We suppose $k_{3} \neq 1$. Hence:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1} \tag{3.41}
\end{equation*}
$$

Let μ is an prime integer such that $\mu \mid k_{3}$. If $\mu=2 \Rightarrow 2 \mid b$ but $2 \mid a$ that is contradiction with a, b coprime. We suppose $\mu \neq 2$ and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
*A-1- If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu|4 a \Longrightarrow \mu| a$. As $\mu\left|k_{3} \Longrightarrow \mu\right| b$ and that a, b are coprime hence the contradiction.
*A-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+\right.$ $2 B^{n}$), we can write:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \quad t^{\prime} \in \mathbb{N}^{*} \tag{3.42}
\end{equation*}
$$

It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{3.43}
\end{equation*}
$$

As $p=3 b=3 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ hence $\mu \mid p \Longrightarrow p=\mu \mu^{\prime}$, so we have :

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{3.44}
\end{equation*}
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
*A-2-1- If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ which is in contradiction with *A-2.
*A-2-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain:

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu\left|B^{n} \Longrightarrow \mu\right| B \text { which is impossible } \tag{3.45}\\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

*A-2-2-1- If $\mu=3 \Longrightarrow 3 \mid k_{3} \Longrightarrow k_{3}=3 k_{3}^{\prime}$, and we have $b=k_{2} k_{3}=3 k_{2} k_{3}^{\prime}$, it follows $p=3 b=9 k_{2} k_{3}^{\prime}$ then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then :

$$
9 k_{2} k_{3}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

we write it as :

$$
\begin{equation*}
3\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{3.46}
\end{equation*}
$$

hence $3\left|\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m}$ or $3 \mid B^{n}$.
*A-2-2-1-1- If $3\left|A^{m} \Longrightarrow 3\right| A$ and we have also $3 \mid A^{2 m}$, but $A^{2 m}=4 a \Longrightarrow 3 \mid 4 a \Longrightarrow$ $3 \mid a$. As $b=3 k_{2} k_{3}^{\prime}$ then $3 \mid b$, but a, b are coprime hence the contradiction. Then $3 \nmid A$.
A-2-2-1-2- If $3\left|B^{n} \Longrightarrow 3\right| B$, but the (3.46) gives $3\left|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \Longrightarrow$ $3\left|A^{m} \Longrightarrow 3\right| A$. But using the result of the last paragraph ${ }^{} \mathrm{~A}-2-2-1-1$, we obtain $3 \nmid A$. Then the hypothesis $k_{3} \neq 1$ is impossible.
\diamond - Now we suppose that $k_{3}=1 \Longrightarrow b=k_{2}$ and $p=3 b=3 k_{2}$. We have then:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{b} \tag{3.47}
\end{equation*}
$$

with k_{1}, b coprime. We write 3.47 as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{1}}{b}
$$

Taking the square of the two members and remplacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$, we obtain:

$$
\begin{equation*}
3 \times 4^{2} . a(b-a)=k_{1}^{2} \tag{3.48}
\end{equation*}
$$

which implies that:

$$
3 \mid a \quad \text { or } \quad 3 \mid(b-a)
$$

*B-1- If $3 \mid a$, as $A^{2 m}=4 a \Longrightarrow 3\left|A^{2 m} \Longrightarrow 3\right| A$. But $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ and that $3|p \Longrightarrow 3|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3 \mid\left(A^{m}-B^{n}\right)$. But $3 \mid A$ hence $3\left|B^{n} \Longrightarrow 3\right| B$, it follows $3\left|C^{l} \Longrightarrow 3\right| C$.

We obtain: A, B and C solutions of (2.1) have a common factor.
*B-2- Considering now that $3 \mid(b-a)$. As $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)$ by the equation (3.41) and that $3\left|k_{1} \Longrightarrow 3\right| A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \mid A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.
*B-2-1- If $3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow 3 \mid A^{2 m}$ then $3|4 a \Longrightarrow 3| a$. But $3|(b-a) \Longrightarrow 3| b$ hence the contradiction with a, b are coprime.
*B-2-2- If:

$$
\begin{equation*}
3\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \tag{3.49}
\end{equation*}
$$

But $p=A^{2 m}+B^{2 n}+A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then $p-3 A^{m} B^{n}=$ $\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 9 \mid\left(p-3 A^{m} B^{n}\right)$ or $9 \mid\left(3 b-3 A^{m} B^{n}\right)$, then $3 \mid\left(b-A^{m} B^{n}\right)$ but $3|(b-a) \Longrightarrow 3|\left(a-A^{m} B^{n}\right)$. As $A^{2 m}=4 a=\left(A^{m}\right)^{2} \Longrightarrow \exists a^{\prime} \in \mathbb{N}^{*}$ and $a=$ $a^{\prime 2} \Longrightarrow A^{m}=2 a^{\prime}$. We arrive to $3\left|\left(a^{\prime 2}-2 a^{\prime} B^{n}\right) \Longrightarrow 3\right| a^{\prime}\left(a^{\prime}-2 B^{n}\right)$.
*B-2-2-1- If $3\left|a^{\prime} \Longrightarrow 3\right| A^{m} \Longrightarrow 3 \mid A$, but $3\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow 3\right| 2 B^{n} \Longrightarrow 3\left|B^{n} \Longrightarrow 3\right| B$, it follows $3 \mid C$.

Hence A, B and C solutions of 2.1 have a common factor.
*B-2-2-2- Now if $3\left|\left(a^{\prime}-2 B^{n}\right) \Longrightarrow 3\right|\left(2 a^{\prime}-4 B^{n}\right) \Longrightarrow 3\left|\left(A^{m}-4 B^{n}\right) \Longrightarrow 3\right|\left(A^{m}-B^{n}\right)$, we refind the hypothesis (3.49) above.

The study of the case 3.2.1.8. is finished.

3.2.2 Hypothesis: $\{3 \mid a$ and $b \mid 4 p\}$

We have :

$$
\begin{equation*}
3 \mid a \Longrightarrow \exists a^{\prime} \in \mathbb{N}^{*} / a=3 a^{\prime} \tag{3.50}
\end{equation*}
$$

3.2.2.1. Case $b=2$ and $3 \mid a: \quad A^{2 m}$ is written as:

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 p}{3} \cdot \frac{a}{2}=\frac{2 \cdot p \cdot a}{3} \tag{3.51}
\end{equation*}
$$

Using the equation $3.50, A^{2 m}$ becomes:

$$
\begin{equation*}
A^{2 m}=\frac{2 \cdot p \cdot 3 a^{\prime}}{3}=2 \cdot p \cdot a^{\prime} \tag{3.52}
\end{equation*}
$$

But $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2}>1$ which is impossible, then $b \neq 2$.
3.2.2.2. Case $b=4$ and $3 \mid a: \quad A^{2 m}$ is written as:

$$
\begin{array}{r}
A^{2 m}=\frac{4 \cdot p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot p}{3} \cdot \frac{a}{4}=\frac{p \cdot a}{3}=\frac{p \cdot 3 a^{\prime}}{3}=p \cdot a^{\prime} \\
\quad \text { and } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 \cdot a^{\prime}}{4}<\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4} \Longrightarrow a^{\prime}<1 \tag{3.54}
\end{array}
$$

which is impossible.
Then the case $b=4$ is impossible.
3.2.2.3. Case $b=p$ and $3 \mid a$: Then:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{p} \tag{3.55}
\end{equation*}
$$

and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{p}=4 a^{\prime}=\left(A^{m}\right)^{2} \\
\exists a^{\prime \prime} \in \mathbb{N}^{*} / a^{\prime}=a^{\prime \prime}{ }^{2} \tag{3.57}
\end{array}
$$

We calculate $A^{m} B^{n}$, hence:

$$
\begin{align*}
& A^{m} B^{n}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a^{\prime} \\
\text { or } & A^{m} B^{n}+2 a^{\prime}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{3.58}
\end{align*}
$$

The left member of 3.58 is an integer and p is also, then $2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written as:

$$
\begin{equation*}
2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{3.59}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=b=k_{2} . k_{3}, k_{3} \in \mathbb{N}^{*}$.
\diamond - We suppose that $k_{3} \neq 1$. We obtain :

$$
\begin{equation*}
A^{m}\left(A^{m}+2 B^{n}\right)=k_{1} \cdot k_{3} \tag{3.60}
\end{equation*}
$$

Let us μ a prime integer with $\mu \mid k_{3}$, then $\mu \mid b$ and $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.

* If $\mu\left|A^{m} \Longrightarrow \mu\right| A$ and $\mu \mid A^{2 m}$, but $A^{2 m}=4 a^{\prime} \Longrightarrow \mu \mid 4 a^{\prime} \Longrightarrow\left(\mu=2\right.$ but $\left.2 \mid a^{\prime}\right)$ or $\left(\mu \mid a^{\prime}\right)$. Then $\mu \mid a$ hence the contradiction with a, b coprime.
* If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. We write $\mu \mid\left(A^{m}+2 B^{n}\right)$ as:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \quad t^{\prime} \in \mathbb{N}^{*} \tag{3.61}
\end{equation*}
$$

It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p :

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{3.62}
\end{equation*}
$$

Since $p=b=k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime} \in \mathbb{N}^{*}$ and $b=\mu \mu^{\prime}$, so we can write:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{3.63}
\end{equation*}
$$

From the last equation, we get $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$. If $\mu \mid B^{n}$ which is contradiction with $\mu \nmid B^{n}$. If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, on arrive to:

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \Longrightarrow \quad \text { which is contradiction } \tag{3.64}\\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

Si $\mu=3$, then $3 \mid b$, but $3 \mid a$ thus the contradiction with a, b coprime.
\diamond - We assume now $k_{3}=1$. Hence:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{3.65}\\
b & =k_{2} \tag{3.66}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{b} \tag{3.67}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{b^{2}}
$$

$$
\begin{aligned}
& \frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
& \frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{b^{2}}
\end{aligned}
$$

Finally:

$$
\begin{equation*}
4^{2} a^{\prime}(p-a)=k_{1}^{2} \tag{3.68}
\end{equation*}
$$

but $a^{\prime}=a^{\prime \prime}{ }^{2}$ then $p-a$ is a square. Let us:

$$
\begin{equation*}
\lambda^{2}=p-a \tag{3.69}
\end{equation*}
$$

The equation 3.100 becomes:

$$
\begin{equation*}
4^{2} a^{\prime \prime 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=4 a " \lambda \tag{3.70}
\end{equation*}
$$

taking the positif square root. Using (3.97), we get :

$$
\begin{equation*}
k_{1}=4 a " \lambda \tag{3.71}
\end{equation*}
$$

But $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=2 a^{\prime \prime}\left(A^{m}+2 B^{n}\right)$, it follows:

$$
\begin{equation*}
A^{m}+2 B^{n}=2 \lambda \tag{3.72}
\end{equation*}
$$

Let λ_{1} prime $\neq 2$, a divisor of λ (if not $\lambda_{1}=2|\lambda \Longrightarrow 2| \lambda^{2} \Longrightarrow 2 \mid(p-a)$ but a is even, then $2|p \Longrightarrow 2| b$ which is contradiction with a, b coprime).

We consider $\lambda_{1} \neq 2$ and :

$$
\left.\begin{array}{r}
\lambda_{1}\left|\lambda \Longrightarrow \lambda_{1}\right| \lambda^{2} \quad \text { and }
\end{array} \quad \lambda_{1} \right\rvert\,\left(A^{m}+2 B^{n}\right), ~\left(A^{n}\right) \Longrightarrow \lambda_{1} \nmid A^{m} \quad \text { if not } \quad \lambda_{1} \mid 2 B^{n} \text { in }
$$

But $\lambda_{1} \neq 2$ hence $\lambda_{1}\left|B^{n} \Longrightarrow \lambda_{1}\right| B$, it follows:

$$
\begin{equation*}
\lambda_{1} \mid(p=b) \quad \text { and } \quad \lambda_{1}\left|A^{m} \Longrightarrow \lambda_{1}\right| 2 a " \Longrightarrow \lambda_{1} \mid a \tag{3.75}
\end{equation*}
$$

hence the contradiction with a, b coprime.
We assume now $\lambda_{1} \nmid A^{m} . \lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right)^{2}$ that is $\lambda_{1} \mid\left(A^{2 m}+\right.$ $\left.4 A^{m} B^{n}+4 B^{2 n}\right)$, we write it as $\lambda_{1}\left|\left(p+3 A^{m} B^{n}+3 B^{2 n}\right) \Longrightarrow \lambda_{1}\right|\left(p+3 B^{n}\left(A^{m}+\right.\right.$ $\left.\left.2 B^{n}\right)-3 B^{2 n}\right)$. But $\lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(p-3 B^{2 n}\right)$, as $\lambda_{1} \mid(p-a)$ hence by difference, we obtain $\lambda_{1} \mid\left(a-3 B^{2 n}\right)$ or $\lambda_{1}\left|\left(3 a^{\prime}-3 B^{2 n}\right) \Longrightarrow \lambda_{1}\right| 3\left(a^{\prime}-B^{2 n}\right) \Longrightarrow \lambda_{1}=3$ or $\lambda_{1} \mid\left(a^{\prime}-B^{2 n}\right)$.
*A-1- If $\lambda_{1}=3$ but $3|a \Longrightarrow 3|(p=b)$ hence the contradiction with a, b coprime.
*A-2- If $\lambda_{1}\left|\left(a^{\prime}-B^{2 n}\right) \Longrightarrow \lambda_{1}\right|\left(a^{" 2}-B^{2 n}\right) \Longrightarrow \lambda_{1} \mid\left(a^{"}-B^{n}\right)\left(a^{"}+B^{n}\right) \Longrightarrow$ $\lambda_{1} \mid\left(a^{"}+B^{n}\right)$ or $\lambda_{1} \mid\left(a^{"}-B^{n}\right)$, because $\left(a^{"}-B^{n}\right) \neq 1$ if not we obtain $a^{" 2}-B^{2 n}=$ $a^{"}+B^{n} \Longrightarrow a^{" 2}-a^{"}=B^{n}-B^{2 n}$. The left member is positif and the right member is negatif, then the contradiction.
*A-2-1- If $\lambda_{1}\left|\left(a^{\prime \prime}-B^{n}\right) \Longrightarrow \lambda_{1}\right| 2\left(a^{\prime \prime}-B^{n}\right) \Longrightarrow \lambda_{1} \mid\left(A^{m}-2 B^{n}\right)$ but $\lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$ hence $\lambda_{1}\left|2 A^{m} \Longrightarrow \lambda_{1}\right| A^{m}, \lambda_{1} \neq 2$, it follows $\lambda_{1} \mid A^{m}$ hence the contradiction with
(3.106).
*A-2-2- If $\lambda_{1}\left|\left(a^{\prime \prime}+B^{n}\right) \Longrightarrow \lambda_{1}\right| 2\left(a^{\prime \prime}+B^{n}\right) \Longleftrightarrow \lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$. We refind the condition (3.105).

Then the case $k_{3}=1$ is impossible.
3.2.2.4. Case $b \mid p \Rightarrow p=b . p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$:

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot b \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{3 \cdot b}=4 \cdot p^{\prime} a^{\prime} \tag{3.76}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{3.77}
\end{equation*}
$$

But $\sqrt[3]{\rho^{2}}=\frac{p}{3}$ hence using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=p^{\prime}\left(b-4 a^{\prime}\right) \tag{3.78}
\end{equation*}
$$

As $p=b . p^{\prime}$, and $p^{\prime}>1$, we have then:

$$
\begin{align*}
& B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \tag{3.79}\\
& \text { and } \quad A^{2 m}=4 . p^{\prime} \cdot a^{\prime} \tag{3.80}
\end{align*}
$$

A - Let λ a prime divisor of p^{\prime} (we suppose p^{\prime} not prime). From 3.80, we have:

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is a prime, then } \lambda \mid A \tag{3.81}
\end{equation*}
$$

From (3.79), as $\lambda \mid p^{\prime}$ we have:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \lambda \mid C^{l} \tag{3.82}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is a prime $\lambda \mid B$, but $C^{l}=A^{m}+B^{n}$, then we have also:

$$
\begin{equation*}
\lambda \mid C^{l} \quad \text { as } \lambda \text { is a prime, then } \lambda \mid C \tag{3.83}
\end{equation*}
$$

By the same way, if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$. then : A, B and C solutions of 2.1 have a common factor.
\mathbf{B} - We suppose now that p^{\prime} is prime, from the equations (3.79) and (3.80), we obtain then:

$$
\begin{equation*}
p^{\prime}\left|A^{2 m} \Rightarrow p^{\prime}\right| A^{m} \Rightarrow p^{\prime} \mid A \tag{3.84}
\end{equation*}
$$

and:

$$
\begin{gather*}
p^{\prime}\left|B^{n} C^{l} \Rightarrow p^{\prime}\right| B^{n} \quad \text { or } p^{\prime} \mid C^{l} \tag{3.85}\\
\text { If } \quad p^{\prime}\left|B^{n} \Rightarrow p^{\prime}\right| B \tag{3.86}
\end{gather*}
$$

$$
\begin{gather*}
\text { As } C^{l}=A^{m}+B^{n} \text { and that } p^{\prime}\left|A, p^{\prime}\right| B \Rightarrow p^{\prime}\left|A^{m}, p^{\prime}\right| B^{n} \Rightarrow p^{\prime} \mid C^{l} \\
\Rightarrow p^{\prime} \mid C \tag{3.87}
\end{gather*}
$$

By the same way, if $p^{\prime} \mid C^{l}$, we arrive to $p^{\prime} \mid B$.
Hence: A, B and C solutions of 2.1 have a common factor.
3.2.2.5. Case $b=2 p$ and $3 \mid a$: We have:

$$
\left.\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{2 p}=2 a^{\prime} \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| a \Longrightarrow 2 \right\rvert\, a^{\prime}
$$

Then $2 \mid a$ and $2 \mid b$ which is contradiction with a, b coprime.
3.2.2.6. Case $b=4 p$ and $3 \mid a$: We have:

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{4 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{4 p}=a^{\prime}
$$

Calculate $A^{m} B^{n}$, we obtain:

$$
\begin{array}{r}
A^{m} B^{n}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{2 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{a^{\prime}}{2} \Longrightarrow \\
A^{m} B^{n}+\frac{A^{2 m}}{2}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3} \tag{3.88}
\end{array}
$$

let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{3.89}
\end{equation*}
$$

The left member of 3.89 is an integer and p is an integer, then $\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written:

$$
\begin{equation*}
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{3.90}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=k_{2} . k_{3}$.
\diamond - Firstly, we suppose that $k_{3} \neq 1$. Hence:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1} \tag{3.91}
\end{equation*}
$$

Let μ a prime integer and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.

* If $\mu\left|A^{m} \Longrightarrow \mu\right| A$. As $\mu\left|k_{3} \Longrightarrow \mu\right| p$ and that $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow \mu \mid B^{2 n}$ then $\mu \mid B$, it follows $\mu \mid C^{l}$, hence A, B and C solutions of 2.1 have a common factor.
* If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then:

$$
\begin{equation*}
\mu \neq 2 \quad \text { and } \quad \mu \nmid B^{n} \tag{3.92}
\end{equation*}
$$

$\mu \mid\left(A^{m}+2 B^{n}\right)$, we write:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \quad t^{\prime} \in \mathbb{N}^{*} \tag{3.93}
\end{equation*}
$$

Then :

$$
\begin{gather*}
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n} \\
\Longrightarrow p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{3.94}
\end{gather*}
$$

As $b=4 p=4 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime} \in \mathbb{N}^{*}$ that $b=\mu \mu^{\prime}$, we obtain:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(4 \mu t^{\prime 2}-8 t^{\prime} B^{n}\right)+4 B^{n}\left(B^{n}-A^{m}\right) \tag{3.95}
\end{equation*}
$$

The last equation implies $\mu \mid 4 B^{n}\left(B^{n}-A^{m}\right)$, but $\mu \neq 2$ then $\mu \mid B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$. If $\mu \mid B^{n} \Longrightarrow$ it is contradiction with 3.92). If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we have:

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \quad \text { it is contradiction with 3.92 } \tag{3.96}\\
o r \\
\mu=3
\end{array}\right.\right.
$$

If $\mu=3$, then $3 \mid b$, but $3 \mid a$ which is contradiction with a, b coprime.
$\diamond-$ We assume now $k_{3}=1$. Hence:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{3.97}\\
p & =k_{2} \tag{3.98}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{p} \tag{3.99}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{p^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
a^{\prime}\left(4 p-3 a^{\prime}\right)=k_{1}^{2} \tag{3.100}
\end{equation*}
$$

but $a^{\prime}=a^{\prime 2}$ then $4 p-3 a^{\prime}$ is a square. Let us:

$$
\begin{equation*}
\lambda^{2}=4 p-3 a^{\prime}=4 p-a=b-a \tag{3.101}
\end{equation*}
$$

The equation 3.100 becomes:

$$
\begin{equation*}
a^{\prime \prime} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=a " \lambda \tag{3.102}
\end{equation*}
$$

taking the positif square root. Using (3.97), we get :

$$
\begin{equation*}
k_{1}=a " \lambda \tag{3.103}
\end{equation*}
$$

But $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=a^{\prime \prime}\left(A^{m}+2 B^{n}\right)$, it follows:

$$
\begin{equation*}
\left(A^{m}+2 B^{n}\right)=\lambda \tag{3.104}
\end{equation*}
$$

Let λ_{1} prime $\neq 2$, a divisor of λ (if not $\lambda_{1}=2|\lambda \Longrightarrow 2| \lambda^{2}$. As $2|(b=4 p) \Longrightarrow 2|(a=$ $3 a^{\prime}$) which is contradiction with a, b coprime).

We consider $\lambda_{1} \neq 2$ and :

$$
\begin{align*}
& \lambda_{1}\left|\lambda \Longrightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right) \tag{3.105}\\
& \Longrightarrow \lambda_{1} \nmid A^{m} \text { if not } \tag{3.106}\\
& \lambda_{1} \mid 2 B^{n}
\end{align*}
$$

But $\lambda_{1} \neq 2$ hence $\lambda_{1}\left|B^{n} \Longrightarrow \lambda_{1}\right| B$, it follows:

$$
\begin{equation*}
\lambda_{1} \mid(b=4 p) \quad \text { and } \quad \lambda_{1}\left|A^{m} \Longrightarrow \lambda_{1}\right| 2 a " \Longrightarrow \lambda_{1} \mid a \tag{3.107}
\end{equation*}
$$

hence the contradiction with a, b coprime.
We assume now $\lambda_{1} \nmid A^{m} . \lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(A^{m}+2 B^{n}\right)^{2}$ that is $\lambda_{1} \mid\left(A^{2 m}+\right.$ $\left.4 A^{m} B^{n}+4 B^{2 n}\right)$, we write it as $\lambda_{1}\left|\left(p+3 A^{m} B^{n}+3 B^{2 n}\right) \Longrightarrow \lambda_{1}\right|\left(p+3 B^{n}\left(A^{m}+2 B^{n}\right)-\right.$ $\left.3 B^{2 n}\right)$. But $\lambda_{1}\left|\left(A^{m}+2 B^{n}\right) \Longrightarrow \lambda_{1}\right|\left(p-3 B^{2 n}\right)$, as $\lambda_{1} \mid(4 p-a)$ hence by difference, we obtain $\lambda_{1} \mid\left(a-3\left(B^{2 n}+p\right)\right)$ or $\lambda_{1}\left|\left(3 a^{\prime}-3\left(B^{2 n}+p\right)\right) \Longrightarrow \lambda_{1}\right| 3\left(a^{\prime}-B^{2 n}-p\right) \Longrightarrow \lambda_{1}=3$ or $\lambda_{1} \mid\left(a^{\prime}-\left(B^{2 n}+p\right)\right)$.
*A-1- If $\lambda_{1}=3|\lambda \Rightarrow 3| \lambda^{2} \Rightarrow 3 \mid b-a$ but $3|a \Longrightarrow 3|(p=b)$ hence the contradiction with a, b coprime.
*A-2- If $\lambda_{1} \neq 3$ and $\lambda_{1}\left|\left(a^{\prime}-B^{2 n}-p\right) \Longrightarrow \lambda_{1}\right|\left(A^{m} B^{n}+B^{2 n}\right) \Longrightarrow \lambda_{1} \mid B^{n}\left(A^{m}+\right.$ $\left.2 B^{n}\right) \Longrightarrow \lambda_{1} \mid B^{n}$ or $\lambda_{1} \mid\left(A^{m}+2 B^{n}\right)$. The case $\lambda_{1} \mid B^{n}$ was studied above.
*A-2-1- If $\lambda_{1} \mid\left(A^{n}+2 B^{n}\right)$. We refind the condition (3.105).
Then the case $k_{3}=1$ is impossible.
3.2.2.7. Case $3 \mid a$ and $b=2 p^{\prime} b \neq 2$ with $p^{\prime}|p: \quad 3| a \Longrightarrow a=3 a^{\prime}, b=2 p^{\prime}$ with $p=k \cdot p^{\prime}$, hence:

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{6 p^{\prime}}=2 \cdot k \cdot a^{\prime} \tag{3.108}
\end{equation*}
$$

Calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{3.109}
\end{equation*}
$$

But $\sqrt[3]{\rho^{2}}=\frac{p}{3}$ hence en using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-2 a^{\prime}\right) \tag{3.110}
\end{equation*}
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, we have then:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{3.111}\\
\text { and } \quad A^{2 m}=2 k \cdot a^{\prime} \tag{3.112}
\end{gather*}
$$

A - Soit λ a prime divisor of k (we suppose k not a prime). From (3.112), we have:

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is prime then } \quad \lambda \mid A \tag{3.113}
\end{equation*}
$$

From (3.111), as $\lambda \mid k$, we have:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \quad \lambda \mid C^{l} \tag{3.114}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is prime $\lambda \mid B$, and as $C^{l}=A^{m}+B^{n}$ then we have also:

$$
\begin{equation*}
\lambda \mid C^{l} \text { as } \lambda \text { is prime then } \lambda \mid C \tag{3.115}
\end{equation*}
$$

By the same way, if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$. Then : A, B and C solutions of (2.1) have a common factor.

B - We suppose now that k is prime, from the equations (3.111) and 3.112, we obtain:

$$
\begin{equation*}
k\left|A^{2 m} \Rightarrow k\right| A^{m} \Rightarrow k \mid A \tag{3.116}
\end{equation*}
$$

and:

$$
\begin{gather*}
k\left|B^{n} C^{l} \Rightarrow k\right| B^{n} \quad \text { or } k \mid C^{l} \tag{3.117}\\
\text { if } \quad k\left|B^{n} \Rightarrow k\right| B \tag{3.118}
\end{gather*}
$$

as $\quad C^{l}=A^{m}+B^{n} \quad$ and that $k|A, k| B \Rightarrow k\left|A^{m}, k\right| B^{n} \Rightarrow k \mid C^{l}$

$$
\begin{equation*}
\Rightarrow k \mid C \tag{3.119}
\end{equation*}
$$

By the same way, if $k \mid C^{l}$, we arrive to $k \mid B$.
Hence: A, B and C solutions of (2.1) have a common factor.
3.2.2.8. Case $3 \mid a$ and $b=4 p^{\prime} b \neq 2$ with $p^{\prime}|p: \quad 3| a \Longrightarrow a=3 a^{\prime}, b=4 p^{\prime}$ with $p=k \cdot p^{\prime}, k \neq 1$ if not $b=4 p$ a case has been studied (paragraph 3.2.2.6), then we have :

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{12 p^{\prime}}=k \cdot a^{\prime} \tag{3.120}
\end{equation*}
$$

Writing $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{3.121}
\end{equation*}
$$

But $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, hence en using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-a^{\prime}\right) \tag{3.122}
\end{equation*}
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{3.123}\\
\text { and } \quad A^{2 m}=2 k . a^{\prime} \tag{3.124}
\end{gather*}
$$

A - Let λ a prime divisor of k (we suppose k not a prime). From (3.124), we have:

$$
\begin{equation*}
\lambda\left|A^{2 m} \Rightarrow \lambda\right| A^{m} \quad \text { as } \lambda \text { is prime then } \lambda \mid A \tag{3.125}
\end{equation*}
$$

From (3.123), as $\lambda \mid k$ we obtain:

$$
\begin{equation*}
\lambda\left|B^{n} C^{l} \Rightarrow \lambda\right| B^{n} \quad \text { or } \lambda \mid C^{l} \tag{3.126}
\end{equation*}
$$

If $\lambda \mid B^{n}, \lambda$ is a prime $\lambda \mid B$, and as $C^{l}=A^{m}+B^{n}$, then we have:

$$
\begin{equation*}
\lambda \mid C^{l} \text { as } \lambda \text { is prime, then } \lambda \mid C \tag{3.127}
\end{equation*}
$$

By the same way if $\lambda \mid C^{l}$, we obtain $\lambda \mid B$. Then : A, B and C solutions of 2.1 have a common factor.

B - We suppose now that k is prime, from the equations (3.123) and (3.124), we have:

$$
\begin{equation*}
k\left|A^{2 m} \Rightarrow k\right| A^{m} \Rightarrow k \mid A \tag{3.128}
\end{equation*}
$$

and:

$$
\begin{gather*}
k\left|B^{n} C^{l} \Rightarrow k\right| B^{n} \text { or } k \mid C^{l} \tag{3.129}\\
\text { if } k\left|B^{n} \Rightarrow k\right| B \tag{3.130}\\
\text { as } \quad C^{l}=A^{m}+B^{n} \quad \text { and that } k|A, k| B \Rightarrow k\left|A^{m}, k\right| B^{n} \Rightarrow k \mid C^{l} \\
\Rightarrow k \mid C \tag{3.131}
\end{gather*}
$$

By the same way if $k \mid C^{l}$, we arrive to $k \mid B$.
Hence: A, B and C solutions of (2.1) have a common factor.
The main theorem is proved.
Tunis, November 2013.

References

[1] R. Daniel Mauldin. A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of AMS, Vol 44, $n^{\circ} 11$, 1997, pp 14361437.

