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Abstract

In 1997, Andrew Beal [1] announced the following conjecture : Let A,B,C,m, n,
and l be positive integers with m,n, l > 2. If Am +Bn = Cl then A,B, and C have

a common factor. We begin to construct the polynomial P (x) = (x − Am)(x −
Bn)(x + Cl) = x3 − px + q with p, q integers depending of Am, Bn and Cl. We
resolve x3 − px+ q = 0 and we obtain the three roots x1, x2, x3 as functions of p, q
and a parameter θ. Since Am, Bn,−Cl are the only roots of x3 − px + q = 0, we
discuss the conditions that x1, x2, x3 are integers.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.

O my Lord! Increase me further in knowledge.

(Holy Quran, Surah Ta Ha, 20:114.)

To my Wife Wahida

1 Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1.1. Let A,B,C,m, n, and l be positive integers with m,n, l > 2. If:

Am +Bn = Cl (1.1)

then A,B, and C have a common factor.

In this paper, we give an elementary proof of the Beal Conjecture. Our idea
is to construct a polynomial P (x) of three order having as roots Am, Bn and −Cl
with the condition (1.1). In the next section, we do some preliminaries calculs to
give the expressions of the three roots of P (x) = 0. The proof of the conjecture
(1.1) is the subject of the section 3.

We begin with the trivial case when Am = Bn. The equation (1.1) becomes:

2Am = Cl (1.2)
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then 2|Cl =⇒ 2|C =⇒ ∃ c ∈ N∗/ C = 2c, it follows 2Am = 2lcl =⇒ Am = 2l−1cl.
As l > 2, then 2|Am =⇒ 2|A =⇒ 2|Bn =⇒ 2|B. The conjecture (1.1) is veri�ed.

We suppose in the following that Am > Bn.

2 Preliminaries Calculs

Let m,n, l ∈ N∗ > 2 and A,B,C ∈ N∗ such:

Am +Bn = Cl (2.1)

We call:

P (x) = (x−Am)(x−Bn)(x+ Cl) = x3 − x2(Am +Bn − Cl)
+x[AmBn − Cl(Am +Bn)] + ClAmBn (2.2)

Using the equation (2.1), P (x) can be written:

P (x) = x3 + x[AmBn − (Am +Bn)2] +AmBn(Am +Bn) (2.3)

We introduce the notations:

p = (Am +Bn)2 −AmBn (2.4)

q = AmBn(Am +Bn) (2.5)

As Am 6= Bn, we have :
p > (Am −Bn)2 > 0 (2.6)

Equation (2.3) becomes:
P (x) = x3 − px+ q (2.7)

Using the equation (2.2), P (x) = 0 has three di�erent real roots : Am, Bn and −Cl.
Now, let us resolve the equation:

P (x) = x3 − px+ q = 0 (2.8)

To resolve (2.8) let:
x = u+ v (2.9)

Then P (x) = 0 gives:

P (x) = P (u+v) = (u+v)3−p(u+v)+q = 0 =⇒ u3 +v3 +(u+v)(3uv−p)+q = 0
(2.10)

To determine u and v, we obtain the conditions:

u3 + v3 = −q (2.11)

uv = p/3 > 0 (2.12)

Then u3 and v3 are solutions of the second ordre equation:

X2 + qX + p3/27 = 0 (2.13)
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Its discriminant ∆ is written as :

∆ = q2 − 4p3/27 =
27q2 − 4p3

27
=

∆

27
(2.14)

Let:

∆ = 27q2 − 4p3 = 27(AmBn(Am +Bn))2 − 4[(Am +Bn)2 −AmBn]3

= 27A2mB2n(Am +Bn)2 − 4[(Am +Bn)2 −AmBn]3 (2.15)

Noting :

α = AmBn > 0 (2.16)

β = (Am +Bn)2 (2.17)

we can write (2.15) as:
∆ = 27α2β − 4(β − α)3 (2.18)

As α 6= 0, we can also rewrite (2.18) as :

∆ = α3

(
27
β

α
− 4

(
β

α
− 1

)3
)

(2.19)

We call t the parameter :

t =
β

α
(2.20)

∆ becomes :
∆ = α3(27t− 4(t− 1)3) (2.21)

Let us calling :
y = y(t) = 27t− 4(t− 1)3 (2.22)

Since α > 0, the signe of ∆ is also the signe of y(t). Let us study the signe of y.
We obtain y′(t):

y′(t) = y′ = 3(1 + 2t)(5− 2t) (2.23)

y′ = 0 =⇒ t1 = −1/2 and t2 = 5/2, then the table of variations of y is given below:

Fig. 1: The table of variation

The table of the variations of the function y shows that y < 0 for t > 4. In
our case, we are interested for t > 0. For t = 4 we obtain y(4) = 0 and for
t ∈]0, 4[=⇒ y > 0. As we have t = β

α > 4 because as Am 6= Bn:

(Am −Bn)2 > 0 =⇒ β = (Am +Bn)2 > 4α = 4AmBn (2.24)
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Then y < 0 =⇒ ∆ < 0 =⇒ ∆ < 0. Then, the equation (2.13) does not have real
solutions u3 and v3. Let us �nd the solutions u and v with x = u+ v is a positif or
a negatif real and u.v = p/3.

2.1 Demonstration

Proof. The solutions of (2.13) are:

X1 =
−q + i

√
−∆

2
(2.25)

X2 = X1 =
−q − i

√
−∆

2
(2.26)

We may resolve:

u3 =
−q + i

√
−∆

2
(2.27)

v3 =
−q − i

√
−∆

2
(2.28)

Writing X1 in the form:
X1 = ρeiθ (2.29)

with:

ρ =

√
q2 −∆

2
=
p
√
p

3
√

3
(2.30)

and sinθ =

√
−∆

2ρ
> 0 (2.31)

cosθ = − q

2ρ
< 0 (2.32)

Then θ ∈ ] +
π

2
,+π[, let:

π

2
< θ < +π ⇒ π

6
<
θ

3
<
π

3
⇒ 1

2
< cos

θ

3
<

√
3

2
(2.33)

and
1

4
< cos2

θ

3
<

3

4
(2.34)

hence the expression of X2:
X2 = ρe−iθ (2.35)

Let:

u = reiψ (2.36)

and j =
−1 + i

√
3

2
= ei

2π
3 (2.37)

j2 = ei
4π
3 = −1 + i

√
3

2
= j (2.38)
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j is a complex cubic root of the unity⇐⇒ j3 = 1. Then, the solutions u and v are:

u1 = reiψ1 = 3
√
ρei

θ
3 (2.39)

u2 = reiψ2 = 3
√
ρjei

θ
3 = 3
√
ρei

θ+2π
3 (2.40)

u3 = reiψ3 = 3
√
ρj2ei

θ
3 = 3
√
ρei

4π
3 e+i

θ
3 = 3
√
ρei

θ+4π
3 (2.41)

and similarly:

v1 = re−iψ1 = 3
√
ρe−i

θ
3 (2.42)

v2 = re−iψ2 = 3
√
ρj2e−i

θ
3 = 3
√
ρei

4π
3 e−i

θ
3 = 3
√
ρei

4π−θ
3 (2.43)

v3 = re−iψ3 = 3
√
ρje−i

θ
3 = 3
√
ρei

2π−θ
3 (2.44)

We may now choose uk and vh so that uk + vh will be real. In this case, we have
necessary :

v1 = u1 (2.45)

v2 = u2 (2.46)

v3 = u3 (2.47)

We obtain as real solutions of the equation (2.10):

x1 = u1 + v1 = 2 3
√
ρcos

θ

3
> 0 (2.48)

x2 = u2 + v2 = 2 3
√
ρcos θ+2π

3 = − 3
√
ρ
(
cos θ3 +

√
3sin θ3

)
< 0 (2.49)

x3 = u3 + v3 = 2 3
√
ρcos θ+4π

3 = 3
√
ρ
(
−cos θ3 +

√
3sin θ3

)
> 0 (2.50)

Using the expressions of x1 and x3, we obtain:

2 3
√
pcos θ3

?︷︸︸︷
> 3
√
p
(
−cos θ3 +

√
3sin θ3

)
3cos θ3

?︷︸︸︷
>
√

3sin θ3 (2.51)

As
θ

3
∈ ] +

π

6
,+

π

3
[, then sin

θ

3
and cos

θ

3
are > 0. Taking the square of the two

members of the last equation, we get:

1

4
< cos2

θ

3
(2.52)

which is true since
θ

3
∈ ] +

π

6
,+

π

3
[ then x1 > x3. As Am, Bn and −Cl are the

only real solutions of (2.8), we consider, as Am is supposed great than Bn, the
expressions:

Am = x1 = u1 + v1 = 2 3
√
ρcos

θ

3

Bn = x3 = u3 + v3 = 2 3
√
ρcos

θ + 4π

3
= 3
√
ρ

(
−cosθ

3
+
√

3sin
θ

3

)

−Cl = x2 = u2 + v2 = 2 3
√
ρcos

θ + 2π

3
= − 3
√
ρ

(
cos

θ

3
+
√

3sin
θ

3

)
(2.53)
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3 Proof of the Main Theorem

Main Theorem: Let A,B,C,m, n, and l be positive integers with m,n, l > 2. If:

Am +Bn = Cl (3.1)

then A,B, and C have a common factor.

Proof. Am = 2 3
√
ρcos

θ

3
is an integer ⇒ A2m = 4 3

√
ρ2cos2

θ

3
is an integer. But:

3
√
ρ2 =

p

3
(3.2)

Then:

A2m = 4 3
√
ρ2cos2

θ

3
= 4

p

3
.cos2

θ

3
= p.

4

3
.cos2

θ

3
(3.3)

As A2m is an integer, and p is an integer then cos2
θ

3
must be written in the form:

cos2 θ3 = 1
b or cos2 θ3 = a

b (3.4)

with b ∈ N∗, for the last condition a ∈ N∗ and a, b coprime.

3.1 Case cos2
θ

3
=

1

b
we obtain :

A2m = p.
4

3
.cos2

θ

3
=

4.p

3.b
(3.5)

As
1

4
< cos2

θ

3
<

3

4
⇒ 1

4
<

1

b
<

3

4
⇒ b < 4 < 3b⇒ b = 1, 2, 3.

3.1.1 b = 1

b = 1⇒ 4 < 3 which is impossible.

3.1.2 b = 2

b = 2 ⇒ A2m = p.
4

3
.
1

2
=

2.p

3
⇒ 3|p ⇒ p = 3p′ with p′ 6= 1 because 3 � p, and

b = 2, we obtain:

A2m =
2p

3
= 2.p′ (3.6)

But :

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

1

2

)
=
p

3
=

3p′

3
= p′ (3.7)

On the one hand:

A2m = (Am)2 = 2p′ ⇒ 2|p′ ⇒ p′ = 2p”2 ⇒ A2m = 4p”2

⇒ Am = 2p”⇒ 2|Am ⇒ 2|A
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On the other hand:
BnCl = p′ = 2p”2 ⇒ 2|Bn or 2|Cl. If 2|Bn ⇒ 2|B. As Cl = Am +Bn and 2|A

and 2|B, it follows 2|Am and 2|Bn then 2|(Am +Bn)⇒ 2|Cl ⇔ 2|C.

Then, we have : A,B and C solutions of (2.1) have a common factor. Also if 2|Cl,
we obtain the same result : A,B and C solutions of (2.1) have a common factor.

3.1.3 b = 3

b = 3 ⇒ A2m = p.
4

3
.
1

3
=

4p

9
⇒ 9|p ⇒ p = 9p′ with p′ 6= 1 since 9 � p then

A2m = 4p′ =⇒ p′ is not a prime. Let µ a prime with µ|p′ ⇒ µ|A2m ⇒ µ|A.

On the other hand:

BnCl =
p

3

(
3− 4cos2

θ

3

)
= 5p′

Then µ|Bn or µ|Cl. If µ|Bn ⇒ µ|B. As Cl = Am+Bn and µ|A and µ|B, it follows
µ|Am and µ|Bn then µ|(Am +Bn)⇒ µ|Cl =⇒ µ|C.

Then, we have : A,B and C solutions of (2.1) have a common factor. Also if µ|Cl,
we obtain the same result : A,B and C solutions of (2.1) have a common factor.

3.2 Case a > 1, cos2
θ

3
=
a

b
That is to say:

cos2
θ

3
=
a

b
(3.8)

A2m = p.
4

3
.cos2

θ

3
=

4.p.a

3.b
(3.9)

and a, b verify one of the two conditions:

{3|p and b|4p} or {3|a and b|4p} (3.10)

and using the equation (2.34), we obtain a third condition:

b < 4a < 3b (3.11)

In these conditions, respectively, A2m = 4 3
√
ρ2cos2 θ3 = 4

p

3
.cos2

θ

3
is an integer.

Let us study the conditions given by the equation (3.10).

3.2.1 Hypothesis: {3|p and b|4p}

3.2.1.1. Case b = 2 and 3|p : 3|p ⇒ p = 3p′ with p′ 6= 1 because 3 � p, and
b = 2, we obtain:

A2m =
4p.a

3b
=

4.3p′.a

3b
=

4.p′.a

2
= 2.p′.a (3.12)



3 Proof of the Main Theorem 8

As:
1

4
< cos2

θ

3
=
a

b
=
a

2
<

3

4
⇒ a < 2⇒ a = 1 (3.13)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Case b = 4 and 3|p : We have 3|p =⇒ p = 3p′ with p′ ∈ N∗, it follows:

A2m =
4p.a

3b
=

4.3p′.a

3× 4
= p′.a (3.14)

and:
1

4
< cos2

θ

3
=
a

b
=
a

4
<

3

4
⇒ 1 < a < 3⇒ a = 2 (3.15)

But a, b are coprime. Then the case b = 4 and 3|p is impossible.

3.2.1.3. Case: b 6= 2, b 6= 4, b|p and 3|p : As 3|p then p = 3p′ and :

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

4× 3p′

3

a

b
=

4p′a

b
(3.16)

We consider the case: b|p′ =⇒ p′ = bp” and p” 6= 1 (if p” = 1, then p = 3b, see
sub-paragraph 2sd sous-case equation (3.36)). Hence :

A2m =
4bp”a

b
= 4ap” (3.17)

Let us calculate BnCl:

BnCl =
p

3

(
3− 4cos2

θ

3

)
= p′

(
3− 4

a

b

)
= b.p”.

3b− 4a

b
= p”.(3b− 4a) (3.18)

Finally, we have the two equations:

A2m =
4bp”a

b
= 4ap” (3.19)

BnCl = p”.(3b− 4a) (3.20)

Sous-case 1: p" is prime. From (3.19), p”|A2m ⇒ p”|Am ⇒ p”|A. From

(3.20), p”|Bn or p”|Cl. If p”|Bn ⇒ p”|B, as Cl = Am + Bn ⇒ p”|Cl ⇒ p”|C.
If p”|Cl ⇒ p”|C, as Bn = Cl −Am ⇒ p”|Bn ⇒ p”|B.

Then A,B and C solutions of (2.1) have a common factor.

Sous-case 2: p" is not prime. Let λ one prime divisor of p”. From (3.19), we
have :

λ|A2m ⇒ λ|Am asλ is prime then λ|A (3.21)

From (3.20), as λ|p” we have:

λ|BnCl ⇒ λ|Bn or λ|Cl (3.22)
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If λ|Bn, λ is prime λ|B, and as Cl = Am +Bn then we have also :

λ|Cl asλ is prime, then λ|C (3.23)

By the same way, if λ|Cl, we obtain λ|B.

Then: A,B and C solutions of (2.1) have a common factor.

Let us verify the condition (3.11) given by:

b < 4a < 3b

In our case, the last equation becomes:

p < 3A2m < 3p with p = A2m +B2n +AmBn (3.24)

The 3A2m < 3p =⇒ A2m < p is veri�ed.
If :

p < 3A2m =⇒ 2A2m −AmBn −B2n > 0

We put Q(Y ) = 2Y 2 − BnY − B2n, the roots of Q(Y ) = 0 are Y1 = −B
n

2 and
Y2 = Bn. Q(Y ) > 0 for Y < Y1 and Y > Y2 = Bn. In our case, we take Y = Am.
As Am > Bn then p < 3A2m is veri�ed. Then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b
implies to verify Am > Bn which is true.

3.2.1.4. Case b = 3 and 3|p : As 3|p =⇒ p = 3p′ and we write :

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

4× 3p′

3

a

3
=

4p′a

3
(3.25)

As A2m is an integer and that a and b are coprime and cos2
θ

3
can not be one in

reference to the equation (2.33), then we have necessary 3|p′ =⇒ p′ = 3p” with
p” 6= 1, if not p = 3p′ = 3×3p” = 9 but p = A2m+B2n+AmBn > 9, the hypothesis
p” = 1 is impossible, then p” > 1. hence:

A2m =
4p′a

3
=

4× 3p”a

3
= 4p”a (3.26)

BnCl =
p

3

(
3− 4cos2

θ

3

)
= p′

(
3− 4

a

b

)
=

3p”(9− 4a)

3
= p”.(9− 4a) (3.27)

As
1

4
< cos2

θ

3
=
a

b
=
a

3
<

3

4
=⇒ 3 < 4a < 9 =⇒ a = 2 as a > 1.

a = 2, we obtain:

A2m =
4p′a

3
=

4× 3p”a

3
= 4p”a = 8p” (3.28)

BnCl =
p

3

(
3− 4cos2

θ

3

)
= p′

(
3− 4

a

b

)
=

3p”(9− 4a)

3
= p” (3.29)

The two last equations give that p” is not prime. Then we use the same methodology
describted above for the case 3.2.1.3., and we have : A,B and C solutions of (2.1)
have a common factor.
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3.2.1.5. Case 3|p and b = p : We have :

cos2
θ

3
=
a

b
=
a

p

and :

A2m =
4p

3
cos2

θ

3
=

4p

3
.
a

p
=

4a

3
(3.30)

As A2m is an integer, this implies that 3|a, but 3|p =⇒ 3|b. As a and b are coprime,
hence the contradiction. Then the case 3|p and b = p is impossible.

3.2.1.6. Case 3|p and b = 4p : 3|p =⇒ p = 3p′, p′ 6= 1 because 3 � p, hence
b = 4p = 12p′.

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=
a

3
=⇒ 3|a (3.31)

because A2m is an integer. But 3|p =⇒ 3| [(4p) = b], that is in contradiction with
the hypothesis a, b are coprime. Then the case b = 4p is impossible.

3.2.1.7. Case 3|p and b = 2p : 3|p =⇒ p = 3p′, p′ 6= 1 because 3 � p, hence
b = 2p = 6p′.

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

2a

3
=⇒ 3|a (3.32)

because A2m is an integer. But 3|p =⇒ 3|(2p) =⇒ 3|b, that is in contradiction
with the hypothesis a, b are coprime. Then the case b = 2p is impossible.

3.2.1.8. Case 3|p and b 6= 3 is a divisor of p : We have b = p′ 6= 3, and p is
written as:

p = kp′ with 3|k =⇒ k = 3k′ (3.33)

and :

A2m =
4p

3
cos2

θ

3
=

4p

3
.
a

b
=

4× 3.k′p′

3

a

p′
= 4ak′ (3.34)

We calculate BnCl:

BnCl =
p

3
.

(
3− 4cos2

θ

3

)
= k′(3p′ − 4a) (3.35)

1st Sous-case: k′ 6= 1, we use the same methodology described for the case
3.1.2.3., and we obtain: A,B and C solutions of (2.1) have a common factor.

2nd sous-case:

k′ = 1 =⇒ p = 3b (3.36)

then we have:
A2m = 4a =⇒ a is even (3.37)

and :

AmBn = 2 3
√
ρcos

θ

3
. 3
√
ρ

(√
3sin

θ

3
− cosθ

3

)
=
p
√

3

3
sin

2θ

3
− 2a (3.38)
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let:

A2m + 2AmBn =
2p
√

3

3
sin

2θ

3
= 2b
√

3sin
2θ

3
(3.39)

The left member of (3.39) is an integer and b also, then 2
√

3sin
2θ

3
can be written

in the form:

2
√

3sin
2θ

3
=
k1
k2

(3.40)

where k1, k2 are two coprime integers and k2|b =⇒ b = k2.k3.

♦ - We suppose k3 6= 1. Hence:

A2m + 2AmBn = k3.k1 (3.41)

Let µ is an prime integer such that µ|k3. If µ = 2⇒ 2|b but 2|a that is contradiction
with a, b coprime. We suppose µ 6= 2 and µ|k3, then µ|Am(Am + 2Bn) =⇒ µ|Am
or µ|(Am + 2Bn).

*A-1- If µ|Am =⇒ µ|A2m =⇒ µ|4a =⇒ µ|a. As µ|k3 =⇒ µ|b and that a, b are
coprime hence the contradiction.

*A-2- If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn then µ 6= 2 and µ - Bn. µ|(Am +
2Bn), we can write:

Am + 2Bn = µ.t′ t′ ∈ N∗ (3.42)

It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (3.43)

As p = 3b = 3k2.k3 and µ|k3 hence µ|p =⇒ p = µµ′, so we have :

µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am) (3.44)

and µ|Bn(Bn −Am) =⇒ µ|Bn or µ|(Bn −Am).

*A-2-1- If µ|Bn =⇒ µ|B which is in contradiction with *A-2.

*A-2-2- If µ|(Bn −Am) and using µ|(Am + 2Bn), we obtain:

µ|3Bn =⇒

 µ|Bn =⇒ µ|B which is impossible
or
µ = 3

(3.45)

*A-2-2-1- If µ = 3 =⇒ 3|k3 =⇒ k3 = 3k′3, and we have b = k2k3 = 3k2k
′
3, it follows

p = 3b = 9k2k
′
3 then 9|p, but p = (Am −Bn)2 + 3AmBn then :

9k2k
′
3 − 3AmBn = (Am −Bn)2
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we write it as :
3(3k2k

′
3 −AmBn) = (Am −Bn)2 (3.46)

hence 3|(3k2k′3 −AmBn) =⇒ 3|AmBn =⇒ 3|Am or 3|Bn.

*A-2-2-1-1- If 3|Am =⇒ 3|A and we have also 3|A2m, but A2m = 4a =⇒ 3|4a =⇒
3|a. As b = 3k2k

′
3 then 3|b, but a, b are coprime hence the contradiction. Then 3 - A.

*A-2-2-1-2- If 3|Bn =⇒ 3|B, but the (3.46) gives 3|(Am−Bn)2 =⇒ 3|(Am−Bn) =⇒
3|Am =⇒ 3|A. But using the result of the last paragraph *A-2-2-1-1, we obtain
3 - A. Then the hypothesis k3 6= 1 is impossible.

♦- Now we suppose that k3 = 1 =⇒ b = k2 and p = 3b = 3k2. We have then:

2
√

3sin
2θ

3
=
k1
b

(3.47)

with k1, b coprime. We write (3.47) as :

4
√

3sin
θ

3
cos

θ

3
=
k1
b

Taking the square of the two members and remplacing cos2
θ

3
by

a

b
, we obtain:

3× 42.a(b− a) = k21 (3.48)

which implies that :
3|a or 3|(b− a)

*B-1- If 3|a, as A2m = 4a =⇒ 3|A2m =⇒ 3|A. But p = (Am − Bn)2 + 3AmBn

and that 3|p =⇒ 3|(Am −Bn)2 =⇒ 3|(Am −Bn). But 3|A hence 3|Bn =⇒ 3|B, it
follows 3|Cl =⇒ 3|C.

We obtain: A,B and C solutions of (2.1) have a common factor.

*B-2- Considering now that 3|(b − a). As k1 = Am(Am + 2Bn) by the equation
(3.41) and that 3|k1 =⇒ 3|Am(Am + 2Bn) =⇒ 3|Am or 3|(Am + 2Bn).

*B-2-1- If 3|Am =⇒ 3|A =⇒ 3|A2m then 3|4a =⇒ 3|a. But 3|(b− a) =⇒ 3|b hence
the contradiction with a, b are coprime.

*B-2-2- If:
3|(Am + 2Bn) =⇒ 3|(Am −Bn) (3.49)

But p = A2m + B2n + AmBn = (Am − Bn)2 + 3AmBn then p − 3AmBn =
(Am − Bn)2 =⇒ 9|(p − 3AmBn) or 9|(3b − 3AmBn), then 3|(b − AmBn) but
3|(b − a) =⇒ 3|(a − AmBn). As A2m = 4a = (Am)2 =⇒ ∃a′ ∈ N∗ and a =
a′2 =⇒ Am = 2a′. We arrive to 3|(a′2 − 2a′Bn) =⇒ 3|a′(a′ − 2Bn).

*B-2-2-1- If 3|a′ =⇒ 3|Am =⇒ 3|A, but 3|(Am+2Bn) =⇒ 3|2Bn =⇒ 3|Bn =⇒ 3|B,
it follows 3|C.
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Hence A,B and C solutions of (2.1) have a common factor.

*B-2-2-2- Now if 3|(a′−2Bn) =⇒ 3|(2a′−4Bn) =⇒ 3|(Am−4Bn) =⇒ 3|(Am−Bn),
we re�nd the hypothesis (3.49) above.

The study of the case 3.2.1.8. is �nished.

3.2.2 Hypothesis : {3|a and b|4p}

We have :
3|a =⇒ ∃a′ ∈ N∗ / a = 3a′ (3.50)

3.2.2.1. Case b = 2 and 3|a : A2m is written as :

A2m =
4p

3
.cos2

θ

3
=

4p

3
.
a

b
=

4p

3
.
a

2
=

2.p.a

3
(3.51)

Using the equation (3.50), A2m becomes:

A2m =
2.p.3a′

3
= 2.p.a′ (3.52)

But cos2
θ

3
=
a

b
=

3a′

2
> 1 which is impossible, then b 6= 2.

3.2.2.2. Case b = 4 and 3|a : A2m is written as :

A2m =
4.p

3
cos2

θ

3
=

4.p

3
.
a

b
=

4.p

3
.
a

4
=
p.a

3
=
p.3a′

3
= p.a′ (3.53)

and cos2
θ

3
=
a

b
=

3.a′

4
<

(√
3

2

)2

=
3

4
=⇒ a′ < 1 (3.54)

which is impossible.

Then the case b = 4 is impossible.

3.2.2.3. Case b = p and 3|a : Then:

cos2
θ

3
=
a

b
=

3a′

p
(3.55)

and:

A2m =
4p

3
.cos2

θ

3
=

4p

3
.
3a′

p
= 4a′ = (Am)2 (3.56)

∃a” ∈ N∗ / a′ = a”2 (3.57)

We calculate AmBn, hence:

AmBn = p.

√
3

3
sin

2θ

3
− 2a′

or AmBn + 2a′ = p.

√
3

3
sin

2θ

3
(3.58)



3 Proof of the Main Theorem 14

The left member of (3.58) is an integer and p is also, then 2

√
3

3
sin

2θ

3
will be written

as :

2

√
3

3
sin

2θ

3
=
k1
k2

(3.59)

where k1, k2 are two coprime integers and k2|p =⇒ p = b = k2.k3, k3 ∈ N∗.

♦ - We suppose that k3 6= 1. We obtain :

Am(Am + 2Bn) = k1.k3 (3.60)

Let us µ a prime integer with µ|k3, then µ|b and µ|Am(Am + 2Bn) =⇒ µ|Am or
µ|(Am + 2Bn).

* If µ|Am =⇒ µ|A and µ|A2m, but A2m = 4a′ =⇒ µ|4a′ =⇒ (µ = 2 but 2|a′)
or (µ|a′). Then µ|a hence the contradiction with a, b coprime.

* If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn then µ 6= 2 and µ - Bn. We write
µ|(Am + 2Bn) as:

Am + 2Bn = µ.t′ t′ ∈ N∗ (3.61)

It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (3.62)

Since p = b = k2.k3 and µ|k3 then µ|b =⇒ ∃µ′ ∈ N∗ and b = µµ′, so we can write:

µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am) (3.63)

From the last equation, we get µ|Bn(Bn−Am) =⇒ µ|Bn or µ|(Bn−Am). If µ|Bn
which is contradiction with µ - Bn. If µ|(Bn − Am) and using µ|(Am + 2Bn), on
arrive to:

µ|3Bn =⇒

 µ|Bn =⇒ which is contradiction
or
µ = 3

(3.64)

Si µ = 3, then 3|b, but 3|a thus the contradiction with a, b coprime.

♦ - We assume now k3 = 1. Hence:

A2m + 2AmBn = k1 (3.65)

b = k2 (3.66)

2
√

3

3
sin

2θ

3
=
k1
b

(3.67)

Taking the square of the last equation, we obtain:

4

3
sin2

2θ

3
=
k21
b2
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16

3
sin2

θ

3
cos2

θ

3
=
k21
b2

16

3
sin2

θ

3
.
3a′

b
=
k21
b2

Finally:
42a′(p− a) = k21 (3.68)

but a′ = a”2 then p− a is a square. Let us:

λ2 = p− a (3.69)

The equation (3.100) becomes:

42a”2λ2 = k21 =⇒ k1 = 4a”λ (3.70)

taking the positif square root. Using (3.97), we get :

k1 = 4a”λ (3.71)

But k1 = Am(Am + 2Bn) = 2a”(Am + 2Bn), it follows:

Am + 2Bn = 2λ (3.72)

Let λ1 prime 6= 2, a divisor of λ (if not λ1 = 2|λ =⇒ 2|λ2 =⇒ 2|(p − a) but a is
even, then 2|p =⇒ 2|b which is contradiction with a, b coprime).

We consider λ1 6= 2 and :

λ1|λ =⇒ λ1|λ2 and λ1|(Am + 2Bn) (3.73)

λ1|(Am + 2Bn) =⇒ λ1 - Am if not λ1|2Bn (3.74)

But λ1 6= 2 hence λ1|Bn =⇒ λ1|B, it follows:

λ1|(p = b) and λ1|Am =⇒ λ1|2a” =⇒ λ1|a (3.75)

hence the contradiction with a, b coprime.

We assume now λ1 - Am. λ1|(Am+2Bn) =⇒ λ1|(Am+2Bn)2 that is λ1|(A2m+
4AmBn + 4B2n), we write it as λ1|(p + 3AmBn + 3B2n) =⇒ λ1|(p + 3Bn(Am +
2Bn)− 3B2n). But λ1|(Am + 2Bn) =⇒ λ1|(p− 3B2n), as λ1|(p− a) hence by dif-
ference, we obtain λ1|(a− 3B2n) or λ1|(3a′ − 3B2n) =⇒ λ1|3(a′ −B2n) =⇒ λ1 = 3
or λ1|(a′ −B2n).

*A-1- If λ1 = 3 but 3|a =⇒ 3|(p = b) hence the contradiction with a, b coprime.

*A-2- If λ1|(a′ − B2n) =⇒ λ1|(a”2 − B2n) =⇒ λ1|(a” − Bn)(a” + Bn) =⇒
λ1|(a” +Bn) or λ1|(a”−Bn), because (a”−Bn) 6= 1 if not we obtain a”2−B2n =
a”+Bn =⇒ a”2−a” = Bn−B2n. The left member is positif and the right member
is negatif, then the contradiction.

*A-2-1- If λ1|(a”−Bn) =⇒ λ1|2(a”−Bn) =⇒ λ1|(Am−2Bn) but λ1|(Am+2Bn)
hence λ1|2Am =⇒ λ1|Am, λ1 6= 2, it follows λ1|Am hence the contradiction with



3 Proof of the Main Theorem 16

(3.106).

*A-2-2- If λ1|(a” +Bn) =⇒ λ1|2(a” +Bn)⇐⇒ λ1|(Am + 2Bn). We re�nd the
condition (3.105).

Then the case k3 = 1 is impossible.

3.2.2.4. Case b|p⇒ p = b.p′, p′ > 1, b 6= 2, b 6= 4 and 3|a :

A2m =
4.p

3
.
a

b
=

4.b.p′.3.a′

3.b
= 4.p′a′ (3.76)

We calculate BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
= 3
√
ρ2
(

3− 4cos2
θ

3

)
(3.77)

But 3
√
ρ2 =

p

3
hence using cos2 θ3 =

3.a′

b
:

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= p′(b− 4a′)

(3.78)
As p = b.p′, and p′ > 1, we have then:

BnCl = p′(b− 4a′) (3.79)

and A2m = 4.p′.a′ (3.80)

A - Let λ a prime divisor of p′ (we suppose p′ not prime ). From (3.80), we have:

λ|A2m ⇒ λ|Am asλ is a prime, then λ|A (3.81)

From (3.79), as λ|p′ we have:

λ|BnCl ⇒ λ|Bn or λ|Cl (3.82)

If λ|Bn, λ is a prime λ|B, but Cl = Am +Bn, then we have also :

λ|Cl asλ is a prime, then λ|C (3.83)

By the same way, if λ|Cl, we obtain λ|B. then : A,B and C solutions of (2.1) have
a common factor.

B - We suppose now that p′ is prime, from the equations (3.79) and (3.80), we
obtain then:

p′|A2m ⇒ p′|Am ⇒ p′|A (3.84)

and:

p′|BnCl ⇒ p′|Bn or p′|Cl (3.85)

If p′|Bn ⇒ p′|B (3.86)

As Cl = Am +Bn and that p′|A, p′|B ⇒ p′|Am, p′|Bn ⇒ p′|Cl

⇒ p′|C (3.87)

By the same way, if p′|Cl, we arrive to p′|B.

Hence: A ,B and C solutions of (2.1) have a common factor.
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3.2.2.5. Case b = 2p and 3|a : We have:

cos2
θ

3
=
a

b
=

3a′

2p
=⇒ A2m =

4p.a

3b
=

4p

3
.
3a′

2p
= 2a′ =⇒ 2|Am =⇒ 2|a =⇒ 2|a′

Then 2|a and 2|b which is contradiction with a, b coprime.

3.2.2.6. Case b = 4p and 3|a : We have :

cos2
θ

3
=
a

b
=

3a′

4p
=⇒ A2m =

4p.a

3b
=

4p

3
.
3a′

4p
= a′

Calculate AmBn, we obtain:

AmBn =
p
√

3

3
.sin

2θ

3
− 2p

3
cos2

θ

3
=
p
√

3

3
.sin

2θ

3
− a′

2
=⇒

AmBn +
A2m

2
=
p
√

3

3
.sin

2θ

3
(3.88)

let:

A2m + 2AmBn =
2p
√

3

3
sin

2θ

3
(3.89)

The left member of (3.89) is an integer and p is an integer, then
2
√

3

3
sin

2θ

3
will be

written:
2
√

3

3
sin

2θ

3
=
k1
k2

(3.90)

where k1, k2 are two coprime integers and k2|p =⇒ p = k2.k3.

♦ - Firstly, we suppose that k3 6= 1. Hence:

A2m + 2AmBn = k3.k1 (3.91)

Let µ a prime integer and µ|k3, then µ|Am(Am+2Bn) =⇒ µ|Am or µ|(Am+2Bn).

* If µ|Am =⇒ µ|A. As µ|k3 =⇒ µ|p and that p = A2m+B2n+AmBn =⇒ µ|B2n

then µ|B, it follows µ|Cl, hence A,B and C solutions of (2.1) have a common factor.

* If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn then:

µ 6= 2 and µ - Bn (3.92)

µ|(Am + 2Bn), we write:

Am + 2Bn = µ.t′ t′ ∈ N∗ (3.93)

Then :

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

=⇒ p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (3.94)
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As b = 4p = 4k2.k3 and µ|k3 then µ|b =⇒ ∃µ′ ∈ N∗ that b = µµ′, we obtain:

µ′µ = µ(4µt′2 − 8t′Bn) + 4Bn(Bn −Am) (3.95)

The last equation implies µ|4Bn(Bn −Am), but µ 6= 2 then µ|Bn or µ|(Bn −Am).
If µ|Bn =⇒ it is contradiction with (3.92). If µ|(Bn−Am) and using µ|(Am+2Bn),
we have:

µ|3Bn =⇒

 µ|Bn it is contradiction with 3.92
or
µ = 3

(3.96)

If µ = 3, then 3|b, but 3|a which is contradiction with a, b coprime.

♦ - We assume now k3 = 1. Hence:

A2m + 2AmBn = k1 (3.97)

p = k2 (3.98)

2
√

3

3
sin

2θ

3
=
k1
p

(3.99)

Taking the square of the last equation, we obtain:

4

3
sin2

2θ

3
=
k21
p2

16

3
sin2

θ

3
cos2

θ

3
=
k21
p2

16

3
sin2

θ

3
.
3a′

b
=
k21
p2

Finally:
a′(4p− 3a′) = k21 (3.100)

but a′ = a”2 then 4p− 3a′ is a square. Let us:

λ2 = 4p− 3a′ = 4p− a = b− a (3.101)

The equation (3.100) becomes:

a”2λ2 = k21 =⇒ k1 = a”λ (3.102)

taking the positif square root. Using (3.97), we get :

k1 = a”λ (3.103)

But k1 = Am(Am + 2Bn) = a”(Am + 2Bn), it follows:

(Am + 2Bn) = λ (3.104)

Let λ1 prime 6= 2, a divisor of λ (if not λ1 = 2|λ =⇒ 2|λ2. As 2|(b = 4p) =⇒ 2|(a =
3a′) which is contradiction with a, b coprime).
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We consider λ1 6= 2 and :

λ1|λ =⇒ λ1|(Am + 2Bn) (3.105)

=⇒ λ1 - Am if not λ1|2Bn (3.106)

But λ1 6= 2 hence λ1|Bn =⇒ λ1|B, it follows:

λ1|(b = 4p) and λ1|Am =⇒ λ1|2a” =⇒ λ1|a (3.107)

hence the contradiction with a, b coprime.

We assume now λ1 - Am. λ1|(Am+2Bn) =⇒ λ1|(Am+2Bn)2 that is λ1|(A2m+
4AmBn+4B2n), we write it as λ1|(p+3AmBn+3B2n) =⇒ λ1|(p+3Bn(Am+2Bn)−
3B2n). But λ1|(Am+2Bn) =⇒ λ1|(p−3B2n), as λ1|(4p−a) hence by di�erence, we
obtain λ1|(a−3(B2n+p)) or λ1|(3a′−3(B2n+p)) =⇒ λ1|3(a′−B2n−p) =⇒ λ1 = 3
or λ1|(a′ − (B2n + p)).

*A-1- If λ1 = 3|λ⇒ 3|λ2 ⇒ 3|b− a but 3|a =⇒ 3|(p = b) hence the contradic-
tion with a, b coprime.

*A-2- If λ1 6= 3 and λ1|(a′ −B2n − p) =⇒ λ1|(AmBn +B2n) =⇒ λ1|Bn(Am +
2Bn) =⇒ λ1|Bn or λ1|(Am + 2Bn). The case λ1|Bn was studied above.

*A-2-1- If λ1|(An + 2Bn). We re�nd the condition (3.105).

Then the case k3 = 1 is impossible.

3.2.2.7. Case 3|a and b = 2p′ b 6= 2 with p′|p : 3|a =⇒ a = 3a′, b = 2p′ with
p = k.p′, hence:

A2m =
4.p

3
.
a

b
=

4.k.p′.3.a′

6p′
= 2.k.a′ (3.108)

Calculate BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
= 3
√
ρ2
(

3− 4cos2
θ

3

)
(3.109)

But 3
√
ρ2 =

p

3
hence en using cos2 θ3 =

3.a′

b
:

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − 2a′)

(3.110)
As p = b.p′, and p′ > 1, we have then:

BnCl = k(p′ − 2a′) (3.111)

and A2m = 2k.a′ (3.112)

A - Soit λ a prime divisor of k (we suppose k not a prime ). From (3.112), we have:

λ|A2m ⇒ λ|Am asλ is prime then λ|A (3.113)
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From (3.111), as λ|k, we have:

λ|BnCl ⇒ λ|Bn or λ|Cl (3.114)

If λ|Bn, λ is prime λ|B, and as Cl = Am +Bn then we have also:

λ|Cl asλ is prime then λ|C (3.115)

By the same way, if λ|Cl, we obtain λ|B. Then : A,B and C solutions of (2.1)
have a common factor.

B - We suppose now that k is prime, from the equations (3.111) and (3.112), we
obtain:

k|A2m ⇒ k|Am ⇒ k|A (3.116)

and:

k|BnCl ⇒ k|Bn or k|Cl (3.117)

if k|Bn ⇒ k|B (3.118)

as Cl = Am +Bn and that k|A, k|B ⇒ k|Am, k|Bn ⇒ k|Cl

⇒ k|C (3.119)

By the same way, if k|Cl, we arrive to k|B.

Hence: A ,B and C solutions of (2.1) have a common factor.

3.2.2.8. Case 3|a and b = 4p′ b 6= 2 with p′|p : 3|a =⇒ a = 3a′, b = 4p′ with
p = k.p′, k 6= 1 if not b = 4p a case has been studied (paragraph 3.2.2.6), then we
have :

A2m =
4.p

3
.
a

b
=

4.k.p′.3.a′

12p′
= k.a′ (3.120)

Writing BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
= 3
√
ρ2
(

3− 4cos2
θ

3

)
(3.121)

But 3
√
ρ2 =

p

3
, hence en using cos2 θ3 =

3.a′

b
:

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − a′)

(3.122)
As p = b.p′, and p′ > 1, we have:

BnCl = k(p′ − 2a′) (3.123)

and A2m = 2k.a′ (3.124)

A - Let λ a prime divisor of k (we suppose k not a prime). From (3.124), we have:

λ|A2m ⇒ λ|Am asλ is prime then λ|A (3.125)
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From (3.123), as λ|k we obtain:

λ|BnCl ⇒ λ|Bn or λ|Cl (3.126)

If λ|Bn, λ is a prime λ|B, and as Cl = Am +Bn, then we have:

λ|Cl as λ is prime, then λ|C (3.127)

By the same way if λ|Cl, we obtain λ|B. Then : A,B and C solutions of (2.1) have
a common factor.

B - We suppose now that k is prime, from the equations (3.123) and (3.124), we
have:

k|A2m ⇒ k|Am ⇒ k|A (3.128)

and:

k|BnCl ⇒ k|Bn or k|Cl (3.129)

if k|Bn ⇒ k|B (3.130)

as Cl = Am +Bn and that k|A, k|B ⇒ k|Am, k|Bn ⇒ k|Cl

⇒ k|C (3.131)

By the same way if k|Cl, we arrive to k|B.

Hence: A ,B and C solutions of (2.1) have a common factor.

The main theorem is proved.

Tunis, November 2013.
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