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ABSTRACT 
In its original form the Dirac equation for the free electron and the free positron is 
formulated by using complex number based spinors and matrices. That equation can be split 
into two equations, one for the electron and one for the positron. If we use proper time 
rather than coordinate time, and apply the existence of different versions of quaternionic 
number systems, then these equations can easily be converted to their quaternionic format. 
The equation for the electron and the equation for the positron differ in the symmetry flavor 
of their parameter spaces. This results in special considerations for the corresponding 
quaternionic wave equation. 
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1 The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices and 
partial derivatives.  

Instead of the usual {
𝜕𝑓

𝜕𝑡
 , 𝒊

𝜕𝑓

𝜕𝑥
, 𝒋

𝜕𝑓

𝜕𝑦
, 𝒌

𝜕𝑓

𝜕𝑧
} we want to use operators 𝛻 = {∇0,𝛁} 

The operator 𝛻 relates to the applied parameter space. This means that the parameter space 
is also configured of combinations 𝑥 = {𝑡, 𝒙 } of a scalar 𝑡 and a vector 𝒙. Also the functions 
can be split in scalar functions and vector functions. The subscript 0 indicates the scalar part. 
Bold face indicates the vector part. 
Here 𝑡 represents a local scalar, which is defined as the scalar part of the applied parameter 
space. 
The original Dirac equation uses 4x4 matrices 𝛂 and β. [1] [2]: 
𝛂 and 𝛽 are matrices that implement the quaternion arithmetic behavior including the 
possible symmetry flavors of quaternionic number systems and continuums.  
 

𝛼1 = 𝛾1 = [
0 𝜎1

−𝜎1 0
] ↔ −𝑖 [

0 𝒊
−𝒊 0

] 

 

𝛼2 = 𝛾2 = [
0 𝜎2

−𝜎2 0
] ↔ −𝑖 [

0 𝒋
−𝒋 0

] 

 

𝛼3 = 𝛾3 = [
0 𝜎3

−𝜎3 0
] ↔ −𝑖 [

0 𝒌
−𝒌 0

] 

 

𝛽 = 𝛾0 = [
0 1
1 0

] 

 
The unity matrix 𝐼 and the Pauli matrices  𝜎1, 𝜎2, 𝜎3 are given by [3]: 
 

𝐼 = [
1  0
0 1

] , 𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
0 −1

] 

 
For one of the potential orderings of the quaternionic number system, the Pauli matrices 
together with the unity matrix 𝐼 relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 
 

1 ⟼ 𝐼, 𝒊 ⟼  𝑖 𝜎1, 𝒋 ⟼  𝑖 𝜎2, 𝒌 ⟼  𝑖 𝜎3 
 
𝜎1𝜎2 − 𝜎2𝜎1 = 2 𝑖 𝜎3;  𝜎2𝜎3 − 𝜎3𝜎2 = 2 𝑖 𝜎1;  𝜎3𝜎1 − 𝜎1𝜎3 = 2 𝑖 𝜎2 
 
𝜎1𝜎1 = 𝜎2𝜎2 = 𝜎3𝜎3 = 𝛽𝛽 = 𝐼 

 
Together with the 𝜶 matrices, the matrix 𝛽 represents quaternionic conjugation. As a 
consequence, it switches the handedness of the external vector product.  
The interpretation of the Pauli matrices as representation of a special kind of angular 
momentum has led to the half integer eigenvalue of the corresponding spin operator. 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



2 Splitting into two equations 
One interpretations of the Dirac equation is [4]: 
 

(𝛾0

𝜕

𝜕𝑡
− 𝛾1

𝜕

𝜕𝑥
− 𝛾2

𝜕

𝜕𝑦
− 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝑖ℏ
) {𝜓} = 0 

 
This invites splitting of the four component spinor equation into two equations for two 
component spinors: 
 

𝑖
𝜕𝜑𝐴

𝜕𝑡
− 𝑖𝜎1

𝜕𝜑𝐴

𝜕𝑥
− 𝑖𝜎2

𝜕𝜑𝐴

𝜕𝑦
− 𝑖𝜎3

𝜕𝜑𝐴

𝜕𝑧
=

 𝑚

ℏ
 𝜑𝐵 

 

𝑖
𝜕𝜑𝐵

𝜕𝑡
+ 𝑖𝜎1

𝜕𝜑𝐵

𝜕𝑥
+ 𝑖𝜎2

𝜕𝜑𝐵

𝜕𝑦
+ 𝑖𝜎3

𝜕𝜑𝐵

𝜕𝑧
=

 𝑚

ℏ
 𝜑𝐴 

 

𝑖
𝜕𝜑𝐴

𝜕𝑡
− 𝒊

𝜕𝜑𝐴

𝜕𝑥
− 𝒋

𝜕𝜑𝐴

𝜕𝑦
− 𝒌

𝜕𝜑𝐴

𝜕𝑧
= (𝑖∇0 − 𝛁)𝜑𝐴 =

 𝑚

ℏ
 𝜑𝐵 

 

𝑖
𝜕𝜑𝐵

𝜕𝑡
+ 𝒊

𝜕𝜑𝐵

𝜕𝑥
+ 𝒋

𝜕𝜑𝐵

𝜕𝑦
+ 𝒌

𝜕𝜑𝐵

𝜕𝑧
= (𝑖∇0 + 𝛁)𝜑𝐵 =

 𝑚

ℏ
 𝜑𝐴 

 
(𝑖∇0 + 𝛁)(𝑖∇0 − 𝛁)𝜑𝐴 = (−∇0∇0 − 𝛁𝛁)𝜑𝐴 = (〈𝛁, 𝛁〉−∇0∇0)𝜑𝐴 

=
 𝑚

ℏ
(𝑖∇0 + 𝛁) 𝜑𝐵 =

 𝑚2

ℏ2
 𝜑𝐴 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜑𝐴 =
 𝑚2

ℏ2
 𝜑𝐴 

 
(𝑖∇0 − 𝛁)(𝑖∇0 + 𝛁)𝜑𝐵 = (−∇0∇0 − 𝛁𝛁)𝜑𝐵 = (〈𝛁, 𝛁〉−∇0∇0)𝜑𝐵 

=
 𝑚

ℏ
(𝑖∇0 − 𝛁) 𝜑𝐴 =

 𝑚2

ℏ2
 𝜑𝐵 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜑𝐵 =
 𝑚2

ℏ2
 𝜑𝐵 

 
Thus the four component spinors {𝜓} can be converted in two component spinors { 𝜑𝐴} and 
{ 𝜑𝐵}. Quaternionic functions are not complex number based spinors, but the form of 
equations (7) and (9) offer sufficient info for the conversion. With respect to second order 
differentiation, the two component spinors and the quaternionic functions show similar 
behavior. 
Transferring the matrix form of the Dirac equation into quaternionic format delivers two 
quaternionic functions 𝜒𝐴 and 𝜒𝐵 that replace the spinors { 𝜑𝐴} and { 𝜑𝐵}. These functions 
have different parameter spaces. As a consequence the nabla operators act differently onto 
𝜒𝐴 and 𝜒𝐵. This results into two coupled first order partial differential equations.  
 

(∇0 − 𝛁)𝜒𝐴 = 𝛻∗𝜒𝐴 =
 𝑚

ℏ
 𝜒𝐵 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 



 

(∇0 + 𝛁)𝜒𝐵 = 𝛻𝜒𝐵 =
 𝑚

ℏ
 𝜒𝐴 

 
This also corresponds to two quite similar second order partial differential equations:  
 

(〈𝛁, 𝛁〉−∇0∇0)𝜒𝐴 =
 𝑚2

ℏ2
𝜒𝐴 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜒𝐵 =
 𝑚2

ℏ2
𝜒𝐵  

 
And one homogeneous second order partial differential equation 
 

(〈𝛁, 𝛁〉−∇0∇0)𝜒 = 0 
 
This equation is a wave equation. The set of its solutions includes waves. 
Thus, the functions 𝜒𝐴 and 𝜒𝐵 describe two different solutions of the same Maxwell-like 
second order partial differential equation. 
According to the Dirac matrices the natural parameter spaces of functions 𝜒𝐴 and 𝜒𝐵 
concern two different quaternionic number systems that differ in the handedness of their 
external vector product. 
One of these natural parameter spaces is right handed and the other natural parameter 
space is left handed. 
The factor 𝑚 couples 𝜒𝐴 and 𝜒𝐵. 
Since both 𝜒𝐴 and 𝜒𝐵 are quaternionic functions, they also obey other second order partial 
wave equations. 
 

(〈𝛁, 𝛁〉+∇0∇0)𝜒𝐴 = 𝜉𝐴 
 

(〈𝛁, 𝛁〉+∇0∇0)𝜒𝐵 = 𝜉𝐵 
 

(2 ∇0∇0 +
 𝑚2

ℏ2
) 𝜒𝐴 = 𝜉𝐴 

 

〈𝛁, 𝛁〉 𝜒𝐴 = 𝜉𝐴 +
 𝑚2

ℏ2
𝜒𝐴 

 
Natural parameter spaces are spanned by a version of the quaternionic number system. Due 
to the four dimensions of quaternions, these natural parameter spaces represent two 
different sign flavors of one and the same quaternionic field that exists in 16 versions that 
only differ in their discrete symmetry set. 
The fields that represent the two natural parameter spaces can be considered to be each 
other’s quaternionic conjugate. As a consequence, they differ in the handedness of the 
external vector product. These fields relate to the symmetry centers from which the particle 
generating mechanisms take their resources. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 



In the direct environment of the free particle, apparently two kinds of potential embedding 
exist. Alongside the particle embedding with solution 𝜒𝐴 exists an antiparticle embedding 
with solution 𝜒𝐵.  
Function 𝜒 represents a curl free field. 

𝛻𝜒 = 𝛻∗𝜒∗ 

  
(19) 



3 Alternatives 

3.1 Minkowski parameter space 
In quaternionic differential calculus the local quaternionic distance can represent a scalar 
that is independent of the direction of progression. It corresponds to the notion of 
coordinate time. That means that a small coordinate time step ∆𝑡 equals the sum of a small 
proper time step ∆𝜏 and a small pure space step ∆𝒙. In quaternionic format the step ∆𝜏 is a 
real number. The space step ∆𝒙 is an imaginary quaternionic number. The original Dirac 
equation does not pay attention to the difference between coordinate time and proper 
time, but the quaternionic presentation of these equations show that a progression 
independent scalar can be useful as the scalar part of the parameter space. This holds 
especially for solutions of the homogeneous wave equation. 

3.2 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are 
each other’s quaternionic conjugate. This can also be applied when anisotropic conjugation 
is applied. This concerns conjugations in which only one or two dimensions get a reverse 
ordering. In that case the equations handle the dynamic behavior of anisotropic particles 
such as quarks. 

4 The coupling equation 
The Dirac equation is a more specific form of the coupling equation [5]. The coupling equation 
holds for quaternionic functions for which the nabla based differential can be normalized: 
 

𝜙 = ∇𝜒 = 𝑚 𝜑; ‖𝜒‖ = ‖𝜑‖ = 1  
 
By adapting 𝜑, the coupling factor 𝑚 can become a real positive number. 
 
The quaternionic second order partial differential equation corresponds to two coupling 
equations: 
 

𝜙 = ∇𝜒 = 𝑚1 𝜑 
and 

∇∗𝜑 = 𝑚2𝜓 
 

∇∗∇𝜒 = (∇0∇0 + 〈𝛁, 𝛁〉)𝜒 = 𝑚1𝑚2𝜓 
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